
On-Demand Triggered Memory
Management Unit in Dynamic Binary

Translator

Benyi Xie1,2, Xinyu Li1,2, Yue Yan1,2, Chenghao Yan1,2, Tianyi Liu3,
Tingting Zhang1,4, Chao Yang5, and Fuxin Zhang1,2(B)

1 SKLP, Institute of Computing Technology, CAS, Beijing, China
{xiebenyi21b,lixinyu20s,yanyue21s,yanchenghao21s}@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
fxzhang@ict.ac.cn

3 The University of Texas at San Antonio, San Antonio, USA
tianyi.liu@utsa.edu

4 Loongson Technology Co. Ltd., Beijing, China
zhangtingting@loongson.cn

5 State Grid Liaoning Electric Power Supply Co. Ltd., Shenyang, China
yangchaoneu@sina.com

Abstract. User-level Dynamic Binary Translators (DBTs) linearly map
the guest virtual memory to host virtual memory to achieve optimal per-
formance. When the host page size exceeds the guest page size, multiple
small guest pages are mapped to a single large host page, resulting in
inappropriate permissions mapping. DBTs face security and correctness
risks accessing the inappropriately mapped host page. Our survey reveals
that most of the state-of-the-art user-level DBTs suffer from these risks.
While system-level DBT can avoid these risks through a software Mem-
ory Management Unit (MMU). However, the software MMU fully emu-
lates guest memory management, leading to slower performance than the
linear mapping approach of user-level DBTs.

To address the balance of performance and risks, we propose a
DBT memory management method named On-Demand Triggered MMU
(ODT-MMU), that combines the strengths of both user-level and system-
level DBTs. ODT-MMU utilizes linear mapping for non-risky page
accesses and triggers a software MMU when accessing risky pages. We
implement ODT-MMU in two ways to accommodate various applica-
tion scenarios: a platform-independent implementation named ODT-
InterpMMU, and a hardware-accelerated implementation named ODT-
ManipTLB. ODT-ManipTLB is designed for host Instruction Set Archi-
tectures (ISAs) that support programmable TLB. Experimental results
demonstrate that both implementations can effectively mitigate risks
associated with page size. Furthermore, ODT-ManipTLB achieves over
2000x performance improvement compared with the ODT-InterpMMU,
while maintaining comparable performance to the DBT without ODT-
MMU. Additionally, our work is applied to two industrial DBTs, XQM
and LATX.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
C. Li et al. (Eds.): APPT 2023, LNCS 14103, pp. 297–309, 2024.
https://doi.org/10.1007/978-981-99-7872-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7872-4_17&domain=pdf
https://doi.org/10.1007/978-981-99-7872-4_17


298 B. Xie et al.

Keywords: Binary translator · Memory management · Page size ·
TLB

1 Introduction

DBT enables the emulation of guest binaries on a host machine. Based on the
emulation level of the guest, DBTs can be categorized into two types: user-
level DBTs, which facilitate the migration of user applications, and system-
level DBTs, which facilitate the migration of an OS. It is crucial for both types
of DBTs to effectively and efficiently emulate memory management as guest
binaries expect. System-level DBTs typically employ a software MMU to emulate
the guest physical memory. Due to no need for emulating physical memory, user-
level DBTs linearly map guest virtual memory to host virtual memory.

The linear mapping method, which reuses the host virtual memory, provides
high performance for user-level DBTs. However, it introduces potential risks
when discrepancies exist between the guest and host memory management. The
difference in page size is the primary discrepancy between modern OSes, espe-
cially when the host page size exceeds the guest page size. Figure 1a illustrates a
scenario that highlights security risks. It depicts four 4-KB private guest pages
with different protection flags being linearly mapped to a 16-KB host page.
The linear mapping renders four guest pages readable, writable, and executable,
thereby introducing security risks such as overflow attacks. Figure 1b illustrates
a scenario that highlights correctness risks arising when shared pages are used
among multiple processes. DBT allocates a single 16-KB physical page to accom-
modate the shared 4-KB page. Consequently, the neighboring private pages are
forced to be linearly mapped to the same 16-KB host physical page. This map-
ping causes the private pages can be overwritten by shared processes, resulting in
correctness risks. Our survey reveals that most state-of-the-art user-level DBTs,
including ExaGear [10,11], JIT Rosetta21, and user-level QEMU [5,18], suffers
from the aforementioned risks, as shown in Table 1.

In contrast, system-level DBTs, such as system-level QEMU, do not
encounter these risks due to the utilization of a software MMU. The soft-
ware MMU fully emulates guest memory management, encompassing virtual-
to-physical address translation and access permission checks. Despite its ability
to mitigate the aforementioned security and correctness risks, the software MMU
exhibits lower performance compared with the linear mapping approach.

On one hand, user-level DBTs utilize linear mapping, which provides high
performance but entails potential risks. On the other hand, system-level DBTs
employ a software MMU, which eliminates risks but exhibits lower performance.
The distinctive characteristics of these two types of DBTs’ memory management
motivate us to propose an approach that combines their respective advantages.
1 Rosetta has two versions: an Ahead-Of-Time (AOT) DBT for running X86 64 macOS

applications on M-series silicon (AArch64) macOS [2], and a Just-In-Time (JIT)
DBT for running X86 64 Linux applications on AArch64 Linux virtual machine [3].
Here we use the JIT version.



On-Demand Triggered MMU in DBT 299

Table 1. Page size risks status of state-of-the-art DBTs. All of these DBTs target x86
or x86 64 Linux applications as guests. (QEMU refers to the user-level one.)

DBT Proprietary Host Page size Risks

ExaGear Huawei AArch64 Linux 64 KB Existing

JIT Rosetta2 Apple AArch64 Linux 16 KB Existing

QEMU – Many ISAs Linux 8 KB/16 kB/64 KB/... Existing

LATX (ODT-MMU) Loongson LoongArch Linux 16 KB Mitigated

XQM (ODT-MMU) Loongson MIPS Linux 16 KB Mitigated

QEMU (ODT-MMU) – Many ISAs Linux 8 KB/16 kB/64 KB/... Mitigated

(a) Security risk caused by lin-
early mapping private pages.
Guest permissions are inappro-
priately mapped to the host.

(b) Correctness risk caused by linearly mapping
shared pages among processes. After the linear map-
ping, 12-KB data (3 * 4-KB pages) are lost from the
initial 28-KB data (7 * 4-KB pages).

Fig. 1. DBT risks caused by linearly mapping small-size pages to large-size pages, for
example, mapping 4-KB pages to 16-KB pages. Abbreviations: r readable, w writable,
x executable, p private, s shared.

The new memory management we proposed, called on-demand triggered MMU
(ODT-MMU), combines the linear mapping method with the triggering of the
software MMU when risks arise. The detailed contributions of ODT-MMU are
summarized as follows:

– ODT-MMU enables the utilization of linear mapping for non-risky page
accesses and triggers software MMU when accessing risky pages. This app-
roach effectively mitigates the risks related to page size and maintains the
high performance of non-risky page accesses.

– To cater to various application scenarios, we implement ODT-MMU in two
ways: ODT-InterpMMU, a platform-independent implementation that inter-
prets the risky page accesses, and ODT-ManipTLB, which leverages the pro-
grammable TLB to enhance the risky page access performance.

– To the best of our knowledge, this work presents the first public analysis of the
risky page accesses and the first applied solution in industrial DBTs: LATX
[24] and XQM. This demonstrates the practicality of the proposed approach
and showcases the effectiveness and efficiency of the ODT-MMU.

The rest of this paper is organized as follows: Sect. 2 provides a brief
background and related work of DBTs’ Memory Management and OS page



300 B. Xie et al.

size. Section 3 introduces the design of ODT-MMU, including the related data
structures, on-demand mechanism, and two implementations: software-based
ODT-InterpMMU, and hardware-based ODT-ManipTLB. Section 4 evaluates
our experimental results. The last section concludes this paper.

2 Background and Related Work

This section offers an overview of memory management in DBTs, including soft-
ware MMU and linear mapping, and the diverse page sizes supported by hard-
ware and OSes. Furthermore, this section presents related work in these areas.

2.1 Memory Management in DBTs

System-level DBTs that aim to achieve full OS translation must emulate the
translation of guest virtual memory to guest host memory and the permission-
checking mechanism. Typically, system-level DBTs employ a software MMU to
emulate the guest memory management. The software MMU consists of a soft-
ware TLB and a collection of page table look-up algorithms. A guest virtual
memory access is translated into tens of host instructions if the software TLB
hits, otherwise, hundreds of host instructions are needed to perform page table
walk, software TLB refill, and eventually memory access. Consequently, mem-
ory emulation becomes a critical bottleneck in system-level DBTs, leading to
extensive research efforts focused on improving memory emulation in system-
level DBTs. Work [22] analyzes the memory emulation overhead in system-level
QEMU and improves the software MMU performance inspired by optimizations
applied to hardware TLB. ESPT [6] and HSPT [23] embed the guest page table
into the host page table to leverage host hardware MMU. Captive [20] runs
DBT in virtualization mode to facilitate the host hardware memory virtualiza-
tion. Dual-TLB [28] and BTMMU [9] employ the host programmable TLB to
accelerate memory access. All these software MMU improvements can be uti-
lized to optimize our ODT-MMU. For demonstration, we implement the ODT-
ManipTLB by utilizing the similar mechanism used by Dual-TLB and BTMMU.

(a) Linear mapping with guest base. One
guest read is translated into one host add
and one host read.

(b) Linear mapping without guest base.
One guest read is translated into one host
read.

Fig. 2. The linear mapping from Guest Virtual Address (GVA) to Host Virtual Address
(HVA) in user-level DBT.



On-Demand Triggered MMU in DBT 301

Unlike system-level DBTs, user-level DBTs focus on running user applica-
tions on a host machine. Hence, user-level DBTs are not responsible for emulating
guest physical memory. Therefore user-level DBTs typically do not use software
MMU to emulate guest memory management, instead, user-level DBTs reuse
the host memory management through linearly mapping Guest Virtual Address
(GVA) to Host Virtual Address (HVA), as illustrated in Fig. 2. Through linear
mapping, one guest memory access is translated into two host instructions: one
instruction adds an offset, called guest base, to GVA, and another instruction per-
forms the memory access. High-performance user-level DBTs, such as ExaGear
[10], Rosetta2 [3], and LATX [24] default to set guest base to zero, thus achiev-
ing one-to-one translation for memory access. User-level QEMU [5,18] defaults
to a non-zero guest base but provides an option to set the guest base to zero.
Furthermore, Bintrans [17] discusses the DBT security risks introduced by the
page size and provides a basic solution by temporarily changing the memory
permissions. Compared with our ODT-MMU, which utilizes software MMU and
needs only one OS signal, Bintrans needs three OS signals.

2.2 Page Sizes

Contemporary ISAs universally support diverse page sizes within a page table.
X86 64 [1] and AArch64 [4] utilize page table walking hardware to offer several
fixed page size combinations, such as x86 64’s 4 KB-2 MB-1 GB combination,
and AArch64’s 16 KB-2 MB-32 MB-1 GB combination. MIPS [14] and Loon-
gArch [12] achieve arbitrary page size (which must be a power of two) combi-
nations through the software-programmable TLB. For our ODT-MMU imple-
mentations, we use a 4 KB-16 KB combination. In addition to existing page size
support in industrial products, extensive research is dedicated to multiple page
size support in hardware. Subblock TLB [15,21] is proposed to achieve medium-
sized pages (64 KB) with high performance, surpassing the traditional superpage
TLB. Skewed TLB [16,19] is introduced to support concurrently multiple page
sizes within a single process using a set-associative TLB.

Table 2. The default page size for various OSes (distros) on different ISAs.

OS (Distro) ISA Page Size (KB)

Linux x86/x86 64 4

Linux UltraSPARC 8

Linux (Loongnix) MIPS/LoongArch 16

macOS/Linux (Asahi) AArch64 16

Linux (CentOS) AArch64 64

Due to the hardware’s support for multiple page sizes, various OSes often
employ distinct default page sizes. Table 2 presents the default page sizes
employed by various OSes (distros). Particularly, in the area of personal com-
puters, macOS, Asahi Linux, and Loongnix employ 16-KB page size by default,



302 B. Xie et al.

which diverges from the traditional ISAs, like x86/x86 64 using 4-KB page size
by default. In the area of servers, AArch64 CentOS employs a default page size
of 64 KB, which also differs from the default page size of x86/x86 64. More-
over, there exist endeavors implementing multiple page sizes in OSes. In work
[7], a multiple-page-size mechanism is implemented in IRIX OS utilizing TLB
in R10000. In work [26], a similar multiple-page-size mechanism is implemented
in x86 Linux OS. In work [27], a variable-page-size mechanism is implemented
in MIPS Linux through variable-page-size TLB (VTLB). However, these studies
primarily focus on improving performance by introducing multiple page sizes in
OSes but disregard the security and correctness risks of executing small-page
applications on a large-page OS, resulting in compatibility problems [13]. Fur-
thermore, these studies typically involve modification of OS, which is not friendly
to the compatibility problems, as it may introduce new compatibility problems.

3 On-Demand Triggered MMU

This section presents the design of ODT-MMU. We first introduce the related
data structures and the on-demand mechanism. Then using the data structures
and the on-demand mechanism as a foundation, we introduce ODT-InterpMMU,
a software-based implementation that addresses the page size risks by interpret-
ing the risky page accesses. Lastly, we introduce ODT-ManipTLB, a hardware-
accelerated implementation that achieves high performance by utilizing the
host’s programmable TLB. Since our analysis focuses on user-level DBTs, with-
out specifically referring to system-level DBTs, all the DBTs mentioned in the
rest of this paper pertain to user-level DBTs.

3.1 Data Structures and On-Demand Mechanism

We leverage the software MMU inspired by system-level DBT to address the
limitations of linear mapping. Therefore, a page table is added to user-level
DBTs, called shadow page table, as shown in Fig. 3. The shadow page table
only records the mappings from risky guest virtual pages to corresponding host
virtual pages. The host virtual pages that are mapped in this manner are referred
to as shadow pages. Additionally, a dedicated memory region, outside the linear
mapped region, is allocated for these pages.

Fig. 3. Shadow page table maps risky pages to shadow page region. The linear mapping
of risky pages is disabled.



On-Demand Triggered MMU in DBT 303

Figure 4 illustrates the process of the on-demand mechanism. (1) During emu-
lation of guest system calls related to virtual page management and permissions
management, including mmap, munmap, mprotect, and mremap, (2) taking mmap as
a specific example, if the guest tries to allocate a risky page (as shown in Fig. 1),
a shadow page is allocated. (3) The linearly mapped host page is disabled by
revoking its read, write, and execute permissions. (4) Consequently, if the guest
attempts to access risky pages, it will trigger an OS signal due to the violation of
page permissions. (5) The ODT-MMU can be invoked within the signal-handling
function. Since the on-demand mechanism only modifies the permissions of risky
pages, the performance of non-risky pages remains unaffected.

Fig. 4. The process of the on-demand mechanism.

3.2 ODT-InterpMMU: Interpreting the Risky Page Accesses

ODT-InterpMMU handles the risky memory access by interpreting it. During
interpretation, the corresponding shadow page is retrieved from the shadow page
table. The risky memory access is redirected to the corresponding shadow page.
The outline of the ODT-InterpMMU code is depicted in Fig. 5. Within the sig-
nal handling function, the OS typically provides the Program Counter (PC), the
accessed memory address (linearly mapped address), and the General Purpose
Registers (GPRs). The interpretation is conducted based on the opcode of the
instruction pointed at by the PC. For example, a load-byte instruction is inter-
preted as moving one byte from the shadow address to the destination GPR, and
a store-byte instruction is interpreted as moving one byte from the destination
GPR to the shadow address.

3.3 ODT-ManipTLB: Manipulating the Hardware TLB

ODT-ManipTLB leverages the host TLB for improved performance. Host ISAs
like MIPS [14] and LoongArch [12] offer a VTLB that enables variable page size
settings and programmability through software. The VTLB can be utilized to
cache recently accessed shadow page table entries. As long as the VTLB hits,
there is no overhead in accessing risky pages. Overhead only occurs when VTLB
misses, and the ODT-ManipTLB is invoked as shown in Fig. 4. ODT-ManipTLB
is responsible for obtaining the physical address of the shadow page and refilling
the VTLB, as depicted in Fig. 6.



304 B. Xie et al.

Fig. 5. The code of ODT-InterpMMU. The interpretation involves a switch-case state-
ment based on the opcode of the instruction, which triggers the OS signal.

Fig. 6. The code of ODT-ManipTLB. A dedicated kernel module is designed to get
the physical address and refill the VTLB.

4 Evaluation

This section presents an evaluation of the experimental results of ODT-MMU.
The experiments are conducted on Loongson’s 3A4000 [8], which operates on
Linux with a page size of 16 KB. The ODT-MMU is implemented in QEMU,
targeting x86 Linux applications with a page size of 4 KB. The experiments
include the following tests:

– Effectiveness tests include a collection of constructed unit tests and a real-
world application - Wine [25], to evaluate the effectiveness of resolving the
risks depicted in Fig. 1.

– Regression tests incorporate the industrial standard benchmark - SPEC CPU
2000, to ensure that non-risky memory accesses are not affected.

– Performance tests include a set of constructed read/write unit tests, to eval-
uate the performance of ODT-InterpMMU and ODT-ManipTLB.

4.1 Effectiveness Tests

Effectiveness tests aim to evaluate the effective mitigation of security and correct-
ness risks. Unit tests are designed based on Fig. 1. To evaluate the security risks,
multiple 4-KB pages with various permissions are allocated and read/written to
determine whether the DBT on the 16-KB host raise segmentation fault when



On-Demand Triggered MMU in DBT 305

the reads or writes are not permitted. To evaluate the correctness risks, multi-
ple processes are created. Among these processes, multiple shared and private
4-KB pages are allocated with various permissions. These pages are then read
and written to verify whether the DBT on the 16-KB host correctly writes pri-
vate data and blocks the non-permitted reads or writes by a segmentation fault.
Experimental results show the private data are correctly written to private pages
and no overwrite occurs in ODT-MMU QEMU. Additionally, all non-permitted
reads and writes are blocked, and the permission-related results are presented
in Table 3. The original QEMU is incapable of addressing the security and cor-
rectness risks, whereas ODT-MMU QEMU mitigates these risks as expected.

Table 3. Effectiveness tests for original QEMU and ODT-MMU QEMU. All test cases
are derived from Fig. 1. Abbreviations: Y permitted, N not permitted.

Issue Type Permissions Expected Results Original QEMU ODT-MMU QEMU

Read Write Read Write Read Write

Security r–p Y N Y Y Y N

Security rw-p Y Y Y Y Y Y

Security r-xp Y N Y Y Y N

Security —p N N Y Y N N

Correctness r–p Y N Crash Crash Y N

Correctness rw-s Y Y Crash Crash Y Y

Correctness r-xp Y N Crash Crash Y N

Correctness —p N N Crash Crash N N

Furthermore, we conduct tests on a well-known multi-process application -
Wine. A typical Wine program is associated with two processes: a wineserver
responsible for emulating the Windows kernel, and an emulated Windows appli-
cation. Shared pages are utilized to share data between these processes. Our
experiments demonstrate that QEMU crashes when running Windows appli-
cations such as Notepad and Tencent WeChat, whereas ODT-MMU QEMU
executes these applications smoothly.

4.2 Regression Tests

To evaluate whether ODT-MMU affects the performance of non-risky memory
accesses, we begin by analyzing the memory accessing behavior of the SPEC
CPU 2000 Integer test suite. Since all tests within CPU 2000 Integer are single-
process, the presence of risky pages is solely attributed to security risks. Figure 7
presents the statistics regarding the risky memory pages, including the number
of risky pages, as well as the ratio of memory accesses that read/write the risky
pages to the total number of memory accesses. Several tests, such as 164.gzip
and 300.twolf, exhibit more than 30% memory accesses being risky. The total
count of risky pages does not exceed 20 for any of the tests. The findings of
Fig. 7 indicate a high concentration of risky accesses on a few pages, making



306 B. Xie et al.

Fig. 7. The statistics of risky memory pages in SPEC CPU 2000 Integer. Left axis
shows the ratio of the number of risky memory accesses to the number of all memory
accesses. Right axis shows the number of risky pages.

them suitable for acceleration by VTLB, as VTLB typically incorporates 64
entries.

Subsequently, we evaluate the performance of the SPEC CPU 2000 Inte-
ger tests. The execution time of ODT-MMU QEMU (ODT-ManipTLB enabled)
is normalized to that of the original QEMU, and the experimental results are
illustrated in Fig. 8. The overall normalized performance hovers around 100%,
suggesting that ODT-MMU has no impact on non-risky memory accesses. Con-
versely, when ODT-ManipTLB is enabled, several tests demonstrate a slight
improvement in performance. This can be attributed to Linux’s inefficient uti-
lization of VTLB, and the enabling of VTLB in QEMU is tantamount to increas-
ing the overall number of TLB entries, thereby slightly reducing the TLB miss
rate and improving the TLB lookup performance.

Fig. 8. The normalized execution time of ODT-MMU QEMU in SPEC CPU 2000
Integer. Normalization is achieved by dividing the execution time of ODT-MMU QEMU
(ODT-ManipTLB enabled) by the execution time of the original QEMU.



On-Demand Triggered MMU in DBT 307

4.3 Performance Tests

To evaluate the performance of risky memory accesses in ODT-MMU and origi-
nal QEMU, we construct a series of read/write unit tests. Figure 9 demonstrates
that ODT-InterpMMU is significantly slower than the original QEMU, which
spends over 2000 ns to emulate one risky guest read/write operation. The low
performance is mainly caused by the interpretation of software MMU and the
trigger of OS signals for each risky read/write operation. Consistent with the
findings of regression tests depicted in Fig. 8, ODT-ManipTLB exhibits a modest
performance improvement compared with the original QEMU. This is because
the utilization of VTLB equates to an increase in overall TLB entries, which
results in fewer TLB misses and overall performance improvement.

Fig. 9. The execution time (5 digits are reserved) per guest read/write for ODT-
InterpMMU, ODT-ManipTLB, and original QEMU. ODT-ManipTLB QEMU shows
slightly higher performance compared with the original QEMU.

5 Conclusion

This paper focuses on analyzing memory management in user-level DBT. Our
analysis has identified security and correctness risks in linearly mapping mem-
ory management utilized by user-level DBT. These risks arise when executing
small-page guest applications on a large-page host OS, as the guest page per-
missions cannot be appropriately mapped to the host page, resulting in risky
access to these pages. The importance and urgency of these risks are increas-
ing with the current transition trend from traditional small-page OSes, such
as 4-KB x86 Linux, to large-page OSes, such as 16-KB LoongArch and 16-
KB AArch64 Linux. To tackle these risks, we introduce ODT-MMU, a novel
DBT mechanism capable of triggering software MMU on demand. ODT-MMU
includes a platform-independent implementation called ODT-InterpMMU and
a hardware-accelerated implementation called ODT-ManipTLB. Both imple-
mentations effectively mitigate security and correctness risks without affecting
non-risky memory accesses. Compared with ODT-InterpMMU, ODT-ManipTLB
achieves a significant performance improvement of over 2000x by utilizing Loong-
son’s programmable VTLB. Compared with the original DBT, ODT-ManipTLB



308 B. Xie et al.

does not incur noticeable performance loss. In addition to our implementations
on Loongson’s platform, ODT-MMU can be utilized to mitigate the security and
correctness risks in other ISAs as well.

Acknowledgment. This project is funded by the 2022 National Key Research and
Development Program “Security Protection Technology for Distribution Network Key
Information Infrastructure” Project 3 Distribution Network Computing Equipment
Security Enhancement Technology Research and Localization Development (Project
No. 2022YFB3105103).

References

1. AMD: AMD64 Architecture Programmer’s Manual Volume 2: System Program-
ming (2020)

2. Apple: About the Rosetta translation environment (2021). https://developer.apple.
com/documentation/apple-silicon/about-the-rosetta-translation-environment.
Accessed 10 June 2023

3. Apple: Running intel binaries in Linux VMS with Rosetta (2022). https://
developer.apple.com/documentation/virtualization/running intel binaries in
linux vms with rosetta. Accessed 10 June 2023

4. Arm: Arm Architecture Reference Manual: Armv8, for Armv8-A architecture pro-
file (2021)

5. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference, FREENIX Track (2005)

6. Chang, C.R., Wu, J.J., Hsu, W.C., Liu, P., Yew, P.: Efficient memory virtualization
for Cross-ISA system mode emulation. In: International Conference on Virtual
Execution Environments (2014)

7. Ganapathy, N., Schimmel, C.: General purpose operating system support for mul-
tiple page sizes. In: USENIX Annual Technical Conference (1998)

8. Hu, W., Wang, J., Gao, X., Chen, Y., Liu, Q., Li, G.: Godson-3: a scalable multicore
RISC processor with x86 emulation. IEEE Micro 29, 17–29 (2009)

9. Huang, K., Zhang, F., Li, C., Niu, G., Wu, J., Liu, T.: BTMMU: an efficient
and versatile cross-ISA memory virtualization. In: Proceedings of the 17th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(2021)

10. Huawei: Huawei kunpeng exagear (2022). https://mirrors.huaweicloud.com/
kunpeng/archive/ExaGear/. Accessed 10 June 2023

11. Huawei: Technical constraints-introduction-user guide-binary translator
(ExaGear)-Kunpeng DevKit-Kunpeng documentation: technical constraints
(2023). https://www.hikunpeng.com/document/detail/en/kunpengdevps/ug-
exagear/usermanual/kunpengexagear 06 0005.html. Accessed 10 June 2023

12. Loongson Technology Corporation Limited: LoongArch Reference Manual - Vol-
ume 1: Basic Architecture (2023)

13. Marcan: Asahi Linux progress report: September 2021 (2021). Accessed 10 June
2023

14. MIPS Technologies Inc.: MIPS Architecture for Programmers Volume III: The
MIPS64 and microMIPS64 Privileged Resource Architecture (2014)

15. Navarro, J.E., Iyer, S., Druschel, P., Cox, A.L.: Practical, transparent operating
system support for superpages. In: USENIX Symposium on Operating Systems
Design and Implementation (2002)

https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/virtualization/running_intel_binaries_in_linux_vms_with_rosetta
https://developer.apple.com/documentation/virtualization/running_intel_binaries_in_linux_vms_with_rosetta
https://developer.apple.com/documentation/virtualization/running_intel_binaries_in_linux_vms_with_rosetta
https://mirrors.huaweicloud.com/kunpeng/archive/ExaGear/
https://mirrors.huaweicloud.com/kunpeng/archive/ExaGear/
https://www.hikunpeng.com/document/detail/en/kunpengdevps/ug-exagear/usermanual/kunpengexagear_06_0005.html
https://www.hikunpeng.com/document/detail/en/kunpengdevps/ug-exagear/usermanual/kunpengexagear_06_0005.html


On-Demand Triggered MMU in DBT 309

16. Papadopoulou, M.M., Tong, X., Seznec, A., Moshovos, A.: Prediction-based
superpage-friendly TLB designs. In: 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), pp. 210–222 (2015)

17. Probst, M.: Dynamic binary translation (2003)
18. QEMU: QEMU, a generic and open source machine & userspace emulator and

virtualizer (2003). https://github.com/qemu/qemu. Accessed 10 June 2023
19. Seznec, A.: Concurrent support of multiple page sizes on a skewed associative TLB.

IEEE Trans. Comput. 53, 924–927 (2004)
20. Spink, T., Wagstaff, H., Franke, B.: Hardware-accelerated cross-architecture full-

system virtualization. ACM Trans. Archit. Code Optim. (TACO) 13, 1–25 (2016)
21. Talluri, M., Hill, M.D.: Surpassing the TLB performance of superpages with less

operating system support. In: ASPLOS VI (1994)
22. Tong, X., Koju, T., Kawahito, M., Moshovos, A.: Optimizing memory translation

emulation in full system emulators. ACM Trans. Archit. Code Optim. (TACO) 11,
1–24 (2015)

23. Wang, Z., et al.: HSPT: practical implementation and efficient management of
embedded shadow page tables for cross-ISA system virtual machines. In: Proceed-
ings of the 11th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (2015)

24. Weiwu, H., et al.: Loongson instruction set architecture technology. J. Comput.
Res. Dev. 60, 2–16 (2023)

25. WineHQ: Wine, a windows compatibility layer for POSIX-compliant operating
systems (1993). https://www.winehq.org/. Accessed 10 June 2023

26. Winwood, S., Shuf, Y., Franke, H.: Multiple page size support in the Linux kernel
(2002)

27. Zhang, X., Jiang, Y., Cong, M.: Performance improvement for multicore processors
using variable page technologies. In: 2011 IEEE Sixth International Conference on
Networking, Architecture, and Storage, pp. 230–235 (2011)

28. Zhenhua, W.: A dual-TLB method to accelerate the memory access of binary
translation. Master’s thesis, University of Chinese Academy of Sciences, Beijing,
China (2015)

https://github.com/qemu/qemu
https://www.winehq.org/

	On-Demand Triggered Memory Management Unit in Dynamic Binary Translator
	1 Introduction
	2 Background and Related Work
	2.1 Memory Management in DBTs
	2.2 Page Sizes

	3 On-Demand Triggered MMU
	3.1 Data Structures and On-Demand Mechanism
	3.2 ODT-InterpMMU: Interpreting the Risky Page Accesses
	3.3 ODT-ManipTLB: Manipulating the Hardware TLB

	4 Evaluation
	4.1 Effectiveness Tests
	4.2 Regression Tests
	4.3 Performance Tests

	5 Conclusion
	References


