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Abstract. The market of wearables are growing explosively for the past
few years. The majority of the devices are related to health care and fit-
ness. It is embarrassing that users easily lose interest in these devices,
and thus fail to improve health condition. Recently, the “be healthy and
be rewarded” programs are gaining popularity in health insurance mar-
ket. The insurance companies give financial rewards to its policyholders
who take the initiative to keep healthy. It provides the policyholders
with incentives to lead a healthier lifestyle and the insurer can also ben-
efit from less medical claims. Unfortunately, there are hardly any studies
discussing how to design the incentive mechanism in this new emerging
health promotion program. Improper design would not change policy-
holders’ unhealthy behavior and the insurer cannot benefit from it. In
this paper, we propose a mechanism for this health promotion program.
We model it as a monopoly market using contract theory, in which there
is one insurer and many policyholders. We theoretically analyze how all
parties would behave in this program. We propose a design that can
guarantee that policyholders would faithfully participate in the program
and the insurer can maximize its profit. Simulation results show that the
insurer can improve its profit by 40% using the optimal contract.

Keywords: Wearable technology · healthcare · incentive mechanism

1 Introduction

The market of wearable devices are booming across the global. IDTechEx ana-
lysts estimate that the market will be worth $40 billion in 2018, then accelerates
to $100 billion by 2023, and finally reaches $150 billion by 2026 [16]. Various
types of wearable devices are penetrating into our daily life, revolutionizing our
clothes, watches, shoes, etc. The main functions of these smart devices are related
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Fig. 1. Step and save program. The insurer would reward its policyholders who take
the initiative to exercise. The intention of the insurer is to let policyholders keep fit
and reduce medical expenditure.

to health condition monitoring, e.g., sleep quality monitoring [24], physical activ-
ity tracking [2], and smoking detection [19]. Improving the population health is
an important target of wearable technology.

According to the data published by the World Bank, health expenditure
accounts for 17.1% of United States GDP [3] and the number is still increasing.
The rapid growth of health expenditure casts shadow on the global economics,
which has caused great concern to both households and governments. A substan-
tial portion of the diseases and deaths are caused by unhealthy dietary habits,
sedentary lifestyle, tobacco and alcohol use [10]. Wearable devices can be used to
monitor users’ behavior and promote a healthy lifestyle. However, a survey [18]
shows that more than half of consumers no longer wear their activity trackers
and a third of them stop wearing the device within six months of receiving it.
Consumers lack the incentives to use the device and fail to establish healthy
habits.

Recently, the “be healthy and be rewarded” programs are gaining popularity
in health insurance market. With the help of wearable devices, the insurer can
reward its policyholders (PHs) for their healthy behaviors. The intention of the
insurer is to use financial rewards to stimulate PHs to get rid of unhealthy habits
and pursue a healthy lifestyle. Thus, the insurer can reimburse less amounts of
medical claims and make profits. Realizing the great potentials, many insurance
companies have launched similar programs. For example, AIA Vitality members
can get a $7.50 Boost Juice voucher each week for engaging in physical activity.
They can also get a gift card when earning enough AIA Vitality points.

Unfortunately, there are few previous works discussing how to design the
incentive mechanism in these health promotion programs. Improper goals or
rewards will not stimulate PHs and the insurer may not gain profit from this
program. On one hand, setting a high goal or a small reward would discourage



328 Q. Huang et al.

PHs’ participation; on the other hand, giving the PHs large rewards may overran
the insurer’s budget. For PHs, they should have enough incentive to participate
in the program, and for the insurer, it wants to maximize its profits.

In this paper, we consider the scenario of “Step and Save”, as shown in
Fig. 1. The insurer sets step goals for the PHs, and the PHs can get discount
off their insurance premiums if their average daily step counts reach the target.
To maximize its profit, the insurer needs to address two challenges. First, the
insurer do not have complete information about the PHs. PHs have different
personal conditions (e.g., workload, economic situation), termed as type, which
is PHs’ personal information and would affect their willingness to participate
in physical activity. In addition to that, PHs’ original daily step counts can
also affect their willingness to achieve the target. However, both PHs’ types and
original daily step counts are not revealed to the insurer. Second, the insurer
needs to guarantee that PHs would faithfully participate in the program. Only
with the reasonable expectation of PHs’ behavior, the insurer can maximize its
profit accordingly.

To jointly tackle these two challenges, we use contract theory [5], which is
effective for mechanism design under incomplete information. The intuition is
to offer each PH a proper contract item, thus it will faithfully reveal its private
information. The insurer would provide several contract items (i.e., step goals
and corresponding discounts) for the PHs to choose. The PH would select the
item that maximizes its utility. After knowing PHs’ behavior, the insurer can
maximize its profit accordingly.

The main contributions of this paper are as follows:

– We, for the first time, theoretically analyze the insurer and PHs’ behaviors
in the new emerging programs in health insurance market.

– We design the optimal feasible contract that jointly considers PHs’ types and
original daily step counts. It can guarantee that the PHs would truthfully
participate in the program and maximize the profit of the insurer.

– We conduct extensive simulations to study the performance under various
scenarios. Simulation results show that the insurer can improve its profit by
40% using the optimal contract.

2 System Model

In this section, we first present our system model and define the notations that
would be used in the following sections. Then we review some concepts in con-
tract theory.

2.1 Step and Save Program

An insurance company is promoting a health program, which encourages its
PHs to exercise more by giving discounts on their premiums. It provides several
options (e.g., π = {[d1, t1] , [d2, t2] , · · · , [dm, tm]}) for the PHs to choose. For the
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PHs who choose the j-th contract item, they will get dj% off their premiums I if
their average daily steps reach the target tj ; otherwise, there is no discount for
them. As there are mature techniques to authenticate/identify users [7,15,20],
we assume that all the steps are taken by the legitimate PHs.

For the PHs, their daily step counts consist of two parts: Sc, the steps taken
for performing daily activities (e.g., get out of bed, go to dinning places) and
Se, the steps taken when participating in exercise. As pointed out in [22], Sc,
the steps for daily activity (without exercise), are similar among populations. To
reach the target t, they have to exercise (walk or jog) for at least (t − Sc) steps.

Reaching the targets would incur cost in many ways. For example, spending
more time on walking or jogging would mean less time for leisure or work [13]. It
is easy to understand that only Se would incur cost, and Sc would not. Thus, for
the following discussion, we do not consider this offset value and only consider
the exercising part.

The cost for each person would depend on his/her socioeconomic status,
age, health situation, etc. Different PHs have different perception of how much
time/comfort they sacrifice to achieve the step goal. We use θ to denote PHs’
valuations over their sacrifice made for taking more steps. For PHs with large
valuation, they are less willing to exercise. We assume that all PHs’ valuations
belong to θ = {θ1, θ2, · · · , θn}, where θ1 > θ2 > · · · > θn. According to [5], it is
optimal for the insurance company to provide a contract item for each type PH.
Thus, m = n.

Previous studies [10,23] have pointed out that physical activity can improve
health status and reduce the medical expenses. We use G to denote the med-
ical savings. For a PH who reaches t steps/day on average, the savings on its
medical expense is G(t). Wen et al. in [23] have showed that health condition
is improving with increasing physical activity duration but the marginal gain is
non-increasing, thus we have

∂G(t)
∂t

> 0,
∂2G(t)

∂t2
≤ 0. (1)

As a common practice, only a portion of the medical expenses can be covered by
the insurance. We use r to denote the reimbursement rate. We define r̄ = 1 − r.

We use C to denote the cost function. For a type-θ PH, the cost of walking
t steps is C(θ, t). It is straightforward that C increases with θ and t, i.e.,

∂C(θ, t)
∂θ

> 0,
∂C(θ, t)

∂t
> 0. (2)

It is well known that the muscle would fatigue during exercise. During walk-
ing/running periods, the speed is decreasing while the perceived difficulty is
increasing. For example, the time of walking 20 thousand steps would be at least
twice the time of walking 10 thousand steps and is perceived more difficult. Thus,
the marginal cost is increasing with t, i.e.,

∂2C(θ, t)
∂t2

> 0. (3)
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Furthermore, PHs with large valuations are more sensitive to time and comfort
loss, thus we have

∂2C(θ, t)
∂θ∂t

≥ 0,
∂3C(θ, t)

∂θ∂t2
≥ 0 (4)

The following paper is not limited to a concrete model of G(t) or C(θ, t), but a
more general discussion on the mechanism design. The insurer can substitute in
the models fitting its market. For example, Duncan [10] proposed a model that
G is growing linearly with physical activity engagement.

As each PH is selfish, it would choose the contract item that maximizes its
utility. We use u(θi, πj) to denote the utility of a type-θi PH choosing the j-th
contract item.

2.2 Solution Concepts

We review the solution concepts used in this paper. The first concept is incentive
compatible.

Definition 1 (Incentive Compatible). A contract is incentive compatible if
for each type-θj PH, it prefers to choose the contract item πj designed for its
own type, i.e.,

u(θj , πj) ≥ u(θj , πi),∀i, j.

An accompanying concept is individual rational. We use πNa =
[dNa = 0, tNa = 0] to denote an implicit contract, which means that a PH can
choose not to participate in this program.

Definition 2 (Individual Rational). A contract is individual rational if
the utility of type-θj PH accepting the contract item πj is no less than non-
participating, i.e.,

u(θj , πj) ≥ u(θj , πNa).

The last concept is feasible contract.

Definition 3 (Feasible Contract). A contract is feasible if it satisfies both
incentive compatibility and individual rationality.

Under feasible contract, the market is in an equilibrium. Each PH would
accept the contract item designed for its type, and has no incentive to derive to
another one. Similar to the PHs, the insurance company is also selfish. It will
decide π to maximize its utility.

3 Feasible Contract Design

Before proceeding to discuss the feasibility of contract, we first study PHs’ orig-
inal daily step counts. Then, we give the necessary and sufficient conditions for
feasible contract design, which would ensure that PHs would faithfully partici-
pate in the program.
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3.1 Investigating PHs’ Original Exercise Intensities

For different type PHs, they will engage in different levels of physical activity.
They exercise for various reasons, e.g., good body shape, high productivity in
work, etc. For simplicity, we use the self-covered medical expenses to capture the
self-motivation of PHs. As defined in Sect. 2.1, we use Se

j to denote the original
exercising steps for a type-θj PH. Its utility turns out to be

u(θj , πNa) = dNa · I + r̄ · G(Se
j ) − C(θj , S

e
j ).

For the ease of expression, in the upcoming discussion, we will adopt the
following notation:

u0(θj , t) = r̄ · G(t) − C(θj , t).

As PHs are rational, they would choose a value t = Se
j to maximize the above

equation. We have the following lemma.

Lemma 1. Before the health program, PHs with lower valuation exercise more
than PHs with higher valuation, i.e.,

Se
1 < Se

2 < · · · < Se
n.

Proof. Combing Eq. (1) and (3), we know that ∂2u0/∂t2 < 0, i.e., u0 has the
maximum value when ∂u0/∂t = 0. We prove by contradiction, assuming that
Se

j > Se
j+1. We use C ′ and C ′′ to denote ∂C/∂t and ∂2C/∂t2 respectively.

We have
r̄ · G′(Se

j ) = C ′(θj , S
e
j ),

r̄ · G′(Se
j+1) = C ′(θj+1, S

e
j+1).

For G
′′ ≤ 0 and C

′′
> 0, G

′
is non-increasing and C

′
is increasing. Given Se

j >
Se

j+1 and θj > θj+1, we have G′(Se
j ) ≤ G′(Se

j+1) and C ′(θj , S
e
j ) > C ′(θj+1, S

e
j+1).

They contradict with the above two equations.
Thus, Se

j < Se
j+1.

Lemma 1 explains that PHs with low valuations are more likely to engage
in physical activity. This is easy to understand, as PHs with large θ have high
valuations of their time or comfort that they sacrifice to participate in exercise.
Thus, PHs with high valuations are more reluctant to exercise.

In addition to Lemma 1, we have the following lemma.

Lemma 2. For a type-θi PH accepting a contract item π′ = [d′, t′], its daily step
count would s.t.

S′
i =

{
Se

i if t′ < Se
i ,

t′ otherwise.
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Proof. Its utility is

u(θi, π
′) = d′ · I + r̄ · G(S′

i) − C(θi, S
′
i) = d′ · I + u0(θi, S

′
i).

The PH would choose an appropriate S′
i that maximizes its utility.

As ∂u0(θi,t)
∂t = 0 when t = Se

i and ∂2u0(θi,t)
∂t2 < 0, u0(θi, t) is increasing when

t < Se
i and decreasing when t > Se

i .
For a type-θi PH, if the step goal set by the insurer is less than its original

exercise intensity, i.e., t′ < Se
i , it will not decrease its exercise intensity, for

u0(θi, S
e
i ) > u0(θi, t

′).
If the goal is larger than its original exercise intensity, i.e., t′ > Se

i , it will set
S′

i = t′ and not exceed t′. This because for ∀t > t′, u0(θi, t
′) > u0(θi, t).

Lemma 2 indicates that when the goals are lower than their original daily step
counts, they would maintain their exercise intensity; when the goals are higher,
they would increase exercise intensity to reach the goal, but not exceed it. Thus,
for a type-θj PH, his/her utility for choosing the j-th contract is

u(θj , πj) = dj · I + u0

[
θj ,max(tj , Se

j )
]
.

The objective of the insurer is to encourage the PHs to exercise more and be
more healthy. If the insurer set the goals below PHs’ original daily step counts,
the monetary reward will not increase their exercise intensities. Thus, the insurer
will set

tj ≥ Se
j .

3.2 Conditions for Feasible Contract

We first introduce the following lemma, which could assist in discussing the
necessary and sufficient conditions for feasible contract.

Lemma 3. For θ′ ≥ θ and t′ ≥ t, we have

u0(θ, t′) − u0(θ, t) ≥ u0(θ′, t′) − u0(θ′, t)

Proof.

u0(θ, t′) − u0(θ, t) − u0(θ′, t′) + u0(θ′, t)
= C(θ′, t′) − C(θ′, t) − C(θ, t′) + C(θ, t)

=
∫ t′

t

∫ θ′

θ

∂2 C(θ, t)
∂θ∂t

dθ dt ≥ 0.

The last line follows because the integrand is non-negative (from Eq. (4)), and
θ′ ≥ θ, t′ ≥ t.

Then, we give the necessary conditions for feasible contract.
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Lemma 4. If π is a feasible contract, we have

t1 ≤ t2 ≤ · · · ≤ tn,

d1 ≤ d2 ≤ · · · ≤ dn.

Proof. For the following discussion, without loss of generality, we assume that
i < j.

Before proceeding to the proof, we first figure out the order between tj and
Se

i , ti and Se
j . For tj ≥ Se

j and Se
j > Se

i , we have tj > Se
i . We distinguish cases

when ti > Se
j and ti ≤ Se

j .

Case 1: ti > Se
j , i.e., π(θj , πi) = di · I + u0(θj , ti).

For π to be feasible, ∀i, j, it s.t. that

di · I + u0(θi, ti) ≥ dj · I + u0(θi, tj), (5)
dj · I + u0(θj , tj) ≥ di · I + u0(θj , ti). (6)

We prove by contradiction, assuming that ti > tj .
Summing up these two inequalities, we have

u0(θi, ti) − u0(θi, tj) ≥ u0(θj , ti) − u0(θj , tj).

It contradicts with Lemma 3. Thus, for i < j, ti ≤ tj .
From Inequality (6) above, we have

(dj − di) · I ≥ u0(θj , ti) − u0(θj , tj) ≥ 0.

The last inequality follows because u0(θj , t) is decreasing when t > Se
j . Thus,

dj ≥ di.

Case 2: ti ≤ Se
j , i.e., π(θj , πi) = di · I + u0(θj , S

e
j ).

It is straightforward that tj ≥ Se
j ≥ ti.

Similar to (6), we have

dj · I + u0(θj , tj) ≥ di · I + u0(θj , S
e
j ).

Then we have

(dj − di) · I ≥ u0(θj , S
e
j ) − u0(θj , tj) ≥ 0.

Thus, dj ≥ di.

Lemma 4 indicates that in a feasible contract, the rewards should increase
monotonically with increasing step goals. Furthermore, the insurer would set
higher step goals for PHs with small valuation and give them higher rewards.
The underlying intuition is that given the same amount of rewards, PHs with
small valuations are willing to exercise more. Thus, the insurer tends to give
out more rewards for PHs with small valuation. Next, we give the sufficient
conditions for a feasible contract.
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Lemma 5. π is a feasible contract if it s.t.

1. for ∀i, ti ≥ Se
i ,

2. t1 ≤ t2 ≤ · · · ≤ tn,
3. d1 ≥ 1

I [u0(θ1, Se
1) − u0(θ1, t1)],

4. for j = 2, 3, · · · , n,

dj−1 + A ≤ dj ≤ dj−1 + B, (7)

where
A =

1
I

{
u0

[
θj ,max(tj−1, S

e
j )

] − u0(θj , tj)
}

,

B =
1
I

[u0(θj−1, tj−1) − u0(θj−1, tj)] .

Proof. We prove by induction. We use πn to denote the contract involving type-
θ1, θ2, · · · , θn PHs.

When n = 1, there is only one contract item. According to the third condi-
tion, we have

u(θ1, π1) = d1 · I + u0(θ1, t1) ≥ u0(θ1, Se
1) = u(θ1, πNa).

It satisfies both incentive compatibility and individual rationality. Thus, π1 is
feasible.

We assume that πk−1 is feasible. We will show that adding a new type θk

PH and a new contract item πk = {dk, tk}, the contract is also feasible.
We first show that it guarantees incentive compatibility. We first consider

type-θk PHs. From the left inequality in Eq. (7), we have

dk · I + u0(θk, tk) ≥ dk−1 · I + u0 [θk,max(tk−1, S
e
k)] .

The fact that πk−1 is feasible implies that for i ≤ k − 1,

dk−1 · I + u0(θk−1, tk−1) ≥ di · I + u0

[
θk−1,max

(
ti, S

e
k−1

)]
.

Combing these two inequalities, we get

dk · I + u0(θk, tk)
≥ di · I + u0 [θk,max(tk−1, S

e
k)]

+u0

[
θk−1,max

(
ti, S

e
k−1

)] − u0(θk−1, tk−1)
≥ di · I + u0 [θk,max (ti, Se

k)]

The detailed proof can be found in Appendix A.1. It indicates that type-θk PHs
always prefer πk over πi for i < k. Next, we show that type-i PHs prefer πi over
πk. From the right inequality in Eq. (7), we have

dk−1 · I + u0(θk−1, tk−1) ≥ dk · I + u0 (θk−1, tk) .
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The fact that πk−1 is feasible implies that for i ≤ k − 1,

di · I + u0(θi, ti) ≥ dk−1 · I + u0 (θi, tk−1) .

Combing these two inequalities, we get

di · I + u0(θi, ti)
≥ dk · I + u0 (θk−1, tk) + u0 (θi, tk−1) − u0(θk−1, tk−1)
≥ dk · I + u0(θi, tk)

In Appendix A.1, we also show that A ≤ B. Up to now, we prove that πk

guarantees incentive compatibility.
Then, we show that πk guarantees individual rationality. For πk guarantees

incentive compatible and πk−1 is feasible, we have

dk−1 · I + u0(θk−1, tk−1) ≥ u0(θk−1, S
e
k−1).

Then,

dk · I + u0(θk, tk) ≥ dk−1 · I + u0 [θk,max (tk−1, S
e
k)]

≥ u0(θk−1, S
e
k−1) − u0(θk−1, tk−1)

+u0 [θk,max (tk−1, S
e
k)] .

If tk−1 > Se
k,

dk · I + u0(θk, tk)
≥ u0(θk−1, S

e
k−1) − u0(θk−1, tk−1) + u0 (θk, tk−1)

≥ u0(θk−1, S
e
k) − u0(θk−1, tk−1) + u0 (θk, tk−1)

≥ u0(θk, Se
k).

The second inequality holds because t = Se
k−1 maximizes u0 (θk−1, t). The last

line follows from Lemma 3.
If tk−1 ≤ Se

k,

dk · I + u0(θk, tk)
≥ u0(θk−1, S

e
k−1) − u0(θk−1, tk−1) + u0 (θk, Se

k)
≥ u0(θk, Se

k).

It indicates type-θk PHs prefer accepting the contract over rejecting it. Thus, πk

guarantees individual rationality.
Therefore, we prove that π is feasible.

We learn that any contract satisfying the conditions in Lemma 5 is feasible,
which indicates that PHs are willing to participate (individual rationality) and
they would truthfully reveal their private information to the insurer (incentive
compatibility). Given a feasible contract, the insurer can anticipate how the PHs
would behave in the program and thus can maximize its profits accordingly.
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4 Optimal Contract Design

The insurer is aimed at designing an optimal contract which could maximize its
profit. In this section, we first give the optimal solution which could maximize
the profit. However, the optimal solution may not preserve the feasibility of the
contract. Then we give the optimal feasible solution which maximizes the profit
and meanwhile preserves the feasibility of the contract.

4.1 Optimal Solution

The insurer’s profit is given by

u(π) =
n∑

i=1

Ni · [r · G(ti) − r · G(Se
i ) − di · I] . (8)

Thus, given any ti, the insurer would set di to the lower bound in Lemma 5, i.e.,

d1 =
1
I

[u0(θ1, Se
1) − u0(θ1, t1)] ,

di = di−1 +
1
I

{u0 [θi,max(ti−1, S
e
i )] − u0(θi, ti)}

=
i∑

j=1

1
I

{
u0

[
θj ,max(tj−1, S

e
j )

] − u0(θj , tj)
}

(9)

where we define t0 = 0. Thus,

u(π) =
n∑

i=1

⎧⎨
⎩Ni [r · G(ti) − r · G(Se

i )] −
n∑

j=i+1

Nj ·

u0

[
θi+1,max(ti, Se

i+1)
]
+

n∑
j=i

Nj · u0(θi, ti)

⎫⎬
⎭ .

We use fi(ti) to denote each term in the summation, as each term is only related
to ti. Thus, we can choose ti to maximize fi(ti) independently. We distinguish
two cases, i.e., ti < Se

i+1 and ti ≥ Se
i+1. We use f1

i (ti) and f2
i (ti) to represent

fi(ti) in these two cases, respectively.

Case 1: ti < Se
i+1.

We have

f1
i

′′
(t) = Ni · r · G′′(t) +

n∑
j=i

Nj · u′′
0(θi, t) < 0.

f1
i (t) is maximum when t = t1i s.t. f1

i
′(t1i ) = 0.
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Furthermore, t1i ≥ Se
i for f1

i
′(Se

i ) ≥ 0.

Case 2: ti ≥ Se
i+1.

Similarly, we have

f2
i

′′
(t) = Ni [r · G′′(t) + u′′

0(θi, t)]

+
n∑

j=i+1

Nj [C ′′(θi+1, t) − C ′′(θi, t)]

< 0.

The last line follows because G′′ ≤ 0, u′′
0 < 0, and ∂3C(θ,t)

∂θ∂t2 > 0. f2
i (t) is maximum

when t = t2i s.t. f2
i

′(t2i ) = 0.
If t1i > Se

i+1, we know that

f2
i

′
(t1i ) = f1

i
′
(t1i ) −

n∑
j=i+1

Nj · u′
0(θi+1, t

1
i ) > 0.

Then we have t2i > t1i > Se
i+1. In this case,

f1
i (t)max = f1

i (Se
i+1) = f2

i (Se
i+1) < f2

i (t2i ) = f2
i (t)max.

The inequality follows because f2
i (t) is increasing when t < t2i .

If t1i < Se
i+1, we have that

f2
i

′
(Se

i+1) = f1
i

′
(Se

i+1) −
n∑

j=i+1

Nj · u′
0(θi+1, S

e
i+1) < 0.

Then we have t2i < Se
i+1. In this case,

f2
i (t)max = f2

i (Se
i+1) = f1

i (Se
i+1) < f1

i (t1i ) = f1
i (t)max.

The inequality follows because f1
i (t) is decreasing when t > t1i .

Thus, fi(ti) is maximum when ti s.t.

ti =
{

t1i if t1i < Se
i+1,

t2i otherwise.

Thus, the optimal value of ti are determined by θi, r and the PH distribution.
In the case where t1i < Se

i+1, ti = t1i < Se
i+1 < ti+1. In the case where

t1i > Se
i+1, ti = t2i > t1i > Se

i+1. In both cases, ti > Se
i . However, in the second

case, there is possibility that ti > ti+1, which violates the second condition for
feasible contract.
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4.2 Optimal Feasible Solution

In this subsection, we will show how to adjust the optimal solution in Sect. 4.1
to satisfy the sufficient conditions for feasible contract.

We first claim that fi(ti) is concave, the proof of which can be found in
Appendix A.2. Then we borrow the following proposition from [14].

Lemma 6. Let fi(t)(1 ≤ i ≤ k) be concave functions on t and fi(t) is maximum
when t = ti. If t1 ≥ t2 ≥ · · · ≥ tk, then t̂1 = t̂2 = · · · = t̂k where

{
t̂1, t̂2, · · · , t̂k

}
= arg max

t̂1,t̂2,··· ,t̂k

k∑
i=1

fi(t), s.t. t̂1 ≤ t̂2 ≤ · · · ≤ t̂k.

Give Lemma 6, we can adjust an infeasible sequence of {ti}1≤i≤n to make it
satisfy the conditions in Lemma 5.

If {ti}1≤i≤n is infeasible, then there must be a subsequence {tj , tj+1, · · · tk}
that is decreasing. It can be replaced by a nondecreasing sequence{
t̂j , t̂j+1, · · · t̂k

}
according to Lemma 6. This step can be done iteratively until

there is no decreasing subsequence, which indicates that second condition for
feasible contract is preserved. Then, we will show that the first condition is also
preserved.

Lemma 7. The non-decreasing sequence
{
t̂i

}
1≤i≤n

s.t.
t̂i ≥ Se

i .

Proof. If {ti}1≤i≤n is nondecreasing, then t̂i = ti ≥ Si
e. If a subsequence

{tj , tj+1, · · · tk} is decreasing, then

tj > tj+1 > · · · > tk ≥ Se
k > · · · > Se

j+1 > Se
j .

We have f ′
j(S

e
k) > 0, f ′

j+1(S
e
k) > 0, · · · , f ′

k(Se
k) ≥ 0. We write F (t) =

∑k
i=j fi(t).

Then F ′(Se
k) =

∑k
i=j f ′

i(S
e
k) > 0, indicating that F (t) is increasing when t = Se

k.
Thus, t̂j = t̂j+1 = · · · = t̂k > Se

k > · · · > Se
j+1 > Se

j .

Combining Lemma 5 and 6, we conclude that
{
t̂i

}
1≤i≤n

is the optimal fea-
sible solution. Given

{
t̂i

}
1≤i≤n

, the insurer can set the rewards as in Eq. (9).
In this way, PHs will truthfully participate in the program and the insurer can
maximize its profits.

5 Numeric Results

In this section, we show the simulation results.
In [10], Duncan gave the model for savings estimation. With regard to physi-

cal activity, Duncan reported that each year a PH can save $306 for per hour high
intensity activities per week. We choose two models for G(t): G1(t) = c1 log(t+1)
and G2(t) = c2

√
t. They both satisfy the properties of G. We estimate that high
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intensity activity is equivalent to 100 steps/min. Based on this information, we
can estimate c1 and c2.

Similarly, we choose two models for C(θ, t): C1 = θt2 and C2 = θt3. They also
satisfy the properties of C. In [13], Finkelstein et al. reported that if paid $9.7,
participants are willing to exercise for one more hour than the control group.
We set this average valuation to be the mean value of θ. The remaining θ values
are evenly distributed in the range

[
0.5θ̄, 1.5θ̄

]
.

By default, we use G1 and C1 and set r = 0.6, n = 15.
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Fig. 2. Contract under four different PH distributions.

5.1 PH Distributions

As shown in Sect. 4, the optimal solution varies with PH distribution. We show
how the insurer would optimize the design under different PH distributions.
Although the optimal design is generic for all kinds of PH distributions, here we
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discuss four cases: 1) PHs’ number decreasing with type, i.e., N1 < N2 < · · · <
Nn; 2) PHs’ number increasing with type, i.e., N1 > N2 > · · · > Nn; 3) Uniform
distribution; 4) Gaussian Distribution.

In Fig. 2, we show the optimal contract under four different type distribu-
tions. Se does not depend on PH distribution. When PHs’ number is decreasing
with type (i.e., N1 < N2 < · · · < Nn), most PHs have small valuations. For the
purpose of profit maximization, the insurer would set low rewards for large valu-
ation PHs, so as to reduce small valuation PHs’ interest in these contract items.
Accordingly, it can set high step goals for small valuation PHs and maintain the
rewards as low as possible. The situation is on the opposite when PHs’ number is
increasing with valuation (i.e., N1 > N2 > · · · > Nn). Compared to the previous
case, it would set high step goals for large valuation PHs, so as to encourage the
majority of PHs to exercise as much as possible. The case with uniform type
distribution falls between the previous two cases. For Gaussian distribution, the
small index part is close to the first case and the large index part is close to the
second case.

5.2 Reimbursement Rate

Reimbursement rate varies in different health plans. For example, the silver plan
will cover 70% of medical expenses while a gold plan will cover 80%. We show
how the optimal contract would vary with the reimbursement rate. We assume
that PHs’ types follow Gaussian distribution.

Figure 3(a) shows that when the reimbursement rate is large, the insurer
prefers PHs to exercise more than the case when the reimbursement rate is
small. This is intuitive because when the insurer has to cover a large portion of
medical expenses, it would like its PHs to exercise more and be healthy.

Conversely, when the reimbursement rate is large, PHs are reluctant to exer-
cise. Thus, as shown in Fig. 3(b), the insurer has to give them higher rewards to
stimulate them.

5.3 Insurer’s Profits

We study the insurer’s profits in this subsection. We compare the optimal con-
tract with the baseline, in which the insurer does not separate different types
of PHs, neither consider their original daily step counts, and provides only one
contract item [d∗, t∗] for all PHs. We use exhaustive search to find the optimal
d∗ and t∗.

In Fig. 4, we show the insurer’s profit in the baseline and the optimal contract
under four combinations of G(t) and C(θ, t).

1. G1(t) = c1 log(t + 1), C1(θ, t) = θt2;
2. G1(t) = c1 log(t + 1), C2(θ, t) = θt3;
3. G2(t) = c2

√
t, C1(θ, t) = θt2;

4. G2(t) = c2
√

t, C2(θ, t) = θt3.
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Fig. 3. Contract under four different reimbursement rates.

Figure 4 shows that compared with the baseline, in all four cases, the insurer
can achieve higher profits using the optimal contract design. The results are
averaged over the four distributions in Sect. 5.1.

According to [5], it is optimal to design a contract item for each type PHs. In
this problem, paid the same amount of rewards, PHs with small valuation will
exercise more than the PHs with large valuation. Thus, the insurer will prefer
to allocate the financial incentives to PHs with small valuations. In the baseline
mechanism, the insurer can not optimize the allocation. Furthermore, if t∗ < Se

k

for type-θk PHs, they can get the rewards without increasing their physical
activity intensity. The rewards to these PHs will not change their behavior, and
thus no savings for the insurer. On average, the profits in optimal contract design
is 1.39 times of the profits in the baseline.

We also compare the optimal design with the baseline when n varies from 5
to 20. The results are shown in Fig. 5. On average, the insurer can improve its
profit by 40%.
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Fig. 4. The insurer’s profits in the baseline and optimal contract.

Fig. 5. The insurer’s profits when n varies from 5 to 20.

6 Discussion

6.1 Investment in Wearable Devices

In this paper, we assume that every PH owns an activity tracker, such as Nike+,
Fitbit, etc. In practice, wearable devices are not so widespread yet. Some insurers
may distribute fitness trackers to its PHs for free [4], others may cooperate with
device vendors and provide discount off these devices [1].

The cost for wearable device can be regarded as a constant. The insurer’s
profit should be Eq. (8) minus a constant term. However, the constant term
would not change the optimal solution to the maximization problem. Thus, the
optimal solution is valid when the insurer takes the cost of devices into account.

6.2 Privacy Concerns of PHs

In this paper, we do not consider the privacy concerns of PHs and assume that
PHs are willing to share their fitness data with the insurer. We believe that this
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assumption is reasonable for three reasons. First, studies show that users are
willing to trade personal information for better experience and savings. A study
from IBM [17] reveals that consumers are willing to share their location, mobile
number and social handle with retailers for personalized shopping experience.
Similarly, Cisco [6] reports that 74% of consumers would allow driving habits
to be monitored to save on insurance/service maintenance. Second, unlike blood
pressure or glucose levels, the daily step counts are not sensitive information.
Last, the users only need to share the aggregate statistics, such as monthly
or annual average, not all the details. The insurer cannot infer further private
information about the PHs.

7 Related Works

Extensive works study the effectiveness of financial incentives for health behav-
ior change, including weight loss, smoking cessation and attendance for vaccina-
tion or screening [13,21]. There is evidence showing that finical incentives can
encourage healthy behavior change. However, the effectiveness depends on vari-
ous factors, such as ages, socioeconomic status, etc [13]. In this study, we focus
on physical exercise intensity and use type to separate different cost-effectiveness
groups of populations.

There are also a number of research related to health-care intervention pro-
grams [10,11]. In [10], Duncan present a literature review of population health
management programs, reporting that investment in health management pro-
grams can bring financial returns, including both savings for medical expendi-
ture and improved productivity at workplace. In this paper, we discuss how to
encourage PHs to participate in physical activity. From the insurer’s point of
view, we give the optimal contract design, maximizing the insurer’s profits.

Contract theory is widely used in job market, supply chain planning and
insurance market. Besides, it also has applications in spectrum trading [8,12,14]
and smartphone collaborative computing [9]. In our case, the PHs’ incentives
comprise of two parts: the finical rewards from the insurer and the self-motivation
to keep fit, which complicates the discussion. We jointly consider these two
sources of incentives and present the optimal contract design.

8 Conclusion

In this paper, we study the emerging health promotion programs in insurance
markets and model the market using contract theory. We theoretically analyze
how the insurer and PHs would behave in this program. We give the optimal fea-
sible contract design, which can guarantee that PHs would truthfully participate
in the program and maximize the profit of the insurer. We conduct extensive
simulations to study the performance under various scenarios. Simulation results
show that the insurer can improve its profit by 40% using the optimal contract.
It provides a promising solution to tackle the increasing health expenditure all
over the world.
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A Appendices

A.1 Supplementary Proof for Lemma 5

Here we provide supplementary proof for Lemma 5. As i ≤ k − 1, tk−1 ≥ ti.
To prove that

u0 [θk,max(tk−1, S
e
k)] + u0

[
θk−1,max

(
ti, S

e
k−1

)]
−u0(θk−1, tk−1)

≥ u0 [θk,max (ti, Se
k)] ,

we distinguish five cases:

Case 1: ti ≥ Se
k > Se

k−1.

u0 (θk, tk−1) + u0 (θk−1, ti) − u0(θk−1, tk−1) ≥ u0 (θk, ti) .

The inequality follows from Lemma 3.

Case 2: Se
k−1 ≤ ti < Se

k and tk−1 ≥ Se
k.

u0 (θk, tk−1) + u0 (θk−1, ti) − u0(θk−1, tk−1)
≥ u0 (θk, tk−1) + u0 (θk−1, S

e
k) − u0(θk−1, tk−1)

≥ u0 (θk, Se
k) .

The first inequality holds because u0(θk−1, t) is decreasing when t > Se
k−1.

Case 3: Se
k−1 ≤ ti < Se

k and tk−1 < Se
k.

u0 (θk, Se
k) + u0 (θk−1, ti) − u0(θk−1, tk−1) ≥ u0 (θk, Se

k) .

The inequality holds because u0(θk−1, t) is decreasing when t > Se
k−1, and then

u0 (θk−1, ti) > u0(θk−1, tk−1).

Case 4: ti < Se
k−1 and tk−1 ≥ Se

k.

u0 (θk, tk−1) + u0

(
θk−1, S

e
k−1

) − u0(θk−1, tk−1)
≥ u0 (θk, tk−1) + u0 (θk−1, S

e
k) − u0(θk−1, tk−1)

≥ u0 (θk, Se
k) .

The first inequality holds because u0(θk−1, t) is decreasing when t > Se
k−1.

Case 5: ti < Se
k−1 and tk−1 < Se

k.

u0 (θk, Se
k) + u0

(
θk−1, S

e
k−1

) − u0(θk−1, tk−1) ≥ u0 (θk, Se
k) .
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The inequality holds because u0(θk−1, t) is increasing when t < Se
k−1.

In summary, type-θk PHs always prefer πk over πi.
Next, we show that A ≤ B.
If tj−1 > Se

j ,

A =
1
I

[u0(θj , tj−1) − u0(θj , tj)]

≤ 1
I

[u0(θj−1, tj−1) − u0(θj−1, tj)] = B.

The inequality follows from Lemma 3.
If tj−1 ≤ Se

j ,

B =
1
I

[u0(θj−1, tj−1) − u0(θj−1, tj)]

≥ 1
I

[
u0(θj−1, S

e
j ) − u0(θj−1, tj)

] ≥ A.

A.2 Prove the Concavity of fi(ti)

Prove that

fi(ti) =
{

f1
i (ti) if ti < Se

i+1,
f2

i (ti) otherwise,

is a concave function.

Proof. For f1
i

′′
< 0 and f2

i
′′

< 0, f1
i

′(ti) and f2
i

′(ti) is decreasing. Furthermore,
f1

i (Se
i+1) = f2

i (Se
i+1) and f1

i
′(Se

i+1) = f2
i

′(Se
i+1). But f1

i
′′(Se

i+1) �= f2
i

′′(Se
i+1).

Thus, f ′
i(ti) is defined but f ′′

i (ti) is undefined when ti = Se
i+1.

To show that fi(t) is concave, we need to show that ∀x1, x2 and ∀λ ∈ [0, 1],

λfi (x1) + (1 − λ)fi (x2) ≤ fi (λx1 + (1 − λ)x2) .

Without loss of generality, we assume that x1 ≤ x2. We distinguish four
cases:

Case 1: x1 < Se
i+1 and x2 < Se

i+1.
It is intuitive because f1

i is concave.

Case 2: x1 ≥ Se
i+1 and x2 ≥ Se

i+1.
It is also intuitive because f2

i is concave.

Case 3: x1 < Se
i+1, x2 ≥ Se

i+1 and λx1 + (1 − λ)x2 < Se
i+1.

We write x0 = λx1 + (1 − λ)x2. Then,

x1 − x0 = (λ − 1)(x2 − x1), x2 − x0 = λ(x2 − x1).
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λfi (x1) + (1 − λ)fi (x2) − fi (x0)
= λ

[
f1

i (x1) − f1
i (x0)

]
+ (λ − 1)

[
f1

i (x0) − f1
i (Se

i+1)
]

+(λ − 1)
[
f2

i (Se
i+1) − f2

i (x2)
]

= λf1
i

′
(a)(x1 − x0) + (λ − 1)f1

i
′
(b)(x0 − Se

i+1)

+(λ − 1)f2
i

′
(c)(Se

i+1 − x2)

= (λ − 1)
[
f1

i
′
(a) − f2

i
′
(c)

]
(x2 − Se

i+1)

+(λ − 1)
[
f1

i
′
(a) − f1

i
′
(b)

]
(Se

i+1 − x0).

According to Mean Value Theorem, a ∈ [x1, x0], b ∈ [
x0, S

e
i+1

]
, and c ∈[

Se
i+1, x2

]
. Because f1

i
′(t) and f2

i
′(t) is decreasing, f1

i
′(a) ≥ f1

i
′(b) ≥ f1

i
′(Se

i+1) =
f2

i
′(Se

i+1) ≥ f2
i

′(c). Furthermore, we have x2 ≥ Se
i+1 > x0 and λ ≤ 1. Thus,

λfi (x1) + (1 − λ)fi (x2) − fi (x0) ≤ 0,

meaning that fi(t) s.t. the condition for concavity in this case.

Case 4: x1 < Se
i+1, x2 ≥ Se

i+1 and λx1 + (1 − λ)x2 ≥ Se
i+1.

We note that f2
i (t) ≥ f1

i (t) always holds. Thus,

λfi (x1) + (1 − λ)fi (x2) − fi (x0)
= λf1

i (x1) + (1 − λ)f2
i (x2) − f2

i (x0)
≤ λf2

i (x1) + (1 − λ)f2
i (x2) − f2

i (x0)
≤ 0.

The last line follows because f2
i is concave.

Therefore, we prove that fi(ti) is a concave function.
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