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Abstract. The hypervisor, with its resource isolation, security guar-
antees, and ability to meet high real-time requirements, offers signif-
icant advantages in real-time scenarios. Furthermore, its communica-
tion capabilities play a crucial role in enabling collaborative compu-
tation tasks across different virtual machines. The Jailhouse hypervi-
sor, known for its real-time capabilities and secure embedded platform,
demonstrates outstanding performance in real-time scenarios. However,
the inter-virtual machine (inter-VM) communication protocol based on
Jailhouse is not yet mature, necessitating optimization to enhance its
suitability for real-time communication scenarios. Firstly, the existing
communication mechanism underwent reconstruction, involving the dis-
abling of the one-shot interrupt mode and expanding the shared memory
area. Secondly, an experimental platform was established on the Rasp-
berry Pi-4B, configuring the real-time system and adopting the io uring
methods. Finally, experimental evaluations were conducted to assess the
differences in communication delay, throughput, and data transmission
delay before and after the communication protocol reconstruction. Addi-
tionally, the mitigating effect of the new communication mechanism on
VMexit behavior was also evaluated. The experimental results demon-
strate that the enhanced communication mechanism significantly reduces
both the system call overhead and the number of VMexit compared to
the native communication protocol (Inter-VM Shared Memory, IVSH-
MEM). Moreover, the throughput exhibits a notable improvement of
approximately 200 MB/s.
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1 Introduction

Amidst the escalating software complexity and the prevailing shift towards het-
erogeneous computing platforms, consolidating multiple functionalities within
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a single hardware platform is considered an optimal approach to tackle issues
related to space, weight, power consumption, and economic considerations [1].
One effective strategy for resource consolidation is the utilization of virtual-
ization technology. By employing a hypervisor, it becomes possible to operate
multiple cells with different operating systems on a single platform, thereby
enhancing the integration capabilities of the hardware platform. Consequently,
the concept of distributed systems becomes highly significant, as it allows for
the deployment and execution of applications across multiple physical or virtual
machines, further enhancing system flexibility and efficiency. This combination
of virtualization and distributed processing has stimulated the development of
Mixed Critical Systems (MCS), where tasks with varying levels of criticality
are executed by corresponding operating systems [22]. Virtualization technology
plays a central role in resource partitioning and task execution within MCS.

Solutions for implementing mixed critical systems within a single system can
be classified into two categories [3]: dual-kernel solutions and resource partition-
ing solutions [30]. The former category comprises RTLinux, RTAI, and Xenomai,
while the latter includes Bao [15], ACRN [12], and Jailhouse [2]. This article
specifically focuses on the resource partitioning solution-Jailhouse.

Jailhouse [18,23,24] represents a typical static partitioning hypervisor that
emphasizes static resource allocation. Its compact codebase stems from its lack of
a scheduler or virtualization services. This characteristic not only facilitates the
certification of security features but also contributes to the vibrant development
of the Jailhouse community [7]. When constructing MCS, Jailhouse exhibits
two primary advantages [13,21]. Firstly, in comparison to virtualization man-
agers such as KVM and Xen, which are more tailored to server environments,
Jailhouse better fulfills the real-time requirements of embedded platforms. Sec-
ondly, Jailhouse conforms to the demands of safety-critical design due to its
small footprint, aligning well with certification requirements. In contrast, other
hypervisors similar to Jailhouse, such as SafeG [20] and Quest-V [27,28], have
limited application scenarios or lower adaptability in practical usage.

Inter-VM communication functionality serves as a crucial component of
hypervisors. To optimize Inter-Process Communication (IPC) efficiency, shared
memory technology has been explored [5,6], aiming to reduce data replication
and transmission overhead. While Jailhouse provides a socket interface based
on the TCP/IP protocol [17] for inter-VM communication, which establishes
communication channels between multiple physical machines, its suitability for
latency-sensitive tasks is restricted due to protocol stack requirements, frequent
data copying, and multiple context switches [12]. Jailhouse offers the IVSHMEM
(Inter-VM Shared Memory) protocol at the lower level, which enables efficient
data communication with minimal overhead and is particularly well-suited for
local environment implementation. However, the absence of an extensive user-
level API and concerns about the maturity of the shared memory protocol impose
limitations on IVSHMEM, preventing it from becoming the prevailing inter-VM
communication method in Jailhouse.



56 J. Zhang et al.

Based on this premise, the primary focus of this research is to enhance
the inter-VM shared memory protocol, IVSHMEM, in Jailhouse, specifically for
real-time communication scenarios. The objective is to facilitate communication
between two virtual machines, meeting the demands of predictability and high
throughput required by real-time systems, while abstaining from the utilization
of virtual networks for data exchange. The main contributions of this article are
as follows:

1. Investigating the inter-cell1 communication protocol based on shared memory
in Jailhouse, with a particular emphasis on the performance overhead and
optimization directions for real-time communication.

2. Reshaping the current communication mechanism by optimizing the com-
munication process, expanding the shared memory region, addressing issues
related to excessive VMexit behavior and small shared memory, and design-
ing memory barriers and synchronization mechanisms to ensure synchronized
data access.

3. Establishing a Linux and RTOS experimental environment based on Jail-
house on the Raspberry Pi 4B platform, configuring real-time systems, and
exploring the use of the asynchronous I/O mechanism, io uring, to enhance
I/O performance.

4. Conducting experimental evaluations to assess the changes in communication
latency, throughput, and data transfer latency before and after the recon-
struction. The aim is to validate the applicability, feasibility, and advantages
of the new communication mechanism in real-time communication scenarios
between two cells.

2 Related Works

Communication plays a crucial role in building MCS. Data exchange is required
between Host-Guest and Guest-Guest through communication. However, com-
munication between Guest-Guest cells may incur higher costs compared to
Guest-Host communication. Hence, optimizing communication mechanisms is
essential to ensure the efficiency and reliability of MCS. The design and opti-
mization of inter-cell communication mechanism is a key research area in Jail-
house. This section explores the communication process between cells, provides
an overview of the IVSHMEM communication protocol and the background of
the io uring technology, and reviews the relevant research progress.

2.1 IVSHMEM Communication Protocol

Figure 1 provides an example using a Linux cell to illustrate the communication
flow between the root cell (cell 0) and the Linux cell (cell 1). Inter-cell com-
munication is facilitated through the utilization of shared memory. During this
1 It is worth noting that in Jailhouse, a virtual machine is commonly referred to as a

“cell”. Therefore, the terms “inter-VM” and “inter-cell” are equivalent in meaning.
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process, the application program in the root cell copies user space data from the
kernel space and writes it into the shared memory using a PCI device. The Linux
cell, on the other hand, reads the data from the shared memory and transfers it
through various layers until it reaches the application program within the Linux
cell. To facilitate these operations, the IVSHMEM PCI device is managed by the
UIO (Userspace I/O) device driver. Through the override of the mmap system
call, the driver enables efficient read and write access to diverse memory regions
within the device and the shared memory.

Fig. 1. Inter-cell communication process

The IVSHMEM communication protocol, based on Jailhouse, establishes
specifications for inter-cell communication, enabling seamless communication
between cells through shared memory and interrupt signaling mechanisms. The
IVSHMEM PCI device acts as an interface between the host’s shared memory
interface (POSIX) and the applications running within the cells. It utilizes Linux
event file descriptors to facilitate the transmission of interrupt signals between
virtual machines [14]. The functionality and configuration of the IVSHMEM PCI
device are primarily determined by three components: the device configuration
register set, the device register region, and the shared memory region. The con-
figuration section, visible to the operating system, contains relevant information
such as the vendor ID and device ID, which enables the operating system to load
the appropriate driver.

The latest version of the IVSHMEM protocol, version 2.0, provides a range of
functionalities and features [8]. These functionalities encompass support for up
to 65536 interconnected communication nodes, multiple types of shared memory
regions, interrupt-based signaling for node communication, support for different
shared memory protocols, and memory mapping implementation for the device
register region. Initially completed in Jailhouse version 0.9 in 2018, the protocol
has undergone improvements in the latest version of Jailhouse (0.12, released in
2020), which address specific communication protocol issues and add support
for the Raspberry Pi-4B platform [9].

In 2017, Masaki Miyagawa et al. conducted a comparative study and testing
of the IVSHMEM shared memory protocol and the traditional TCP/IP commu-
nication protocol. The study focused on different stages of the Jailhouse boot
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process and performed in-depth analysis of the memory regions in the cell config-
uration files, using QEMU (v2.8.1) and Jailhouse (v0.6) on an industrial platform
[16]. In 2019, the official Jailhouse community announced the release of IVSH-
MEM 2.0 version [11]. Ramos et al. investigated the process of inter-partition
communication using the IVSHMEM protocol on the BananaPi-M1 platform
managed by Jailhouse. The study specifically focused on the transmission of mes-
sages between two partitions [17]. In another study, Schade et al. developed an
intelligent industrial controller for a computer numerical control (CNC) machine
on the same BananaPi-M1 platform. The controller implemented tool overload
detection and predictive maintenance, using Jailhouse to coordinate concurrent
execution and resource access between Linux and FreeRTOS. Communication
between the real-time operating system (RTOS) and Linux was achieved through
the simplified RPMsg protocol (RPMsg-Lite), while data exchange and trans-
mission utilized the IVSHMEM interface.

2.2 IO uring

Traditional I/O operations are typically synchronous, also known as blocking
I/O. In this approach, each operation is initiated by the application, which then
pauses and waits for the operation to complete. Read/write functions are used
to perform read and write operations on the underlying files. However, compared
to asynchronous I/O, blocking I/O’s performance is limited by the file type and
device capabilities, resulting in potential program blocking. Clearly, blocking I/O
is inadequate for meeting the demands of high real-time scenarios. Asynchronous
I/O allows the application to execute other tasks during the waiting period, sig-
nificantly reducing the frequency and overhead of system calls and improving
efficiency. As shown in Fig. 2, Linux I/O operations involve data reading and
writing, and a typical I/O operation goes through two stages: data prepara-
tion and data copying. After a user-level process initiates an asynchronous I/O
request, it promptly receives status information returned by the kernel. The pro-
cess can continue its execution rather than being in a blocked state. The kernel
awaits data completion, performs data copying to the user’s memory, and even-
tually sends a signal to the user process, notifying it that the I/O operation has
been completed.

Fig. 2. Asynchronous I/O operation flow
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Io uring is an asynchronous I/O implementation provided by the Linux kernel
starting from version 5.1. Its main feature is the ability to reduce the overhead
of system calls and alleviate the cost of data copying. The reason for considering
the integration of io uring technology into Jailhouse primarily lies in its capabil-
ity to achieve zero-copy transfers by constructing a shared ring buffer between
the kernel and user space. This eliminates the need for data copying involved
in traditional data transfers between the kernel and user space. Although the
overhead of a single system call is minimal, frequent system calls can become a
performance bottleneck in high-performance applications. Optimizing I/O per-
formance is an important direction for improving real-time systems and con-
tributes to enhancing system predictability [29].

Fig. 3. io uring Framework

In Fig. 3, io uring establishes a shared memory region between the user and
the kernel using mmap. It constructs two lockless ring queues, namely the sub-
mission queue (SQ) and the completion queue (CQ), based on memory barriers.
The SQ queue is used for the user program to submit I/O tasks to the kernel,
and the completed tasks are placed in the CQ queue, from which the user pro-
gram retrieves the results. During the submission of tasks and the return of task
results, the user program and the kernel share the data in the ring queues. I/O
requests and completion events no longer need to be passed through system calls,
completely avoiding the overhead of copy to user/copy from user operations.

In Linux, when using synchronous or asynchronous programming interfaces,
each I/O request typically requires at least one system call. However, in io uring,
multiple requests can be submitted at once, with each Submission Queue Entry
(SQE) describing an I/O operation. This is achieved through a single system call,
further reducing the overhead of system calls. Additionally, the polling mode of
io uring further reduces system calls and interrupt notifications.

Related studies have explored the implementation of asynchronous I/O
using the ivshmem shared memory protocol with io uring, as demonstrated by
Reichenbach et al. [19].
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3 Design and Implementation

According to the actual application case (ivshmem demo) source code of IVSH-
MEM officially provided by Jailhouse, it is analyzed that the communication
process of IVSHMEM has the following drawbacks and performance overhead.

1. Low-frequency interrupt signal sending: The use of the alarm command lim-
its the sending of interrupt signals to once per second, resulting in a low
frequency.

2. Frequent VMexit: The communication protocol requires writing to the inter-
rupt enable register and device status register in the device register area
through VMexit. This behavior occurs frequently during interrupt handling
and status updates, leading to performance overhead.

3. Waste of shared memory space: In the current practical application of the
communication protocol, the same data is written separately to the rw and
out regions corresponding to the current cell. This approach results in wasted
shared memory space.

These factors can affect the real-time communication, throughput, and over-
all system performance. To address the performance overhead of the current
IVSHMEM protocol in practical applications, this paper proposes optimizations
in the following four aspects.

3.1 Reconstruction and Mapping of IVSHMEM Shared Memory
Regions

The current IVSHMEM protocol divides the shared memory region into three
regions with different read and write permissions (a Read-Only State Table
region used to define and describe the status and attributes of cells, a Read/Write
Region used for data sharing and a In Region used to read data from other cells).
When communicating between two or three cells, a significant amount of unused
memory space is present. Therefore, in this paper, we have reconstructed the
shared memory region of the IVSHMEM device by modifying the Jailhouse and
Linux device driver code. The original 36 KB Read-Write Region has been mod-
ified to 64 KB, providing two new designs for shared memory types to support
structured data and maximize the utilization of the shared memory region, thus
improving communication efficiency. Additionally, the practice of identifying the
current cell’s status by writing to the device status register has been eliminated.
This approach consumed a significant portion of memory space while offering
minimal status information.

The two shared memory structures are shown in Fig. 4. Shared Memory Type
I divides the shared memory into 16 fixed-length frames, with each frame being
4KB. It supports concurrent usage of shared memory by multiple processes,
where different frames are used by different applications to avoid data synchro-
nization overhead. Shared Memory Type II treats the 64KB shared memory
region as a unified whole and dynamically allocates memory using the malloc
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tool. Based on the Sender ID and Receiver ID in the protocol header, this type of
memory primarily serves the data communication between two cells’ processes.
The Semaphore field indicates data availability, and the Semaphore and other
shared memory region data are promptly updated using device memory bar-
rier primitives. The communication protocol fields also encompass current data
frame length, total number of data frames, current frame number, and data
pointer, among others. For the two shared memory types, mapping is performed
separately. The mapping process uses a character pointer array to index differ-
ent types of shared memory regions to their respective memory locations. By
designing the two shared memory types, structured data can be used in shared
memory, supporting concurrent access by multiple processes, meeting dynamic
shared memory requirements, and expanding the shared memory region of the
IVSHMEM PCI device.

Fig. 4. Two types of shared memory

In the user-space program, the prot field in the mmap system call is modified
to set the read-write attributes of the memory mapping region. Moreover, modi-
fications are necessary in the cell configuration file, Jailhouse code, device driver
code, and user-space code. Subsequently, the kernel needs to be recompiled and
installed, and Jailhouse must be enabled.

3.2 Device Memory Barriers and Synchronization Mechanisms

Mechanism Design. Considering the selected platform architecture, the design
also takes into account the memory barrier and synchronization mechanisms
when operating on device memory regions. A memory barrier for device mem-
ory is a method of controlling the order of execution of CPU or other device
instructions, aimed at maintaining data consistency in multi-threaded or multi-
process environments. Synchronization mechanisms, such as mutex locks and
semaphores, are common programming techniques used to regulate the access
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order of shared resources among multiple processes or threads to prevent data
race conditions. Proper application of device memory barriers and synchroniza-
tion mechanisms can ensure timely synchronization of device memory regions
between two cells, improving operational stability, efficiency, and preventing data
conflicts.

In the ARMv8 architecture, the device memory barrier mechanism adjusts
the order of memory operations by differentiating between instruction and data
caches and employing three different memory barrier instructions: instruction
synchronization barrier (ISB), data memory barrier (DMB), and data synchro-
nization barrier (DSB). By setting the cache attribute of the shared memory
region to MAP CACHED and using memory barrier primitives, the timeliness
of the data is ensured.

Although memory barriers ensure consistency in CPU memory access order,
prevent data races and out-of-order execution, the order of shared memory oper-
ations also needs to be consistent between communicating parties. To achieve the
desired consistency, an interrupt-based approach is employed, effectively guar-
anteeing the order of shared memory operations. The interrupt-based approach
listens for interrupt events on the device file object to ensure the order of oper-
ations. Once an interrupt occurs, the object associated with the interrupt event
saves a semaphore, which is used to determine whether a specific I/O event
behavior is satisfied. If the condition is met, the system considers that an inter-
rupt signal has been received from the other communicating object, and then
the interrupt handler function is executed, thus ensuring the order of operations.

Modules Design. In order to fully utilize the reconstructed shared memory
regions, we propose a design approach for data initialization and the send/re-
ceive modules, combining knowledge of kernel barriers and synchronization. We
have redesigned the data preparation and communication processes, dividing
them into the communication initialization module and the data communica-
tion module. The former is responsible for two types of memory mapping and
io uring initialization, while the latter handles the initialization, sending, and
receiving of data for the two types of shared memory.

Taking shared memory type II as an example (as shown in Fig. 5), the com-
munication initialization module is divided into two parts: mapping and recon-
structing the shared memory, and io uring initialization. The specific steps are
as follows:

1. Map the discrete IVSHMEM PCI device’s shared memory to virtual memory
and consolidate it into a unified block divided into 16 data frames of 4 KB
each.

2. After memory mapping, format the communication protocol data structure
in the memory header. For shared memory type I, the header of each data
frame needs to be individually initialized.

3. Utilize io uring as a replacement for the read operation to perform I/O oper-
ations for reading data from external storage devices. The read data is seg-
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mented according to the frame length and the data pointers are filled into
the corresponding fields of the shared memory protocol area.

Fig. 5. Initialization Module (Communication Memory Type II)

After initialization, data frames are sent in parallel for shared memory types
I and II, with type I sending frames concurrently and type II sending frames
sequentially. Memory barriers and semaphores are used to ensure data consis-
tency and synchronization. This process represents the data sending process for
both shared memory types, and the data receiving process is the reverse of the
data sending process. Taking shared memory type II as an example (Fig. 6), after
initialization, each frame is sequentially sent. The first data frame is written into
the shared memory data area, then an interrupt vector value is written to the
doorbell register in the register area to send an interrupt signal to the commu-
nication object. Finally, the critical section is entered, where memory barriers
ensure data consistency. Within the critical section, the process waits for the
semaphore indicating that the data has been read and receives the interrupt
signal sent by the communication object before exiting the critical section. Once
the current frame data is sent, the next frame data sending process begins.

3.3 Disabling the One-Shot Interrupt Mode

Disabling the one-shot interrupt mode can improve system predictability and
reliability, as well as enhance system performance in real-time communication
scenarios. Instead of using periodic alarm-based interrupts, direct manipulation
of the mmio region’s registers is employed to increase the frequency of interrupt
signal transmission.

Enabling the one-shot interrupt mode involves setting the Privilege Control
Register in the device’s feature extension register group to 1. In this mode, the
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Fig. 6. Data Transmission Module (Communication Memory Type II)

Interrupt Control Register, responsible for enabling interrupts, is automatically
reset to 0 after each interrupt delivery. To allow for subsequent interrupts to
occur, the interrupt enable register needs to be reconfigured to 1 within the
application’s interrupt handler. However, enabling the one-shot interrupt mode
may introduce certain issues, such as unnecessary interrupts and additional pro-
cessing overhead (i.e., VMexit behavior).

To tackle this issue, the approach of disabling the one-shot interrupt mode is
adopted. Within the IVSHMEM device driver, the pertinent statements respon-
sible for writing to the device’s memory are commented out, thereby maintaining
the interrupt enable register at 1 and preventing unnecessary operational over-
head. By deactivating the one-shot interrupt mode, there is no longer a require-
ment to perform the re-enable interrupt operation in the interrupt handler, which
is commonly used to ensure proper reception of the subsequent interrupt.

3.4 Applications of IO uring

To further enhance performance, the traditional read method is replaced with the
asynchronous I/O approach of io uring, resulting in lower system call overhead
and improved latency benefits.

The liburing tool is utilized to implement asynchronous I/O operations.
Liburing is an open-source library designed to simplify and manage the io uring
interface, allowing developers to more conveniently implement asynchronous I/O
operations. It provides a higher-level interface that eliminates the need to directly
interact with the native io uring interface, thereby streamlining the process. Con-
sequently, the invocation interface of the liburing tool differs from the native
io uring interface, as shown in Fig. 7.

The specific workflow for using io uring is as follows:

1. Initialize the circular buffer by calling the io uring queue init() function. This
function accepts two parameters: the Queue Depth (QD) and a ring object
(struct io uring). The QD value is shared between the Submission Queue
Entries (SQEs) and Completion Queue Entries (CQEs), with the number of
CQEs being twice the number of SQEs.
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Fig. 7. io uring data reading process

2. Perform the necessary preparations before submitting the requests, ensuring
that all QDs are utilized. This involves allocating SQEs, associating them
with file objects and readv operations, reading data, and binding the data
with the SQEs. Each read operation reads BS bytes (approximately the size
of the shared memory region) and is repeated QD times.

3. Submit the I/O requests. Once all the QDs are fully utilized, the requests
are collectively submitted using the io uring submit(ring) system call. The
io uring method significantly reduces the number of system calls. In tradi-
tional approaches, each request requires at least one system call. However,
with io uring, multiple requests (each represented by a distinct SQE, cor-
responding to an I/O operation) can be added at once, and the submis-
sion is completed with a single system call, io uring submit(). Moreover,
by employing polling, the kernel can process the SQEs without relying on
io uring submit(), thereby reducing system performance overhead.

4. The kernel processes the submitted requests and appends the completion
events (CQEs) to the end of the completion buffer. Each SQE corresponds to
a CQE and contains the status of the respective request.

4 Evaluation and Analysis

The experimental platform used in this study is Raspberry Pi-4B, with a Linux
and RTOS system built on Jailhouse. The Linux kernel version used is 5.4.16,
and during the kernel compilation process, the kernel configuration file needs to
be selected. The Jailhouse version used in this setup is 0.12.

Based on the specific requirements of the Raspberry Pi-4B platform and con-
sidering the prototype validation process of Jailhouse, Ralf Ramsauer et al. chose
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to run a slim Linux operating system with the PREEMPT-RT real-time exten-
sion in the secure critical cell [10,26]. In addition to using a Micro-Kernel as the
RTOS kernel in a dual-kernel configuration, another approach for achieving real-
time capabilities within the Linux kernel itself is Linux (PREEMPT-RT) [25].
This approach involves modifying the existing Linux kernel, including but not
limited to modifications to components such as the general timer, interrupt han-
dling structures, and mutex locks, to support real-time capabilities. This work
was successfully merged into the mainline Linux kernel in 2004 [4]. Therefore,
in this study, we also choose the Linux (PREEMPT-RT) approach as the target
RTOS cell for designing the inter-cell communication mechanism.Regarding the
configuration of RTOS, it is approached from both the kernel and cell configu-
rations. Specifically, this includes enabling the dynamic tick and tickless options
in the kernel, disabling interrupt balancing optimization and the RCU (read-
copy-update) callback mechanism, enabling kernel preemption, and disabling
processor frequency scaling and idle-state management features.

4.1 Performance Comparison Between Two I/O Methods

To compare the system call counts and latency differences between the two I/O
methods of read and io uring when reading data from a file, this article utilizes
a system call count testing script and a latency testing script for the purpose of
conducting the tests.

Listing 1.1. System Call Count Evaluation Script
sudo strace -o strace.log -c tools/ivshmem -demo ${DATA_file} ${QD}
cat strace.log | grep "total" | awk {print $3}

Listing 1.2. Latency Testing Script
static unsigned long emul_division(u64 val , u64 div)
{

unsigned long cnt = 0;
while (val > div) {

val -= div;
cnt++;

}
return cnt;

}

u64 timer_ticks_to_ns(u64 ticks)
{

return emul_division(ticks * 1000, timer_get_frequency () / 1000 / 1000);
}

Comparison of System Call Counts Between Read and io uring. By
using the testing script (Listing 1.1), the data file was consecutively read 10
times, and the results are shown in Fig. 8. The QD value represents the maximum
number of concurrent tasks that an application can handle. The appropriate
selection of the QD value depends on the system hardware performance and
the requirements of the application. To fully utilize system resources, enhance
system throughput, and improve performance, it is essential to determine the
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suitable QD value for the current target platform through experimentation. To
optimize system call overhead on the experimental platform used in this paper,
we recommend selecting a QD value higher than 64, such as 128.

Fig. 8. Comparison of system call frequencies between io uring and read

The results demonstrate that the read method incurs lower system call over-
head when the data size is below the 1 MB threshold. However, as the data size
exceeds 1 MB, the system call count of the read method gradually increases,
highlighting the disparity between the read method and the io uring method.
At a data size of 32 KB, the system call count of the read method sharply rises.
Starting from a data size of 512 KB, the difference in system call counts between
the two methods becomes less significant, but the read method experiences a
much higher increment compared to the io uring method. When the data size
reaches 32 MB, the read method falls behind the io uring method by approxi-
mately 5000 system call counts. This difference may be attributed to the cache
sizes of the experimental platform (L1-Dcache: 32 KB, L2-cache: 1 MB). In con-
trast to the rapid increase in system call counts of the read method, the io uring
method exhibits a slower increase, making it more suitable for scenarios with
larger data sizes.

Comparison of Latency in Data Retrieval Between Read and io uring.
With the help of the latency testing script (Listing 1.2), the latency differences
between the two methods were tested when reading text content of different
data sizes. A suitable QD value was selected as the latency result for the io uring
method, and the experiments indicate that a QD value of 8 has a positive impact
on improving data read latency.

As shown in Fig. 9, considering the latency differences between the two meth-
ods across all data sizes, the io uring method consistently exhibits better latency
performance than the read method. Below the threshold of 1 MB data size, the
read method demonstrates more noticeable latency jitter compared to io uring.
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Fig. 9. Comparison of data retrieval latency between io uring and read

As the data size exceeds 1 MB, the latency difference between the two methods
gradually increases with the increasing data size. At a data size of 32 MB, the
maximum difference is observed, with the io uring method showing a latency
advantage of approximately 40 ms over the read method. This difference may be
attributed to the cache size of the experimental platform. When the cache is filled
with data, cache flushing operations occur, resulting in a significant increase in
latency.

4.2 Comparison Between Two Types of Shared Memory

In this article, we have constructed two distinct types of shared memory, as
depicted in Fig. 4. We designate the first type as new-IVSHMEM (I) and the
second type as new-IVSHMEM (II). The former supports parallel transmission
and has 16 segments, with each segment capable of accommodating 4 KB of
data. The latter supports sending a larger amount of data (64 KB) in one go.
The data submission methods for new-IVSHMEM(I) and new-IVSHMEM(II)
differ: new-IVSHMEM(I) submits the data once after filling all 16 segments,
while new-IVSHMEM(II) submits the data after filling each segment, requiring
16 consecutive submissions.

Comparison of Transmission Latency. As shown in Fig. 10, as the data
size increases, both new-IVSHMEM(I) and new-IVSHMEM(II) experience an
increase in transmission latency. However, the segmented design of type I, which
allows for parallel transmission of 16 frames of data, results in better latency
performance compared to the non-segmented design of type II. The experimental
results demonstrate a latency difference of at least 15 ms between the two types.

Comparison of VMexit. The number of VMexit is an important metric for
evaluating a hypervisor. The design goal of Jailhouse is to minimize interference
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Fig. 10. Transmission latency

with the transactions running inside a cell. The VMexit count indirectly reflects
the level of involvement of Jailhouse in the transactions running within the cell.

Fig. 11. VMexit counts

As shown in Fig. 11, the evaluation results of the VMexit count during
data transmission for new-IVSHMEM(I) and new-IVSHMEM(II) align with
the latency results, with type I outperforming type II. Higher latency is typ-
ically accompanied by a higher number of VMexit, showing a positive correla-
tion between the two. The experiments indicate a minimum difference of 20,000
VMexit per transmission. The designed communication mechanism aims to mit-
igate VMexit behavior, aligning with Jailhouse’s design philosophy of providing
partitioning functionality without excessive interference in the internal transac-
tions of the cell. Additionally, this approach contributes to system stability and
enhances reliability in real-time communication scenarios.
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4.3 Comparison Between Different IVSHMEM Protocols

This section primarily compares the differences in communication latency, data
throughput, and data transmission latency between the pre-reconstruction and
post-reconstruction IVSHMEM shared memory protocols.

Performance Improvement After Reconstruction. In this study, the
IVSHMEM shared memory protocol underwent four aspects of refactoring, with
this section focusing on the disabling of the single interrupt mode. Disabling
the single interrupt mode in the IVSHMEM protocol saves one mmio operation
on the device register area in each interrupt handler, thus alleviating VMexit
behavior.

To evaluate the benefits in terms of VMexit and time brought by disabling the
single interrupt mode, we conducted evaluations in the root cell using a Linux-
based cell. Through simulation and statistical measurement of actual time costs
using the latency testing script (Listing 1.2), we measured the time cost for
each operation (a total of 100,000 times) and calculated the mean, resulting in
a time cost saving of 1.076497 microseconds by disabling the single interrupt
mode, accompanied by a reduction of one VMexit. This observation highlights
the effectiveness of the new communication mechanism in mitigating VMexit
behavior.

Communication Latency Testing. Through reconstructing specific aspects
of the IVSHMEM protocol, the processes of sending and receiving interrupts
were optimized. The sender transmits a single byte of data and receives an
acknowledgment signal from the receiver upon successful data reception. Both
new-IVSHMEM (I) and new-IVSHMEM (II) types exhibit consistent perfor-
mance in terms of communication latency. Taking new-IVSHMEM (I) as an
example, Fig. 12 illustrates a comparison of communication latency between the
original IVSHMEM protocol (IVSHMEM-demo) and the communication mech-
anism proposed in this study (new-IVSHMEM (I)).

Fig. 12. Comparison of Communication Latency
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By comparing the average and median values, it is observed that the new-
IVSHMEM method exhibits a difference of approximately 1–2 ms in communica-
tion latency compared to the IVSHMEM-demo method. The latter outperforms
the former in terms of latency performance, thanks to the disabling of the single
interrupt mode, which reduces the VMexit overhead during each communication.

Throughput Testing. To compare the latency and estimate the difference in
throughput between IVSHMEM-demo based on the IVSHMEM protocol and
new-IVSHMEM based on the communication mechanism proposed in this paper
when transmitting 100MB data, the test was conducted 10 times. The specific
test results are shown in Table 1, and the differences between the two are illus-
trated in Fig. 13.

Table 1. Latency Data (Throughput Test)

IVSHMEM-demo/us new-IVSHMEM/us

84804 74006

83960 70346

84197 71931

87615 71551

86727 75218

88841 70918

82429 70657

83287 71340

84919 71313

87905 74218

Through the comparison, it was found that the throughput of IVSHMEM-
demo based on the IVSHMEM protocol is 1170.02 MB/s, while the through-
put of new-IVSHMEM designed in this study reaches 1386.01 MB/s, achieving
an approximately 200 MB/s throughput improvement. This difference is mainly
attributed to the redesigned shared memory region. As new-IVSHMEM can uti-
lize a larger shared memory region, its data throughput is superior to that of
IVSHMEM-demo.

Data Transmission Latency Testing. The difference in data transmis-
sion latency (median) between new-IVSHMEM and IVSHMEM-demo methods
is compared in Fig. 14. For different data sizes, new-IVSHMEM outperforms
IVSHMEM-demo, and the latency gap gradually increases with the increase in
data volume. When the data size is 32 MB, new-IVSHMEM brings a latency ben-
efit of approximately 5–6 ms. This is attributed to the reconstructed shared mem-
ory region and optimization of the native communication protocol described in
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Fig. 13. Data transmission latency difference (Throughput Test)

this paper. When the data volume exceeds 32 KB, the latency difference between
the two becomes more significant, which may be related to the cache size of the
experimental platform. Additionally, the new communication mechanism has
a larger shared memory region, reducing the number of data submissions and
lowering latency. This advantage is particularly prominent when handling large
volumes of data.

Fig. 14. Comparison of data transmission latency between new-IVSHMEM and
IVSHMEM-demo

Based on the comprehensive analysis of the experimental data, the results
demonstrate that the communication mechanism designed in this study exhibits
lower system call overhead and reduced VMexit compared to the native commu-
nication protocol (IVSHMEM). These findings highlight the advantages of the
proposed mechanism in enhancing system predictability in real-time communi-
cation scenarios.
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5 Conclusion

Given the increasing complexity of software, the increasing demand for deploying
different systems on the same platform has contributed to the development of
mixed critical systems. In this context, the hypervisor assumes a pivotal role in
resource partitioning and task execution. Jailhouse, as a lightweight and safety
critical design hypervisor, has broad practical application prospects in fields that
require real-time virtualization such as intelligent driving and industrial automa-
tion. This article aims to provide practical support and solutions for communi-
cation issues in future vehicle systems and automation systems by optimizing
the Jailhouse IVSHMEM communication protocol.

This study centers on the IVSHMEM communication protocol in Jailhouse
and presents a redesign of the shared memory region, proposing two novel design
schemes that optimize the communication process and reduce redundant perfor-
mance overhead. By introducing io uring to replace traditional read methods,
the efficiency of I/O reading is improved. Comparative experiments conducted
on both a Linux and RTOS experimental platform based on Jailhouse illustrate
that the newly devised mechanism offers advantages in terms of throughput and
communication latency.

The IVSHMEM communication protocol remains an ongoing area of devel-
opment. While the enhanced communication protocol presented in this paper
outperforms the performance of the official native communication protocol, it is
essential to acknowledge that there are lingering unresolved issues, including:

1. System predictability offers potential for improvement.Currently, the
memory-mapped portion of device registers lacks caching, while the shared
memory region uses caching, which could impact the system’s predictability
owing to cache behavior.

2. To facilitate inter-cell communication in Jailhouse, it is conceivable to provide
better encapsulation of the current communication protocol’s behavior or
apply mature alternative communication protocols to Jailhouse. Particularly
in scenarios involving communication among multiple cells, a new mechanism
may be required to achieve synchronization of operations, further enhancing
the work presented in this paper.

3. To minimize Jailhouse’s interference in inter-cell communication activities,
exploration can be done on how to further avoid VMexit behavior, thereby
improving communication performance and aligning with Jailhouse’s design
philosophy.
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