
ExtendLife: Weights Mapping Framework
to Improve RRAM Lifetime

for Accelerating CNN

Fan Yang1, Yusen Li1(B), Zeyuan Niu2, Gang Wang1, and Xiaoguang Liu1

1 College of Computer Science, Nankai University, Tianjin, China
{yangf,liyusen,wgzwp,liuxg}@nbjl.nankai.edu.cn

2 College of Information Engineering, Southeast University, Nanjing, China

Abstract. Process-in-memory (PIM) engines based on Resistive
random-access memory (RRAM) are used to accelerate the convolu-
tional neural network (CNN). RRAM performs computation by mapping
weights on its crossbars and applying a high voltage to get results. The
computing process degrades RRAM from the fresh status where RRAM
can support high data precision to the aged status where RRAM only can
support low precision, potentially leading to a significant CNN training
accuracy degradation. Fortunately, many previous studies show that the
impact of loss caused by the RRAM precision limitation across various
weights is different for CNN training accuracy, which motivates us to
consider mapping different weights on RRAM with different statuses to
keep high CNN training accuracy and extending the high CNN training
accuracy iterations of PIM engines based on RRAM, which is regarded
as the lifetime of the RRAM on CNN training. In this paper, we propose
a method to evaluate the performance of the weights mapping on extend-
ing the lifetime of the RRAM and present a weights mapping framework
specifically designed for the hybrid of aged and fresh RRAM to extend
the lifetime of the RRAM engines on CNN training. Experimental results
demonstrate that our weights mapping framework brings up to 6.3× on
average lifetime enhancement compared to the random weights mapping.

Keywords: RRAM · CNN · Weights Mapping · Process-In-Memory

1 Introduction

Convolutional neural networks have gained remarkable performances in various
fields such as facial recognition [1], image classification [2], and pattern recogni-
tion [3]. CNN can usually be deployed on different devices to support the corre-
sponding service. Since the low power consumption of RRAM and its ability to
calculate matrix multiplication quickly, PIM engines based on RRAM are often
used to deploy CNN [4]. Compared with the traditional von-Neumann archi-
tectures, e.g., CPUs and GPUs, PIM engines based on RRAM can efficiently
perform amounts of vector-matrix multiplications by using RRAM crossbars
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
C. Li et al. (Eds.): APPT 2023, LNCS 14103, pp. 40–53, 2024.
https://doi.org/10.1007/978-981-99-7872-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7872-4_3&domain=pdf
https://doi.org/10.1007/978-981-99-7872-4_3

ExtendLife: Weights Mapping Framework to Improve RRAM Lifetime 41

as shown in Fig. 1 to implement these computations, where the matrix data
G is mapped onto RRAM and the voltage vector V representing input vector
is applied to the crossbar, and then each column of RRAM generates current
indicating results according to Kirchoff’s Law.

Fig. 1. The RRAM crossbar computation progress

Fig. 1 illustrates how to perform the vector-matrix multiplication on the
RRAM crossbar. As Fig. 1 shows, g11 means the RRAM unit in the first row
and the first column of the RRAM crossbar, and the g11 value presents the con-
ductance of the RRAM unit, which can be programmed according to the data
on the specific location of the matrix so that all the matrix data can be mapped
onto the RRAM crossbar. After mapping matrix data on the RRAM crossbar,
we need to apply the input vector to the RRAM crossbar to finish the vector-
matrix multiplication. On the RRAM crossbar, the input vector is programmed
to the voltage vector V = [v1, v2, v3, ..., vn], where v1 is applied to the first row
in the crossbar.

According to Kirchoff’s Law, the output current value of each column on
the RRAM crossbar equals the dot product result of the input voltage vector V
and the vector consisting of the RRAM units conductance in the corresponding
column. For example, the first column current is i1 = v1 ·g11 +v2 ·g21 +v3 ·g31 +
... + vn · gn1. With the crossbar computing process above, the RRAM crossbar
can be used to efficiently perform vector-matrix multiplications within a few
cycles, which is crucial for accelerating CNN. And the crossbar architecture has
been widely integrated into different accelerators such as ISAAC [5], Prime [6],
and Timely [7].

To train CNN on the RRAM crossbar, a common method is online tuning,
which means the conductance of the RRAM units is firstly programmed accord-
ing to the initialized weights and then tuned in further iterations. During online
tuning, RRAM is reprogrammed by applying the high voltage many times, which
causes subtle changes in RRAM units, resulting in a decrease in the data pre-
cision that RRAM supports, which is called aging. RRAM units that are never

42 F. Yang et al.

used are in the fresh status, where they can support the highest data preci-
sion, and ones that have been programmed many times are in the aged status,
where they cannot support high data precision. If the precision of the mapped
data exceeds what the RRAM units support, this may result in the data loss
of the mapped data, that ultimately influences the high CNN training accuracy
iterations, which is regarded as the lifetime of the RRAM on training CNN.

In our previous surveys, we find that many factors affect RRAM lifetime,
e.g., temperature [8] and noise [9]. Many methods [10] have been proposed to
extend RRAM lifetime from temperature and noise views. But we don’t find
methods proposed to extend the RRAM lifetime from the perspective of weights
mapping. Although the CNN workload balance [11] can reduce the status gap
among the different RRAM units to some extent, there also is left space for
improvement. We find that the Network Pruning theories [12] can be applied to
this problem, in these theories, some weights that hardly affect network accuracy
can be removed, which reminds us to consider that the weights mapping frame-
work can be performed on the hybrid of the fresh and aged RRAM to extend
RRAM lifetime.

In this paper, we evaluate the performance of the weights mapping on RRAM
lifetime based on Taylor expansion. According to our analysis, we propose the
weights mapping framework to improve RRAM lifetime in the hybrid environ-
ment of aged and fresh RRAM. Our contributions are:

– We propose an evaluating method based on Taylor expansion to compare two
opposite weights mappings performance.

– According to our evaluating method, we propose the weights mapping frame-
work consisting of two methods: 1. Weights mapping based on the layer posi-
tion in CNN, 2. Weights mapping based on the characteristic of the groups
which split weights in the same kernel.

– We do experiments about three VGG-like networks as shown in Table 1 (NN5,
NN7, NN9) on two datasets (MNIST, Fashion). Compared with the random
weights mapping, our weights mapping framework can improve the RRAM
lifetime by 6.3× on average.

2 Background and Motivation

In this section, we will review the CNN training on RRAM crossbars, RRAM
aging, and other related backgrounds.

2.1 CNN Training on RRAM

The convolution operator is the most common operator in CNN, which extracts
information from the input data by applying the convolution kernel. Figure 3
depicts the kernel weights W mapping on RRAM, where the convolution kernel,
with 3 channels, convolutes on the input data X. The weights W within each
channel are converted into a one-dimensional vector, which is mapped on a

ExtendLife: Weights Mapping Framework to Improve RRAM Lifetime 43

Fig. 2. The aging progress of RRAM Fig. 3. Mapping the convolution kernel
weights on RRAM

column of the crossbar, and then, as Fig. 1 shown, the input data is also converted
to a one-dimensional voltage vector and this voltage vector is applied to the
crossbar to generate the results.

After W is mapped on the RRAM crossbar, the output of the network is
compared with the expected output in the training data, and the difference
between them is defined as the Cost, which is used as the feedback to the neural
network to adjust the weights. LR denotes the learning rate. According to Cost,
the backpropagation is then applied to update the weights as below equation in
CNN to reduce the Cost for higher training accuracy.

W = W − LR · ∂Cost

∂W
(1)

2.2 RRAM Aging

Both Mapping weights on RRAM and adjusting the weights need applying the
high voltage to RRAM, inducing tiny changes within the RRAM cells [13].
Regrettably, these tiny changes are irreparable, leading to RRAM aging and
a permanent decrease in its supporting precision. The phenomenon of RRAM
aging is depicted in Fig. 2, where HRS and LRS denote the upper and lower resis-
tance of the RRAM. The interval between HRS and LRS denotes the range that
RRAM uses to support data precision. The latest single RRAM cell can store 3
bits and the byte is usually represented by a fixed number RRAM units [14]. As
the times of RRAM applied to high voltage increases, tiny changes accumulate
in the RRAM cells, and finally, the accumulated changes decrease the precision
that RRAM supports.

2.3 Weights Distribution and Network Pruning

To avoid gradient disappearance and gradient explosion, many initialization
methods such as Kaiming initialization have been integrated into PyTorch [15].
These initialization methods normalize the distribution of weights across each
layer of CNN, and prior research has demonstrated that the trained weights

44 F. Yang et al.

mostly conform to a Gaussian-alike distribution [16], which reminds me to
explore the influence of weights mapped on the different statuses RRAM units
on CNN training.

Furthermore, we need to determine how the loss of different weights on aged
RRAM affects network training. In this regard, our problem is very similar to
Network Pruning, but with two differences: 1. Network Pruning often removes
useless weights, while RRAM reduces the value of weight to the lower one because
of the RRAM status limitation, and 2. Network Pruning methods usually require
complete network training and repeat fine-tuning, and these methods need much
computation and may further age RRAM. Additionally, as RRAM computes
based on the crossbars, many Network Pruning methods like unstructured prun-
ing are also difficult to adapt to RRAM.

In the following sections, we discuss the evaluating methods of the two oppo-
site weights mapping methods and propose the weights mapping framework
suitable for RRAM crossbars and our framework achieves better performance
compared to the random weights mapping baseline.

3 Evaluate Weights Mapping

To map different weights to RRAM with different statuses in a reasonable
way, we want to know how to evaluate the weights mapping to some extent
in advance. Consider a set of training examples D = {X = {x0, x1, . . . , xn} ,Y =
{y0, y1, . . . , yn}}, where xi,yi respectively represent an input and a target out-
put. The weights W = {w0, w1, . . . , wn} are optimized to minimize the cost value
Cost(D,W).

We find the weights update magnitude from backpropagation usually drops
out of the range that aged RRAM supports. Because the update of the weights
in the layer follows ∂Cost

∂wl = δl · σ
(
zl−1

)
, where σ

(
zl−1

)
is the previous layer

output and δl means the derivative of Cost to zl. To avoid gradient disappearance
and gradient explosion, each layer output needs to be normalized, causing the
absolute value of σ

(
zl−1

)
and δl is less than 1.0. So the update magnitude

on weights following Eq. 1 is less than LR. LR is usually related to iteration
speed and overfitting, to take a good compromise, it’s common to pick 0.0001 as
LR. This means the update magnitude on weights is usually less than 0.0001.
The aged RRAM can not support such high precision, so the weights in CNN
training on the aged RRAM are not precisely updated, and eventually, the effects
of backpropagation will be useless on the aged RRAM.

In this situation, we evaluate the weights mapping on the training network
based on Taylor expansion. As |ΔCost| = |C (D,W ′) − C(D,W)| shows, where
W means the original weights and W ′ is the weights mapped on the RRAM
with different statuses, |ΔCost| means the difference caused by weights change
because of the RRAM statuses limitation.

For notational convenience, we temporarily consider the weights mapped on
the aged RRAM as αW , where α is an aged factor ranging from 0.0 to 1.0. The

ExtendLife: Weights Mapping Framework to Improve RRAM Lifetime 45

larger α indicates the weights mapped on the fresher RRAM. Then, the |ΔCost|
is can be expressed as |ΔCost| = |C (D,W) − C(D, αW)|.

To approximate |ΔCost|, we use the first-degree Taylor polynomial. For a
function f(x), the Taylor expansion at point x = a is f(x) =

∑P
p=0

f(p)(a)
p! (x −

a)p + Rp(x), where f (p)(a) is the p-th derivative of f evaluated at point a, and
Rp(x) is the p-th order remainder. Approximating C(D, αW) with a first-order
Taylor polynomial near αW , we have: C (D, αW) = C (D,W)− ∂C

∂W (W −αW)+
R1 (W = αW). The remainder R1 (W = αW) can be neglected largely because
of the significant calculation required, but also in part because the widely-used
ReLU activation function encourages a smaller second order term [17], so we
substitute the above equations, we have: |ΔCost| = |C (D,W) − C(D, αW)| =∣
∣ ∂C
∂W (W − αW)

∣
∣ =

∣
∣(1 − α) ∂C

∂W W
∣
∣. ∂C

∂W usually needs enormous amounts of com-
putation, many studies [18] choose to neglect its effect temporarily. Intuitively,
|ΔCost| is much related to (1−α) and W . It shows that the RRAM aged factor
and the weights themselves can affect |ΔCost|. Based on that, we can infer that
we should avoid mapping the weights with the high value on the aged RRAM.

For this, we conduct experiments to compare the opposite weights mapping
methods in advance, which are illustrated in detail in the next section. We assume
that we map weights on the RRAM which has half aged units and half fresh
units. In Fig. 4, we accumulate the loss between the original value and the value
mapped on the different statuses RRAM units to get information loss, and back-
front means that we map the weights of the front/back half of the network on
the aged RRAM and map the left half weights on the fresh RRAM. We can
observe that the back has less information loss than front in NN5, NN7 and
more information loss in NN9, these networks structure will be illustrated in
Table 1. According to the information loss, we can predict the back performs
better compared with front in NN5, NN7, and has worse performance than front
in NN9.

We also compare the information loss between over and below weights map-
ping, which groups the weights within the same kernel and maps the groups on
the different statuses RRAM according to the absolute sum of the groups. Based
on Fig. 4, we find that below has less information loss than over and we predict
below has better performance than over. The final experiments results show that
our evaluation between the opposite weights mapping methods is effective.

4 Weights Mapping Framework

According to the comparison of information loss in the above section, we propose
two weights mapping methods. The first is to map all the weights of different
convolutional kernels to the RRAM with different statuses based on the layer
position of weights in the network. The second is to group the weights of each
convolution kernel for RRAM crossbar computation and map them based on the
values of the grouped weights.

46 F. Yang et al.

Fig. 4. Compare information loss of different weights mappings. The bar means the
information loss of weights mapping.

4.1 Dataflow

As shown in Fig. 5, there are three RRAM crossbars with varying degrees of aged,
labeled as Fresh, Old and Older, with Fresh exhibiting the minimum degree of
aged, followed by Old, and Older. In training CNN, the weights in the convolu-
tion kernels need to be mapped on the RRAM crossbar. There are two simple
mapping directions in Fig. 5: Dataflow1 maps the Conv1 weights on the Fresh
crossbar, the Conv2 weights on the Old crossbar, and the Conv3 weights on the
Older crossbar, while Dataflow2 sets the Conv1 weights to the Older crossbar,
the Conv2 weights to the Old crossbar, and the Conv3 weights to the Fresh
crossbar, with the input data streams going through Conv1 followed by Conv2
and Conv3.

In the real case, our usual choice is Dataflow2. The weights in the back half
of the network are mapped on the aged RRAM and the front half weights are
mapped on the fresh RRAM, this weights mapping, called back, results in less
information loss compared with the opposite weights mapping in some networks
as shown in Fig. 4.

4.2 Grouping and Mapping Groups

In the above section, we observe that the approach of mapping weights to RRAM
with different statuses based on the layer position may become ineffective as CNN
becomes deep as shown in Fig. 4. This challenge leads us to explore a weights
mapping approach that applies to all deep CNN for RRAM crossbars.

As illustrated in Fig. 6, we extract the kernel weights in the stripe-wise direc-
tion and map them to the column in the RRAM crossbar. Similarly, we extract
input data in the same direction to apply it on the crossbar. Each crossbar gen-
erates a part of this layer output, and all the results from the crossbars must be
summed on the position of the next layer. As shown in Fig. 6, K × K crossbars
are required for computation, and K ×K outputs must be aggregated to derive
the output at the intended position of the next layer.

ExtendLife: Weights Mapping Framework to Improve RRAM Lifetime 47

Fig. 5. Two dataflows: Dataflow1 maps the front half of weights in the network on the
aged RRAM, and Dataflow2 maps the back half of weights in the network on the aged
RRAM.

Fig. 6. We group weights in the stripe-wise direction and the input data that is
extracted in the stripe-wise direction is applied to the crossbar.

Compared to the traditional weights mapping shown in Fig. 3, the grouping
in the stripe-wise direction brings significant advantages. Since the traditional
mapping method converts the weights of each channel into a one-dimensional
vector and maps it to the column of the RRAM crossbar, and this method
requires a large RRAM crossbar with the size of N ×(K×K×D). Our mapping
as Fig. 6 shows groups the weights in the stripe-wise direction and maps the
groups to many little size RRAM crossbars with different statuses, and avoid
using the one whole large size RRAM crossbar consisting of different statuses
RRAM units.

48 F. Yang et al.

Algorithm 1: The weights mapping on crossbars
1 Input: The weights in one kernel are grouped in the stripe-wise direction

W = {w1, w2, ..., wn}, wi means the weights set in i-th group.
2 for each wi in W do // Traverse all wi

3 Compute the sum of the absolute value of wi Si = sum(‖wi‖)

4 Order Si in descending order and map the groups with the greater Si on the
fresh RRAM, and map the other half groups with the lower Si on the aged
RRAM.

From Fig. 4, we know that the weights information loss caused by RRAM
with different statuses has different impacts on CNN. As shown in Fig. 7, after
grouping the weights, we map the weights onto the crossbars with different sta-
tuses as Algorithm 1. We will aggregate the information of each group, sort it
according to the absolute value sum of the group, and then map the grouped
weights to the different statuses crossbars.

Fig. 7. After we group the weights, we map the groups on the crossbars with different
statuses as Algorithm 1 describes.

5 Experiments

To evaluate the performance of our weights mapping approaches, we test three
different neural networks, NN5, NN7, and NN9, on two datasets, MNIST and
Fashion [19]. We use three VGG-like networks shown in Table 1, where NN5 has
5 convolution layers, NN7 has 7 convolution layers, and NN9 has 9 convolution
layers to explore the effect of different weights mapping on networks with differ-
ent depths. Because the simulation continuously changes the weights according
to the RRAM units’ statuses, the simulation will cost much time even though
we test small datasets such as MNIST and Fashion at first. MNIST and Fashion
both contain 60,000 images, and the images are divided into 10 classes. We con-
duct simulation experiments in the hybrid environment of aged and fresh RRAM,

ExtendLife: Weights Mapping Framework to Improve RRAM Lifetime 49

where the number of fresh RRAM units is the same as the aged RRAM ones. All
network implementations and the weights mapping framework are implemented
using Numpy [20]. The experiments are tested on an Intel Xeon Silver 4114 CPU
@ 2.20GHz.

Table 1. CNN Configuration

CNN Configuration

NN5 NN7 NN9

5 conv layers 7 conv layers 9 conv layers

input (28 × 28 image)

conv3-16 conv3-16 conv3-16

maxpool

conv3-16 conv3-16 conv3-16

maxpool

conv3-16 conv3-16 conv3-16

conv3-32 conv3-32 conv3-32

conv3-64 conv3-32 conv3-32

conv3-64 conv3-32

conv3-64 conv3-64

conv3-64

conv3-64

FC-128

FC-10

soft-max

Table 2 shows the performance of different weights mapping methods on dif-
ferent datasets and networks, where the data represents the RRAM lifetime
improvement compared to the random weights mapping, which maps the weights
on the same RRAM randomly. The lifetime is the iteration when the CNN train-
ing batch accuracy drops down the borderline, which usually is defined as 80%
of the original final accuracy from the test data [21], and we use the same rule.
The crosses in the next figures mark the lifetime of the RRAM. The front-half
means we map the weights of the front half of CNN on the aged RRAM and
map the other weights on the fresh RRAM, and the back-half is opposite to
the front-half. It can be seen that the front-half weights mapping is inferior to
the random weights mapping in all networks, and does not exhibit significant
changes on the networks of different depths.

Unlike the front-half, the back-half maps the weights of the back half of the
CNN to the aged RRAM, and maps the front half to the fresh RRAM. Table 2
shows that the back-half significantly extends 4.9× lifetime in NN7. Although

50 F. Yang et al.

the performance of the back-half on NN5 is not outstanding, Fig. 8 shows that
back-half still extends the lifetime around 0.6 accuracy in NN5. Comparing Fig. 9
and Fig. 10, we can see that the lifetime improvement of the back-half becomes
less significant with the depth of CNN increasing, indicating that the simple
front or back half weights mapping on RRAM may become ineffective in the
deep CNN.

Fig. 8. NN5-MNIST lifetime improvement

Fig. 9. NN7-MNIST lifetime improvement

Interestingly, we find the results from Table 2 are different from Fig. 4 in NN7
and NN9. But if we lower the borderline determining the lifetime, we can easily
find that in NN5 and NN7, back-half has better performance, and in NN9 it has
almost worse performance than front-half from Fig. 8, Fig. 9 and Fig. 10 which
corresponds to the Fig. 4.

For solving the issue of possible inefficiency of back-half in deep CNN, we
also propose a mapping method that groups the weights and maps them to the
crossbars with different aged statuses. The main criterion for this mapping is
the absolute sum of grouped weights as Algorithm 1 describes. The over-avg
means that we map the half groups that have the greater absolute sum on the
aged RRAM, and map the other half groups on the fresh RRAM. As shown in

ExtendLife: Weights Mapping Framework to Improve RRAM Lifetime 51

Fig. 10. NN9-MNIST lifetime improvement

Table 2, the over-avg shows a similar speedup to the random weights mapping
among all the networks.

The below-avg is opposite to the over-avg, below-avg maps the half groups
with less absolute value sum to the aged crossbar and maps the other half groups
on the fresh crossbar. As shown in Table 2, the below-avg demonstrates a signif-
icant and stable lifetime improvement across all networks. This highlights the
meaningfulness of weights grouping in the convolution kernel, which not only
allows a more flexible and friendly mapping for the RRAM crossbars but also
significantly enhances lifetime.

Table 2. Weights mapping lifetime improvment

NN Dataset back-half front-half over-avg below-avg

NN5 MNIST 0.8× 0.8× 1.3× 7.1×
Fashion 1.1× 0.7× 0.7× 5.5×

NN7 MNIST 4.8× 0.5× 0.9× 5.6×
Fashion 5.0× 0.7× 1.0× 7.2×

NN9 MNIST 0.8× 0.6× 0.9× 5.7×
Fashion 1.0× 0.7× 1.3× 7.2×

Although Fig. 4 shows the loss of the four weights mapping, the back/front-
half loss is difficult to be compared with the below/over-avg one. Because the loss
between back-half and front-half is primarily caused by the weights distribution
difference in the different layers. But the loss between below-half and over-half
generates from the same kernel, its difference is dramatically smaller than the
loss between back-half and front-half. Even though the information loss cannot
be compared with the weights mapping back/front-half based on the dataflow
and the one below/over-avg within the kernel directly, it can be used to compare
the weights mappings based on the same way such as back-half and front-half
or below-half and over-half. In the above figures, the accuracy drops very fast

52 F. Yang et al.

in some intervals, the phenomenon is similar to layer-collapse in Pruning Net-
works [22], which generates from the weights loss caused by the aged RRAM
units and can be hardly avoided.

6 Acknowledgment

This work is supported by Key-Area Research and Development Program of
Guangdong Province 2021B0101310002; National Science Foundation of China
(grant numbers 62293510/62293513, 62272252, 62272253, 62141412), NSF of
Tianjin 21JCYBJC00070; Fundamental Research Funds for the Central Uni-
versities.

7 Conclusions

In this paper, we analyze the impact of aged RRAM on training CNN and
proposed a method to evaluate the performance of weights mapping on the
hybrid of aged and fresh RRAM through Taylor expansion in advance. Based on
this method, we propose a weights mapping framework specifically designed for
the hybrid of aged and fresh RRAM to extend RRAM engines lifetime consisting
of two weights mapping methods. The back-half maps the weights of the back half
of the network to aged RRAM, and the below-avg groups the weights and maps
the groups with smaller absolute value sum to aged RRAM. Experimental results
show that both back-half and below-avg can improve the lifetime of RRAM
accelerators. However, in experiments, back-half varies in lifetime improvement
in CNN with different depths, while below-avg can stably improve the RRAM
lifetime in all CNN. Compared with random weights mapping baseline, below-avg
can improve the RRAM lifetime by 6.3× on average.

References

1. Cokun, M., et al.: Face recognition based on convolutional neural network. In:
International Conference on Modern Electrical and Energy Systems (2017)

2. Li, Q., et al.: Medical image classification with convolutional neural network. In:
13th International Conference on Control Automation Robotics & Vision (2014)

3. Chen, L., et al.: Beyond human recognition: a CNN-based framework for handwrit-
ten character recognition. In: 3rd IAPR Asian Conference on Pattern Recognition
(2015)

4. Tang, T., et al.: Binary convolutional neural network on RRAM. In: 22nd Asia and
South Pacific Design Automation Conference (2017)

5. Shafiee, A., et al.: ISAAC: a convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. In: ACM SIGARCH Computer Architecture News,
vol. 44, no. 3, pp. 14–26 (2016)

6. Chi, P., et al.: Prime: a novel processing-in-memory architecture for neural net-
work computation in reram-based main memory. In: ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 27–39 (2016)

ExtendLife: Weights Mapping Framework to Improve RRAM Lifetime 53

7. Li, W., et al.: Timely: pushing data movements and interfaces in pim accelera-
tors towards local and in time domain. In: ACM/IEEE 47th Annual International
Symposium on Computer Architecture (2020)

8. Chen, P.Y., et al.: WRAP: weight RemApping and processing in RRAM-based
neural network accelerators considering thermal effect. In: Design, Automation &
Test in Europe Conference & Exhibition (2022)

9. Zhang, G.L., et al.: Reliable and robust RRAM-based neuromorphic computing.
In Proceedings of the 2020 on Great Lakes Symposium on VLSI (2020)

10. Zhang, S., et al.: Lifetime enhancement for rram-based computing-in-memory
engine considering aging and thermal effects. In: 2nd IEEE International Con-
ference on Artificial Intelligence Circuits and Systems (2020)

11. Zhu, Z., et al.: Mixed size crossbar based RRAM CNN accelerator with overlapped
mapping method. In: International Conference on Computer-Aided Design (2018)

12. Liang, T., et al.: Pruning and quantization for deep neural network acceleration:
a survey. Neurocomputing 461, 370–403 (2021)

13. Chen, B., et al.: Physical mechanisms of endurance degradation in TMO-RRAM.
In: International Electron Devices (2011)

14. Le, B.Q., et al.: Resistive RAM with multiple bits per cell: array-level demonstra-
tion of 3 bits per cell. IEEE Trans. Electron Dev. 66(1), 641–646 (2018)

15. Yong, H., Huang, J., Hua, X., Zhang, L.: Gradient centralization: a new optimiza-
tion technique for deep neural networks. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 635–652. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58452-8 37

16. Huang, Z., Shao, W., Wang, X., Lin, L., Luo, P.: Rethinking the pruning criteria
for convolutional neural network. Adv. Neural Inf. Process. Syst. 34, 16305–16318
(2021)

17. Molchanov, P., et al.: Pruning convolutional neural networks for resource efficient
inference. In: International Conference on Learning Representations (2017)

18. LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. In: Conference on Neural
Information Processing Systems (1989)

19. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv Machine Learning (2017)

20. Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient
numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

21. Zhang, S., et al.: Lifetime enhancement for rram-based computing-in-memory
engine considering aging and thermal effects. In: IEEE International Conference
on Artificial Intelligence Circuits and Systems (2020)

22. Tanaka, H., et al.: Pruning neural networks without any data by iteratively con-
serving synaptic flow. Adv. Neural Inf. Process. Syst. 33, 6377–6389 (2020)

https://doi.org/10.1007/978-3-030-58452-8_37

	ExtendLife: Weights Mapping Framework to Improve RRAM Lifetime for Accelerating CNN
	1 Introduction
	2 Background and Motivation
	2.1 CNN Training on RRAM
	2.2 RRAM Aging
	2.3 Weights Distribution and Network Pruning

	3 Evaluate Weights Mapping
	4 Weights Mapping Framework
	4.1 Dataflow
	4.2 Grouping and Mapping Groups

	5 Experiments
	6 Acknowledgment
	7 Conclusions
	References

