
MFHBT: Hybrid Binary Translation
System with Multi-stage Feedback

Powered by LLVM

Zhaoxin Yang1,2, Xuehai Chen1,2, Liangpu Wang1,2, Weiming Guo3,
Dongru Zhao3, Chao Yang4, and Fuxin Zhang1,2(B)

1 SKLP, Institute of Computing Technology, CAS, Beijing, China
{yangzhaoxin21s,fxzhang}@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
{chenxuehai20,wangjingpu17}@mails.ucas.ac.cn

3 University of Science and Technology of China, Hefei, China
{ustcgwm,zhaodongru}@mail.ustc.edu.cn

4 State Grid Liaoning Electric Power Supply Co. Ltd., Shenyang, China
yangchaoneu@sina.com

Abstract. The shortage of applications has become a major concern for
new Instruction Set Architecture (ISA). Binary translation is a common
solution to overcome this challenge. However, the performance of binary
translation is heavily dependent on the quality of the translated code.
To achieve high-quality translation, recent studies focus on integrating
binary translators with compilation optimization methods. Nevertheless,
such integration faces two main challenges. Firstly, it is hard to employ
complex compilation optimization techniques in a dynamic binary trans-
lator (DBT) without introducing significant runtime overhead. Secondly,
the task of implementing register mapping in the compiler is challeng-
ing, which can reduce expensive memory access instructions generated to
maintain the guest CPU state. To resolve these challenges, we propose a
hybrid binary translation system with multi-stage feedback, combining
dynamic and static binary translator, named MFHBT. This system elim-
inates the runtime overhead caused by compilation optimization. Addi-
tionally, we introduce a mechanism to implement the register mapping
through inline constraints and stack variables in the compiler. We imple-
ment a prototype of this new system powered by LLVM. Experimental
results demonstrate an 81% decrease in the number of memory access
instructions and a performance improvement of 3.28 times compared to
QEMU.

Keywords: Hybrid binary translation · LLVM · Optimization ·
Register mapping

1 Introduction

Binary translation is a technique that enables cross Instruction Set Architecture
(ISA) compatibility [28]. It allows applications compiled for one ISA to run on
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
C. Li et al. (Eds.): APPT 2023, LNCS 14103, pp. 310–325, 2024.
https://doi.org/10.1007/978-981-99-7872-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7872-4_18&domain=pdf
https://doi.org/10.1007/978-981-99-7872-4_18


MFHBT 311

another ISA without recompilation, especially when the source code is difficult to
obtain or when recompiling is costly. It also enables basic software development
before the hardware can be obtained. Several factors may influence the efficiency
of a binary translator, including the overhead of initialization before translation,
the overhead of code translation and optimization, and the overall quality of the
generated code [5,21,25]. Code quality holds particular significance.

Recent studies have focused on integrating binary translators with compilers
like LLVM [11,18,22] to achieve high-quality translation, which allows for the
utilization of diverse general-purpose optimization techniques provided by com-
pilers. However, two main challenges arise when integrating binary translators
with compilers.

The first challenge lies in minimizing additional runtime overhead caused by
the time-consuming optimization algorithms provided by compilers in dynamic
binary translators (DBT). HQEMU [12,15] tackles this challenge by profiling
hot traces, taking advantage of the multicore resources and multithreading itself
to mitigate the optimization overhead imposed by LLVM. However, the over-
head of code optimization continues to grow due to the expanding number and
complexity of LLVM’s optimization passes. Consequently, the effectiveness of
optimization may be undermined since a greater amount of time is spent on
un-optimized code. Although CrossDBT [19] and HBT [23] offload part of the
optimization work to the static binary translator (SBT) they integrated, they
still rely on LLVM as code optimizer during execution, resulting in additional
runtime overhead. Moreover, in both CrossDBT and HBT, the static transla-
tor lacks the capability to leverage feedback information [26] from the dynamic
translator for additional optimization.

Another challenge arises regarding the effective maintenance of the virtual
guest CPU state across the execution of translation units. Both HQEMU and
CrossDBT use memory operations for maintenance purposes, resulting in the sig-
nificant overhead of memory access. Although HQEMU optimizes maintenance
by performing it only before guest memory access and jump instructions, the cost
of memory access remains high. Utilizing register mapping can reduce mainte-
nance memory access overhead by caching the guest CPU state in host registers.
However, specific challenges arise when applying it to LLVM IR. Firstly, LLVM
IR is designed to be architecture-independent, but register mapping requires
direct interaction with architecture-dependent physical registers, leading to a
contradiction. Secondly, it is crucial to ensure that LLVM remains a sufficient
number of registers for its own utilization after register mapping.

To solve the above issues, we present MFHBT, a hybrid binary translation
system combining both DBT and SBT with multi-stage feedback powered by
LLVM. The system eliminates runtime code optimization overhead by offload-
ing all code optimization work to SBT. Furthermore, the system proposes a reg-
ister mapping mechanism realized through LLVM inline constraints and stack
variables to reduce memory access overhead of guest CPU state maintenance.

The contributions of this paper include:

– We design a binary translation system based on LLVM. This system elimi-
nates translation and optimization overhead caused by LLVM during execu-



312 Z. Yang et al.

tion. Moreover, it supports continuous optimization of the translated code by
enabling feedback from DBT to SBT.

– We introduce a mechanism to reduce the cost of guest CPU state maintenance
when using LLVM for code optimization. This mechanism combines the use
of LLVM inline constraints and stack variables to provide a register mapping
scheme.

– We implement a translation system, named MFHBT-LA, from x86-64 to
LoongArch [27] and test its efficiency. Experiment results demonstrate an
81% decrease in the number of memory access instructions and a perfor-
mance improvement of 3.28 times compared to QEMU [3]. The source code
is available at https://github.com/ylzsx/MFHBT.

2 Background

2.1 Hybrid Binary Translation

Static binary translation (SBT) is an offline translation method that does not
rely on program information during runtime [6]. It transforms the original binary
code from guest architecture into new binary code for the host architecture
prior to program execution. This approach allows for longer translation time,
enabling the application of aggressive and time-consuming optimizations to gen-
erate highly efficient translated code. However, static binary translation suffers
from certain limitations and incompleteness issues, such as self-modified code,
which can hinder its practicality [9].

Dynamic binary translation (DBT) involves translating individual transla-
tion unit by following the execution flow and generating code using Just-In-Time
(JIT) technology [2,4,17]. The generated code is subsequently executed. Due to
its comprehensive understanding of program execution, dynamic binary trans-
lation effectively addresses various issues, such as self-modified code, indirect
jumps, and indirect calls. However, it is important to note that DBT is sensi-
tive to the overall cost of code generation and optimization. As a result, more
complex optimization methods in the translation module are restricted, leading
to inferior code quality compared to static binary translation.

To enhance the quality of the translated code while ensuring completeness,
we combine SBT and DBT [1,20], thereby enhancing the overall performance of
the entire binary translation system.

2.2 Maintain Guest CPU State

In binary translation, maintaining the guest CPU state is essential. This process
involves acquiring the current guest CPU state prior to executing each trans-
lation unit and updating the new guest CPU state posterior to emulating the
functionality of guest instructions. The commonly used methods include the
memory storage method and the register mapping method. The memory storage
method requires additional instructions for memory access, resulting in reduced

https://github.com/ylzsx/MFHBT.


MFHBT 313

performance compared to the register mapping method. In the register mapping
method, guest registers (GRs) are mapped to host registers (HRs). After com-
pleting each translation unit, the most recent state of GRs in the guest CPU
is stored in HRs. Subsequent translation units can retrieve the updated state
without the need for memory access.

3 Design

3.1 Overview

We design a hybrid binary translation system that combines both the dynamic
and static side to reduce the overhead of translating and optimizing at runtime,
called MFHBT. This system is powered by LLVM compilation optimization and
incorporates a multi-stage feedback mechanism. An overview of the system’s
execution process is presented in Fig. 1.

Fig. 1. Overview

During the initial iteration, the static side creates an Ahead-of-Time (AOT)
file by relying solely on the translation units extracted through code mining from
the guest Executable and Linkable Format (ELF) file, and no feedback informa-
tion is obtained from the dynamic side. Subsequently, the dynamic side receives
the AOT file and collects profiling information, which is eventually stored as a
JSON file. In the second iteration, the static side examines the JSON file that
was generated during the previous dynamic execution. Following that it creates
superior code, which will be combined with the previous AOT file to produce
a new one. The dynamic side uses this updated AOT file for execution while
simultaneously collecting feedback. This iterative process continues, leading to
a gradual enhancement in program performance that ultimately converges to a
stable state.



314 Z. Yang et al.

The dynamic side comprises four components, functioning as ELF loading
and relocation, program execution, code translation, and profile collecting. It is
a lightweight binary translator that runs the high-quality generated code from
the static side. Additionally, it conducts lightweight translation for basic blocks
that the static side could not recognize, supplementing for the static side.

The static side is a heavyweight optimizer, built around LLVM and composed
of four distinct components, functioning as translation unit analysis, instruction
conversion, code optimization, and code generation. It holds two primary respon-
sibilities: obtaining translation units and performing offline optimizations using
LLVM, where the optimized code is then saved as an AOT file.

3.2 Multi-stage Feedback Mechanism

MFHBT employs a multi-stage feedback mechanism to improve the quality of
generated code [7]. During each execution, MFHBT gathers information about
the executed program using the profile collector on the dynamic side. This infor-
mation is then stored in JSON format as profile files and utilized to aid the
optimization process in the static side.

Feedback Information. This information we collect in the dynamic side can
be categorized into two main aspects: code address information and instruction
flow characteristics.

Code Address Information. We collect the entry address of translation units from
the dynamic side and transfer them to the static side as a supplement because it
is arduous to entirely identify this information through static analysis due to var-
ious factors. One challenge is determining the target addresses of indirect jumps
before execution, which has been proven problematic [28]. Another challenge
is the influence of parameters and execution environment on program execu-
tion paths, adding further complexity to the task. Code obfuscation techniques
present additional challenges. In contrast, the dynamic side has the advantage of
being able to easily identify the currently translated and executed code, which
will help identify a wider range of guest code.

Instruction Flow Characteristics. We gather the instruction flow characteristics,
such as hot trace paths and indirect jump target addresses [24], in our system.
This information can guide further optimization in the static side, such as sup-
plementing unrecognized translation units, expanding the range of optimization,
and reordering the generated code.

Multi-stage Feedback. Our feedback mechanism operates at multiple stages,
allowing each execution on the dynamic side to contribute valuable information
to the static side. Factors such as program parameters, execution environment,
and the program’s random behavior all influence the execution path of the pro-
gram. As a result, multi-stage feedback mechanism can provide more comprehen-
sive code coverage and detailed execution flow information compared to single
feedback mechanism.



MFHBT 315

Considering a program in which the execution path is influenced by the
random number generated within the code. When the program is translated, it
may result in different execution paths across multiple runs. During these runs,
the dynamic side can capture the variations in the execution path, leading to a
more thorough understanding of the program’s behavior.

3.3 Register Mapping in LLVM

This paper introduces a register mapping scheme in LLVM, aiming to effectively
maintain the guest CPU state. The method employs the LLVM inline constraints
and stack variables, to reduce the proportion of memory access instructions in
the generated code.

The implementation, depicted in Fig. 2, involves establishing a mapping
between the guest and host registers. In the entry block, the mapping is estab-
lished by three steps: 1) associating guest registers with LLVM stack variables,
2) binding host physical registers to virtual registers using the output constraint
mechanism provided by LLVM IR inline assembly, 3) storing the virtual registers
bound to host physical registers to LLVM IR stack variables. In the exit block,
the mapping is built by two steps: 1) loading the guest registers from the stack
variables into the virtual registers, 2) writing the virtual registers into the rela-
tive physical registers using the input constraint mechanism provided by LLVM
IR inline assembly. In the translation unit, reading from and writing to the guest
registers are translated to access the corresponding the stack variables.

Using stack variables does not result in unnecessary memory access because
of LLVM’s stack promotion optimization pass (mem2reg). This optimization pass
elevates the operations involving stack variables to virtual registers, for which
the LLVM backend will allocate physical registers. While extra register move
operations may be required, the cost is significantly lower than memory access.
Meanwhile, this approach restricts the utilization of physical registers solely at
the entry and exit points of the translation unit, thereby preserving LLVM’s
exploration of physical registers during optimization.

The utilization of stack variables offers additional benefits. If stack variables
are not used to cache guest registers, tracking the temporary virtual registers
holding the latest value of the guest registers becomes complex, particularly
when dealing with multiple levels of branching. However, stack variables facilitate
efficient management of this tracking process by the compiler, thereby enhancing
overall efficiency.

4 Implement

This section describes a prototype of an architecture-independent binary trans-
lation system named MFHBT-LA, which translates binary code from x86-64 to
LoongArch. In the static side, it utilizes LLVM for offline optimization and in the
dynamic side, it employs QEMU for handling code not covered by the static side.
This system leverages LLVM and QEMU’s support for multiple architectures.



316 Z. Yang et al.

Fig. 2. An Example of Stack Translation Mode.

4.1 Dynamic Side

The dynamic side is responsible for running the pre-translated code from the
static side and implementing lightweight code translation and optimization. It
encompasses several tasks, including ELF loading and relocation, program exe-
cution, code translation, and profile collecting, as illustrated in the Fig. 3.

Fig. 3. The Design of Dynamic Side

ELF Loading and Relocation. This module comprises two components: the ELF
loader and relocator. The ELF loader is responsible for loading the guest ELF
file and the AOT file. Meanwhile, according to the information from the AOT
file, it will establish a hash table and record link slots. The relocator fills the
link slots by considering jump relationships in the guest program. This process
helps to reduce the overhead of the context switch during execution.



MFHBT 317

Program Execution. Before each execution, the system will check whether a trans-
lation unit has been recorded in hash table based on the guest PC. If the unit is
found, the corresponding code is executed until a context switch occurs, where
control is transferred back to translator. If the unit is not found, translation
begins.

Code Translation. The dynamic side performs translation using QEMU, stores
the generated code into the dynamic code cache, and updates the hash table
established in the ELF loading phase. It is important to distinguish between
the translated code and the pre-translated AOT code in memory because direct
linking is not possible when the translation protocols differ between the dynamic
and static sides, such as in the case of emulating EFLAGS1. In such situations,
the translator may need to synchronize certain states.

Profile Collecting. The profile collector keeps track of unrecognized code and the
execution flow information, which allows the static side to utilize this information
to generate higher-quality code in subsequent runs.

4.2 Static Side

The static side is responsible for implementing heavyweight optimizations in the
system. It comprises four components, functioning as translation unit analysis,
instruction conversion, code optimization, and code generation, as illustrated in
the Fig. 4.

Fig. 4. The Design of Static Side

Translation Units Analysis. Translation units are obtained through two
approaches: static code mining and feedback files analysis. Nonetheless, there
may be cases where multiple units share the same entry address in the guest
program. In such scenarios, we prioritize the unit derived from feedback files.
1 The EFLAGS register is the status register that contains the current state of a x86

CPU.



318 Z. Yang et al.

Instruction Conversion. Each translation unit is translated to an LLVM IR func-
tion in two steps. Firstly, the translation unit is disassembled to guest instruc-
tions. Secondly, each guest instruction is lifted into LLVM IRs using a custom
translation procedure. The focus is solely on ensuring the correctness of guest
semantics, with an expectation of improved LLVM IR quality during code opti-
mization.

Code Optimization. The obtained LLVM IR functions undergo optimization to
enhance code quality. These optimizations involve various passes provided by
LLVM, including mem2reg, function inlining, loop vectorize pass, and so on.
Additionally, custom optimization passes and specific intrinsics for LoongArch
architectures are implemented, such as the EFLAGS elimination pass.

Code Generation. The optimized LLVM IR functions are then transformed into
host instructions using LLVM’s code generation library and saved as a relocat-
able file following the ELF format, commonly referred to as an AOT file.

4.3 Multi-stage Feedback Mechanism

We implement a profile collector using various methods to collect feedback infor-
mation in this paper, as shown in Fig. 5. Firstly, when the translation unit is
missing in the hash table, we collect the entry addresses of unrecognized trans-
lation unit (①). Secondly, the NET algorithm [10] is used for hot trace paths
collection (②). Finally, when dealing with the target addresses of indirect jumps,
we keep a record of the guest PC and the target addresses (③).

We use the information generated to optimize the code in the static side more
thoroughly. Entry addresses of unrecognized translation units are used to guide
the static side to supplement the translation units in AOT file (④). Moreover,
hot trace paths are used to adjust the order of basic blocks in the generated
translation unit, aiming to reduce jump costs and eliminate redundant code
overhead (⑤). Additionally, hot call and return instructions in the hot trace path
are inlined to mitigate the overhead associated with address transformation (⑥).
Furthermore, target addresses of indirect jumps are used to merge translation
units that are separated by indirect jumps to expand the optimization scope (⑦).

We implement the gathering of various feedback information. And then all
the collected information is stored in a standardized JSON format, enabling
a consistent processing method for file handling and alleviating the associated
workload.

In each iteration, a new AOT file is generated based on the feedback infor-
mation received from the dynamic side. The ELF standard format ensures that
all files are relocatable, allowing them to be linked with existing files through
the use of GNU ld. This process decreases the overhead of re-generating AOT
files in the static side.

4.4 Register Mapping in LLVM

We introduce a cache for each virtual register in the LLVM IR associated with
a guest register to reduce the frequency of read and write operations on stack



MFHBT 319

Fig. 5. The design of Multi-stage Feedback.

variables, leading to a reduced overhead of the LLVM mem2reg pass. The cache
stores the most recent value of the virtual register. The value is written back to
corresponding LLVM IR stack variable, only when encountering branch instruc-
tions. This approach reduces the cost of the LLVM mem2reg pass within each
translation unit.

To ensure the correctness of register mapping at the entry and exit blocks of
each translation unit, it is necessary to prevent the compiler from scheduling the
LLVM IR instructions responsible for these mappings. To achieve this, we added
priority flags to these instructions, guiding the compiler’s scheduling algorithm
accordingly. In MFHBT-LA, the read operations of physical registers at the
entry block of a translation unit are assigned the highest priority, while the write
operations of physical registers at the exit block are assigned the lowest priority.
This approach effectively resolves the issue and guarantees the correctness of
register mappings.

It is important to note that the register mapping mechanism does not affect
the compiler’s usage of physical registers or the quality of generated code, even
when the number of guest registers is similar to that of host registers. Firstly,
the selection of mapped registers is customizable, allowing for mapping only
frequently used guest registers. Secondly, the constraints of the register map-
ping mechanism only apply at the entry and exit of translation units and do
not interfere with the compiler’s register allocation within the translation units.
Therefore, compared to a purely static register mapping approach, our solution
can generate high-quality code.

5 Evaluation

Benchmarks. We select the CoreMark benchmark and ten subitems from the
SPEC CPU2000 INT benchmark, excluding 175.vpr and 252.eon, to evaluate the
performance of our translation system. The exclusion of 175.vpr and 252.eon is
due to their intensive use of floating-point operations. However we do not opti-
mize the floating-point and vector instructions and still rely on QEMU’s helper



320 Z. Yang et al.

mechanism. To avoid generating AVX instructions, we compile the selected
benchmarks with the options “-mno-avx -fno-tree-vectorize”.

Execution Platform. We conduct testing of our translation system on a
Loongson 3A5000 machine [16] running Linux kernel version 4.19.0. The machine
operates at a clock frequency of 2.5 GHz. The evaluation is conducted using
QEMU version v7.0.93 and LLVM version v8.0.1.

5.1 Performance

Fig. 6. Normalized execution time of MFHBT-LA and QEMU based on the native
execution in CoreMark and SPEC CPU2000 INT.

We conduct a performance evaluation on three platforms: the native LA machine,
QEMU, and MFHBT-LA in a stable state and calculate the normalized execution
time of MFHBT-LA and QEMU based on the native program. The results,
presented in Fig. 6, indicate a notable improvement in performance. MFHBT-LA
exhibits a performance increase of 2.63X in the CoreMark benchmark and 3.28X
in the SPEC CPU2000 INT benchmarks compared to QEMU. These findings
demonstrate the superior code quality achieved through LLVM optimization
compared to the translated code generated by QEMU. Furthermore, MFHBT-
LA exhibite only 1.68X slower than the native execution in the SPEC CPU2000
INT.

5.2 Execution Time

Figure 7 depicts the ratio of execution time spent on the code generated in the
translators. Notably, MFHBT-LA exhibits a significantly larger proportion com-
pared to HQEMU and QEMU. The statistical data is collected using perf, which
may have a slight margin of error. However, it effectively demonstrates that
offloading LLVM optimization to the static side significantly reduces translation
time and increases execution time spent on the code generated, consequently
enhancing system performance.



MFHBT 321

Fig. 7. Ratio of execution time to total time for the generated code of MFHBT-LA,
HQEMU and QEMU.

5.3 The Performance of Convergence

We demonstrate the performance of MFHBT-LA convergence no matter when
the execution path is fixed or various among different executions.

Figure 8a illustrates the relative performance of running the SPEC CPU2000
INT ref suites compared to the native program during five execution and feed-
back iterations. The performance reaches a stable state after two iterations,
demonstrating fast convergence under a fixed execution path.

Figure 8b shows the relative performance compared to the native program of
running the SPEC CPU2000 INT test, train, and ref suites in sequence. Although
the three suites are various in execution path because of varying configurations
and workloads, consistently improved performance is observed. This indicates
that the feedback information and optimized code can be reused among different
execution. This can be attributed to two main factors: (1) feedback information
has a certain level of generality, resulting from factors like the limited nature of
basic blocks, and (2) common execution paths exist among different runs.

Furthermore, we observe a strong resemblance between the relative perfor-
mance of running ref suites in Fig. 8b and the relative performance in a stable

(a) The relative performance of run-
ning the SPEC CPU2000 INT ref suites
compared to the native program during
five execution and feedback iterations.

(b) The relative performance of run-
ning the SPEC CPU2000 INT test,
train, and ref suites in sequence com-
pared to the native program.

Fig. 8. The relative performance compared to the native program.



322 Z. Yang et al.

state in Fig. 8a. This finding further demonstrates that, even for programs with
varying configurations, multiple executions can also lead to gradual convergence.

5.4 Memory Access Instruction Count

Figure 9 illustrates the memory access instruction count of the x86 native pro-
gram, MFHBT-LA in stable state, HQEMU and QEMU. The MFHBT-LA
achieves a substantial reduction in memory access, amounting to 81% and 65%
when compared to QEMU and HQEMU, respectively, which is a significant con-
tributing factor to its superior performance. This observation emphasizes the
crucial role of register mapping in minimizing memory access.

Fig. 9. The memory access instruction count for the x86 native program, MFHBT-LA,
HQEMU and QEMU.

6 Discussion

Self-modifying Code. The accurate execution of self-modifying code in
MFHBT is attributed to the adoption of QEMU’s processing mechanism. We
make slight modifications to the mechanism, resulting in the invalidation of both
the dynamically generated code by QEMU and the code loaded from the AOT
file when self-modification is detected. Consequently, QEMU will retranslate the
code modified by the program during the subsequent execution.

Multi-architecture Support. The system is designed to be architecture inde-
pendent, capitalizing on the support for multiple architectures offered by LLVM
and QEMU. LLVM and QEMU both utilize Intermediate Representation (IR),
TCG IR and LLVM IR, to represent program semantics, facilitating the gener-
ation of target code for various host architectures. In this work, adding a new
architecture requires to implement translation procedures that convert guest
instructions to LLVM IRs. Due to the optimization mechanisms provided by
LLVM, the translation procedures only need to ensure correctness, rather than
code quality, which accelerates the development speed of supporting a new ISA.



MFHBT 323

Real-World Applications. In addition to the benchmarks mentioned in the
paper, we conduct experiments on various real-world applications, such as grep,
awk, sed, and so on. Our prototype demonstrates satisfactory performance in
these applications.

7 Related Work

Several conventional binary translation systems utilize a combination of binary
translator and compiler. To reduce the runtime overhead of code optimization
caused by compilers, HQEMU and HBT adopt different approaches. HQEMU
[15], proposed by Hong et al., profiles hot traces in the execution thread, converts
the TCG IR of these hot traces to LLVM IR, and implements additional opti-
mizations in backend threads to generate superior code. This approach leverages
the availability of multicore platforms to reduce the runtime overhead of code
optimization. HBT [23], proposed by Shen et al., is a hybrid binary translation
system based on LLVM that combines the benefits of SBT and DBT. The system
offloads part of the compilation optimization cost to the SBT. Li et al. perform
work to improve LLVM IR generation speed. They proposed CrossDBT [19],
directly lift guest binary code to LLVM IR to avoid the additional transform
overhead and local information loss compared to translate guest code to TCG
IR first.

Some research works on combining static and dynamic translator to enhance
the performance of the binary translation system [13,14]. Chernoff designed and
implemented a binary translation system, FX!32 [8], to reduce the overhead
of translation in the dynamic side. When the program execution, an AOT file
generated by the static side will be loaded and executed, thus improving the
performance of the system. Guan et al. proposed an approach to software cache
optimization. In this approach, they rearrange the software cache layout by col-
lecting profile information and translated code, so that the most frequently exe-
cuted parts are at the top of the cache [13].

8 Conclusion

In binary translation, optimizing code quality while minimizing translation cost
is crucial for improving performance. In this paper, we introduce a hybrid binary
translation system with multi-stage feedback that optimizes translated code
using the compiler and provides feedback to SBT based on program informa-
tion from DBT. Additionally, we propose a register mapping mechanism in the
compiler that reduces memory access instructions by 81% compared to QEMU
in the SPEC CPU2000 INT benchmark. Our prototype, MFHBT-LA, improves
performance by 3.28 times compared to QEMU in the same benchmark. As part
of future work, we will optimize floating-point and vector instructions using the
method proposed in this paper. Furthermore, we plan to investigate additional
optimization techniques customized for specific architectures.



324 Z. Yang et al.

Acknowledgment. We would like to thank all the anonymous reviewers for their
helpful comments and suggestions. This project is funded by the 2022 National Key
Research and Development Program “Security Protection Technology for Distribution
Network Key Information Infrastructure” Project 3 Distribution Network Computing
Equipment Security Enhancement Technology Research and Localization Development
(Project No. 2022YFB3105103).

References

1. Altman, E.R., Kaeli, D., Sheffer, Y.: Welcome to the opportunities of binary trans-
lation. Computer 33(3), 40–45 (2000)

2. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimiza-
tion system. In: Proceedings of the ACM SIGPLAN 2000 Conference on Program-
ming Language Design and Implementation, pp. 1–12 (2000)

3. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference, FREENIX Track, California, USA, vol. 41, p. 46 (2005)

4. Bezzubikov, A., Belov, N., Batuzov, K.: Automatic dynamic binary translator gen-
eration from instruction set description. In: 2017 Ivannikov ISPRAS Open Confer-
ence (ISPRAS), pp. 27–33. IEEE (2017)

5. Borin, E., Wu, Y.: Characterization of DBT overhead. In: 2009 IEEE International
Symposium on Workload Characterization (IISWC), pp. 178–187. IEEE (2009)

6. Chen, J.Y., Yang, W., Hsu, W.C., Shen, B.Y., Ou, Q.H.: On static binary trans-
lation of ARM/Thumb mixed ISA binaries. ACM Trans. Embed. Comput. Syst.
(TECS) 16(3), 1–25 (2017)

7. Chen, W., Shen, L., Lu, H., Wang, Z., Xiao, N.: A light-weight code cache design
for dynamic binary translation. In: 2009 15th International Conference on Parallel
and Distributed Systems, pp. 120–125. IEEE (2009)

8. Chernoff, A., et al.: FX! 32: a profile-directed binary translator. IEEE Micro 18(02),
56–64 (1998)

9. Cifuentes, Malhotra: Binary translation: static, dynamic, retargetable? In: 1996
Proceedings of International Conference on Software Maintenance, pp. 340–349.
IEEE (1996)

10. Duesterwald, E., Bala, V.: Software profiling for hot path prediction: less is more.
ACM SIGARCH Comput. Archit. News 28(5), 202–211 (2000)

11. Engelke, A., Okwieka, D., Schulz, M.: Efficient LLVM-based dynamic binary trans-
lation. In: VEE 2021, pp. 165–171. Association for Computing Machinery, New
York (2021)

12. Fu, S.Y., Hong, D.Y., Wu, J.J., Liu, P., Hsu, W.C.: SIMD code translation in an
enhanced HQEMU. In: 2015 IEEE 21st International Conference on Parallel and
Distributed Systems (ICPADS), pp. 507–514. IEEE (2015)

13. Guan, H., et al.: A dynamic-static combined code layout reorganization approach
for dynamic binary translation. J. Softw. 6(12), 2341–2349 (2011)

14. Guan, H., Zhu, E., Wang, H., Ma, R., Yang, Y., Wang, B.: SINOF: a dynamic-
static combined framework for dynamic binary translation. J. Syst. Archit. 58(8),
305–317 (2012)

15. Hong, D.Y., et al.: HQEMU: a multi-threaded and retargetable dynamic binary
translator on multicores. In: Proceedings of the Tenth International Symposium
on Code Generation and Optimization, pp. 104–113 (2012)

16. Hu, W., Wang, J., Gao, X., Chen, Y., Liu, Q., Li, G.: Godson-3: a scalable multicore
RISC processor with x86 emulation. IEEE Micro 29, 17–29 (2009)



MFHBT 325

17. Inoue, H., Hayashizaki, H., Wu, P., Nakatani, T.: A trace-based Java JIT compiler
retrofitted from a method-based compiler. In: International Symposium on Code
Generation and Optimization (CGO 2011), pp. 246–256. IEEE (2011)

18. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: International Symposium on Code Generation and Opti-
mization, CGO 2004, pp. 75–86. IEEE (2004)

19. Li, W., Luo, X., Zhang, Y., Meng, Q., Ren, F.: CrossDBT: an LLVM-based user-
level dynamic binary translation emulator. In: Cano, J., Trinder, P. (eds.) Euro-Par
2022. LNCS, vol. 13440, pp. 3–18. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-12597-3 1

20. Liu, I.C., Wu, I.W., Shann, J.J.J.: Instruction emulation and OS supports of
a hybrid binary translator for x86 instruction set architecture. In: 2015 IEEE
12th International Conference on Ubiquitous Intelligence and Computing and 2015
IEEE 12th International Conference on Autonomic and Trusted Computing and
2015 IEEE 15th International Conference on Scalable Computing and Communi-
cations and Its Associated Workshops (UIC-ATC-ScalCom), pp. 1070–1077. IEEE
(2015)

21. Payer, M., Gross, T.R.: Generating low-overhead dynamic binary translators. In:
Proceedings of the 3rd Annual Haifa Experimental Systems Conference, pp. 1–14
(2010)

22. Shen, B.Y., Chen, J.Y., Hsu, W.C., Yang, W.: LLBT: an LLVM-based static binary
translator. In: Proceedings of the 2012 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, pp. 51–60 (2012)

23. Shen, B.Y., You, J.Y., Yang, W., Hsu, W.C.: An LLVM-based hybrid binary trans-
lation system. In: 7th IEEE International Symposium on Industrial Embedded
Systems (SIES 2012), pp. 229–236. IEEE (2012)

24. Shi, H., Wang, Y., Guan, H., Liang, A.: An intermediate language level optimiza-
tion framework for dynamic binary translation. ACM SIGPLAN Not. 42(5), 3–9
(2007)

25. Spink, T., Wagstaff, H., Franke, B., Topham, N.: Efficient code generation in
a region-based dynamic binary translator. In: Proceedings of the 2014 SIG-
PLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded
Systems, pp. 3–12 (2014)

26. Ung, D., Cifuentes, C.: Dynamic re-engineering of binary code with run-time feed-
backs. In: Proceedings Seventh Working Conference on Reverse Engineering, pp.
2–10. IEEE (2000)

27. Weiwu, H., et al.: Loongson instruction set architecture technology. J. Comput.
Res. Dev. 60, 2–16 (2023). (in Chinese)

28. Wenzl, M., Merzdovnik, G., Ullrich, J., Weippl, E.: From hack to elaborate
technique-a survey on binary rewriting. ACM Comput. Surv. (CSUR) 52(3), 1–37
(2019)

https://doi.org/10.1007/978-3-031-12597-3_1
https://doi.org/10.1007/978-3-031-12597-3_1

	MFHBT: Hybrid Binary Translation System with Multi-stage Feedback Powered by LLVM
	1 Introduction
	2 Background
	2.1 Hybrid Binary Translation
	2.2 Maintain Guest CPU State

	3 Design
	3.1 Overview
	3.2 Multi-stage Feedback Mechanism
	3.3 Register Mapping in LLVM

	4 Implement
	4.1 Dynamic Side
	4.2 Static Side
	4.3 Multi-stage Feedback Mechanism
	4.4 Register Mapping in LLVM

	5 Evaluation
	5.1 Performance
	5.2 Execution Time
	5.3 The Performance of Convergence
	5.4 Memory Access Instruction Count

	6 Discussion
	7 Related Work
	8 Conclusion
	References


