
Delay Optimization for Consensus
Communication in Blockchain-Based

End-Edge-Cloud Network

Shengcheng Ma1(B) , Shuai Wang1 , Wei-Tek Tsai1,2, and Yaowei Zhang3

1 School of Computer Science and Engineering, Beihang University, No. 37 Xueyuan
Road, Beijing, China

mashengcheng@163.com
2 Digital Society and Blockchain Laboratory, Beihang University, No. 37 Xueyuan

Road, Beijing 100191, China
3 China Mobile Information Security Management and Operation Center, Beijing,

China

Abstract. With the rapid development of smart IoT technology, var-
ious innovative mobile applications improve many aspects of our daily
life. End-edge-cloud collaboration provides data transmission in connect-
ing heterogeneous IoT devices and machines with improvements in high
quality of service and capacity. However, the end-edge cloud architecture
still remains some challenges including the risks of data privacy and tol-
erance transmission delay. Blockchain is a promising solution to enable
data processing in a secure and efficient way. In this paper, blockchain
is considered as an infrastructure of the end-edge-cloud network and the
time cost of the PBFT consensus is analyzed from the perspective of
the leader’s position. Considering the concurrent processing of tasks in
cellular networks, multi-intelligent deep reinforcement learning is used to
train the assignment strategy of the edge server. The numerical results
show that the proposed method can achieve better performance improve-
ment in terms of the time consumption of data processing.

Keywords: End-Edge-Cloud · Blockchain · Delay Optimization ·
Multi-Agent Deep Reinforcement Learning

1 Introduction

The development of mobile communication technologies fully supports emerging
wireless applications. In particular, 5G/6G has facilitated the widespread use of
the Internet of Things (IoT). Various applications are based on IoT technologies
that provide users with friendly services, such as the Internet of Vehicles (IoV)
[1], electronic payments, smart homes, virtual and augmented reality(VR/AR)
[2], and unmanned aerial vehicles(UAV) [3]. Massive data will be generated by
endpoint devices, processed and stored as valuable information. End-edge-cloud
collaboration, integrated with smart IoT devices, edge computing, and the cloud,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
C. Li et al. (Eds.): APPT 2023, LNCS 14103, pp. 241–262, 2024.
https://doi.org/10.1007/978-981-99-7872-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7872-4_14&domain=pdf
http://orcid.org/0000-0003-1060-1208
http://orcid.org/0000-0002-6135-3614
https://doi.org/10.1007/978-981-99-7872-4_14

242 S. Ma et al.

is considered a promising architecture to cope with a large amount of data [4]. To
enhance data security and availability during data communication, blockchain
is integrated with end-edge-cloud network. Blockchain is a tamper-proofed and
traceable distributed ledger that can prevent the data from tampering or con-
tamination by attackers [6]. The consensus algorithm guarantees reliable data
consistency across all nodes of the blockchain [7]. Therefore, blockchain is widely
considered a promising technology that integrated in mobile communication [8].

Though great benefits can be gained through the application of cloud-edge-
end collaboration, there are still some problems. The tasks can be offloaded to
edge servers, while the edge server is not enough to take all the tasks. Sending all
data to cloud may cause long propaganda latency, and the latency will degrade
system performance [5]. Moreover, blockchain protects data from tampering,
but the consensus mechanism leads to more communication and increased data
processing delays.

To improve the performance of the end-edge-cloud network, many studies
attempt to coordinate tasks at different layers. Article [9,10] exploit the game-
theoretical method to design an incentive mechanism to promote the system
performance. Resource allocation is an ordinary research orientation to boost
system efficiency [11,12]. Yang et al. [13] schedule the computing and network
resources effectively and build an intelligence measurement model for healthcare
systems. Reinforcement learning, as an optimization method, is often used to
solve resource allocation problems. Liao [14] proposes a multi-timescale resource
allocation model based on reinforcement learning. The model can optimize
physical-layer task offloading in a large timescale. Delay is an important per-
formance indicator. Richard Yu’s team [15,16] employs reinforcement learning
to solve a resource allocation model for reducing delay in Blockchain-based IoT
networks. However, they do not take into account the case of parallel processing
of tasks when calculating the processing delay.

The work of [17] builds an edge computing environment among IoT devices
with blockchain technologies to support the embedding of security-focused
offloading algorithms. Zhang et al. [18] propose a blockchain empowered fed-
erated learning framework in digital twin empowered 6G networks. This frame-
work improves the reliability and security of the system and enhances data
privacy. Due to the public blockchain having the disadvantages of low trans-
action throughput, many researchers prefer using permissioned-blockchain in
mobile networks. PBFT [19] is a classic consensus algorithm widely used in the
permissioned-blockchain. These studies [20,21] attempt to optimize the PBFT
consensus algorithm to improve the performance of the blockchain network.
Owing to the different volume of resources at each level in the end-edge-cloud
network and the algorithmic rules of PBFT, the position of the leader node is
also an important factor in the performance of the blockchain networks. Yet,
the impact of the position of the leader in the blockchain has not been well
investigated in these studies.

The main contributions of our paper can be summarized as follows:

– First, we establish a blockchain-based end-edge-cloud task assignment model
based on reinforcement learning. In considering task processing times, we take

Delay Optimization for Consensus Communication 243

into account the situation where tasks are processed in parallel on multiple
edge servers. The model aims to reduce task processing latency by assigning
tasks to appropriate positions for execution.

– Second, according to the computing, communication, and storage capabilities
of layers in the end-edge-cloud architecture, we analyze the time consump-
tion of the PBFT consensus algorithm where the leader deployed on edge
and cloud, respectively. The edge server is near the task side but has a small
computational power, whereas the cloud has high computational power but
the transmission delay is large. Since the leader node broadcasts more com-
munication than the replica node, there is a difference in the total time con-
sumption of the consensus algorithm when the leader is deployed in different
locations.

– Third, we implement an optimization method to solve the task assignment
problem using the MADDPG algorithm. Our approach uses multi-agent to
manage the task assignment for multiple edge servers, and the experimental
results demonstrate the superiority of our proposed method.

The rest of this paper is organized as follows: In Sect. 2, we introduce the
system model of the blockchain-enabled end-edge-cloud network and analyze
the time cost for the PBFT consensus algorithm. Next, we present a reinforce-
ment learning optimization framework to select the appropriate equipment for
task processing in Sect. 3. We design a reward function to fit the scenario and
implement the framework using the MADDPG method in this section. Then, we
provide the experimental and analyze the result to illustrate the improvement
of performance. Finally, we conclude this paper in Sect. 5.

2 System Model

To illustrate our system, we first describe the architecture of blockchain-based
end-edge-cloud collaboration. Then we build a model to represent the system
operation mechanism. Finally, we use the MADDPG deep reinforcement learning
method to optimize the policy for blockchain.

2.1 The Architecture of the Blockchain-Enabled End-Edge-Cloud
Collaboration

For a typical end-edge-cloud collaboration architecture, there are three layers
that constitute the network. As the name is called, those are the device layer,
the mobile edge computing layer, and the cloud layer.

For the device layer, it is the endpoint of the architecture and it usually
represents the IoT network. In the edge layer, the edge computing servers are
usually deployed near the base station. Blockchain service is also supported in
the edge layer. The edge computing servers act as the consensus nodes in the
blockchain network. The offloading data can be recorded in a block and saved in
the blockchain after consensus operation. The cloud layer is deemed as the data

244 S. Ma et al.

Fig. 1. The Architecture of Blockchain-enabled End-Edge-Cloud Collaboration

center which has sufficient computation, storage, and bandwidth resources. The
cloud layer also provides the blockchain service. The cloud server can participate
in the consensus communication with the edge servers.

The device layer, the edge layer, and the cloud collaborate with each other
and integrate together to consist of a blockchain-based cloud-edge-end architec-
ture. The proposed architecture is shown in Fig. 1.

2.2 Network Model

In the device layer, we assume that a base station covers a cellular network.
In each cellular network, there are N active IoT devices connected to the base
station. The set of all active IoT devices can be denoted as D = {d1, d2, ..., dN}
The ith (i = 1, 2, ...N) active IoT device di means that it has a job need to be
processed at the time slot t.

In the edge layer, we consider that there are M edge servers represented
by the set E = {e1, e2, ..., eM} in the network. Each edge server, like the jth
(j = 1, 2, ...,M) edge server, is deployed at the base station and provides a
blockchain service. The edge server is responsible to provide service for IoT
devices in the cellular network which is covered by the base station. Therefore,
we combine the concept of the edge server with the base station, and the jth
cellular network also means the network serviced by the edge server ej . The
amount of IoT devices in the whole network is N × M .

Delay Optimization for Consensus Communication 245

We assume that a cloud server C with sufficient resources in the cloud layer,
and it is connected to the edge servers by a wired link. All the edge servers and
the cloud server constitute a blockchain platform.

The IoT device has lightweight storage and computing capacity, and it only
can execute the low load task. A job from the IoT device di connected with edge
server ej denotes as Ji,j <si,j , fi,j>, and it requires two kinds of resource, si,j is
the data size and fi,j is the required CPU cycles of the job. If the ith IoT device
has enough resources to process the job Ji,j in time, the job will be handled on
the local device. Otherwise, the job will be offloaded to the edge server.

2.3 Wireless Communication

When the IoT device’s own resources are insufficient to complete task processing,
it will offload the job to the edge server through wireless communication. For
wireless communication, the data transmission power on the ith IoT device is
represented as PIi,Ej

, and the channel gain from the jth edge server to the ith
IoT device is gIi,Ej

. The actual effective transmission data rate is defined as
Eq. 1.

BIi,Ej
= W log2(1 +

PIi,Ej
gIi,Ej

N0W
) (1)

where W is the bandwidth of the channel, and N0 is the noise power. Conse-
quently, the speed of task offloading between the ith IoT device to the jth edge
server is BIi,Ej

.

2.4 Offloading and Computation

The determinant of where a task will be executed is based on the processing
time. Our goal is to minimize the processing time. For the different positions of
the job executing, the processing time will be discussed as followed:

Computing on Local Device. For the local computation, the job will be
executed immediately without data transferring. The time cost is only generated
by the CPU computing, so the time to execute a job on a local device TLocal,i

can be expressed as

TLocal,i =
fi,j

F I
i

. (2)

where F I
i the CPU cycles per second of the ith IoT device. In addition, we

assume that the data size of the job si,j should be less than the storage capacity
of the IoT device SI

i .

Computing on Edge Server. When a job is too complex, it will be time-
consuming to execute on the local device and impact on quality of service (QoS).
Therefore, the job will be offloaded to the edge computing server to reduce the

246 S. Ma et al.

processing time. When the job is processed on the edge server, the time cost
includes transmission time and computation time.

The transmission time from the ith IoT device to the jth edge server T trans
Edgej ,i

is represented as
T trans

Edgej ,i =
si,j

BIi,Ej

. (3)

The computation time for job Ji,j on the jth edge server T comp
Edgej ,i is denoted as

T comp
Edgej ,i =

fi,j

FE
j

(4)

where FE
j is the CPU cycle of the jth edge server. The processing time of Ji,j

on the jth edge server TEdgej ,i is defined as Eq. (5).

TEdgej ,i = T trans
Edgej ,i + T comp

Edgej ,i =
si,j

BIi,Ej

+
fi,j

FE
j

(5)

Computing on Cloud Server. If the resource of the edge server is also not
enough to process the job, edge server will transfer the job to the cloud server.
The processing time of the job in the cloud server consists of three parts. The
transmission time from the IoT device to the edge server T trans

Edgej ,i, the transmis-
sion time from the edge server to the cloud server T trans

Cloud,j , and the computation
time on the cloud server T comp

Cloud,i. The transmission time T trans
Edgej ,i is shown as

Eq. (3). The transmission time T trans
Cloud,i can be represent as:

T trans
Cloud,i =

si,j

BEth
+ Troute, (6)

where BEth is the bandwidth of the wire link between the edge server and the
cloud server, and Troute is the delay generated by routers from the edge server
to the cloud server.

The computation time T comp
Cloud,i is denoted as:

T comp
Cloud,i =

fi,j

FC
, (7)

where FC is the CPU cycle frequency allocated by the cloud server.
The processing time of job Ji,j on the cloud server TCloud,i is presented as

Eq. (8).

TCloud,i = T trans
Edgej ,i + T trans

Cloud,i + T comp
Cloud,i =

si,j

BIi,Ej

+
si,j

BEth
+ Troute +

fi,j

FC
(8)

Processing Time of Tasks in Entire Network. For jobs in a cellular net-
work, we assume that a, b, and c are the number of jobs executed on the local

Delay Optimization for Consensus Communication 247

device, the edge server, and the cloud server. The range of values of these vari-
ables should satisfy 0 ≤ a, b, c ≤ N, and a + b + c = N . The whole processing
time in the mth cellular network can be represented as:

Tcellj = max{max
i∈a

{TLocal,i},
∑

i∈b

TEdgej ,i,
∑

i∈c

TCloud,i}. (9)

We calculate the max value of these three parts to support concurrent execution.
It means that three layers of servers can process tasks concurrently, which can
greatly improve the efficiency of the system. Every IoT device can execute the
job respectively, so we use the max function to calculate the processing time of
the device layer. In addition, the total amount of data size for jobs offloaded
to the edge server should be less than the storage capacity of the edge server.
That is

∑
i∈b si,j ≤ SE

j . The cloud server is considered to have enough storage
capacity to accommodate all offloading jobs, and computing supports parallel
processing of offloading jobs from multiple cellular networks.

For all tasks in the network, the total task processing time at the current
moment Ttotal_t can be expressed as:

Ttotal_t = max
j∈M

{Tcellj } (10)

2.5 Time Consumption of Blockchain Consensus

After processing, the job should be stored securely. To ensure the traceability and
non-tampering of data, this storage process is done by the blockchain system.
In this paper, we investigate the PBFT algorithm as the typical blockchain
consensus method. In the cloud-edge-end architecture, the blockchain network
contains two situations on the basis of the position of the leader node. One is
the leader node voted in an edge server, the other one is the leader node in the
cloud server. Next, we discuss the time cost in two situations respectively.

Leader Node on the Edge Server. For the case of the leader node on the
edge server, we analyzed the time consumption of the different algorithm phases.

In the request phase, a client as the sponsor sends the request of consensus for
the J <i, j> to the leader node. The client is an edge server that has completed
job J . The transmission from the client to the leader node can be denoted as:

T trans
req,j =

R + si,j

Bjc,jl

(11)

where Bjc,jl is the bandwidth between the client and the leader node, and R
is the REQUEST message except si,j . The REQUEST message includes oper-
ation which is the information requiring consensus si,j , timestamp, and client
ID. In addition, the client calculates the digest of the request message and signs
it. Then, it appends the signature to the plaintext of the REQUEST messages
and sends them to the leader node. In the pre-prepare phase, the leader node

248 S. Ma et al.

receives the REQUEST message and validates the signature of the client. Then,
the leader composes a PRE-PREPARE message. The PRE-PREPARE message
contains the view number, sequence number, and digest of the REQUEST mes-
sage. The leader node signs the digest of the PRE-PREPARE message and com-
bines the signature with the plaintext and the REQUEST message. Next, the
leader multicasts the combination of the PRE-PREPARE message to all the
replica nodes. The time cost for multicast can be denoted as:

T trans
pre−pre,j =

(PP + R + si,j) · (M − 1)
Bjl,jr

+
PP + R + si,j

BEth
+ Troute (12)

where PP is the PRE-PREPARE message and the signature, Bjl,jr is the band-
width between the leader node and the replica node. There are M − 1 nodes
deployed on the edge servers and one node deployed on the cloud server. The
replica nodes receive the message from the leader node and check its correctness.
It contains the signature of the leader’s PRE-PREPARE message, the signature
of the client’s REQUEST message, and the digest of the REQUEST message.
If this information is right, the replica node accepts the message and turns into
the prepare phase.

In the prepare phase, the replica node multicasts the PREPARE message to
other nodes. Similar to the PRE-PREPARE message, the PREPARE message
also contains the view number, sequence number, and digest. Besides, it adds
its node identification to the message. The time cost for transmission can be
denoted as:

T trans
pre,j =

P · (M − 1)
Bj′,j

+
P

BEth
+ Troute (13)

where P is the PREPARE message and the signature, Bj′,j is the bandwidth
between replica nodes. For the special case, a replica node is deployed on the
cloud server. The time cost of the transmission for this node can be represented
as:

T trans
pre,c = (

P

BEth
+ Troute) · M (14)

Considering the concurrent communications, the total time cost of this phase
can be expressed as:

T trans
pre = max

j∈M
(T trans

pre,j , T trans
pre,c) (15)

If each node (including leader and replica) in the blockchain receives at least 2f
valid PREPARE messages, it will enter the commit phase.

In the commit phase, each node sends the COMMIT message to other nodes.
The contents of the COMMIT message are the same as the PREPARE message,
so the time cost of the node on the edge server can be denoted as:

T trans
com,j =

C · (M − 1)
Bj′,j

+
C

BEth
+ Troute (16)

where C is the COMMIT message and the signature, Bj′,j is the bandwidth
between different edge servers. For the node deployed on the cloud server, the

Delay Optimization for Consensus Communication 249

time cost can be represented as:

T trans
com,c = (

C

BEth
+ Troute) · M (17)

The total time cost of the commit phase can be expressed as:

T trans
com = max

j∈M
(T trans

com,j , T trans
com,c). (18)

If the number of the COMMIT messages accepted by the consensus node is equal
to or greater than 2f+1, including its own message, the node will send a REPLY
message to the client.

In the reply phase, the majority of nodes in the blockchain attain the consen-
sus for a normal situation. Each node will save si,j on the blockchain and send
the REPLY message to the client. The REPLY message contains the view num-
ber, timestamp, client ID, node ID, and the result. The time cost of transmission
for node deployed on the edge server can be expressed as:

T trans
rep,j =

RP

Bjr,jc

(19)

For the node deployed on the cloud server, the time cost can be denoted as:

T trans
rep,c =

RP

BEth
+ Troute (20)

The total time cost of the reply phase can be expressed as:

T trans
rep = max

j∈M
(T trans

rep,j , T trans
rep,c). (21)

The total time cost of the consensus for the leader deployed on the edge
server is:

Ttotal_c = T trans
req,j + T trans

pre−pre,j + T trans
pre + T trans

com + T trans
rep

=
R + si,j

Bjc,jl

+
(PP + R + si,j)(M − 1)

Bjl,jr

+
PP + R + si,j

BEth
+ Troute +max

j∈M
(T trans

pre,j , T trans
pre,c)

+ max
j∈M

(T trans
com,j , T trans

com,c) + max
j∈M

(T trans
rep,j , T trans

rep,c).

(22)

Leader Node on the Cloud Server. In the case of a leader deployed on a
cloud server, its consensus communication is different from a leader on an edge
server. The difference is mainly concentrated in the transmission path, so the
time cost changes accordingly.

In the request phase, the client sends the REQUEST message to the leader
on the cloud server. The time cost of the transmission is:

T trans
req,c =

R + si,j

BEth
+ Troute (23)

250 S. Ma et al.

In the pre-prepare phase, the leader node sends the PRE-PREPARE message
to all replicas on the edge servers. The time cost in this phase can be expressed as:

T trans
pre−pre,c = (

PP + R + si,j

BEth
+ Troute) · M (24)

In the prepare phase, the replica sends the PREPARE message to other nodes
in the blockchain network. The leader node does not participate in message
transmission. Therefore, the time cost in this phase can be represented as:

T trans
pre =

P

Bj′,j
· (M − 1) +

P

BEth
+ Troute (25)

In the commit phase, each node sends the COMMIT message to others.
Whatever the leader node is deployed on which position, the communications
are identical. Hence, the time cost in this phase is the same as Eq. 18.

In the reply phase, all nodes reply to the client, so the transmission time is
the same as Eq. 21.

The total time consumption of consensus for the leader deployed on the cloud
server can be denoted as:

Ttotal_c = T trans
req,c + T trans

pre−pre,c + T trans
pre + T trans

com + T trans
rep

=
R + P + M · PP + (M + 1) · si,j

BEth

+ (M + 2) · Troute +
P

Bj′,j
· (M − 1)

+ max
j∈M

(T trans
com,j , T trans

com,c) + max
j∈M

(T trans
rep,j , T trans

rep,c)

(26)

2.6 Optimization Model of Minimizing Time for Task Processing
and Consensus

In the proposed cloud-edge-end network, we assume that each IoT device has a
job to process at a time period. In a time period, all jobs in the network should
be completed. Then, the model enters the next stage and devices generate new
tasks. Though we suppose the cloud server has adequate resources, the task
offloading should satisfy the resource limitation of the edge server. In order to
minimize the processing time, the selection of the job processing position needs
to be optimized. Combining the above factors, we define the task offloading
model as follows:

P1 : min Ttotal_t + Ttotal_c

s.t. C1 : 0 � a, b, c � N

C2 : a + b + c = N

C3 : si,j � sI
i ,∀i ∈ {1, .., N}

C4 :
∑

i∈b

si,j � sE
j ,∀j ∈ {1, ..,M}

C5 :
∑

i∈b

BIi,Ej
� BEj

,∀i ∈ {1, ..,M}

(27)

Delay Optimization for Consensus Communication 251

Constraint C1 represents that the number of jobs assigned in the end, edge,
and cloud should be valid values. Constraint C2 represents that all the jobs
should be appointed in a position and processed. Constraint C3 indicates that
the size of the job should be less than the storage capacity of the IoT device that
generates the job. Constraint C4 indicates that the total data volume of tasks
offloaded to the edge server should be less than the storage capacity of the edge
server. For IoT devices that offload tasks, constraint C5 shows that the total
bandwidth allocated to these devices should be less than the total bandwidth of
the edge servers.

3 Reinforcement Learning Optimization Framework

The goal of the model is to minimize the task processing time, so we need to
assign the tasks to the appropriate servers for processing. Because of Eq. (27)
is an NP-hard problem, we cannot obtain a solution using traditional methods
within a certain period of time. In addition, each cellular network in the model
need an agent, we use Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) [22] algorithms to support the parallel processing and solve this problem.
For task assignment, we can consider the current network model as the state in
RL, and we deem the assignment of tasks as the action. We also need to define
a reasonable incentive function as the reward. With the help of the algorithm,
the agent completes the position selections for tasks and achieves the goal of
minimizing the task processing time.

3.1 State Space

In our model, the cloud-edge-end architecture is constructed by M cellular net-
works. For a cellular network, we define the environment as the system state
oj = {Jj , F

I
j , Bj , S

E , FE , SC , FC}, j ∈ [1,M]. Where Jj = {J1,j , J2,j , ..., JN,j}
is the set of tasks generated at time slot t in the jth cellular network. For
a task Ji,j , it can be denote as Ji,j = <si,j , fi,j>, i ∈ [1, N]. The element
si,j , i ∈ [1, N], j ∈ (1,M) is the data size of task from device di in the jth cellular
network. Similarly, the element fi,j , i ∈ (1, N), j ∈ (1,M) is the required CPU
cycles of the task. F I

j = {F I
1,j , F

I
2,j , ..., F

I
N,j} is the set of computation capacity

of the IoT devices. For Bj , it can be written as Bj = {BI1,Ej
, BI2,Ej

, ..., BIN ,Ej
},

and it represents the set of the required bandwidth of tasks which need to be
allocated by edge server. SE , FE are the storage capacity and CPU frequency of
the edge server respectively. SC , FC are the resources of the cloud server includ-
ing storage and calculation. In each time slot, the parameters of tasks generated
by the device layer will be stochastic values. For the whole network, we should
combine all the cellular networks, so the state space of the environment can be
written as S which is S = {o1, o2, ..., oM}.

3.2 Action Space

The action space is defined as the processing position selection for tasks. The
processing position includes local which is IoT device, edge server, and cloud

252 S. Ma et al.

server. In the time slot t, the action aj(t), j ∈ [1,M] denotes the selection in the
jth cellular network. It can be expressed as aj(t) = {a1,j(t), a2,j(t), ..., aN,j(t)}.
For ai,j(t), its value represents the selection of processing locations for task Ji,j .
It can be written as ai,j(t) = 0, 1, 2, where ai,j(t) = 0 means the decision of task
processing position is in the local device, while ai,j(t) = 1 means the task will
be offloaded to the edge server ej , and the task will be processed by cloud server
when ai,j(t) = 2. For the entire model, the action space can be represented as
A = {a1(t), a2(t), ..., aM (t)}.

3.3 Reward Function

An efficient incentive function is a key factor for the RL algorithm. When the
agent chooses the right action, the reward function should give positive incen-
tives, otherwise the reward function will punish the agent to avoid making wrong
decisions. After the action executing in each time slot, the reward function will
return a value. The accumulated value is related to the achievement of the opti-
mization objective in the model. Our goal of the proposed architecture network
is to minimize the task processing time, so we consider the time cost as criterion
in the reward function. Moreover, the action for the processing position selection
should be valid. This implies that the resources consumed by the selection must
be within the capacity of the servers. Consequently, the reward function for a
cellular network can be defined as:

rj(t) = α(T + Tlocalt − 2Ttotalt)

+ β(sE
j −

∑

i∈(b∪c)

si,j)

+ γ(BEj
−

∑

i∈(b∪c)

BIi,Ej
), j ∈ [1,M]

(28)

where T is the time span of the slot t, Tlocalt is the time cost of processing all
tasks on local devices, which means that there is no offloading. Ttotalt is the
time cost after the task assignment of action aj(t) executing, α, β, and γ are the
weight for turning the reward value.

Normally, all the tasks should be completed in the time slot, so T − Ttotalt

will be a positive number. Otherwise, the value of T − Ttotalt is negative, which
is a punishment. Similarly, utilizing edge or cloud computing should enhance the
processing efficiency of the task, or else such operations are futile. Therefore, a
larger positive difference of Tlocalt − Ttotalt indicates more efficient processing
and better incentives. This is a good decision. sE

j − ∑
i∈(b∪c) si,j denotes that

the agent will be punished if the obtained storage space caused by the action is
beyond the capacity of the edge server. (BEj

− ∑
i∈(b∪c) BIi,Ej

) means that the
savings in bandwidth resources will also be rewarded. For the two cases above,
i ∈ (b∪c) is the same as ai,j(t) = 1 or ai,j(t) = 2, and they both confine the case
in which the task is offloaded to the edge or the cloud server to perform. For the
whole system, the reward function should be R(t) = {r1(t), r2(t), ..., rM (t)}.

Delay Optimization for Consensus Communication 253

3.4 Optimization Solution by MADDPG Algorithm

We apply the MADDPG algorithm to solve the task processing location selec-
tion problem. Since our model represents a multiple cellular network scenario,
the multi-agent mode of the MADDPG can be effectively compatible with this
situation. In addition, the cellular networks share one cloud computing center,
so we expect that cellular networks can cooperate rather than compete. The
algorithm can well support this situation. By setting the number and policy
of adversaries, the cooperative relationship between agents can be realized. To
be suitable for multi-agent environments, the basic idea of the MADDPG algo-
rithm is centralized training and decentralized execution, which is the fusion and
extension of Deep Deterministic Policy Gradient(DDPG) [23] and Actor-Critic
[24] methods. Therefore, we adopt MADDPG to optimize the task assignments
in multiple cellular networks. To achieve the goal of minimizing task execution
time, we transform the problem into the assignment of tasks in different service
locations. We input the state information of the environment into the agents
of the RL model. The state information includes the requirements of tasks in
multiple cellular networks and the computing resources of each service node in
the end-edge-cloud system. In the proposed model, each agent is responsible for
task allocation in a cellular network, and multiple agents work together on the
selection of task processing locations for the entire network.

In the agent, a DDPG algorithm is constructed with four neural networks: the
Actor network, Critic network, Actor Target network, and Critic Target network.
The four networks have the same structure, each with three fully connected
layers and 64 nodes per layer. The policy in the agent can be defined as μ with
parameter θ.

For the Actor network, it generates an action based on the inputting state
information of the environment. It can be expressed as a = μθ(o|θ). To increase
the exploration of the environment, noise is added to the output of the Actor
network to form the final Action. The training goal of the Actor network is
to maximize the Q value of the accumulated rewards, and the gradient of the
expected reward for a cellular network can be denoted as below:

∇J(θ) = E[∇θμθ(a|o)∇aQμ(o, a)|a=μθ(o)]. (29)

After the interaction between the action and environment, the agent receives
a reward, and the environment transforms into a new state. The quadruple
(o, a, r, o’) will be stored in the memory buffer. The agent samples a mini-
batch of quadruples from the memory buffer, and utilizes experience replay to
update parameters of the Critic Target network and Actor Target network. When
updating the target networks, a soft update is used in order to avoid too fast
parameter changes. The parameters of the Actor Target network and Critic
Target network are updated by:

θμ′
= τθμ + (1 − τ)θμ′

θQ′
= τθQ + (1 − τ)θQ′ (30)

254 S. Ma et al.

where τ ∈ (0, 1) is the learning rate. The Actor Target network computes the
new action a′ = μ′(o′|θμ′

) and sends the result to the Critic Target network.
This action does not require the addition of noise. The Critic Target network
adopts the result from the Actor Target network to calculate the target value as
below:

y = re + γQ′(o′, μ′(o′|θμ′
)|θQ′

) (31)

For the Critic network, the output is the estimated Q value of the current
state and the corresponding action. The training updates θQ by minimizing the
difference between the action-value function Qμ and the target value y. The loss
function of the Critic network is calculated by:

L(θQ) = E[(Qμ(o, a|θQ) − y)2] (32)

Fig. 2. The MADDPG Model of Task Assignment for Blockchain-enabled End-Edge-
Cloud Network

The detail of the task assignment optimization by MADDPG is shown in
Fig. 2.

4 Experimental Environment and Results

In this section, we will first introduce our simulation setting. Then, we discuss
the performance of our proposed method.

4.1 Simulation Setting

In this simulation, TensorFlow 2.8.0 with Python 3.9 is employed to build the
experiment environment, and the OS is Windows 11. We consider an end-edge-
cloud network that includes a cloud server and some cellular networks. The

Delay Optimization for Consensus Communication 255

number of edge servers can be set as {3, 9, 15}. We set the number of edge
servers according to the principle that the number of edge and cloud servers
meets the 3f + 1 relationship required for Byzantine fault tolerance. In each
cellular network, the number of IoTs can be set as {10,20,30,40,50}. Each IoT
generates a task in slot time. The size of the task is from 0.5 MB to 10 MB,
and the required CPU cycles of the task are from 3.5G to 4.5G. The CPU
cycle frequency of the IoT device, edge server, and cloud server are 0.5GHz,
2.4GHz, and 20GHz, respectively. Some wireless resource parameters refer to the
article [11]. To analyze the consumption of consensus, we assume that both edge
servers and cloud servers are blockchain nodes that are involved in consensus
communication. For the PBFT algorithm, the message size of R, PP, P, C, and
RP is set to 1 KB, and the timeout for consensus was set to ≤ 1min. In addition,
other parameters in the simulation environment are shown in the Table 1.

Table 1. Simulation Parameters

Parameters Value

Path loss between the IoT and the edge server lIi,Ej 140.7+36.7log10(d)dB
Radio power of the IoT Pi 10 mW
Noise power N0 −174 dBm
Storage capacity of the edge server SE

j 100 MB
Total bandwidth of the edge server BEj 30 MHz
Data rate of wire link from edge to cloud server BEth 1 GB/s
Delay between the edge and cloud server Trouter 0.5 s
Slot time T 5 s
Reward value weight α, β, γ 0.5,0.25,0.25

4.2 Result and Discussion

Figure 3 shows the comparison of system reward in our proposed task assignment
method with different learning rates. The value of the reward is the average of
1000 training episodes. For learning rates 0.1 and 0.01, the system cannot reach
better rewards when it converges. When the learning rate is 0.001, the system
can obtain a high reward value and converge quickly. The reward has a negative
value because our incentive function has a penalty mechanism, and when tasks
are not allocated properly, the reward will have a negative value. Continuing
to reduce the learning rate to 0.0001 does not give better results, so we set the
learning rate to 0.001 for the following test.

Figure 4 shows the variation of reward with different numbers of edge servers.
We selected 3, 9, and 15 as the number of edge servers. These three numbers
were chosen because the total number of edge servers plus cloud servers meets
the Byzantine requirement of 3f + 1 for fault tolerance. Each edge server is

256 S. Ma et al.

Fig. 3. Reward with Different Learning Rate.

Fig. 4. Reward with Different Numbers of Edge Servers.

responsible for the processing tasks of 10 IoT devices. As the number of edge
server grows, our proposed model is still able to consistently guarantee a high
reward value. When the number of edge servers is 15, the system’s reward figure
exceeds 1200. This is because the increase in edge nodes means that more IoT
devices are covered and more tasks are handled, so the system gain increases.
Each agent can output better decision results for the task, and the model can

Delay Optimization for Consensus Communication 257

converge steadily at a high reward value. This validates the stability of the
model’s decision making capability.

Fig. 5. Reward with Different Numbers of IoT devices.

Figure 5 shows the change in system reward when increasing the number of
IoT devices served by the edge server. The number of edge servers is set as 3,
and the number of IoT tasks served by each edge node has been increased from
10 to 50. When the number of tasks increases to 50, there are many negative
rewards at the beginning of training. This is because our model has a penalty
mechanism. Failure to complete all tasks within the current time slot will result
in a negative value, and decisions that exceed the capacity of the edge server will
also result in a negative reward. As the number of tasks increases, it becomes
more difficult for the system to make decisions with constant resources. However,
after continuous training of the system, it can eventually converge to a relatively
optimal reward value. This illustrates the good adaptability of our method.

Figure 6 shows a comparison of the reward values obtained by the different
methods for the case of three edge servers, each handling the task of 10 IoT
devices. We compare with some existing schemes, such as the greedy strategy, the
random strategy, and similar to the method proposed in the article [15]. As shown
in the figure, the rewards of random method do not converge well to higher values
and the values fluctuate continuously. For the greedy algorithms, although the
reward value has been increasing, the value may be limited to the local optimum
without achieving higher gains. Article [15] presents an improved dueling DQN
method that is able to converge to a better value, but its convergence speed is
slower compared to our proposed method and the convergence value is lower
than the value obtained by our method. This demonstrates the advantages of
our approach and also illustrates that the adoption of our proposed approach

258 S. Ma et al.

Fig. 6. Reward with Different Method.

allows blockchain networks with end-to-end cloud architecture to process tasks
faster and with less transaction latency.

Figure 7 shows the task processing time of different methods under different
IoT task. The number of edge servers is set as 3, and the number of IoT tasks
for each edge server increased from 10 to 50. We can see that the results of
the random method are still inferior to the other three methods. The greedy
algorithm has significant time fluctuations due to converging to local optimal
values during execution. The method in article [15] is superior to the first two
methods, but slightly worse than our proposed method. This demonstrates the
advantages of the proposed method.

We also simulated the time consumption of PBFT consensus communication.
We conduct comparative experiments on the main factors affecting consensus
time, including the number of consensus nodes and the transmission delay of the
communication line between edge servers and the cloud server. Figure 8 shows
the comparison of time consumption under different consensus node numbers. In
this figure, we set the block size to 1MB and the latency between the edge server
and cloud server is 0.5 s. In this setting, the consensus time for deploying leader
on edge nodes and cloud server is similar and does not differ much. The time
consumption of consensus increases with the number of consensus nodes whether
the leader node is deployed on the edge server or on the cloud server. When the
number of consensus nodes is small, the time consumption of the leader on the
edge server is greater than on the cloud server, but as the number of nodes
increases, the time consumption is less when the leader is deployed on the edge
server than on the cloud server. When the delay is 0.5 s and the number of nodes
participating in consensus is 22, the time consumption of consensus exceeds 20 s,

Delay Optimization for Consensus Communication 259

Fig. 7. Task Processing Time with Different Method.

Fig. 8. Comparison of Consensus Time with Different Number of Nodes.

which is hardly acceptable in practical applications. This also indicates that it
is inefficient for a large number of nodes to perform consensus in a network with
large latency. Figure 9 shows the consensus time of the PBFT algorithm as it
varies with the link delay. There are four nodes involved in consensus commu-
nication. The delay here mainly refers to the communication delay between the
edge server and the cloud server, which is the meaning represented by Troute.

260 S. Ma et al.

From the figure, it can be seen that the consensus time increases with the delay.
When the delay is low, the consensus time for the entire blockchain network is
smaller when the leader is on the cloud server. As delay increases, the consensus
time for the blockchain network is smaller when the leader is on the edge server.
Compared to replica nodes, the leader node takes on more communications in
the pre-prepare and prepare phases of consensus. The leader node suffers from
the delay on the link when it is deployed on the cloud server, so the consensus
time increases.

Fig. 9. Comparison of Consensus Time with Different Communication Delay.

5 Conclusions

In this paper, we propose a delay optimized model for the blockchain-based end-
edge-cloud network. We considered the situation of multiple network processing
tasks in parallel and solved the model using multi-agent reinforcement learning.
In addition, we investigate the rule of the PBFT algorithm, and compared the
consensus time when leader node is on edge servers and cloud servers. In the
experiment, our proposed method can obtain better performance, adaptability,
and convergence speed. For the analysis of consensus time, the number of con-
sensus nodes and the delay between the edge and cloud are the main factors.
When the delay is large, the leader on the edge is more appropriate. When the
number of consensus nodes is large, the leader on the cloud makes the consensus
time shorter. With the further development of the research, we will implement
a leader generation algorithm that takes into account the resource of the nodes.
The algorithm attempts to elect leaders on resource-rich nodes to improve con-
sensus efficiency while ensuring consistency.

Delay Optimization for Consensus Communication 261

Acknowledgements. This work was supported by the National Key R&D Program
of China under Grant 2018YFB1402700, and in part by the National Natural Science
Foundation of China under Grant 61690202.

References

1. Lu, Y., Huang, X., Zhang, K., Maharjan, S., Zhang, Y.: Blockchain empowered
asynchronous federated learning for secure data sharing in internet of vehicles.
IEEE Trans. Veh. Technol. 69(4), 4298–4311 (2020)

2. Maksymyuk, T., et al.: Blockchain-empowered framework for decentralized network
management in 6G. IEEE Commun. Mag. 58(9), 86–92 (2021)

3. Shubhani, A., Neeraj, K., Sudeep, T.: Blockchain-envisioned UAV communication
using 6G networks: open issues, use cases, and future directions. IEEE Internet
Things J. 8(7) (2021)

4. Jiang, M., Wu, T., Wang, Z., Gong, Y., Zhang, L., Liu, R.P.: A multi-intersection
vehicular cooperative control based on end-edge-cloud computing. IEEE Trans.
Veh. Technol. 71(3), 2459–2471 (2022)

5. Duan, S., et al.: Distributed artificial intelligence empowered by end-edge-cloud
computing: a survey. IEEE Commun. Surv. Tutor. 25(1), 591–624 (2023)

6. Zhang, S., Wang, Z., Zhou, Z., Wang, Y., Zhang, H., et al.: Blockchain and fed-
erated deep reinforcement learning based secure cloud-edge-end collaboration in
power IoT. IEEE Wirel. Commun. 29(2), 84–91 (2022)

7. Mafakheri, B., Heider-Aviet, A., Riggio, R., Goratti, L.: Smart contracts in the 5G
roaming architecture: the fusion of blockchain with 5G networks. IEEE Commun.
Mag. 59(3), 77–83 (2021)

8. Li, W., Su, Z., Li, R., Zhang, K., Wang, Y.: Blockchain-based data security for
artificial intelligence applications in 6G networks. IEEE Netw. 34(6), 31–37 (2020)

9. Wang, X., Zhao, Y., Qiu, C., Liu, Z., Nie, J., Leung, V.C.M.: InFEDge: a
blockchain-based incentive mechanism in hierarchical federated learning for end-
edge-cloud communications. IEEE J. Sel. Areas Commun. 40(12), 3325–3342
(2022)

10. Ding, Y., Li, K., Liu, C., Li, K.: InFEDGe: a blockchain-based incentive mechanism
in hierarchical federated learning for end-edge-cloud communications. IEEE Trans.
Parallel Distrib. Syst. 33(6), 1503–1519 (2022)

11. Feng, J., Yu, F.R., Pei, Q., Du, J., Zhu, L.: Joint optimization of radio and compu-
tational resources allocation in blockchain-enabled mobile edge computing systems.
IEEE Trans. Wirel. Commun. 19(6), 4321–4334 (2020)

12. Zhang, X., Peng, M., Yan, S., Sun, Y.: Joint communication and computation
resource allocation in fog-based vehicular networks. IEEE Internet Things J. 9(15),
13195–13208 (2022)

13. Yang, Z., Liang, B., Ji, W.: An intelligent end-edge-cloud architecture for visual
IoT-assisted healthcare systems. IEEE Internet Things J. 8(23), 16779–16786
(2021)

14. Liao, H., Jia, Z., Zhou, Z., Wang, Y., Zhang, H., et al.: Cloud-edge-end collabo-
ration in air-ground integrated power IoT: a semi-distributed learning approach.
IEEE Trans. Ind. Inform. 18(11), 8047–8057 (2022)

15. Li, M., Yu, F.R., Si, P., Wu, W., Zhang, Y.: Resource optimization for delay-
tolerant data in blockchain-enabled IoT with edge computing: a deep reinforcement
learning approach. IEEE Internet Things J. 7(10), 9399–9412 (2020)

262 S. Ma et al.

16. Liu, M., Yu, F.R., Teng, Y., Leung, V.C.M., Song, M.: Performance optimization
for blockchain-enabled industrial internet of things (IIoT) systems: a deep rein-
forcement learning approach. IEEE Trans. Ind. Inform. 15(6), 3559–3570 (2019)

17. Qu, G., Cui, N., Wu, H., Li, R., Ding, Y.: ChainFL: a simulation platform for joint
federated learning and blockchain in edge/cloud computing environments. IEEE
Trans. Ind. Inform. 18(5), 3572–3581 (2022)

18. Lu, Y., Huang, X., Zhang, K., Maharjan, S., Zhang, Y.: Low-latency federated
learning and blockchain for edge association in digital twin empowered 6G net-
works. IEEE Trans. Ind. Inform. 17(7), 5098–5107 (2021)

19. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the
Third Symposium on Operating Systems Design and Implementation, vol. 17, no.
7, pp. 173–186 (1999)

20. Cao, B., Wang, X., Zhang, W., Song, H., Lv, Z.: A many-objective optimization
model of industrial internet of things based on private blockchain. IEEE Netw.
34(5), 78–83 (2020)

21. Chunlin, L., Jing, Z., Xianmin, Y., Luo, Y.: Lightweight blockchain consensus
mechanism and storage optimization for resource constrained IoT devices. Inf.
Process. Manag. 58(4), 102602 (2021)

22. Ryan, L., Yi, W., Aviv, T., Jean, H., Pieter, A., Igor, M.: Multi-agent actor-critic
for mixed cooperative-competitive environments. In: 31st International Conference
on Neural Information Processing Systems (NIPS 2017). Curran Associates Inc.,
Red Hook (2017)

23. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In: 4th
International Conference on Learning Representations, ICLR 2016 (2016)

24. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Trans. Syst. Man Cybern. 13(5),
834–846 (1983)

	Delay Optimization for Consensus Communication in Blockchain-Based End-Edge-Cloud Network
	1 Introduction
	2 System Model
	2.1 The Architecture of the Blockchain-Enabled End-Edge-Cloud Collaboration
	2.2 Network Model
	2.3 Wireless Communication
	2.4 Offloading and Computation
	2.5 Time Consumption of Blockchain Consensus
	2.6 Optimization Model of Minimizing Time for Task Processing and Consensus

	3 Reinforcement Learning Optimization Framework
	3.1 State Space
	3.2 Action Space
	3.3 Reward Function
	3.4 Optimization Solution by MADDPG Algorithm

	4 Experimental Environment and Results
	4.1 Simulation Setting
	4.2 Result and Discussion

	5 Conclusions
	References

