
A Low-Latency Hardware Accelerator
for YOLO Object Detection Algorithms

Aibin Wang1,2, Youshi Ye2, Yu Peng2, Dezheng Zhang1, Zhihong Yan1,
and Dong Wang1(B)

1 Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China
wangdong@bjtu.edu.cn

2 Beijing Institute of Control Engineering, Beijing 100190, China

Abstract. Object detection is an important computer vision task with
a wide range of applications, including autonomous driving, smart secu-
rity, and other domains. However, the high computational requirements
poses challenges on deploying object detection on resource-limited edge
devices. Thus dedicated hardware accelerators are desired to delever
improved performances on detection speed and latency. Post-processing
is a key step in object detection. It involves intensive computation on the
CPU or GPU. The non-maximum suppression (NMS) algorithm is the
core of post-processing, which can eliminate redundant boxes belonging
to the same object. However, NMS becomes a bottleneck for hardware
acceleration due to its characteristics of multiple iterations and waiting
for all predicted boxes to be generated.

In this paper, we propose a novel hardware-friendly NMS algorithm
for FPGA accelerator design. Our proposed algorithm alleviates the per-
formance bottleneck of NMS by implementing the iterative algorithm
into an efficient pipelined hardware circuit. We validate our algorithm on
the VOC2007 dataset and show that it only brings 0.27% difference com-
pared to the baseline NMS. Additional, the exponential function and sig-
moid function are also extremely hardware-costly. To address this issue,
we propose an approximate exponential function circuit to calculate the
two functions with minimum logic cost and zero DSP cost.

We deploy our post-processing accelerator on Xilinx’s Alveo U50
FPGA board. The final design achieves a end-to-end detection latency
of 283us for YOLOv2 model, According to the user guide provided by
Xilinx and Intel, we converted the logic resources of different implemen-
tations on the FPGA into LUT resources. After that, we compared the
resource utilization of acceleration module in the current state-of-the-
art object detection system deployed on Intel with ours. Compared with
it, we consumed 13.5× lower LUT resources and used much fewer DSP
resources.

Keywords: Object detection · Neural network accelerator ·
Hardware-friendly NMS algorithm

This work was partially supported by Open Fund (NO. OBCandETL-2022-06) of Space
Advanced Computing and Electronic Information Laboratory of BICE.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
C. Li et al. (Eds.): APPT 2023, LNCS 14103, pp. 265–278, 2024.
https://doi.org/10.1007/978-981-99-7872-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7872-4_15&domain=pdf
https://doi.org/10.1007/978-981-99-7872-4_15

266 A. Wang et al.

1 Introduction

In the field of computer vision, object detection algorithms based on deep learn-
ing have received wide attention and are widely applied [16]. According to the dif-
ferent detection methods, object detection algorithms can be divided into single-
stage and two-stage detection algorithms. Generally, single-stage object detec-
tion algorithms have faster detection speed than two-stage algorithms, but there
is a slight loss in accuracy. Single-stage object detection algorithms are often
more preferred for embedded devices such as autonomous driving applications,
as they simplify the object detection process and are more suitable for mobile
embedded devices. Traditional single-stage object detection network frameworks
include SSD [8] and YOLO series [11–13]. The YOLO network unified the fea-
ture extraction, object classification, and object bounding box regression into a
complete convolutional neural network, simplifying the object detection process
and making it more suitable for mobile devices.

However, due to the high computational complexity and excessive parame-
ter count, deployment of convolutional neural networks (CNNs) on embedded
devices still faces challenges. Recently, various hardware accelerators have been
proposed, such as UNPU [5], Eyeriss [3], and TPU [4], which are designed for
general neural network operations (i.e., convolutions). Some other researchers
make efforts to the deployment of neural networks on FPGAs with low-bitwidth
or sparse representations to reduce the excessive parameter count [10,14]. How-
ever, the post-processing stage of object detection algorithms, which involves
removing redundant boxes and generating bounding boxes, has not been previ-
ously designed with hardware acceleration in mind.

Fig. 1. (a) The process of non maximum suppression; (b) The computation latency of
NMS in the post-processing stage

A Low-Latency Hardware Accelerator for YOLO 267

Most CNN hardware accelerators implement the post-processing stage on
the CPU, where processing speed is slow, making it a bottleneck in achieving
fast object detection. Non-maximum suppression (NMS) is a common algorithm
for the post-processing stage of object detection, aimed at removing redundant
boxes belonging to the same object, as shown in Fig. 1(a). The standard NMS
algorithm is a greedy algorithm that requires all bounding boxes to be sorted.
This property creates a strict sequential dependency between the prediction head
and NMS algorithm, which is not friendly to hardware acceleration. NMS must
wait for all bounding boxes to be generated before processing them, resulting
in significant delay overhead throughout the entire system. The computation
latency of NMS in the post-processing stage is shown in Fig. 1(b).

To address the aforementioned challenges in achieving high-speed object
detection on edge devices, we propose a novel NMS algorithm to eliminate
the strict sequential dependency between the NMS algorithm and the predic-
tion head, while achieving minimal functionality degradation. Additionally, We
exploit the property that the output of the convolution layer of a neural net-
work is a fixed-point number with a fixed range after quantization. This allows
us to simplify the computational complexity of complex functions in the post-
processing process. We propose a configurable post-processing hardware acceler-
ation structure that can be deployed on datasets with varying numbers of classes
in a pipelined manner. In summary, our contributions are as follows:

• We proposed a novel NMS algorithm that is suitable for hardware pipeline
implementation eliminating the strict sequence dependency. The hardware-
friendly NMS algorithm exhibited a negligible performance decrease of 0.27%
on the VOC2007 dataset and 0.03% on SAR ship images. This suggests that
the algorithm is well-suited for hardware acceleration, while maintaining high
accuracy.

• Accordingly, we developed a low-latency hardware accelerator design to imple-
ment the improved NMS algorithm on FPGA device with the flexible capa-
bility of multi-class and single-class object detection.

• Finally, we use a fixed-point implementation of the sigmoid function to sim-
plify the computational complexity in the post-processing process. This is a
more accurate approximation of the sigmoid function than the Taylor series
expansion implementation, and it can be implemented efficiently in hardware.

2 Background and Related Work

2.1 The Network Architecture of Yolov2

Object detectors mainly include one-stage and two-stage detectors. One-stage
detectors directly perform regression and classification on the input image, out-
putting the position, size, and category of the target. In contrast, two-stage
detectors first generate candidate boxes and then perform regression and classi-
fication on each candidate box, outputting the final target. Common one-stage

268 A. Wang et al.

object detectors include SSD [8] and YOLOv2 [12]. In this work, we prefer one-
stage object detectors, especially YOLOv2, because of its better real-time per-
formance. The overall architecture of YOLOv2 is shown in Fig. 2.

Yolov2
Conv

Box Predictions (845x4)

Post-
preprocessing

Score Predictions

Boxes (845x4)

Darknet
-19 3Conv Conv

Data Formatting

Loc
Class

Decode
Module

Anchor
Box

Softmax
Sigmoid

Threshold

Non-Maximum
Suppression

{Boxes , Scores}

Image

Score (845x1)

(416x416)

(13x13x125)

{x,y,w,h}
(845x21)
{c,class}

Fig. 2. YOLOv2 Structure Overview

As shown in Fig. 2, after the input image has been extracted features by
Darknet-19, the prediction head outputs bounding box location information rel-
ative to anchor boxes. Anchor boxes are idealized boundaries that are predefined
in different sizes and aspect ratios during model training for bounding objects
in the image. The purpose of using anchor boxes is to improve the efficiency
and accuracy of object detection. When the input image resolution is 416× 416,
after 32-times downsampling, YOLOv2 will divides the input image into 13×13
grids, and each grid has 5 anchor boxes. Therefore, a total of 845 candidate box
information is generated.

The output feature map (13 × 13 × 125) generated after passing through
darknet-19 for feature extraction undergoes data formatting operations (e.g.
reshapes, divisions, convert fixpoint to float) to produce a list of 845 boxes
(each described by {x, y, w, h}) and score information (each described by {c, cls})
for downstream processing. These generated box information are then passed
through a decode module and matched with predefined anchor boxes to produce
a series of predicted boxes, as shown in Eq. 1. Moreover, sigmoid and softmax
functions are applied to the score list to generate prediction scores for 20 classes,
as shown in Eq. 2. The resulting lists (containing boxes and scores) are passed
through a threshold function, such that only boxes with scores higher than a
predefined threshold are processed by NMS.

bx = δ(tx) + cx
by = δ(ty) + cy
bw = Pwetw

bh = Pheth

(1)

A Low-Latency Hardware Accelerator for YOLO 269

where bx, by, bw, bh are the center and width and height of the predicted bounding
box. cx, cy are the distances from the top left corner of the current grid to the top
left corner of the image. Pw, Ph are the width and height of the anchor. δ is the
sigmoid function. tx, ty, tw, th are the parameters to be learned, which are used
to predict the center and width and height of the bounding box respectively.
Here they refer to the outputs of the convolutional layer.

Sigmoid =
1

1 + e−x
, Softmax =

exp(Si)
∑N

i=1 exp(Si)
(2)

2.2 Non-maximum Suppression

The baseline NMS algorithm implemented in the object detection system based
on YOLOv2 is shown in Algorithm1. The NMS algorithm is used to filter out
redundant and overlapping boxes and select the ones with the highest confidence
scores. The algorithm takes as input a list of boxes and scores and outputs a
list of final detections. The algorithm works as follows: (1) For each of the 21
classes, sorting the boxes by their scores of this class in descending order by
using the argSort function. (2) Initialize an empty list for selected boxes. (3)
For each class, while the list of candidate boxes is not empty, pop the box with
the highest score from the candidate list and append it to the selected boxes.
For each remaining box in the candidate boxes, calculate the intersection over
union (IoU) between the popped box and the current box. If IoU is greater than
a predefined threshold, remove the current box from the list. (4) Repeat step 3
until there are no more boxes left.

Algorithm 1. Baseline NMS algorithm
1: procedure Non-Maximum Suppression
2: D ← sorted list of bounding boxes and their scores
3: S ← empty set of selected bounding boxes
4: while D �= ∅ do
5: B ← bounding box with highest score in D
6: add B to S
7: for B′ ∈ D do
8: if IoU(B,B′) > threshold then
9: remove B′ from D

10: end if
11: end for
12: end while
13: return S
14: end procedure

270 A. Wang et al.

2.3 Bottleneck Analysis

Implement of Complex Function. Complex functions such as exponen-
tial functions consume a large amount of DSP resources when implemented on
hardware circuits [6]. If deployed on edge embedded devices, a more resource-
optimized deployment method needs to be considered. In the post-processing
stage of calculating coordinates and scores, there will be a large number of cal-
culations involving complex functions composed of exponential functions (such
as softmax function, sigmoid function). We use the characteristics of quantized
networks to design simplified calculation methods for corresponding functions
according to their mapping relationships.

Limitations of NMS Implement. Firstly, the sorting operation at the begin-
ning of the baseline NMS algorithm poses a challenge for hardware deployment.
The sorting operation brings extra time and space overhead to the hardware. The
sorting operation requires waiting for all the boxes to be generated, which causes
a considerable time delay. Moreover, the process of removing redundant boxes
by NMS has a strict sequential dependency, and the hardware cannot execute
it in a pipelined manner, which reduces the throughput of the entire processing
process. In addition, waiting for all the boxes to be generated requires more
intermediate storage space.

2.4 FPGA-Based Object Detection System.

Although most previous works have deployed object detection systems on FPGA,
most of them did not implement the post-processing stage on FPGA, but rather
executed them on CPU [2,9]. A few works proposed hardware acceleration for
various modules in the post-processing stage (including the NMS module), but
these works did not have corresponding quantization schemes for the post-
processing stage after low-bit quantization. Most convolutional outputs had to
be dequantized and calculated in floating-point format in function [1,7,15].

The authors of [13] built an FPGA-based object detection system on YOLO.
They deployed an NMS module with bubble sorting on the FPGA, which lever-
aged the parallelization and reuse of IOU computation units to enhance the
computational efficiency of the NMS algorithm. The final latency of the two mod-
ules working together on the Xilinx Viertex-7 FPGA was 680us. The authors of
[15] implemented an end-to-end object detection system on the FPGA (includ-
ing the post-processing stage) with extremely low latency and high throughput.
The NMS module only introduced a negligible delay (only 0.13us) on the Xlinx
Stratix 10 GX2800 FPGA. Compared to previous work, they were the first elim-
inated the sorting constraint in the NMS stage, and validated their approach on
the COCO dataset with a mean average precision (mAP) of 22.5%. However,
their NMS module consumed a large amount of resources (the post-processing
module consumed 695 DSP resources), which posed a great challenge for deploy-
ment on resource-constrained embedded edge devices.

A Low-Latency Hardware Accelerator for YOLO 271

3 Proposed Design

3.1 Hardware-Friendly NMS Algorithm

The flow of the proposed hardware-friendly NMS algorithm is depicted in Algo-
rithm2.

Sorting are often essential in the Baseline NMS algorithm, but due to their
high iteration and the limit of waiting for all candidate boxes to be generated,
deploying them on hardware can cause significant delays. Unlike Baseline NMS,

Algorithm 2. Novel hardware-friendly NMS algorithm
Input: scores,boxes,IOUthr

Output: detected_objects
1: Instantiate selected_boxes
2: for each box in boxes do
3: box_inserted = Ture;
4: box_deleted = False;
5: box_replaced = False;
6: box_suppressed = False;
7: for each box in sboxes do
8: IOU = Calculate_IOU(box,sbox)
9: if same_class(box,sbox) & IOU > IOUthr then

10: box_inserted = False;
11: if box.score > sbox.score then
12: box_replaced = Ture;
13: Remember the sbox index
14: if !box_replaced then
15: box_deleted = Ture;
16: Remember the sbox index
17: end if
18: else
19: box_suppressed = Ture;
20: end if
21: end if
22: end for
23: replaceIf(box_suppressed,box_replaced,boxes,sbox);
24: deleteIf(box_suppressed,box_deleted,boxes,sbox);
25: end for
26: detected_objects = selected_boxes;

27: replaceIf(flag,boxes,sbox)is
28: if !box_suppressed & box_replaced then
29: sbox[r_index].replaceWith(box)
30: end if

31: deleteIf(flag,boxes,sbox)is
32: if !box_suppressed & box_deleted then
33: delete sbox[d_index]
34: end if

272 A. Wang et al.

which sorts all candidate boxes at the beginning and requires boxes to be input
in descending order of score, our algorithm does not require candidate boxes to
be sorted by score. Our algorithm initializes a selected box list as empty at the
beginning. For each input candidate box, it is first declared as the candidate
object to be inserted (line 3), and then the IOU calculation operation and score
comparison are performed between the input candidate box and all elements in
the selected box list one by one.

The goal of NMS is to search for local maximum values and suppress non-
maximum values. However, algorithms with sequential structures are not easy
to search for local maximum values. The same data input in different orders
may result in different outcomes. To solve this problem and make the results of
Novel NMS more accurate, we have imposed some constraints on the insertion
and replacement of new candidate boxes. When the result of IOU calculation
between candidate box and select box is greater than the threshold, we compare
their scores (line 7–11). If the candidate box is better, we mark it (it may replace
the selected box later, line 12). We still need to compare the candidate boxes
with the remaining part of the selected box list to remove the boxes that were
previously selected from the same category with lower prediction scores and
IOUs higher than the threshold. We mark it when the predicted score of the
input candidate box is lower than that of the selected box and IOU is higher
than the threshold (not allowing it to replace any candidate box, line 19). We
perform replacement and deletion operations only after comparing all elements
in the selected box list (line 23–24, 27–34).

Although our algorithm does not involve sorting scores, it achieves consistent
functionality with baseline algorithms and ensures consistent results even under
conditions of different order inputs. Sorting is implicitly performed because we
replace, delete, insert and suppress selected boxes based on their scores and
calculated IOUs.

3.2 Post-processing Implementation Overview

The proposed architecture of the Post-Processing Accelerator is presented in
Fig. 3. The convolution layers of Yolov2 predicts 845 box coordinates as described
in Sect. 2, each with score predictions for the 20 classes and 1 Confidence. These
outputs are processed in dataflow by the Decode module and Softmax module
to consolidate the boxes for the final detection.

3.3 Post-processing Implementation Details

In order to effectively complete NMS calculations, we have proposed some circuit
improvements in the following sections.

Approximated Method of Exponential Arithmetic. Exponential and sig-
moid functions are very challenging for hardware implementation, but they are
essential for Softmax computation. Since our quantization algorithm can quan-
tize the post-processing input to −128 to 127, we can design an approximate

A Low-Latency Hardware Accelerator for YOLO 273

Box Predictors

Cls Predictors

Decode Module

Softmax Module

Data
Compression

Max Acc Div

Threshold

 Module

Data
Package

 NMS

Contrl
Logic

PE
Chain

RAM

BRAM Reg

OUTPUT MEM

BRAM

Fig. 3. Architecture of Post-Processing Accelerator

Max

D

FIFO
Data_in

Counter

-Cls_num >0

0
+
- FIFO

Score

Conf
FIFO

Cls
- Exp

LUT

FIFO

+ D

FIFO

Sigmoid

LUT

/ ×

Fig. 4. The Process of Softmax Module

exponential function circuit easily. As shown in Fig. 4, we use a lookup table
to store the dequantized function values in Block RAM (BRAM). In the post-
processing stage, we need to compute exponential and sigmoid functions for
Score calculation. The dequantized values of these functions are stored in differ-
ent BRAMs for parallel access.

Moreover, we exploit the property of Softmax computation to compress some
of the dequantized outputs. Because Softmax involves normalization, the nor-
malized output ranges from negative infinity to zero, and the corresponding
exponential output ranges from zero to one. This can be easily quantized with
8-bit fixed-point numbers. By doing so, we further reduce the storage space
consumption.

Overall, we only need 3 M32K BRAMs to store all the dequantized results.
This method introduces very small errors compared with function approximation
methods such as Taylor series expansion, and most importantly, it does not
consume any DSP resources. As shown in Table 1, we compare the resource
utilization with different method of sigmoid function implement.

274 A. Wang et al.

Table 1. Comparation of implementations of sigmoid function approximations

Logic Register Memory DSP M32K BRAMs

[15] 67 134 2304 2 –
Ours 38 23 – 0 1.5

Data and Space Compression. The object detection algorithm produces a
large number of candidate boxes, which poses a great challenge for hardware
storage. To address this issue, we apply data compression and spatial compres-
sion techniques to reduce the storage space demand.

For data compression, the convolution layer outputs are converted back
to floating-point numbers after dequantization in the Decode and Softmax
modules. Floating-point numbers offer higher accuracy for computation, but
they also require more storage space. A single-precision floating-point number
needs 4 bytes of storage space. To quantize the output coordinate data(i.e.,
{xmin, ymin, xmax, ymax}, which are fed into the NMS module), we scale them
to between 0 and 1. We experiment with different quantization bit-widths and
their effects on accuracy. We finally choose 8-bit fractional quantization.

For spatial compression, the NMS module computes IOU for each category
of boxes and obtains the detection results for each category. Normally, data from
different categories are stored separately, which avoids interference but also leads
to redundancy. We store data from different categories in a contiguous memory
space to save storage consumption. We use RAM to store data contiguously and
use category tags to mark them in memory. We also store some control logic
for NMS in the same memory space and pack all information related to a box
together. Figure 7 illustrates how data are stored when there are two categories
(Fig. 5).

D1

D2 D3 D4 D5D1

D2

D3

D4

D5

S1 S1

Label

Data

Used

DataFlow

1

D1

2

D2

1

D3

2

D4

1

D5

Data Package

Data Package

{Data} {Cls} {Logic control}

(a) Different class is stored
respectively

(b) Different class is stored
together

S1 32Kbit BRAM

D1

Fig. 5. The Process of Data Package

A Low-Latency Hardware Accelerator for YOLO 275

NMS Hardware Implementation. As shown in Fig. 6, the post-processing
module is composed of a processing element (PE) and a control logic block. The
PE contains a buffer that stores a packed data of a single bounding box (includ-
ing coordinates, score, class and control logic) and an IOU computation unit.
The PE traverses the select boxes in the buffer and performs a series of com-
parisons and IOU calculations with the new input box. The control logic block
determines whether to replace, ignore or delete the local or incoming bounding
box based on the results. Each bounding box in the PE has a suppression flag
to prevent erroneous deletion in the sequential structure, which is explained in
detail previously. The NMS module does not wait for all bounding boxes to be
generated by the convolutional layer and Decode/Softmax module of Yolov2.
Instead, it uses a first-in first-out (FIFO) queue to buffer the input.

Buffer

IOU Computation

PE

New Box

Contrl Logic
Center

DDR

Insertion Tag

NMS
Moudule

Fig. 6. NMS Hardware Implementation.

4 Experiment Result

We implemented and deployed neural network accelerators and post-processing
accelerators on Xilinx Alveo U50 FPGA attached as a PCIe accelerator card to
an AMD RyZenq 5950X server with 16 dual-threaded cores, a working frequency
of 3.4GHz and 64GB RAM. In this setup, the host CPU sends input images to
the FPGA accelerator card and receives the returned output prediction via the
PCIe link. Similarly, the post-processing acceleration module is part of the entire
system and outputs the corresponding results to the host CPU via the PCIe link
after processing the convolution layer output results. The actual execution time
of the post-processing module is measured using Xilinx Runtime Library (XRT)
analysis API. The resource consumption of the post-processing module on the
entire development board was also calculated using Vivado2022 tools.

We tested our post-processing accelerator on multi-class datasets and single-
class datasets separately. We validated the system’s functionality on 4952 val-
idation images from VOC2007 dataset and 232 validation images from remote

276 A. Wang et al.

Table 2. Comparison with general-purpose hardware

Frequency (MHz) Accuracy Latency (us) Dataset

AMD Ryzenq 5950X 3400 75.09% 555 VOC
90.41% 141 SAR

Our Work 300 74.82% 283 VOC
90.38% 78 SAR

Table 3. Comparison of our work to prior FPGA-based postprocessing accelerator

LUTRAMDSPsBRAMsFF Latency FPGA
Device

Frequency
(Mhz)

Boxes
number

Best
boxes

Multi
Class

F. Liang et
al. [7]

2890 36 203 11842 680 us Viertex-7
485T

100 1960 3 No

H. Zhang et
al. [15]

714 22 32 11139 32 us Zynq-7
VC 706

100 3000 5 No

A.
Anupreetham
et al. [1]

– 695 425 86,704 0.13 us Stratix 10
GX2800

350 1917 – Yes

This work 1364 77 24.5 13929 283 us Alveo U50 300 845 128 Yes
1181 77 11 16071 78 us Alveo U50 300 845 5 No

sensing ship dataset. This proves that our architecture is versatile and suitable
for not only single-class object detection tasks.

Table 2 present a performance comparison of our post-processing accelerator
with general hardware on the VOC2007 dataset and SAR image ship dataset.
The post-processing accelerator uses a hardware-friendly NMS algorithm to sig-
nificantly reduce latency while only incurring an acceptable loss of accuracy.
Specifically, the mAP decreases by 0.17% on the VOC2007 dataset and only
0.03% on the SAR image ship dataset. Our results demonstrate that the post-
processing accelerator is a promising approach for FPGA neural network acceler-
ation. The accelerator achieves significant latency reductions while maintaining
high accuracy, making it a valuable tool for real-time applications.

Table 3 compares our work with other object detectors that deploy post-
processing on FPGAs. Some of the works in the Table 3 are implemented on
different feature extraction networks and object detectors, but this does not
affect the comparison and evaluation of their post-processing modules. The most
relevant comparison is against the work of [1], which is implemented on the
same generation of Intel FPGA and is the only object detection accelerator
that verifies processing acceleration modules on multi-class datasets. Compared
with its high throughput and low latency implementation, our accelerator has
lower resource utilization. According to the user guide provided by Xilinx and
Intel, we converted the logic resources of different implementations on the FPGA
into LUT resources. The work of [1] used 86704 Adaptive Logic Module (ALM)
resources in the post-processing module, each containing 2 LUT resources and
1 register resource. We converted this and compared it to the 13929 register

A Low-Latency Hardware Accelerator for YOLO 277

Fig. 7. The detection examples of Yolov2

resources and 12837 LUT resources we used in our work, we consumed 13.5×
lower LUT resources and 6× lower register resources.

We also deployed a single-class object detection task on FPGA based on
the post-processing architecture proposed in this paper using the VITIS HLS
toolchain. In order to ensure its versatility, we still retain the calculation process
that can be omitted, because this will affect its normal operation under multi-
class object detection tasks. The post-processing accelerator implemented by [15]
has lower resource utilization on DSP and LUTRAM. Nevertheless, our solution
ensures that the post-processing accelerator architecture we proposed is feasible
for different object detection tasks, and our solution still achieves lower resource
utilization and delay at higher detection accuracy.

5 Conclusion

In this paper, we propose a post-processing accelerator for FPGA-based
YOLOv2 object detection. We propose a novel hardware-friendly NMS algo-
rithm for FPGA accelerator design, which alleviates the performance bottleneck
of NMS and deploys the corresponding hardware architecture. We validate our
algorithm on the VOC2007 dataset. In addition, we propose an approximate
exponential function circuit to simplify the computational complexity in the
post-processing stage. Our work achieves considerable detection accuracy while
using much fewer resources. This makes it possible to deploy object detection
on edge devices with more limited resources.

References

1. Anupreetham, A., et al.: End-to-end FPGA-based object detection using pipelined
CNN and non-maximum suppression. In: 2021 31st International Conference on
Field-Programmable Logic and Applications (FPL), pp. 76–82 (2021). https://doi.
org/10.1109/FPL53798.2021.00021

https://doi.org/10.1109/FPL53798.2021.00021
https://doi.org/10.1109/FPL53798.2021.00021

278 A. Wang et al.

2. Cai, L., Dong, F., Chen, K., Yu, K., Qu, W., Jiang, J.: An FPGA based heteroge-
neous accelerator for single shot multibox detector (SSD). In: 2020 IEEE 15th Inter-
national Conference on Solid-State & Integrated Circuit Technology (ICSICT), pp.
1–3. IEEE (2020)

3. Chen, Y.H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient recon-
figurable accelerator for deep convolutional neural networks. IEEE J. Solid-State
Circuits 52(1), 127–138 (2016)

4. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit.
In: Proceedings of the 44th Annual International Symposium on Computer Archi-
tecture, pp. 1–12 (2017)

5. Lee, J., Kim, C., Kang, S., Shin, D., Kim, S., Yoo, H.J.: UNPU: a 50.6 TOPS/W
unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-
precision. In: 2018 IEEE International Solid-State Circuits Conference-(ISSCC),
pp. 218–220. IEEE (2018)

6. Li, Z., Zhang, Y., Sui, B., Xing, Z., Wang, Q.: FPGA implementation for the sig-
moid with piecewise linear fitting method based on curvature analysis. Electronics
11(9), 1365 (2022)

7. Liang, F., Yang, S., Mai, T., Yang, Y.: The design of objects bounding boxes non-
maximum suppression and visualization module based on FPGA. In: 2018 IEEE
23rd International Conference on Digital Signal Processing (DSP), pp. 1–5 (2018).
https://doi.org/10.1109/ICDSP.2018.8631668

8. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0_2

9. Ma, Y., Zheng, T., Cao, Y., Vrudhula, S., Seo, J.: Algorithm-hardware co-design
of single shot detector for fast object detection on FPGAs. In: 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 1–8. IEEE
(2018)

10. Mo, R., Xu, K., Liu, L., Liu, L., Wang, D.: Adaptive linear unit for accurate binary
neural networks. In: 2022 16th IEEE International Conference on Signal Process-
ing (ICSP), vol. 1, pp. 223–228 (2022). https://doi.org/10.1109/ICSP56322.2022.
9965306

11. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

12. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271
(2017)

13. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

14. Wang, Z., Xu, K., Wu, S., Liu, L., Liu, L., Wang, D.: Sparse-YOLO: hard-
ware/software co-design of an FPGA accelerator for YOLOv2. IEEE Access 8,
116569–116585 (2020). https://doi.org/10.1109/ACCESS.2020.3004198

15. Zhang, H., Wu, W., Ma, Y., Wang, Z.: Efficient hardware post processing of
anchor-based object detection on FPGA. In: 2020 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp. 580–585 (2020). https://doi.org/10.1109/
ISVLSI49217.2020.00089

16. Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a sur-
vey. Proc. IEEE 111(3), 257–276 (2023). https://doi.org/10.1109/JPROC.2023.
3238524

https://doi.org/10.1109/ICDSP.2018.8631668
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/ICSP56322.2022.9965306
https://doi.org/10.1109/ICSP56322.2022.9965306
http://arxiv.org/abs/1804.02767
https://doi.org/10.1109/ACCESS.2020.3004198
https://doi.org/10.1109/ISVLSI49217.2020.00089
https://doi.org/10.1109/ISVLSI49217.2020.00089
https://doi.org/10.1109/JPROC.2023.3238524
https://doi.org/10.1109/JPROC.2023.3238524

	A Low-Latency Hardware Accelerator for YOLO Object Detection Algorithms
	1 Introduction
	2 Background and Related Work
	2.1 The Network Architecture of Yolov2
	2.2 Non-maximum Suppression
	2.3 Bottleneck Analysis
	2.4 FPGA-Based Object Detection System.

	3 Proposed Design
	3.1 Hardware-Friendly NMS Algorithm
	3.2 Post-processing Implementation Overview
	3.3 Post-processing Implementation Details

	4 Experiment Result
	5 Conclusion
	References

