
Polaris: Enhancing CXL-based Memory
Expanders with Memory-side Prefetching

Zhe Zhou1,2, Shuotao Xu4, Yiqi Chen1, Tao Zhang4, Ran Shu4, Lei Qu4,
Peng Cheng4, Yongqiang Xiong4, and Guangyu Sun1,2,3(B)

1 School of Integrated Circuits, Beijing, China
{pkuzhou,cyq1009,gsun}@pku.edu.cn

2 School of Computer Science, Beijing, China
3 Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China

4 Microsoft Research Asia, Beijing, China
{shuotaoxu,zhangt,ran.shu,lei.qu,pengc,yongqiang.xiong}@microsoft.com

Abstract. The use of CXL-based memory expanders introduces
increased latency compared to local memory due to control and transmis-
sion overheads. This latency difference negatively impacts tasks that are
sensitive to latency. While cache prefetching has traditionally been used
to mitigate memory latency, addressing this performance gap requires
improved CPU prefetch coverage. However, tuning a CPU prefetcher for
CXL memory necessitates costly CPU modifications and can result in
cache pollution and wasted memory bandwidth. To address these chal-
lenges, we propose a solution called Polaris, a novel CXL memory
expander that integrates a hardware prefetcher in the CXL memory con-
troller chip. Polaris analyzes incoming memory requests and prefetches
cachelines to a dedicated SRAM buffer without requiring modifications
to CPUs or software. In cases where prefetch hits occur, Polaris estab-
lishes a “shortcut” for rapid memory access, significantly reducing the
performance gap between CXL and local DDR memory. Furthermore,
if small CPU changes are allowed, such as extending Intel’s DDIO,
Polaris can further minimize CXL memory access overheads by actively
pushing high-confidence prefetches to the CPU’s last-level cache (LLC).
Extensive experiments demonstrate that, in conjunction with various
CPU-side prefetchers, Polaris enables up to 85% of common workloads
(on average, 43%) to effectively tolerate CXL memory’s longer latency.

Keywords: CXL · Cache Prefetching · Near-memory processing

1 Introduction

Recently, Compute Express Link (CXL) interconnected memory expanders
(CXL memory) have been proposed as a new expansion approach to scale
up a single server’s memory capacity and bandwidth [19,23,42]. Unlike pre-
vious methods such as memory expansion through PCIe [29] or RDMA over

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
C. Li et al. (Eds.): APPT 2023, LNCS 14103, pp. 19–39, 2024.
https://doi.org/10.1007/978-981-99-7872-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7872-4_2&domain=pdf
https://doi.org/10.1007/978-981-99-7872-4_2


20 Z. Zhou et al.

Fig. 1. A server system with both local DDR memory and CXL memory.

Table 1. Feature comparison across different memory types

Type Interconnect Latency Bandwidth Access Semantic

Local Memory DDR Channel 80-140 ns 38.4 GB/s# Load/Store

Memory Blade PCIe 450 ns [29] 64 GB/s∗ DMA

RDMA [20] Infiniband >1 µs 6 GB/s DMA

CXL Memory CXL Channel 170–250 ns [30] 64 GB/s Load/Store
#DDR5-4800, single channel. *Scaled to DDR5 & PCIe 5.0 x16.

InfiniBand/Ethernet networks [3–5,18,20,37,40,45] , CXL memory is byte-
addressable via normal CPU load/store instructions and exposes a coherent, uni-
fied memory space with the local memory. Because a host accesses CXL memory
directly without invoking page faults or DMA operations, CXL memory achieves
much lower latency than the RDMA and Memory Blade [29] counterparts. This
sheds new light on memory expansion in data centers.

However, due to non-negligible control and transmission overheads of the
CXL interconnect (the CXL Latency in Fig. 1), CXL memory still has ∼2×
access latency than local memory accesses, as shown in Table 1. Consequently,
many latency-sensitive workloads even suffer up to 50% slowdown on CXL
memory [28]. Considering that the CPU accesses CXL memory through nor-
mal load/store interfaces at a cacheline granularity, one strawman solution to
mitigate such a performance gap is to adopt cache prefetching. Theoretically, if
most of cache misses are covered by prefetching, average access latency to both
local and CXL memory is reduced substantially, and so is the performance gap.
However, our profiling reveals that even the state-of-the-art CPU prefetchers
cannot provide sufficiently high prefetch coverage to achieve this goal for CXL
memories. For a certain CPU prefetcher to hide CXL memory latency, it often
requires expanding its prefetch coverage via more aggressive prefetching, and
is usually at the cost of lower prefetch accuracy [9]. More aggressive CPU-side
prefetching often results in extraneous DRAM accesses that lead to cache pol-
lution and bandwidth waste issues. This paradox between prefetch coverage
and accuracy makes it challenging to improve CPU prefetchers’ performance
further for CXL memories. Moreover, incorporating a more accurate prefetcher
for CXL memory incurs costly modifications to CPUs and may demand
much more core-side resources. All these limitations indicate that one shall



Polaris 21

LLC

L2$ L2$ L2$ L2$

Host CPU

Cores

CPU Load Ac�ve Prefetching

CXL
\Device
DRAM

M
C

CXL Ctrl

Polaris 
Device Controller

CXL Latency = 50-100ns DRAM Latency = 80-140ns

Prefetcher

Prefetch 
Buffer

Fig. 2. Illustration of Polaris. Path ❶: CPU loads from device DRAMs. Path ❷:
CPU loads from the prefetch buffer. Path ❸: The memory-side prefetcher directly
pushes data to CPU’s LLC via DDIO.

go beyond CPU side and seek new prefetch opportunities on the CXL side to
hide long memory access latency.

In this paper, we propose Polaris, a novel CXL memory expander that
reduces the CXL memory latency by prefetching on the memory side . The
overall architecture of Polaris is illustrated in Fig. 2. A standard CXL memory
expander only has Path ❶, where CPU accesses would suffer from CXL latency
and DRAM latency. Polaris creates fast paths for CPU accesses (Paths ❷ and
❸) by adding prefetch functionality to CXL memory. Polaris incorporates a
hardware prefetcher in its controller chip, which predicts CPU cacheline accesses
and prefetches them to a dedicated SRAM buffer (Prefetch Buffer) for quick
future accesses. In events of prefetch hits, Polaris redirects CPU requests to a
shortcut (Path ❷) to substantially reduce the access latency.

The base design of Polaris (Path ❷) already brings several advantages:
(1) Hardware modifications are restricted to memory expanders, which facil-
itates a drop-in compatible solution to existing data-center servers. (2) With
a dedicated prefetch buffer, Polaris can unlock more prefetch coverage than
CPU prefetchers by aggressive prefetching without polluting the CPU cache. (3)
Polaris can harvest the higher device-side DRAM bandwidth than CPU-side
for prefetching. (4) Memory-side prefetchers in standalone off-chip silicons have
more budget for sophisticated prefetchers than CPU-side prefetchers to yield
higher prefetch accuracy. In particular, Polaris ensembles multiple prefetch-
ers and proposes a score-based selector to choose the best-performing prefetcher
dynamically. Besides Polaris-Base, we further present Polaris-Active to make
the most of memory-side prefetching capability. It actively pushes prefetched
cachelines to CPU’s LLC to reduce prefetch hit latency (Path ❸) further. We
propose that Polaris-Active only requires minimal modifications to the existing
direct-cache-access interfaces like Intel’s DDIO (Data-Direct-IO) [24]. Extensive
experiments on 33 representative workloads demonstrate that together with dif-



22 Z. Zhou et al.

ferent CPU prefetchers, Polaris helps up to 85% of workloads, 43% on average,
effectively tolerate1 CXL memory’s longer latency (Sect. 4).

2 Background and Motivation

2.1 CXL-Based Memory Expansion

The emerging Compute Express Link protocol (CXL) [17] is the first open indus-
try standard to support cache-coherent interconnect between the host CPU and
various accelerators or memory devices. It is composed of three sub-protocols:
CXL.io creates high-speed I/O channels called FlexBus based on the PCIe-5.0
physical layer. It provides a basic, non-coherent load/store interface for general
I/O devices. CXL.cache further adds cache coherence abilities to FlexBus, which
works on MESI coherence protocol and enables the CXL devices to cache the
host memory. The third one, CXL.mem, allows the host to have coherent, byte-
addressable access to the device-attached memory.

The CXL-based memory expanders (CXL memory) are built upon CXL.io
and CXL.mem. As shown in Fig. 1, in a system that equips CXL memory, the
local and CXL memory have a unified physical memory space. LLC (Last-
Level-Cache) misses to CXL memory addresses are translated into CXL requests
and sent via CXL channels. At the CXL memory side, these requests will first
be decoded by a CXL controller and then fed into the memory controller to
access device DRAMs. Responses carrying missed cachelines are sent back to
the CPU without invoking page faults or DMAs. Recently, Samsung [42] and SK
Hynix [23] have launched commodity CXL memory expanders. They can extend
the single server memory capacity to several TBs and provide hundreds of GB/s
of extra memory bandwidth. Gouk et al. also implemented an FPGA proto-
type [19] to demonstrate CXL memory’s unmatched advantages over RDMA-
based solutions.

2.2 The Long Latency Issue of CXL Memory

As compared in Table 1, though CXL memory has much lower latency than
the RDMA/PCIe-based counterparts, it is still slower than local DDR memory.
According to Fig. 1, we can formulate the CXL memory latency as follows:

t CXL Mem = t CXL + t Device DRAM (1)

In the formula, t CXL is the latency caused by the CXL stack (including the
CXL packets processing, data transmission, etc.). t Device DRAM denotes the
latency of device-side DRAMs. Although CXL-enabled CPU [33] and memory
expanders [23,42] have not been commercially available till now, it has been
confirmed that t CXL Mem is close to the latency of one-hop NUMA access

1 We say the CXL latency is “effectively tolerated” if the performance gap between
CXL and local memory is within 5%.



Polaris 23

(i.e., CPU-0 accessing CPU-1’s main memory in a dual-socket system) [28,30].
Therefore, t CXL is estimated to be 50–100ns. [30].

To tackle CXL memory’s long latency issue, some recent works focus on
system-level optimizations [28,30,38]. Their main idea is to keep “hot” data in
local memory while placing “cold” data in the CXL memory. Such a data map-
ping/migration can happen in VM instance [28] or memory page [30,38] granu-
larity. However, these methods require complex modifications to OS kernels [30]
or applications [38]. What’s worse, the coarse-grained swapping methods will
incur read/write amplification problems [15] and cannot fully leverage the byte-
addressable and fine-grained-access advantages of CXL memory. In brief, there
still lacks an efficient approach to reduce the CXL memory access
latency directly.

2.3 Cache Prefetching to the Rescue?

As mentioned before, a key advantage of CXL memory is the compatibility with
normal CPU load/store interfaces, which transfer data in a cacheline granu-
larity. Therefore, it is natural to wonder whether cache prefetching, a primary
method to tolerate data access latency in conventional memory systems, can also
help offset the side effects of CXL memory.

According to previous profiling [28], commercial CPU with hardware
prefetchers enabled fails to tolerate the CXL latency on many tasks effectively.
Given that commercial CPUs tend to equip simple and conservative hardware
prefetchers [44], we also turn our eyes to some complex yet powerful prefetchers.
For instance, the recently-proposed Pythia [10] prefetcher adopts Reinforcement-
Learning to obtain the best prefetch policy from multiple program features and
system-level feedback information. It claims to achieve the highest coverage and
accuracy among CPU prefetchers. Without loss of generality, we inspect Pythia’s
performance under CXL memory scenarios and mainly answer two questions:

Fig. 3. Pythia’s Performance on the CXL Memory.

(1) Can Powerful CPU Prefetchers Help? To answer this question, we
evaluate Pythia on various SPEC2006 and SPEC2017 tasks. The simulation
configurations are detailed in Sect. 4.1. As shown in Fig. 3-(a), we set t CXL



24 Z. Zhou et al.

Fig. 4. Pythia’s Performance with Different Prefetch Degrees.

from 0ns to 200ns and evaluate the caused slowdown. Compared to the no-
prefetcher baseline, Pythia achieves more gentle slowdown curves, indicating
that it can, to some extent, help tolerate the CXL latency. We also plot the
slowdown distribution in Fig. 3-(b). Under a typical 80ns of CXL latency, 6% of
tasks have >35% slowdown without a prefetcher, and 42% get a 25% to 35%
slowdown. The fraction of unaffected tasks (slowdown <5%) is merely 12%.
With Pythia, the slowdown caused by CXL latency is obviously mitigated. The
fraction of unaffected tasks increases to 47% (+35%), and no task has a higher
than 35% slowdown. However, 53% of cases are still heavily affected even with
Pythia: 31% of tasks get a 5%–15% slowdown, and still, 22% of tasks bear a
15%–35% slowdown. Even powerful cache prefetchers like Pythia still
leave a huge room for improvement in tolerating CXL latency.

(2) The Impact of Prefetch Aggressiveness? In general, we can increase
the aggressiveness of prefetchers (i.e., the prefetch degree) for potentially higher
prefetch coverage. Therefore, we set Pythia’s prefetch degree from 1 to 16 and
evaluate the IPC performance, coverage, and over-prediction (i.e., the fraction
of useless prefetches). As Fig. 4 shows, increasing the aggressiveness boosts the
performance on half of the tasks, thanks to the improved coverage (denoted by
black bars). However, on the other half, IPC gets lower with higher aggressive-
ness. On four of the negative cases, the coverage decreases with higher degrees.
This indicates that the over-prefetched cachelines (the grey bars) evict useful
cachelines, resulting in unbearable cache pollution problems. We also find that
for milc-337B, the coverage does not change obviously, but the IPC still drops.
This is due to the over-prefetched cachelines causing severe DRAM bandwidth
waste. To confirm this, we also plot the bandwidth utilization in Fig. 5. For the
milc-337B task, higher prefetch degrees result in much heavier DRAM band-
width utilization, reflected by the increased fraction of black bars in the figure.



Polaris 25

Fig. 5. Bandwidth Utilization with Different Prefetch Degrees.

Conclusions: According to these analyses we demonstrate that the prefetch
coverage is the main affecting factor. Even the state-of-the-art CPU cache
prefetcher, Pythia, can only help 35% of tasks tolerate the CXL latency. For
the remaining tasks, it is difficult to improve the prefetch coverage further due
to severe cache pollution and bandwidth waste issues. Note that these are
general problems faced by CPU prefetchers since Pythia already has the (almost)
highest prefetch accuracy [9,10]. Moreover, although one may want to propose
better CPU prefetchers tuned for CXL memory, putting them into the host CPU
will incur considerable CPU modification overheads. In a word, it is less fea-
sible to effectively mitigate the performance gap between CXL and local DDR
memory purely relying on CPU-side prefetchers.

Fig. 6. Architecture and Data Path Overview of Polaris-Base.

3 Polaris

In this section, we propose to tackle the challenges mentioned above via
memory-side prefetching . We introduce our designed prefetchable CXL
memory architectures, including Polaris-Base and Polaris-Active.

3.1 Polaris-Base Architecture

We first introduce the base design of Polaris. Figure 6 illustrates the architec-
ture and data paths of Polaris-Base. Compared to standard CXL memory, we
add a Prefetcher and a Prefetch Buffer (PFB) in the device-side controller chip.
The prefetcher feeds into memory read requests decoded by the CXL controller,



26 Z. Zhou et al.

performs data prefetching, and stores prefetched cachelines in PFB. As Fig. 6-(a)
shows, decoded memory addresses are fed into both Q2 (normal read queue) and
Q4 (PFB read queue) simultaneously, namely Path ❶. If a cacheline address hits
in PFB while the same request is still waiting in Q2, it will be removed from Q2
(Path ❷) to save DRAM bandwidth. The hit cacheline is read out from PFB via
Q5 (PFB return queue) and sent back to the CXL controller for packetization
(Path ❸). If a request hits in PFB but its fork request has already been issued
to the memory controller (no longer in Q2 ), the CXL controller will receive the
same cacheline twice, one from PFB and the other from DRAM. It directly drops
the latter one. Such a parallel-querying design removes PFB from the critical
path of DRAM accesses.

If the CPU read request misses in PFB, device memory returns the missed
cachelines as usual. Such a PFB-miss case is illustrated by data path ❹ in Fig. 6-
(b): the memory access requests are served by the memory controller, and the
read data is fed back to the CXL controller via Q1 (DRAM return queue). Here
we omit operation ❶ in this sub-figure for clarity. Received read requests are ana-
lyzed by the memory-side prefetcher. As illustrated in Fig. 6-(c), the prefetcher
fetches the read addresses deposited in Q4, analyzes them, and issues prefetch
requests to the memory controller. As path ❺ denotes, the cacheline addresses to
prefetch (the prefetcher should guarantee the addresses are valid) are put into Q3
(prefetch queue). An arbiter schedules the requests from Q2 and Q3 to guaran-
tee that normal memory read has a higher priority. The prefetched data will be
stored in PFB via the PFB-fill queue, Q6 (data path ❻). Note that these queues
are logically separated to explain ideas better. Some of them can be merged in
physical implementation. CPU writes are not illustrated in the figure. The only
thing to notice is that upon receiving a memory-write request, Polaris updates
the cacheline in both PFB (if hits) and DRAM to keep consistent.

We claim that such a Polaris-Base architecture leveraging memory-side
prefetching brings four main advantages:

(1) Non-intrusive Modifications: Polaris-Base restricts all modifications to
the CXL memory expander and avoids costly substrate systems (e.g., the host
CPU, CXL interface, OS kernels [30], system software [28], memory allocation
libraries [38], etc.) modifications.

(2) Avoid CPU Cache Pollution: Polaris-Base prefetches data to the ded-
icated PFB buffer to create a Shortcut for future CPU accesses. It avoids
polluting the host CPU cache even when an aggressive prefetcher is equipped.

(3) Harvest Device-side Memory Bandwidth: As Fig. 1 shows, the CXL
memory bandwidth exposed to the hosts is jointly determined by the CXL
channel bandwidth and the device-side memory bandwidth. Specifically, a stan-
dard PCIe 5.0 x16 channel provides, at most, 64 GB/s [46] of unidirectional
bandwidth. However, a typical two-channel DDR5-4800 memory can provide
up to 76.8 GB/s peak bandwidth, already 20% higher than the x16 chan-
nel. Polaris can harvest such over-provisioned DRAM bandwidth to facilitate
memory-side prefetching.



Polaris 27

(4) Support Complex Prefetchers: Unlike CPU prefetchers, memory-side
prefetchers in standalone chips have more area/power budgets to adopt com-
plicated prefetching mechanisms, e.g., ensembling hybrid prefetchers to improve
the prefetch accuracy. We detail this idea in the following subsection.

Fig. 7. Ensembled Memory-Side Prefetchers with Score-based Selector.

3.2 Ensembled Memory-Side Prefetchers

Polaris’s main goal is to redirect as many memory requests as possible to
the fast path (namely, improve the coverage of memory-side prefetchers) so as
to reduce the average latency. However, improving the coverage of memory-
side prefetchers is not an easy job. Unlike some CPU-side prefetchers, memory-
side prefetchers cannot see some useful core-side information such as PC (Pro-
gram Counter) [7,11,12] and branch instruction [10], etc.. Moreover, after being
filtered by CPU’s cache hierarchy, the memory-access patterns exposed to
CXL memory become highly irregular and are harder to predict. Fortunately,
Polaris equipping standalone controller chip has more resource budget for com-
plex prefetchers. Therefore, we propose ensemble hybrid prefetchers in Polaris
and use a score-based selector to choose the best-performing prefetcher dynami-
cally. Compared to individual prefetchers, our method shows much better cov-
erage and accuracy. Here we introduce four existing prefetchers purely adopting
physical addresses as inputs that can be ensembled in Polaris:

BOP: Offset prefetching prefetches X+D where X is a line of requested address and
D is the prefetch offset. Best-Offset prefetcher (BOP) [31] adopts a simple learning
mechanism to help select the best offsets.
Domino is a temporal prefetcher [6] that records the correlations of memory accesses
and prefetches correlated addresses on a trigger event (i.e., one or two cache misses).
SPP compresses the history of memory accesses to create a page signature [25]. It
then correlates the signature with future likely delta patterns to make the prediction.
VLDP [41] also relies on recorded memory access history to predict future memory
requests. It makes predictions based on multiple previous deltas (i.e.,the difference
between two successive miss addresses in a physical page).



28 Z. Zhou et al.

Fig. 8. Avoiding Data Overwrite with a Write-Ignore Operation.

We will demonstrate in Sect. 4.5 that these prefetchers have different advan-
tages, and no prefetcher performs consistently better than the others
on every task . As shown in Fig. 7, to select the best-performing prefetcher
dynamically, we design a specialized prefetcher selector based on the Virtual
Prefetching mechanism [31,36]. To be specific, When receiving a memory read
address, all the prefetchers (four prefetchers, PF0 to PF3 ) generate the prefetch
candidates according to their diverse prefetching mechanisms. However, these
candidates will not actually trigger a prefetching . Instead, they are sent
to a Bloom filter [13] (operation ❶). Bloom filter is a low overhead probabilis-
tic data structure used to examine whether an element is not a member of a
set. The hash functions of the Bloom filter map each prefetcher’s predictions
to multiple entries of the corresponding Bit vector (operation ❸). These target
entries are then set to 1. The CPU read address is mapped to certain entries
of all the bit vectors to check whether this address could have been prefetched
(operation ❷). For example, if all the three mapped entries in bit vector 0 have
been set to 1, we assume prefetcher-0 (PF0) has prefetched the address before
(Virtual Hit). Otherwise, if any entry’s value is still zero, it means PF0 has
not prefetched the address. This job is done by a virtual hit checker (❹). There
is also a Score Table recording the gained score of each prefetcher (❺). A virtual
hit increments the prefetcher’s score by one each time. We always adopt the
prefetcher with the highest score (e.g., PF2 in the figure) to output the actual
prefetching addresses.

The bit vectors should be reset at the beginning of each Step Window : We
use a per-predictor Step Counter to record the number of predictions fed into
the bloom filter. The counter is reset to zero once reaching a predefined Win-
dow Size) and then a new window begins. The implications are that inserting
predictions (we call each bloom filter insertion a Step) will gradually saturate
the filter. To maintain accuracy, we have to reset the bit vectors periodically.
Also, we right-shit all the scores if a score reaches the maximum number. All
the components work in a pipelined manner to achieve high throughput.

3.3 Polaris-Active Architecture

Polaris-Base effectively mitigates the performance gap to local memory if the
PFB-hit ratio is high enough. However, we still wonder whether we can make



Polaris 29

the most of Polaris’s memory-side prefetching ability to boost the
system performance further. Therefore, we also propose a Polaris-Active
architecture. It is featured by an Active Prefetching mechanism, which pushes
prefetched cachelines to CPU’s LLC to hide the CXL memory access latency
entirely. To this end, we should answer two critical questions:

How to Push Cachelines to LLC? The mechanisms of pushing data from
PCIe (CXL) devices to the CPU cache are usually referred to as Direct-Cache-
Access (DCA) techniques [22,26,27,43]. For instance, Intel’s DDIO (Data-Direct
I/O) [24] enables a PCIe-connected device to push data into CPU’s LLC cache
directly. It is important to note that DDIO uses Write-Allocate and Write-
Update policies. When a DDIO-write hits, it views the device’s data as the
newest and will overwrite the LLC’s data (see Fig. 8-(a)). However, in our scenar-
ios, the data in CXL memory can be older than CPU’s, if CPU’s dirty cachelines
have not been written back. Directly using DDIO for active prefetching
will cause severe data coherence issues.

We argue that we can add a Write-Ignore operation to the standard DDIO
protocol to solve this problem. As shown in Fig. 8-(b), if the direct-cache access
request is issued by the CXL memory and the prefetched cacheline hits in CPU’s
LLC, the CPU just ignores the request. To support Write-Ignore, the CPU only
needs to modify its DDIO control logic slightly and add a flag bit in the DDIO
packets to distinguish active prefetching from normal DDIO requests.

What to Push to LLC? Considering that active prefetching consumes both
the LLC’s DDIO ways and the CXL channel bandwidth, it is costly to push all
the prefetched data to LLC. To make better use of active prefetching, we only
push the data with high confidence to CPU’s LLC. Specifically, we reuse
the scores (see Fig. 7) to estimate a prefetch accuracy (Acc):

Acc =
Score − Scorei−1

Steps in the ith Window
(2)

In this formula, Score denotes the running score of the best prefetcher and
Scorei−1 is the old score value in the previous Step Window. Similar to the
ensembled prefetching mechanism in Sect. 3.2, we measure the accuracy in each
step window to guarantee timeliness. The prefetching accuracy is estimated by
calculating the fraction of virtual prefetch hit in the current step window. When
Acc > T , where T is a predefined threshold, we assume the prefetcher has
good enough accuracy and push the cachelines to LLC via DDIO, otherwise we
still store them in PFB. In practice, we can set threshold T as a power-of-two
decimal like T = 2−t. Then the controller only needs to calculate �Score =
Score − Scorei−1 and compare it with a T ′ = #Steps >> t in each step.
In this way, the multi-cycle division operation is avoided. Note that the Acc
calculation skips the first few steps (128 by default) in each window to guarantee
stability. We also set an Active Degree parameter to limit the maximum number
of cachelines that can be pushed to LLC in each prediction.



30 Z. Zhou et al.

4 Evaluation

4.1 Methodology

Table 2. Default System Parameters

Core 4 GHz, 4-wide OoO, 256-entry ROB, 72/56-entry
LQ/SQ

Branch Pred. Perceptron-based, 20-cycle misprediction penalty

L1/L2 Caches Private, 32KB/256KB, 64B line, 8 way, LRU,
16/32 MSHRs, 4 cycle/14-cycle round-trip
latency

LLC 2MB/core, 64B line, 16 way, SHiP replacement,
64 MSHRs per bank, 20-cycle latency

PFB 4MB, 16 way, LRU, 20-cycle latency

CXL memory CXL Channel: PCIe 5.0 x16, t CXL = 80ns
(round-trip) DRAM: DDR5-4800, 1 Channel,
tRP, tRCD, tCAS = 16ns

CPU Prefetcher Streamer, BOP, Pythia. Degree = 4

CXL Prefetcher BOP, Domino, SPP, VLDP (Ensembled). Degree
= 10

We compare Polaris-equipped systems against several baselines using the
cycle-accurate ChampSim simulator [16]. More specifically, we adopt a modified
version [2] as the code base. We customize the simulator to simulate the behavior
of CXL channels and enable arbitrary CXL latency injection. We also implement
the prefetch buffer (PFB) and memory-side prefetcher in the simulator.

Table 2 lists the host CPU, CXL channel, and memory configurations. We
simulate a 4 GHz CPU with 1,4,8 core. Each core has a 32KB L1 cache, 256KB
L2 cache, and 2 MB shared LLC. The default PFB size is 4 MB and has a
20-cycle latency. For the CXL memory, we assume the expander is based on
the PCIe-5.0 x16 physical channel and has 80 ns of CXL latency. The device
DRAM is a single-channel DDR5-4800 memory by default. We set t CXL = 0
and disable the PFB when simulating a local memory. The host CPU can equip
one of the three CPU-side prefetchers and adopt four prefetchers to compose the
ensembled memory-side prefetcher.

CPU Prefetchers: We assume the host CPU equips one of the following
prefetchers: The Streamer prefetcher used by commercial CPUs [44], the Best-
Offset Prefetcher (BOP) used in open-sourced RSIC-V CPU [35], and the state-
of-the-art Pythia [10] prefetcher adopting reinforcement-learning techniques. The
Streamer, BOP, and Pythia prefetchers are trained on L1-cache misses and fill
prefetched lines into L2 and LLC. For the single-core system, the default CPU
prefetching degree is set to four to achieve high coverage.



Polaris 31

Memory-Side Prefetchers: Polaris ensembles four hardware prefetchers
introduced in Sect. 3.2, which only rely on physical addresses for prediction: BOP
[31], Domino [6], SPP [25] and VLDP [41]. For the score-based prefetcher selec-
tor, we set a 512B binary vector (used by the bloom filter) per prefetcher. The
window size is set to 4096, and the active prefetching threshold T is empirically
set to 2−5. The Active Degree is set to 4 by default. The detailed configurations
of these hardware prefetchers are summarized in Table 3.

Table 3. Benchmarking Prefetchers

Prefetchers Configuration Overhead

Streamer [44] 64 trackers 0.5KB

BOP [31] 256 entry RR, MR=100,
MaxScore=31, BadScore=1

1.3KB

SPP [25] 256-entry ST, 2K-entry PT,
1024-entry PF, 8-entry GHR

6.2KB

Domino [6] 128B LogMiss, 2KB Prefetch Buffer,
256B PointBuf, 64B FetchBuf.

2.4KB

Pythia [10] 2 Features, 2 Vaults, 3 Plances, 16
Actions

25.5KB

4.2 Workloads

We adopt 91 instruction traces collected from 33 workloads of SPEC2006 [21],
SPEC2017 [14], PARSEC-2.1 [1] and GAPBS [8] benchmarks for evaluation.
They are summarized in Table 4. These traces, except for GAPBS, are obtained
from Pythia’s repo [2]. We record GAPBAS traces manually using Champsim’s
tracer with a [-u 20] running arguments. For GAPBS, we use 150M instructions
for warmup and 50M for evaluation. The other traces use 100M instructions for
warmup and 100M for evaluation. All traces have higher than 3 MPKI running
on a no-prefetcher system.

Table 4. Workloads for evaluation

Benchmark #Workloads #Traces Example Workloads

SPEC2006 13 38 gcc,mcf,lbm,libquantum,

SPEC2017 10 35 gcc,mcf,pop2,fotonik3d,

PARSEC 4 12 canneal,facesim,fluidanimate,

GAPBS 6 6 bfs,pagerank,spmv,bc



32 Z. Zhou et al.

4.3 Performance Metric

We first define a Slowdown function as the performance metric to compare
among different system configurations:

Slowdown(Ω,Π) =
IPC(Ω,Π)CXL − IPC(Ω)Local

IPC(Ω)Local
(3)

In this formula, Ω and Π represent the adopted CPU-side and memory-side
prefetching mechanisms, respectively. Specifically, Ω ∈{None, Streamer, BOP,
Pythia} and Π ∈ {Polaris − Base, Polaris − Active}. Our primary goal is to
make the system’s IPC on CXL memory, namely IPC(Ω,Π)CXL, close to or
higher than the baseline system’s, which adopts the same CPU-side prefetcher
but using local DDR memory, namely IPC(Ω)Local. Ideally, the slowdown should
be close to or even higher than zero to indicate that the performance gap between
CXL and local memory is effectively mitigated.

Fig. 9. Slowdown Mitigation with Polaris

4.4 Performance Overview

Performance with Single Task: We first evaluate Polaris’s performance
on the single-core system, which runs a single task each time. We compare the
average slowdown under various (Ω,Π) configurations in Fig. 9. In the figure, No
PO denotes the baseline system with no memory-side prefetchers, PO-Base and
PO-Act are short for Polaris-Base and Polaris-Active architectures. We can
observe that with Polaris, the average slowdown on all four benchmarks is sub-
stantially mitigated. Without memory-side prefetching (Π =NO PO), the system
bears –6% (Ω = BOP, GAPBS) to –25% (Ω=None, PARSEC and SPEC2006)
average slowdown. With Polaris-Base, the average slowdown is only –1%
to –10%. Polaris-Active mitigates the slowdown further on many cases. For
instance, as annotated by the red line, with Ω = Streamer, Polaris-Base has
already reduced the slowdown on SPEC2017 (the dark bars) by 10%. Polaris-
Active reduces the value by 2% further. Surprisingly, Polaris-Active even
achieves higher IPC than the local-memory system without CPU-side prefetch-
ers (Ω =None). This is because Polaris-Active can directly push cachelines
to CPU’s LLC, compensating for the absence of a CPU-side prefetcher. In rare
cases, Polaris-Active performs slightly worse than Polaris-Base (Ω = BOP,
PARSEC). This may be because some useful cachelines are evicted by prefetched



Polaris 33

ones, even with the DDIO capacity constraints. Fortunately, the negative case
still outperforms the NO PO baseline by eight points.

Figure 10 also presents the breakdown of the slowdown on all traces.
Polaris-Base and Polaris-Active can increase the percentage of unaffected
tasks (slowdown <5%) by 26% (Pythia) to 85% (No Pref.), 43% on average.
They can also substantially mitigate the ratio of heavily-affected tasks denoted
by the dark bars. For example, Polaris-Act saves 43 out of 44 tasks from suf-
fering >25% slowdown in the No Pref. (Ω = None) system. The ratio ranges
from 70% to 98% with different CPU prefetchers.

Fig. 10. Breakdown of Slowdown on All Tasks.

Fig. 11. Performance with Multi-Tasks.

Performance with Multi-tasks: We then evaluate Polaris’s performance
on multi-core systems, with each core running a different task. We increase
the number of cores to 4 and 8 and set two DRAM channels to match the
bandwidth requirements. For an N -core system, we randomly select N traces
from the 91 traces to build a mixed trace. We prepare eight mixed traces for each
configuration and calculate the geomean IPC of all the cores as the multi-core
IPC. The CPU prefetch degrees are reduced from four to two in the multi-core
systems. As shown in Fig. 11, in the four-core system, Polaris-Base mitigates a
2.3% to 12.6% slowdown when cooperating with different CPU-side prefetchers.

Polaris-Active gets a higher IPC than the local-memory baseline by +8.0%.
With Streamer or Pythia as the CPU prefetcher, Polaris-Active pushes the



34 Z. Zhou et al.

Fig. 12. Coverage Improvement with Polaris-Base.

slowdown to a much lower value than Polaris-Base, merely −1.7% and −2.0%,
respectively. However, Polaris-Active is less effective than Polaris-Base on a
BOP-equipped system. We infer that this is because BOP generates too many
miss-predicted prefetch requests, based on which Polaris-Active can hardly
ensure high active-prefetching accuracy, either. Such a phenomenon is more
severe in the eight-core system. As we can see in the right figure, Polaris-Active
works perfectly without a CPU-side prefetcher, but works more poorly than
Polaris-Base and even hurts the performance in the BOP and Pythia-based
systems. We infer that with more working threads, the DDIO ways and CXL
bandwidth are stressed greatly. More conservative active prefetching parameters
(i.e., higher threshold T and lower Active Degree, etc.) may be beneficial. We
leave the study of the optimal parameters setting to our future work.

4.5 Performance Analysis

Coverage Improvement: To better interpret Polaris’s effectiveness, we pro-
file the prefetch coverage in the baseline systems equipping Polaris-Base. As
shown in Fig. 12, we break down total LLC misses into three parts: 1) Covered
by CPU prefetcher. 2) Covered by Polaris’s prefetcher and 3) Uncovered LLC
misses. Firstly, we can easily observe that, when Ω = {Streamer,BOP,Pythia}
the CPU-side prefetchers can cover 35% to 80% LLC misses. Based on CPU
prefetchers, Polaris can further reduce 34% to 66% of uncovered LLC misses,
54% on average. We also find that, when the host CPU does not equip a
prefetcher, about 70% to 85% of LLC misses are hit in the PFB.

Score-Based Ensembled Prefetchers:We compare the score-based ensem-
bled prefetcher (see Sect. 3.2) with every individual prefetcher. We adopt the
representative SPEC traces used in Fig. 4 for demonstration. As shown in Fig. 13,
no individual prefetcher performs consistently better than the others among all
tasks (Red circles annotate the best-performing tasks of each prefetcher). We
also find that the proposed ensembled prefetcher (the black bars) can achieve
near-optimal speedup on almost all tasks.



Polaris 35

Fig. 13. Benefits of the Ensembled Memory-side Prefetcher.

Fig. 14. Speedup Comparison with Different Over-provision Ratio η.

4.6 Sensitivity Analysis

DRAM Bandwidth Over-provision: As claimed before, an advantage of
Polaris is the ability to harvest the higher device-side DRAM bandwidth for
prefetching. We use the over-provision ratio η = DRAM Bandwidth

CXL Bandwidth − 1 to mea-
sure how much device-side DRAM bandwidth is over-provisioned. Without loss
of generality, we compare the performance of a Pythia + Polaris-Base and a
Pythia-only system under different η values. Following Pythia’s practice [10], we
constrain the single-core system’s CXL bandwidth to 8 GB/s and set the default
DRAM IO speed to 1000MTPS (η = 1) to emulate the bandwidth budget in
multi-core systems. We test on PARSEC tasks since they have the worst per-
formance among all four benchmarks. As compared in Fig. 14, for the baseline
system without Polaris, over-providing 150% device-side DRAM bandwidth
only brings 13% IPC improvement. With Polaris, the system’s performance
improves by up to 52% with higher device-side DRAM bandwidth. This indi-
cates that Polaris effectively leverages the over-provided DRAM bandwidth to
facilitate memory-side prefetching.

PFB Size: We set different PFB sizes ranging from 512KB to 8 MB and use the
SPEC traces for a quick exploration on the Polaris-Base system. The results are
shown in Fig. 15. It is interesting to find that an accurate CPU-side prefetcher,
namely Pythia is more sensitive to the PFB size. An 8MB PFB brings about
a 14% performance improvement over the 512KB PFB. While for Ω =None or
Streamer, the IPC increases slowly. We infer that this is because Polaris does
not distinguish between demand cache misses and CPU prefetch misses. If the
CPU prefetcher’s predictions are accurate, Polaris’s prefetcher is more likely
to generate useful prefetch-on-prefetch requests, which demand a larger PFB to



36 Z. Zhou et al.

Fig. 15. Polaris-Base’s Performance with Different PFB Sizes.

store. Otherwise, Polaris may generate too many inaccurate prefetches, which
does not easily benefit from a larger prefetch buffer.

4.7 Overhead of POLARIS

Similar to previous works [6,25,31,36,39], we assume the main overhead of
Polaris’s prefetcher comes from the storage. As listed in Table 3, the ensembled
prefetchers consume roughly 35.9KB of SRAM. Taking into consideration the bit
vectors and score tables, etc., we assume a 40KB budget. We estimate the power
and area using Synopsys Design Compiler 2016 with FreePDK 45 nm library [34].
The registers have 2.82mm2 total cell areas and consume about 240.8 mW of
power. We also estimate the overhead of the 4MB PFB via CACTI [32] under
the 40 nm technology. The 16-way PFB consumes 24.28mm2 of area and 1.53 W
of peak power. Putting them together, Polaris roughly requires 27.1mm2 more
area and a 1.77 W additional power budget.

5 Conclusion

This paper presents Polaris, a novel CXL memory featured by memory-side
prefetching. It enhances the system’s prefetching capability while avoiding CPU
cache pollution and mitigating bandwidth waste. Polaris’s base design does not
incur substrate-system modifications to be drop-in compatible with data center
servers. If one permits small CPU changes, Polaris can actively push prefetched
cachelines to CPU’s LLC to boost performance further. Polaris is the first
attempt to bring some conventional CPU-side tasks, like cache prefetching, to
the CXL-device side for more opportunities.

Acknowledgment. This work is supported by Key-Area Research and Development
Program of Guangdong Province (2021B0101310002), NSFC (61832020, 62032001,
92064006) and 111 Project (B18001).

References

1. Parsec 2.1, 2022.9. https://parsec.cs.princeton.edu/
2. Pythia’s github repo, 2022.9. https://github.com/CMU-SAFARI/Pythia
3. Aguilera, M.K., et al.: Remote regions: a simple abstraction for remote memory.

In: 2018 USENIX Annual Technical Conference (USENIX ATC 18), pp. 775–787
(2018)

https://parsec.cs.princeton.edu/
https://github.com/CMU-SAFARI/Pythia


Polaris 37

4. Al Maruf, H., Chowdhury, M.: Effectively prefetching remote memory with leap.
In: 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp. 843–857
(2020)

5. Amaro, E., et al.: Can far memory improve job throughput? In: Proceedings of the
Fifteenth European Conference on Computer Systems, pp. 1–16 (2020)

6. Bakhshalipour, M., Lotfi-Kamran, P., Sarbazi-Azad, H.: Domino temporal data
prefetcher. In: 2018 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), pp. 131–142. IEEE (2018)

7. Bakhshalipour, M., Shakerinava, M., Lotfi-Kamran, P., Sarbazi-Azad, H.: Bingo
spatial data prefetcher. In: 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pp. 399–411. IEEE (2019)

8. Beamer, S., Asanović, K., Patterson, D.: The gap benchmark suite, arXiv preprint
arXiv:1508.03619 (2015)

9. Bera, R., et al.: Hermes: accelerating long-latency load requests via perceptron-
based off-chip load prediction. In: 55th IEEE/ACM International Symposium on
Microarchitecture, MICRO 2022, Chicago, IL, USA, 1–5 October 2022. IEEE, 2022,
pp. 1–18 (2022). https://doi.org/10.1109/MICRO56248.2022.00015

10. Bera, R., Kanellopoulos, K., Nori, A., Shahroodi, T., Subramoney, S., Mutlu, O.:
Pythia: a customizable hardware prefetching framework using online reinforcement
learning. In: MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 1121–1137 (2021)

11. Bera, R., Nori, A.V., Mutlu, O., Subramoney, S.: Dspatch: dual spatial pattern
prefetcher. In: Proceedings of the 52nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2019, pp. 531–544 (2019)

12. Bhatia, E., Chacon, G., Pugsley, S., Teran, E., Gratz, P.V., Jiménez, D.A.:
Perceptron-based prefetch filtering. In: 2019 ACM/IEEE 46th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pp. 1–13. IEEE (2019)

13. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970). https://doi.org/10.1145/362686.362692

14. Bucek, J., Lange, K.-D., Kistowski, J.V.: SPEC CPU2017: next-generation com-
pute benchmark. In: Companion of the 2018 ACM/SPEC International Conference
on Performance Engineering, pp. 41–42 (2018)

15. Calciu, I., et al.: Rethinking software runtimes for disaggregated memory. In: Pro-
ceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 79–92 (2021)

16. ChampSim, Champsim simulator, 2022.9. https://github.com/ChampSim/
ChampSim

17. C. foundation, Cxl 3.0 specification, 2022.9. https://www.computeexpresslink.org/
download-the-specification

18. Gao, Y., et al.: When cloud storage meets {RDMA}. In: 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21), pp. 519–533 (2021)

19. Gouk, D., Lee, S., Kwon, M., Jung, M.: Direct access,{High − Performance}
memory disaggregation with {DirectCXL}. In: 2022 USENIX Annual Technical
Conference (USENIX ATC 22), pp. 287–294 (2022)

20. Gu, J., Lee, Y., Zhang, Y., Chowdhury, M., Shin, K.G.: Efficient memory disag-
gregation with infiniswap. In: 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pp. 649–667 (2017)

21. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput.
Archit. News 34(4), 1–17 (2006)

http://arxiv.org/abs/1508.03619
https://doi.org/10.1109/MICRO56248.2022.00015
https://doi.org/10.1145/362686.362692
https://github.com/ChampSim/ChampSim
https://github.com/ChampSim/ChampSim
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification


38 Z. Zhou et al.

22. Huggahalli, R., Iyer, R., Tetrick, S.: Direct cache access for high bandwidth network
i/o. In: 32nd International Symposium on Computer Architecture (ISCA’05), pp.
50–59. IEEE (2005)

23. Hynix, S.: Sk hynix cxl memory expander, 2022.9. https://news.skhynix.com/sk-
hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/

24. Intel, Intel data-direct io, 2022.9. https://www.intel.cn/content/www/cn/zh/io/
data-direct-i-o-technology.html

25. Kim, J., Pugsley, S.H., Gratz, P.V., Reddy, A.N., Wilkerson, C., Chishti, Z.: Path
confidence based lookahead prefetching. In: 2016 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pp. 1–12. IEEE (2016)

26. Kumar, A., Huggahalli, R., Makineni, S.: Characterization of direct cache access
on multi-core systems and 10gbe. In: 2009 IEEE 15th International Symposium on
High Performance Computer Architecture, pp. 341–352. IEEE (2009)

27. León, E.A., Ferreira, K.B., Maccabe, A.B.: Reducing the impact of the memorywall
for I/O using cache injection. In: 2007 15th Annual IEEE Symposium on High-
Performance Interconnects (HOTI), pp. 143–150. IEEE (2007)

28. Li, H., et al.: First-generation memory disaggregation for cloud platforms, arXiv
preprint arXiv:2203.00241 (2022)

29. Lim, K., Chang, J., Mudge, T., Ranganathan, P., Reinhardt, S.K., Wenisch, T.F.:
Disaggregated memory for expansion and sharing in blade servers. ACM SIGARCH
Comput. Archit. News 37(3), 267–278 (2009)

30. Maruf, H.A., et al.: TPP: transparent page placement for cxl-enabled tiered mem-
ory, arXiv preprint arXiv:2206.02878 (2022)

31. Michaud, P.: Best-offset hardware prefetching. In: 2016 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pp. 469–480 (2016)

32. Muralimanohar, N., Balasubramonian, R., Jouppi, N.P.: Cacti 6.0: a tool to model
large caches. HP Lab. 27, 28 (2009)

33. Nassif, N., et al.: Sapphire rapids: the next-generation intel Xeon scalable processor.
In: 2022 IEEE International Solid-State Circuits Conference (ISSCC), vol. 65, pp.
44–46. IEEE (2022)

34. NCSU, Freepdk45. https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
35. OpenXiangShan, Xiangshan riscv cpu, 2022.9. https://github.com/

OpenXiangShan/XiangShan
36. Pugsley, S.H., et al.: Sandbox prefetching: safe run-time evaluation of aggressive

prefetchers. In: IEEE 20th International Symposium on High Performance Com-
puter Architecture (HPCA), pp. 626–637. IEEE (2014)

37. Ruan, Z., Schwarzkopf, M., Aguilera, M.K., Belay, A.: {AIFM}:{High −
Performance},{Application − Integrated} far memory. In: 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20), pp. 315–332
(2020)

38. Samsung, Smdk, 2022.9. https://github.com/OpenMPDK/SMDK.git
39. Shakerinava, M., Bakhshalipour, M., Lotfi-Kamran, P., Sarbazi-Azad, H.: Multi-

lookahead offset prefetching. The Third Data Prefetching Championship (2019)
40. Shan, Y., Huang, Y., Chen, Y., Zhang, Y.: {LegoOS}: a disseminated, distributed

{OS} for hardware resource disaggregation. In: 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18), pp. 69–87 (2018)

41. Shevgoor, M., Koladiya, S., Balasubramonian, R., Wilkerson, C., Pugsley, S.H.,
Chishti, Z.: Efficiently prefetching complex address patterns. In: 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 41–152.
IEEE (2015)

https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
https://www.intel.cn/content/www/cn/zh/io/data-direct-i-o-technology.html
https://www.intel.cn/content/www/cn/zh/io/data-direct-i-o-technology.html
http://arxiv.org/abs/2203.00241
http://arxiv.org/abs/2206.02878
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://github.com/OpenXiangShan/XiangShan
https://github.com/OpenXiangShan/XiangShan
https://github.com/OpenMPDK/SMDK.git


Polaris 39

42. Sumsung, Expanding the limits of memory bandwidth and density: Samsung’s cxl
dram memory expander, 2022.9. https://semiconductor.samsung.com/newsroom/
tech-blog/expanding-the-limits-of-memory-bandwidth-and-density-samsungs-
cxl-dram-memory-expander/

43. Tang, D., Bao, Y., Hu, W., Chen, M.: DMA cache: using on-chip storage to archi-
tecturally separate I/O data from CPU data for improving I/O performance. In:
HPCA-16: The Sixteenth International Symposium on High-Performance Com-
puter Architecture, pp. 1–12. IEEE (2010)

44. Viswanathan, V.: Disclosure of H/W prefetcher control on some intel processors.
Intel SW Developer Zone (2014)

45. Wang, C., et al.: Semeru: a {Memory−Disaggregated} managed runtime. In: 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), pp. 261–280 (2020)

46. Wiki, Pcie 5.0, 2022.9. https://en.wikipedia.org/wiki/PCI Express

https://semiconductor.samsung.com/newsroom/tech-blog/expanding-the-limits-of-memory-bandwidth-and-density-samsungs-cxl-dram-memory-expander/
https://semiconductor.samsung.com/newsroom/tech-blog/expanding-the-limits-of-memory-bandwidth-and-density-samsungs-cxl-dram-memory-expander/
https://semiconductor.samsung.com/newsroom/tech-blog/expanding-the-limits-of-memory-bandwidth-and-density-samsungs-cxl-dram-memory-expander/
https://en.wikipedia.org/wiki/PCI_Express

	Polaris: Enhancing CXL-based Memory Expanders with Memory-side Prefetching
	1 Introduction
	2 Background and Motivation
	2.1 CXL-Based Memory Expansion
	2.2 The Long Latency Issue of CXL Memory
	2.3 Cache Prefetching to the Rescue?

	3 Polaris
	3.1 Polaris-Base Architecture
	3.2 Ensembled Memory-Side Prefetchers
	3.3 Polaris-Active Architecture

	4 Evaluation
	4.1 Methodology
	4.2 Workloads
	4.3 Performance Metric
	4.4 Performance Overview
	4.5 Performance Analysis
	4.6 Sensitivity Analysis
	4.7 Overhead of Polaris

	5 Conclusion
	References


