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Abstract. The reputation of a vehicle is a critical role in most vehicular
crowdsensing applications, which incentivizes vehicles to perform crowd-
sensing tasks by submitting high-quality data and getting remunerated
accordingly. Unfortunately, existing centralized reputation systems are
vulnerable to collusion attacks, and decentralized approaches are suscep-
tible to Sybil attacks. What’s worse, both of them have privacy leakage
and fairness problems. To address these issues, we take advantage of var-
ious cryptographic primitives and the blockchain technology to present a
privacy-preserving decentralized reputation management system. Specif-
ically, a compact traceable ring signature is proposed to provide identity
privacy protection and resist Sybil attacks. To ensure fairness, the quan-
tification of data quality is fulfilled by combining the rating feedback
mechanism with comprehensive updating factors. Additionally, our sys-
tem allows the reputation update automatically through smart contracts
deployed on the consortium blockchain. The authenticity of the reputa-
tion can be verified by a zero-knowledge proof when a vehicle shows
its reputation. Finally, a proof-of-concept prototype system by Parity
Ethereum is presented. Extensive security analysis and implementations
demonstrate the feasibility and efficiency of the proposed system.

Keywords: Vehicular crowdsensing · Reputation management ·
Privacy-preservation · Fairness

1 Introduction

Vehicular crowdsensing (VCS) [1] is an emerging paradigm where vehicles use
onboard sensors to collect and share real time traffic information [2] without
establishing extra dedicated infrastructure, which can help drivers to improve
users’ driving experiences and offer other services on roads. Due to these ben-
efits, some practical VCS applications have emerged [3]. In a VCS application,
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reputation systems are used to maintain and update the reputation value, which
is usually the benchmark for reliable worker selection, rewards calculation [4],
and user-level classification, etc. Therefore, a well-designed reputation system is
essential for VCS applications.

Fig. 1. A centralized reputation system in vehicular crowdsensing

Existing reputation systems in VCS are mainly divided into two types: cen-
tralized and decentralized systems. As shown in Fig. 1, in a centralized system,
vehicles are assigned with the reputation according to their past behaviours
in the former crowdsensing tasks. A central server CS is in charge of sensing
tasks distribution and data collection. A reputation center RC is responsible for
storing and updating the reputation. Although centralized reputation systems
provide some benefits and conveniences, they simultaneously suffer from a single
point of failure and collusion attacks. Specifically, RC is the Achilles’s heel of
the reputation systems. Dishonest vehicles may collude with compromised RC to
increase their reputations illegally, or take advantage of system’s vulnerabilities
to keep large reputations even when they provide poor-quality data [5], thereby
incurring fairness problem and revenue losses to VCS applications.

Blockchain, as the most popular distributed technology, has enabled a decen-
tralized reputation system. Although blockchain originally acts as a fundamental
technology in Bitcoin, it has been recently adopted in many domains, such as
Artificial Intelligence [6], Internet of Things [7], etc. We could achieve a public
and tamper-resistant record of the reputation as well as the open access to the
reputation by using blockchain. However, existing blockchain-based reputation
systems [8–11], do not apply well to the VCS scenario. Specifically, most existing
systems are put forward under E-commerce environment, in which the reputation
is evaluated in different ways. Besides, in the existing works, almost all reputa-
tion opinions and interaction histories are stored on the blockchain, and most
interactions of the system are performed via the consensus protocol, where con-
sensus efficiency is a problem that affects communication efficiency. In a VCS
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scenario, it is inefficient and impractical for vehicles to frequently access the
blockchain. So, it is highly desirable to develop a decentralized reputation sys-
tem that minimizes the frequency of access to the blockchain. Due to the “open”
nature, another problem the decentralized system faces is the Sybil attacks [12].
To avoid Sybil attacks, identity authentication is essential to perform each time
when a vehicle submits a message. However, public key authentication might
lead to privacy disclosure (e.g., the drivers’ identity, driving speed, and driving
path), which may affect the vehicle’s willingness to participate in a task.

As a consequence, these motivate our research problem to be “how to evaluate
and update the reputation with fairness in a VCS scenario without revealing any
privacy of participating vehicles?”

Though important, it is still a non-trivial task to solve the above challenges
in a decentralized system manipulated by untrusted vehicles and attakers. First,
authentication in a VCS scenario is usually done by edge nodes, such as roadside
units (RSUs), which are usually curious about the privacy of vehicles. Moreover,
the reputation is attached to the identity of the vehicle, so recording all reputa-
tions on the ledger directly will also result in privacy disclosure. Second, it is not
easy to quantify the data quality fairly, which is the baseline of evaluating the
reputation. Third, it is a challenge to guarantee trusted update of the reputation
while reducing interactions with the blockchain.

To address the privacy issue, anonymous mechanisms, i.e. vehicles generate
multiple pseudonyms or anonymous credentials, can protect the vehicles’ pri-
vacy. However, simply leveraging pseudonyms for vehicle’s anonymity cannot
resolve this issue, which is vulnerable to de-anonymization attacks [13]. More-
over, anonymous credentials are often issued by a trusted party, and may incur a
lot of additional computation and storage overhead [14], which are not suitable
to our system. Hence, we present a privacy-preserving mechanism to protect
vehicles’ privacy while resisting sybil attacks. Moreover, we accomplish a trust-
worthy anonymous record on the blockchain and apply a zero-knowledge proof
to bind the reputation to a specific vehicle.

To address the fairness issue, it is necessary to update the reputation accord-
ing to the data quality impartially, which requires that the system knows whether
the data provided by a vehicle is authentic or not and to what extent is it accu-
rate. Rating feedback mechanisms [15] is a straightforward solution to quantify
data quality, which allow other users in the proximity to provide a feedback rat-
ing (viz., positive, negative, or neutral) for a submitted data. However, existing
works [16,17] either utilize the proportion of only positive feedback to mea-
sure data quality, or lack comprehensive consideration about the data structure,
leading to unsatisfactory quantitative results and unfairness. So, we present a
new reputation evaluating method by modifying existing rating feedback mech-
anisms. To address the trusted reputation update, we propose a solution for
vehicles to update their reputation trustworthily by generating corresponding
proofs. Our solution needs not frequent accesses to the blockchain.
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To summarize, the main contributions of this paper are as threefolds.

• We propose a privacy-preserving decentralized reputation management sys-
tem for VCS (PPDR-VCS). Specifically, as for the privacy-preserving mech-
anism, we construct a traceable ring signature by leveraging non-interactive
zero-knowledge proof [18] and the Schnorr signature scheme [19] to fulfill
anonymous authentication in a VCS scenario. The proposed system guaran-
tees the vehicles’ privacy and also resists Sybil attacks existing in decentral-
ized systems.

• We propose two updating factors to evaluate the reputation impartially. There-
into, the truthfulness-based factor is quantified by leveraging the rating feed-
back mechanism where both the total number and ratio of feedback is taken
into account for the fairness. The time-based factor ensures the validity of the
data to meet the time-sensitive VCS scenario. Moreover, we design smart con-
tracts to automatically update the reputation value once a task finishes, and
generate zero-knowledge proofs to confirm the trusted reputation update.

• We make theoretical security and privacy analysis of the proposed system and
verify the feasibility of the proof-of-concept prototype by implementing it on
Parity Ethereum, and provide a comprehensive evaluation of the performance.

The remainder of this paper is organized as follows. In Sect. 2, we present the
system model, threat model, and design goals. Some preliminaries are in Sect. 3.
In Sect. 4, we propose PPDR-VCS. Subsequently, privacy and security analysis
and performance evaluation are presented in Sect. 5 and 6. Then, we review some
related works in Sect. 7. Finally, Sect. 8 draws the conclusion.

2 Problem Statement

In this section, we formalize the system model of PPDR-VCS, threat model and
the underlying assumptions, and also identify our design goals.

2.1 System Model

Our PPDR-VCS system is a reputation management system auxiliary to the
VCS. The system model mainly consists of four entities: Blockchain network,
fog servers, vehicles and certificate authority as shown in Fig. 2.

Blockchain network refers to the consortium blockchain of fog servers in
different traffic areas. It has a permissioned ledger, which is shared with the
legitimate fog servers, and serves for the reputation management system. The
reputation update is executed in a verifiable manner according to smart contracts
without a central third party.

Fog servers act as consensus nodes (i.e. validators) in the consortium
blockchain. Fog servers can be RSUs, base stations, or any other edge devices
equipped with powerful computation and storage capabilities, and they ver-
ify and seal new blocks for maintaining the blockchain network. Moreover, fog
servers are also in charge of identity and message authentication, data qual-
ity calculation and sensory data aggregation. The local fog server maintains a
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Fig. 2. System model

public key list (called PK-list), including public keys of the registered vehicles
in the vicinity of it at a certain time. We assume that fog servers can only be
accessed by vehicles from nearby location (e.g., by means of radio networks).
Besides, transaction fees and mining rewards involved in the blockchain network
are provided as the incentives for supporting fog servers.

Vehicles are divided into two categories: Uploader and Reporter. An
Uploader always generates a data report with regard to some traffic information
in a VCS task. Meanwhile, Reporters will give their feedback on this report
to the fog server. In our system, we assume that there are plenty of Reporters
submitting feedback on a data report. Once a data report is received by the
fog server, it will reject another data report with the same traffic information.
In this paper, we focus on the privacy protection and reputation update of the
Uploader not the Reporters. Before diving into the details of our system, we
firstly give a formal definition of the reputation of vehicles.

Definition 1 (Reputation of Vehicles): The reputation of a vehicle Vi, denoted
as Ri, is the synthesized evaluation of the quality of vehicles to complete crowd-
sensing tasks. The reputation value ranges from 0 to 1. The bigger the reputation
value, the better the past behavior of the vehicle, and the more likely it is able to
complete the crowdsensing task with high quality. A vehicle can obtain an initial
reputation R0

i before its first VCS task, and it can apply for the initial reputation
only once. Without loss of generality, R0

i is set as 0.3 in our system.
Certificate Authority (CA) is responsible for generating system param-

eters and cryptographic keys for vehicles and fog servers. The CA receives reg-
istration requests from vehicles and fog servers. It also assists the initial repu-
tation distribution and the anonymity revoke of misbehaved vehicles. The CA
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maintains a list called IR-list, which records the public keys of vehicles who
have applied for the initial reputation before. This is to prevent malicious vehi-
cles from applying for initial reputation multiple times when their reputation is
lower than the initial value. It does not conflict with the decentralized feature
of our system because it stays offline when vehicles are performing crowdsensing
tasks and the reputation are updated.

In our model, we assume task initiators, who are interested in some traf-
fic information, have released crowdsensing tasks via the fog servers or the
blockchain network. Winning vehicles are selected to upload the data report
by some worker selection algorithms in VCS, and they will get rewards that
are subject to their reputation values after the task. The details of the above
procedure are not our concern. In this paper, we only focus on the decentral-
ized reputation management system with privacy preservation. The workflow
is as follows: 1© Vehicles and fog servers register with the CA. They get their
public keys, and legitimate vehicles get their initial reputation. 2© Selected vehi-
cles (Uploaders) submit encrypted sensory data along with a ring signature. 3©
Local fog server decrypts and verifies the data, and then broadcasts the traffic
message to nearby vehicles. 4© Reporters in the proximity submit their feedback
reports about this message. 5© Local fog server calculates the updating factors.
6© Local fog server runs the deployed smart contracts to update the reputation of
the vehicle. Consortium fog servers verify all transactions about the reputation
updating and build a new block periodically. 7© Vehicles update their reputation
by accessing the blockchain.

2.2 Threat Model and Assumptions

We assume that the CA is fully trusted, and no adversary can breach it. Fog
servers are honest-but-curious, i.e. they follow the protocol, but are also curious
about others’ privacy by launching passive attacks. Dishonest vehicles may be
selfish or malicious, who may forge their reputation values and try to get private
information of other vehicles. A dishonest Uploader is a legitimate vehicle that
is selected to submit data reports, and a dishonest Reporter is also a legitimate
vehicle that generates correct feedback reports intermittently, with the purpose
of maximizing their reputation value via some illegal ways.

Malicious attackers are either compromised vehicles or external adversaries
that may eavesdrop to violate vehicles’ privacy or intentionally act to cripple the
reputation system. A compromised Reporter may destroy the system by submit-
ting incorrect feedback of a submitted data generated by an honest Uploader, or
in collusion with a compromised Uploader. In our system, we assume that the
number of honest Reporters is always higher than the number of compromised
Reporters, which is also in accord with reality. As for the external adversary, it
may forge the legitimate vehicles to perform VCS tasks and identify a vehicle’s
track from a set of submitted data by observing over time.
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2.3 Design Goals

We summarize the design goals of PPDR-VCS under the threat model and
assumptions.

• Privacy. 1© Data privacy. A submitted data containing in-time traffic infor-
mation should be hidden from other vehicles, and only revealed to the local
fog server, who can verify the data, broadcast the traffic information and wait
for the feedback from the Reporters in the vicinity. 2© Identity privacy. The
Uploader’s identity can be protected, i.e. when an Uploader performs a VCS
task, anyone including the fog server cannot identify its real identity. Further-
more, attackers cannot trace the Uploader’s driving trajectory via different
reports. However, the anonymity of the Uploader can be revoked in case of
any misbehavior.

• Security. The reputation system must resist two attacks, i.e., Sybil attacks
and collusion attacks. No one can impersonate a legitimate vehicle to submit
a data report even when some attackers want to generate a large number of
fake vehicles to manipulate the reputation system. Any vehicle can not collude
with a fog server to boost its reputation, which can pass the verification of
the proof.

• Fairness. The reputation is updated depending on the data quality. The
reputation value of Uploaders who submit high-quality data increases, and
vice versa. Dishonest vehicles can not boost their reputation illegally. More-
over, anyone can not successfully re-upload a sensory data collected by other
Uploader. Reputation update should be transparent and publicly verifiable
to legitimate members of the consortium blockchain.

• Decentralization. Any central point of failure and any single point of control
should be avoided. Therefore, the PPDR-VCS can still work well even if some
fog server is compromised.

3 Preliminaries

3.1 zk-SNARK

The zero-knowledge succinct non-interactive arguments of knowledge (zk-
SNARK ) [20] is a novel form of zero-knowledge proof. It allows a prover con-
vince a verifier that he knows some secret information without leaking any useful
knowledge and the proof can be verified in a few milliseconds. A zk-SNARK algo-
rithm ZS = (Setup, Prove, V erify, Sim) is composed by the following proba-
bilistic polynomial time (PPT) algorithms:

• Setup(Rel): input the constraint relations Rel, output the common reference
string crs and the trapdoor τ . Rel is the non-interactive linear proof output
constructed by the quadratic arithmetic program generated by the constraint
condition.

• Prove(crs, x, ω): input a common reference string crs, a statement x and an
evidence ω, return an argument π.
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• V erify(crs, x, π): input a common reference string crs, a statement x and an
argument π, return a bit b.

• Sim(Rel, τ, x): input the constraint relations Rel, a simulation trapdoor τ
and statement x, return an argument π.

3.2 Schnorr Signature Scheme with Re-randomizable Keys

Signatures with re-randomizable keys is a digital signature scheme [19], where
the public and private keys can be re-randomized separately. It requires that
the distribution of the re-randomized keys is the same as the original keys. So,
the signer can sign a message m with a brand new key and prove the rela-
tionship between the original key pair (pk, sk) and the new key pair (pk′, sk′)
in zero-knowledge, which guarantees the unlinkability of the signature. In this
paper, we use the Schnorr signature scheme with re-randomizable keys SSS =
(KGen, Sig, V er,RandSK,RandV K) to design our traceable ring signature. It
mainly consists of the following algorithms:

• KGen(1λ): given the security parameter λ, select a private key sk ← Zq,
compute a public key pk = gsk and output the key pair (pk, sk).

• Sig(sk,m): given the private key sk and the message to be signed m, select
α ← Zq randomly, calculate R = gα, c = H(m||R), y = α + sk · c(mod q),
and output the signature σ = (c, y).

• V er(pk,m, σ): given the public key pk, message m and the signature σ, parse
σ as (c, y), and check whether the equation c = H(pk−c, gy,m) holds and
output a bit b.

• RandSK(sk, ρ): given the private key sk and the re-randomizable number
ρ which is chosen by signer randomly, calculate the re-randomizable private
key sk′ = sk + ρ(mod q) and output sk′.

• RandV K(pk, ρ): given the public key pk and the re-randomizable number ρ,
calculate the re-randomizable public key pk′ = pk ·gρ(mod q) and output pk′.

3.3 Ring Signature

Ring signatures enable a signer to include his/herself in an ad-hoc group (called
a ring) and sign a message as a user in the ring without disclosing which
one of them is the signer [21]. Ring signatures are often used to implement
anonymous authentication, especially suitable for the ad-hoc network, such as
Internet of vehicles [14]. In this paper, we construct a traceable ring signature
ZKTRS = (RSetup,RKGen,RSig,RV erify) shown in Fig. 3 for the sake of
identity privacy protection of vehicles. The proposed ring signature consists of
the output of SSS and a zero-knowledge arguement [18] of the randomization
factor of the new public key with respect to original public key in a ring. Fur-
thermore, the traceable ring signature includes an extra tracing algorithm.
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Fig. 3. The proposed traceable ring signature scheme ZKTRS

3.4 Rating Feedback Mechanism

The rating feedback mechanism [15] is a trust model which can represent the
degree of the trust on the received data. This trust model was originally designed
to solve the trust problem of certificates between users. Recently, the rating feed-
back mechanism is used in many real crowdsensing applications such as Waze,
eBay, etc., to provide a rating by feedback (positive, negative and uncertainty)
which are received from the consumers of these services. The benefits of using a
feedback rating paradigm in VCS are that it is fast, less expensive, and exudes
the essence of a vehicular crowdsensing paradigm. In our system, due to the lack
of knowledge of an event, we can not assert the uploaded data is true or false.
Thus, the rating feedback mechanism is used for measuring the truthfulness of
uploaded data. Unlike some existing rating feedback mechanisms, we compre-
hensively consider both the amount of feedback and the proportion of positive
and uncertainty feedback.

4 The Proposed System PPDR-VCS

In this section, we firstly present the privacy-preserving mechanism of PPDR-
VCS, and then describe the detailed PPDR-VCS.

4.1 The Privacy-Preserving Mechanism of PPDR-VCS

When a vehicle performs a crowdsensing task, the identity privacy and data
privacy are protected in our system. We propose ZKTRS = (RSetup,RKGen,
RSig,RV erify) shown in Fig. 3 to protect the identity privacy. We will detail
four algorithms of ZKTRS in the VCS scenario. The data privacy is accom-
plished by encryption algorithms, such as ElGamal.
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System Setup RSetup
The CA sets the security parameter λ and generates the public parameters of
the system. Let G be a group of a prime order q > 2λ, g and h are two gener-
ators of group G. H : {0, 1}∗ → Z∗

q is a collision-resistant hash function. The
CA also runs the Setup(Rel) in zk-SNARK algorithm to generate the common
reference string and the trapdoor (crs, τ). Finally, the system public parameters
are para = {G, q, g, h,H, crs}.

Key Generation RKGen
The CA publishes the public key Φ = hφ, where φ ∈ Zq is its private key. The
fog server F selects skf ← Zq as its private key, and computes the public key
pkf = gskf . Vehicles generate their public-private key pair (pki = gski , ski),
where ski ∈ Zq. All legitimate entities can get their public key certificates.

Signature Generation RSig
Assume a vehicle Vi enters the vicinity of a fog server F , it broadcasts the public
key pki and the corresponding certificate. The fog server will add the legitimate
public key into the PK-list. When the Vi performs a crowdsensing task and
uploads a sensory data M , it first selects a ring set, i.e. n ring members, from
the PK-list published by the local fog server.

Assume the Vi gets a ring set S = {pk1, pk2, ..., pkn} according to the
(n, k)-privacy ring selection algorithm [22]. Then, it encrypts the data M as
Encpkf

(M), generates a traceable ring signature Σi = (π, pk′
i, σi,Δ) on M and

sends (Encpkf
(M),Σi) to the F as following.

Firstly, the Vi selects a random number ρ ← {0, 1}λ, runs the re-randomizable
algorithms RandV K(pki, ρ) and RandSK(ski, ρ) to generate the new key pair
(pk′

i, sk
′
i) where

pk′
i = pki · gρ

sk′
i = ski + ρ

Secondly, the Vi selects a random number rtag ∈ Zq, calculates l =
H(S||M ||rtag), generates the tracing tag Δ = (ct1, ct2) where ct1 = hl and
ct2 = pkiΦl and sets the statement x = (S, pk′

i,Φ, ct2), and the witness
ω = ((ρ, i), ski, l). Then the Vi constructs a non-interactive zero-knowledge proof
by leveraging the zk-SNARK algorithm:

π ← Prove

((
pkig

ρ = pk′
i

ct2 = pkiΦl

)
: crs, x, ω

)

Thirdly, the Vi generates a signature via Sig(sk′
i,M ||S||Δ) in SSS, i.e. σi ←

(c, y), where c = H(M ||S||gα||Δ), y = α + sk′
i · c(modq), and α ∈ Zq.

Finally, the Vi generates a ring signature Σi = (π, pk′
i, σi,Δ).
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Signature Verification RVerify
Upon receiving (Encpkf

(M), Σi), the F firstly decrypts Encpkf
(M) to get

the data M , and then parses S as {pk1, pk2, ..., pkn} and Σi as the tuple
(π, pk′

i, σi,Δ). Then the V erify algorithm in zk-SNARK algorithm takes as input
the tuple (crs, x, π) and checks whether the proof π holds. The notation b1 is
defined as a result of the above procedure which can be described as:

b1 ← V erify(crs, x, π)

Later, the equation H(M ||S||gypk′
i
−c||Δ) ?= c is calculated to verify the validity

of the signature. It outputs b2 = 1 when the equation holds, otherwise output
b2 = 0.

If all the above verifications are valid, i.e. b1 = b2 = 1, the M is accepted by
the F , who will then broadcast the M to the nearby vehicles. Otherwise, the M
will be rejected.

4.2 The Detailed PPDR-VCS

Our proposed PPDR-VCS consists of four phases: system initialization, entities
registration, initial reputation distribution, and reputation update.

Algorithm 1. PPDR-VCS
Input: Security parameter
Output: System parameters, public key list, reputation transaction, new block, new

reputation and the proof.

/* System initialization */
1: The CA generates the system parameters;

/* Entities registration */
2: Vehicles and fog servers register with the CA and get their certificated public-

private key pairs;
/*Initial reputation distribution */

3: A vehicle authenticates itself to the local fog server F ;
4: The F generates a reputation transaction;
5: The vehicle accesses an initial reputation from the blockchain, and generates a

proof on the reputation.
/*Reputation update */

6: An Uploader submits a sensory data M to the F which verifies and broadcasts the
M , and receives feedback about the M from the Reporters in the vicinity of the
F .

7: The reputation of the Uploader is re-calculated according to the data quality, which
is quantified by two factors: the truthfulness of the data and the response time.

8: The F generates a reputation updating transaction;
9: A new block is created;

10: The Uploader’s reputation is updated and the Uploader generates the proof of its
current reputation.
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System Initialization
The CA initializes the whole reputation system via the algorithm RSetup. After
that, the system parameters para are public to all entities. The CA also initializes
an empty set using bloomfilter Ω = {∅} to maintain the IR-list for the query
efficiency.

Entities Registration
All vehicles firstly provide the unique identification (e.g. vehicle identification
number (VIN) and driver’s ID number) to the CA for the registration. The CA
will verify the correctness of the identification and check whether the vehicle has
registered before. Each vehicle is only allowed to be registered once. Fog servers
also need to register with the CA. All entities get their public-private key pair
(pk, sk) via the algorithm RKGen.

Initial Reputation Distribution
A registered vehicle can get an initial reputation anonymously on its first task
within an area of a fog server F . As shown in Fig. 4, the F will send an iden-
tifier query to the CA for the initial reputation identifiers in advance. The CA
generates an identifier Ni by encrypting a random number ai and signing it:
Ni ← Sigφ(EncΦ(ai)). Here, we can take ECDSA as the signature algorithm
Sig(.), and ElGamal encryption scheme as the algorithm Enc(.).

Fig. 4. The distribution of the initial reputation

The F randomly selects and encrypts an identifier Ni by using the Vi’s public
key pki, and sends Encpki

(Ni) to the Vi. The Vi decrypts it and gets Ni. Then,
the Vi generates a one-time public and private key pair (pk′′

i , sk′′
i ), encrypts Ni

and sk′′
i by using pk′′

i and Φ, respectively.

η1 ← Encpk′′
i
(Ni), η2 ← EncΦ(sk′′

i ).
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The Vi also generates a ring signature Σ0
i on η1 and η2 via the algorithm

RSig and sends it to the F along with η1 and η2. The F parses and verifies Σ0
i ,

and sends η1, η2, Δ = (ct1, ct2) to the CA, who will firstly check whether the
vehicle applies for the initinal reputation before by computing pki = ct2

ct1φ , and
searching for the public key pki in the IR-List. If pki is in the Ω, the CA will
inform the F to reject the initial reputation request from the vehicle. Otherwise,
the CA gets the one-time private key sk′′

i by decrypting η2, and then it will
get Ni by decrypting η1 via sk′′

i . After that, the CA verifies the signature and
decrypts Ni to obtain ai. If the verification succeeds and ai is correct, the CA
will send a bit b0 = 1 to the F to inform that this vehicle is legitimate and
applys for the initial reputation for the first time. Otherwise, b0 = 0 will be sent.

If the F receives b0 = 1, it will generate a reputation transaction tx0 about
(Σ∗

i , R
0
i ), where Σ∗

i = H(Σ0
i ). The tx0 is then verified, sealed in a block, and

appended to the consortium blockchain. Otherwise, the Vi is rejected. Finally,
the Vi generates a proof π0 on (Σ∗

i , R
0
i ) by leveraging the zk-SNARK algorithm:

π0 ← Prove

((
α + sk

′
i · c(modq) = y

Σ∗
i = H(Σ0

i )

)
: crs, x0, ω0

)
(1)

where x0 = (S, (c, y),Σ0
i ,Σ

∗
i ) is the statement, and ω0 = (sk′

i, α) is the witness.
π0 indicates that R0

i is indeed the reputation of a legitimate vehicle of which the
ring sinature is Σ0

i , and π0 also confirms the relationship between R0
i and pki

anonymously.
When the Vi performs a crowdsensing task for the first time, it submits

a sensary data M together with its initial reputation and the proof (R0
i , π0).

Anyone can verify the reputation proof π0 as follows:

b3 ← V erify(crs, x0, π0)

It outputs b3 = 1 when the equation holds, otherwise output b3 = 0.
Note that a vehicle’s reputation changes all the time since it is constantly

engaged in crowdsensing tasks. A vehicle needs to show its current reputation
and the proof each time. Only when the reputation verification has passed, the
fog server will then broadcast the traffic data M and the reputation of the
Uploader will be updated according to the quantified data quality.

Reputation Update
Assume the F broadcasts the M submitted by an authenticated Uploader, and
Reporters in the vicinity of the F can provide positive, negative or neutral rat-
ings on the M , which is quantified by the truthfulness-based factor Qr and the
time-based factor Qt (The details of Qr and Qt are shown in the next section).
Smart contracts are created and deployed on the ledger. Once the updating
factors have been calculated, it triggers the Reputation update algorithm to
execute automatically. In Algorithm 2, the parameter γ controls the degree of
importance of Qr and Qt. The value of γ is specified according to the require-
ments of the task initiator. When Qd is positive, the data has a tendency to be
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true and uploaded within survival time, the vehicle’s reputation will increase.
Otherwise, if Qd is negative which means 0 < (1 + Qd) < 1, the vehicle’s rep-
utation will be decreased. And then, the Vi’s updated reputation is calculated
based on Qd and its current reputation Ri. Since the range of R∗

i is [0,1], we use
the arctan function atan for the normalization as R∗

i = 2atan(R∗′
i )/π. Besides,

if a normalized reputation of some vehicle is less than a threshold (we take 0.05
as an example), which means the vehicle frequently submit low-quality data or
engage in improper behavior, the vehicle should be not allowed to participate in
the task or be punished.

Algorithm 2. Reputation Update Algorithm
Input: The Vi’s ring signature Σi, current reputation Ri, the reputation updating

factors Qr and Qt

Output: The updated reputation R∗
i

1: if Qr > 0 then
2: Qd = γQr + (1 − γ)Qt;
3: else
4: Qd = Qr;
5: end if
6: R∗′

i = (1 + Qd)Ri;

7: R∗
i = 2atan(R∗′

i )/π;
8: if R∗

i ≥ 0.05 then
9: Σ∗

i = H(Σi)
10: return (Σ∗

i , R∗
i );

11: else
12: return (Σi, R

∗
i );

13: end if

After executing the reputation update algorithm, the F generates a reputa-
tion updating transaction Tx, which includes the transaction number, the Vi’s
ring signature and the corresponding reputation value (Σ∗

i , R
∗
i ) or (Σi, R

∗
i ), and

the F ’s public key and signature, as shown in Fig. 5. The transaction Tx is then
verified and sealed in a block by the fog validator. Assuming a block has the
capacity of v transactions, the fog validator with the highest priority generates
a new block, which consists of a blockheader, the validator’s updated reputa-
tion (vital assets to be authorized as validator), v transactions and a signature
from the validator. And the blockheader includes a block number, a hash of pre-
vious blockheader, a hash root of Merkle tree constructed from v transactions
and a timestamp, etc. Then the validator appends this block to the consortium
blockchain and informs the network.

Case I: the Vi accesses the blockchain and gets (Σ∗
i , R

∗
i ). The Vi computes

H(Σi) and gets his new reputation R∗
i by comparing with Σ∗

i . Then, the Vi

updates his reputation by himself and generates a proof by leveraging the zk-
SNARK algorithm:
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Fig. 5. Construction of the consortium blockchain

π1 ← Prove

((
α + sk

′
i · c(modq) = y

Σ∗
i = H(Σi)

)
: crs, x1, ω1

)
(2)

where x1 = (S, (c, y),Σi,Σ∗
i ) and ω1 = (sk′

i, α). This proof confirms the relation-
ship between R∗

i and pki anonymously.
Case II: If a vehicle’s R∗

i is lower than the threshold on the blockchain, the
CA can unite the fog server F to revoke the anonymity of the Vi by calculating
pki = ct2

ct1φ , and mapping the public key pki to the Vi. The vehicle will be
punished, and the CA will send pki to the F , who can remove pki from the
PK-list. That means the vehicle is not allowed to perform the crowdsensing task
for a time.

4.3 Updating Factors Calculation

The truthfulness of the data is calculated based on the feedback from Reporters
in the proximity. To ensure fairness, the truthfulness-based factor Qr is calcu-
lated by the total number of the feedback, the belief and uncertainty masses.
Meanwhile, each task has a lifetime and the submitted data beyond its lifetime
will be discarded. So the time-based factor Qt is modeled as an exponential
decay function. The Vi’s reputation updating factors are computed as shown in
Algorithm 3.
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Algorithm 3. Updating Factors Calculation
Input: Sensory data M from the Uploader Vi, the Vi’s current reputation Ri, the

number of three kinds of feedback from repoters Nb, Nf and Nu

Output: Vi’s reputation updating factors Qr and Qt

1: Calculate posterior probability (b, f, u) and the weights of belief and uncertainty
ωb, ωu;

2: τr = ωb · b + ωu · u;
3: if τr ≥ 0.5 then
4: Qr = (τr)

θ;
5: if t − t0 < T then
6: Qt = 1

eρ(t−t0) ;
7: else
8: drop;
9: end if

10: else
11: Qr = −(0.5 − τr)

μ;
12: end if

1© Calculation of Qr: Let N = Nb + Nf + Nu represents the total number
of the feedback. According to the Bayesian theorem based on the feedback, the
posterior probabilities of belief, disbelief and uncertainty are given as: b = Nb+1

N+3 ,
f = Nf+1

N+3 , u = Nu+1
N+3 . We consider that the expected truthfulness of a submitted

data depends on the belief and uncertainty masses which is modeled as nonlinear
weighted regression model. Then the expected truthfulness can be represented
as:

τr = ωb · b + ωu · u (3)

where 0 < ωb < 1 is the weight of belief feedback and 0 < ωu < 1 is the weight
of uncertainty feedback.

We apply Richard’s generalized curve [23] to model ωb while considering the
total number of the feedback. The proportion of belief feedback is also taken into
consideration. Less N should have lower ωb, in other words, ωb should gradually
increase with N , represented as follows:

ωb =
1

(1 + δe−vbN )
1
δ

· Nb

N
(4)

where δ(δ > 0 and δ �= ∞) controls the initial value of the weight and the point
that ωb turns to exponential growth. If the F receives a mass of feedback, the
value of δ should be set higher, or vice-versa. vb, the rate of growth, controls the
speed of ωb to reach the maximum value.

Intuitively, most of the Reporters are unaware of the event when it just
happens. Thus ωu will increase when the number of feedback is small. However,
it will decrease as more feedback is received. Hence, we set Nthres denotes the
threshold value of the feedback and ωmax

u = 0.5 as the maximum value of the
weight which means that the belief feedback would make more contributions to
the expected truthfulness of the report. After that, ωu is modeled as a piecewise
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function that has a growthing part and a decaying part. The growth part is
similar to ωb while the decayed part is modeled by the Kohlrausch relaxation
function [24]. The equation of ωu is represented as:

ωu =

⎧⎪⎨
⎪⎩

1
2(1 + δe−vuN )

1
δ

· Nu

N
N < Nthres

e−(N−Nthres)ε

N ≥ Nthres

(5)

where ε is the Kohlrausch factor, controls the decreasing speed of ωu after N
reaches Nthres. A higher value of ε can eliminate the effect of uncertainty immedi-
ately. The threshold value Nthres controls the attenuation point of ωu where the
effect of uncertainty feedback starts to reduce. The concept of other parameters
are similar to ωb.

After achieving the expected truthfulness τr, a link function which is treated
as the truthfulness-based updating factor Qr based on Cumulative Prospect
theory [25], is described as follows:

Qr =

{
(τr)θ τr ≥ 0.5

−(0.5 − τr)μ τr < 0.5
(6)

where Qr has the value in the interval [−1, 1]. θ and μ control the rate of the
change of upper and lower parts of Qr, respectively. τr = 0.5 is a reference point.
τr > 0.5 means that the data tends to be true and the vehicle’s reputation should
be improved, or vice versa.

2© Calculation of Qt: Another factor that influences the Uploader’s reputa-
tion is the task response time. When a task is completed within task survival
time T (i.e. t − t0 < T ), the F will accept the data report and calculate the
time-based updating factor Qt. The contribution of the data M decreases with
the increases of the response time, and the time-based updating factor Qt should
be quantified according to the contribution. Therefore Qt is modeled as an expo-
nential decay function:

Qt =
1

eρ(t−t0)
t − t0 < T (7)

where t is the data uploading time, t0 is the task release time and ρ is the time
factor which controls the decay rate of Qt. A higher ρ can be chosen if the task
is an emergency or time-sensitive. The shorter the response time, the bigger the
time-based factor, because a “fresh” report can make more contributions.

5 Privacy and Security Analysis

5.1 Privacy

Data privacy is protected by the encryption algorithm. In our PPDR-VCS, vehi-
cles encrypt their submitted data via ElGamal encryption algorithm. Only the
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fog server can decrypt the data before being broadcast. That is, an adversary
can get the data submitted by other uploaders only if he can solve the discrete
logarithm problem on G. So, the data privacy is preserved in our system.

When a vehicle uploads a message, it will be authenticated by our proposed
ZKTRS which has properties of the unforgeability, anonymity and traceability.

Theorem 1. Let zk-SNARK be a computationally sound argument of knowl-
edge, SSS be a signature scheme with re-randomizable keys which is unforgeable
in the random oracle model. Our ZKTRS is an unforgeable traceable ring sig-
nature scheme in the random oracle model.

Proof. Let H be a random oracle hash function. Assume that there exists a
PPT adversary A who can forge a valid traceable ring signature successfully
with the probability of ε(λ) that is non-negligible. Then the following reduction
R can be constructed to break the unforgeability of the signature scheme with
re-randomizable keys. If A can forge a valid signature successfully, then there
exists a forgery in the SSS.

First, the unforgeability of the tracing tag Δ = (ct1, ct2) is guaranteed by
the ElGamal [26] of which DDH assumption is hard. The sound of zk-SNARK
ensures the ciphertext ct2 as the form ct2 = gskiΦl. Next, we construct the
reduction R which breaks the unforgeability of the SSS and Advvk(RA) ≤ ε(λ)

q .
The reduction RA(pk) is given as follows.

• Choose an index i ← {1, ..., q} uniformly at random, and set pki = P .
• For all indices k �= i, R sets (pkk, skk) ← KGen(1λ), The adversary A is

provided with the public keys P = (pk1, ..., pkq).
• For all indices k �= i, A is allowed to make the corrupt query and sign query.

– Corrupt query(k): A corrupt query is in the form of k ∈ {1, ..., q}. The
challenger sends skk to A and appends pkk to the corrupted user list C.

– Sign query (k, S,m): A sign query is in the form of (k, S,m), where m is
the uploaded message, S is a set of public keys and k is an index such
that pkk ∈ S, The challenger responds with RSig(skk,m, S,Φ).

• A makes the form (i, S,m) of the sign query, and R responds as follows.
– Select a random ρ.
– Compute the re-randomized public key pk′

i ← RandV K(Si, ρ), where
Si is the i-th member of the S, the tracing tag Δ = (ct1, ct2), and the
zk-SNARK proof:

π ← Prove

((
pkig

ρ = pk′
i

ct2 = pkiΦl

)
: crs, x, ω

)

– On input of (m||S||Δ, ρ), and query the signing oracle. Assume the chal-
lenger responses with σ.

– Return (π, pk′
i, σ,Δ).

• A outputs a forged signature (S∗,Σ∗,m∗).
• R parses the signature as Σ∗ = (π∗, pk∗, σ∗,Δ∗) and gets (S∗||pk∗||Δ∗,

ω∗, π∗), where ω∗ is the form of (ρ∗, i∗, sk∗, l∗) and i∗ = i, R aborts if i∗ �= i.
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• R returns the tuple of a signature (m∗||S∗||Δ∗, σ∗, ρ∗) and finishes the sim-
ulation.

Assume A successfully forges a valid signature Σ∗ = (π∗, pk∗, σ∗,Δ∗) which
satisfies the following conditions: A doesn’t make any corrupt oracle on i,
where pki ∈ S∗ and S∗ ⊆ P \ C; A doesn’t make any signing oracle in the
form of (., S∗,m∗); and the equation RV erify(S∗,Σ∗,m∗) = 1 holds. When
A queries the signing oracle in the form of (i, S,m), the challenger responds
σ ← Sig(RandSK(ski, ρ),m||S||Δ) to R. Therefore, we know that R perfectly
simulates the inputs of A. From the above, in the case i∗ = i, we have the
re-randomizable key

pk∗ = RandV K(pki∗ , ρ∗) = RandV K(pki, ρ
∗)

such that RV erify(S∗,Σ∗,m∗) = 1, which implies that

V erify(crs, (S∗, pk∗,Φ, ct2), π∗) = 1;
V er(pk∗,m∗||S∗||Δ∗, σ∗) = 1.

It shows that (m∗||S∗||Δ∗, σ∗, ρ∗,Δ∗) is the tuple of a valid signature. In other
words, if A successfully forges a valid signature, R can forge a valid signature
with the same probability. That is

Advvk(RA) =
p∑

j=1

Pr[i∗ = j] · Pr[RA|i∗ = j]

+ Pr[i∗ = j] · Pr[RA|i∗ = j]

≥
p∑

j=1

Pr[i∗ = j] · Pr[RA|i∗ = j]

≥ 1
q

· Pr[RA|i∗ = j] ≥ ε(λ)
q

which is non-negligible. This contradicts to the unforgeability of SSS.

Theorem 2. Let zk-SNARK be perfect zero-knowledge, SSS be a signature
scheme with re-randomizable keys in the random oracle model, then ZKTRS is
anonymous in the random oracle model.

Proof. Consider the following games:

• Game0: For all indices i ∈ {1, ..., q}, the reduction sets (pki, ski) ←
KGen(1λ). The public keys P = (pk1, ..., pkq) are provided to the adver-
sary A. A can make queries in the form of (k, S,m), where m is the uploaded
message, S is a set of public keys and k is an index such that pkk ∈ S. The
challenger responds with RSig(skk,m, S,Φ). A sends the tuple (i0, i1, S,m)
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to request a challenge, where i0, i1 are indices such that pki0 , pki1 ∈ S. The
challenger chooses a bit b ← {0, 1} randomly and sents RSig(skib

,m, S,Φ) to
A. Also, random numbers (ω1, ..., ωq) are given to A. A outputs b′ and makes
a success if b′ = b.

• Game1: The proof π in the challenge step is computed as

π ← Sim(τ, x)

where x = (S∗, pk′
ib

,Φ, ct2). The other part of Game1 is similar to Game0.
• Game2: Is similar to Game1 except that the challenge signature is

(π, pk′, Sig(sk′,m∗||S∗||Δ),Δ), where (pk′, sk′) ← KGen(1λ).
• Game3: Is defined as Game2 except that the tracing tag Δ′ is computed by

r′
tag which is freshly chosen randomly.

We can find that adjacent games are indistinguishable.

Game0 ≈ Game1: In these two games, all the parameters are generated honestly
except the proof π. Because of the zero-knowledge property of zk-SNARK, the
proof generated by Sim(τ, x) and the proof generated by (x, (ρ, i)) are statisti-
cally close.

Game1 ≈ Game2: The two games are different only in the sampling step of
the key pair (pk′, sk′) which are used to compute the challenging signature. In
Game1, the signature computed by (pk′, sk′), while in Game2 the pair is freshly
sampled. Since the keys of signature scheme are perfectly re-randomizable, the
two games are identical.

Game2 ≈ Game3: The two games differ only in the choosing procedure of ran-
dom numbers used to compute the tracing tag. In Game2 the signature com-
puted by r′

tag, while in Game3 the random number is freshly sampled. Since
the pseudo-random property of the tracing tag is derived from pseudo-random
numbers, the tracing tags are computationally indistinguishable. Therefore the
games are identical.

From the above, the challenge signature computed in Game3 is irrelevant to
b which means that A wins the Game3 with the probability 1

2 . Besides, we have
Game1 ≈ Game2 and Game0 ≈ Game1. Thus, we can conclude that any A
cannot win the game with negligible probability greater than guessing.

To sum up, anonymity means the vehicle’s identity is hidden in the ring.
Anyone including the fog server cannot distinguish which secret key has been
used to generate the ring signature. Furthermore, the ring selection algorithm in
our system can achieve (n, k)-privacy, thus any attackers cannot trace a vehicle’s
identity by observing different ring signatures of the same vehicle. Then the
identity anonymity and driving trajectory of the vehicles are protected.

Theorem 3. The proposed ZKTRS achieves traceability if zk-SNARK is per-
fectly correct and zero-knowledge, as well as the variant ElGamal encryption is
sound.



230 Z. Lu et al.

Proof. The correctness and soundness of zk-SNARK guarantee that the tracing
tag is generated by the signer. We set (Φ, ct2) as the statement and (ski, l) as
the witness. The signer can calculate the proof using its private key. In other
words, the proof of zk-SNARK guarantees that ct2 is generated as the form
ct2 = gskiΦl. If we take the hash function H as a random oracle, we can prove
that it is computationally infeasible to find another l′ = H(S′||m′||r′

tag) as a
collision, given the output l. Based on the correctness of variant ElGamal, we
can ensure that the decryption is correct which means the signer’s identity can
be revoked. Only the CA can decrypt the ciphertext using the private key φ and
find out the identity of the poorly behaved signer, whose reputation is lower than
the threshold value. The privacy of good behaved vehicles, whose reputation is
bigger than the threshold value, is protected unconditionally. Nobody even the
CA can revoke the anonymity of them, because (Σ∗

i , R
∗
i ) are recorded on the

blockchain rather than (Σi, R
∗
i ) and ct2 can not be obtained via Σ∗

i .

In conclusion, the traceable ring signature can be generated by the Uploader
in a ring S, no one can forge others’ signature. Moreover, the CA can revoke
the anonymity of a poorly behaved vehicle. Hence, conditional anonymity is
preserved in our PPDR-VCS.

5.2 Security

In our PPDR-VCS, all vehicles need to register with the CA firstly. When a
vehicle is performing a VCS task in a coverage area of a fog server, the pub-
lic key of the registered vehicle will be maintained in the PK-list by the local
fog server. The public key is certificated by the CA, which prevents an illegal
vehicle from generating multiple public keys and launching Sybil attacks. When
vehicles perform crowdsensing tasks, all transmitting messages are required to
be authenticated to the fog server. Sybil devices cannot damage our reputation
system through misbehaviors without successful registration and authentication.

An external adversary can launch Sybil attacks in the following two ways:
The first one is to generate a large number of Sybil vehicles [12] to manipulate
the reputation system. Since the fake vehicle has no legal filing information
with DMV, it can not register with the CA successfully. Second, it tries to
compromise a legitimate vehicle and forge a signature of its submitted message.
Since the unforgeability of the signature is guaranteed by the proposed ZKTRS,
the adversary can not forge a valid signature which can pass the verification
process. In case an attacker creates a ring signature by using his secret key,
generated by running KGen(1λ) algorithm, along with a ring set. Since its public
key is not in the PK-list, the signature cannot pass the verification RV erify. So
the proposed system can resist Sybil attacks.

In our system, there is no such reputation center, which is responsible for
evaluating and updating the reputation. Although the fog server is responsible
for the calculation of updating factors, it follows the protocol and computes Qr

and Qt honestly based on the feedback responded by Reporters. The reputation
is updated by the smart contracts on the blockchain, which is tamper-resistant.
So, there is no opportunity for collusion between the vehicle and the fog server.
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5.3 Fairness

Firstly, the crowdsensing data is encrypted by the Uploader, which will prevent
some lazy Uploader from re-uploading the data report to earn profit. Secondly,
fairness is guaranteed by the reputation update algorithm, which is influenced
by the data quality quantification. Since we quantify the data quality by using
the truthfulness-based and time-based updating factors detailed as Qr and Qt

in Algorithm 3. So our analysis will focus on how the calculation of Qr and Qt

can ensure the fairness.
Qr is calculated based on τr (i.e. τr = ωb · b + ωu · u), where the weight

of belief feedback ωb and the weight of uncertainty feedback ωu are modeled
as Richard’s generalized curve and kohlrausch relaxation function, respectively.
Since the Richard’s generalized curve can control the initial lower asymptote,
inflection point, and the rate of change, so fog servers can set appropriate param-
eters to control ωb for different tasks. This makes the calculation of τr objective
and authentic. Besides, the proportion of the belief feedback is taken into con-
sideration. It is obviously that the data supported by more feedback is more
reliable. What’s more, the amount of all received feedback is also added into
our expression (Eq. 2) in order to compute ωb fairly. Consider the following sit-
uation, there is an Uploader uploading a wrong data and manipulating several
Reporters to give wrong feedback. If we leave out the amount of feedback, the
proportion will be high when the amount of the received feedback is small. Then
ωb is calculated to be a bigger value than its normal one. And this malicious
Uploader’s reputation will be increased illegally. Similarly, the growth part of
ωu is also modeled as Richard’s generalized curve. Hence, the truthfulness-based
updating factor Qr can be calculated via ωb and ωu fairly.

As for Qt, it is modeled as an exponential decay function on account of the
contribution of the data. This is fair because the data which is uploaded earlier
has better accuracy and does more contributions to the task initiator. Moreover,
the updating procedure is accomplished by the smart contract so that no one
can change it, and the reputation can be checked by all authority nodes.

5.4 Decentralization

In this work, when a vehicle firstly registers with the CA, the initial reputation
is distributed via the CA and the local fog server instead of a reputation center.
The reputation update is realized by smart contracts automatically, and there is
no central reputation center, which might be compromised allowing illegal rep-
utation updating or even impairing the reputation system. The local fog server
only assists in distributing the initial reputation and calculating the updating
factors. Vehicles access the blockchain to update their reputation and generate
the corresponding proof via zk-SNARK algorithm after a task. Any central party
is not needed to maintain the updated reputation of vehicles.

In addition, the local fog server also acts as a validator candidate in the PoA
consensus mechanism. These validators are responsible for verifying and signing
the blockchain and one of them will package all transactions into the block. If
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a fog server is compromised, other validators will vote out the malicious fog
server and another fog server in this area will be selected to take its place. Thus
the compromised fog server can not damage the system which means that the
PPDR-VCS can still work well even there exist some malicious nodes.

6 Performance Evaluation

6.1 Implementation Overview

We present a proof-of-concept implementation of our system based on Parity
Ethereum, and accomplish extensive experiments to evaluate the performance
of PPDR-VCS.

We implement our PPDR-VCS on a notebook with AMD Core R7-5800H
CPU@3.20 GHz and 16.00 GB memory. The operating system is Ubuntu 20.04.3
LTS AMD64. We use libsnark to implement the zk-SNARK [18]. The hash
function is SHA-256. The security-parameter of the Schnorr&ECDSA signa-
ture scheme and the ElGamal encryption scheme are 256 bits. We construct
a blockchain testing network based on Proof of Authority (PoA) [27], which
consists of Authority nodes and User nodes. In particular, fog servers play the
role of Authority nodes in Parity PoA network, and they can be selected as
validators to verify the transactions and issue blocks. While local fog servers
can also perform the function of the User nodes that send reputation update
transactions to the blockchain.

We deployed a few fog nodes in our experiments. Eclipse as the JAVA client
communicates with the Parity blockchain via web3j to fulfill the interaction with
smart contracts. We specify the validator list as configurations in the blockchain
file, and we also encode the public parameters of the system in Java clients. The
off-chain and on-chain performance are tested to reveal the system efficiency.

6.2 Off-Chain Performance

We evaluate the off-chain performance of the initial reputation distribution, the
anonymous authentication based on ring signatures and updating factors calcu-
lation.

In the initial reputation distribution, the main computational costs come
from the identifiers generation and verification as well as the ring signature.
As shown in Fig. 6, we set the number of identifiers as {10, 30, 50, 70, 100}. The
computation cost of identifier generation and verification is linearly increasing
with the number of identifiers. From Fig. 6, it costs less than 1400ms to generate
100 identifiers. As for the verification process, the cost of verifying 100 identifiers
at the same time is less than 2500ms. The procedure of ring signatures is similar
to the message authentication in the Reputation update phase, we will discuss
below.

We set a PK-list of the local fog server containing 1000 vehicles. The ring
selection algorithm chooses n vehicles to generate a traceable ring signature of η1
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Fig. 6. Computation costs of identifier generation and verification

Fig. 7. Performance of the proposed ZKTRS

Fig. 8. The effects of parameter choices on ωb and ωu

and η2 or the sensory data M . The computational cost varies with the ring size
n. In each set of experiments with different n, which is set as {10, 20, 30, 50, 100},
we adopted an average result of 100-times round.

As shown in Fig. 7(a), we can see that the time cost for ring selection is
increasing as the privacy level k increases. Because keeping k ring members of
S1 takes more time than randomly selecting k members from the PK-list. Given
a fixed privacy level k, the computational cost of ring selection algorithm also
increases as the ring size n grows. Because it also takes some time to randomly
select n-k new ring members from the PK-list. Nevertheless, the ring selection
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algorithm takes very little or negligible time, which is efficient while improving
privacy protection.

When the privacy level of the system is fixed, the execution time of the
ring signature is shown in Fig. 7(b). As the ring size increases, the time cost on
the ring generation and verification are both maintains a fixed value because
the compact ring signature algorithm has fixed calculation procedure. The cost
of setup algorithm will increase with the ring size, however, it is still tens of
milliseconds. So the computational cost of ring signature is acceptable.

Moreover, our traceable ring signature scheme yields small signature size.
The Fig. 7(c) shows the comparison of our ZKTRS with the baseline TRS-based
scheme [28]. The signature size of TRS-based scheme [28] is multiple times larger
than ours and grows with the ring size. The signature size of the ZKTRS is only
2040 bits and doesn’t grow with the ring size.

We test the performance of updating factors calculation by considering the
truthfulness-based factor and time-based factor. We obtain the parameters from
the Waze data set [29] as our default system parameters to make simulation
environment. Figure 8(a) shows the effect of vb on the belief weight ωb. It is
obvious that vb controls the number of feedback N which is required to reach
the maximum of ωb. If the number of feedback in the task is small, vb can be
set lower. Otherwise, a higher vb should be selected. Meanwhile, Fig. 8(b) shows
the change of ωb with the number of feedback N based on different δ. The
number of feedback required to reach the maximum value is smaller while δ is
higher. However, under the situation that all other parameters are unchanged,
the change of δ has little effect on ωb.

Figure 8(c) shows how ε affects the uncertainty weight ωu. We can see that the
higher the ε, the faster the decrease of ωu. If the task initiator wants to decrease
the effect of uncertainty feedback on the truthfulness, the parameter ε should be
set higher, or vice versa. In Fig. 8(d), we can see three curves represent the trend
of ωu based on Nthres = 30, Nthres = 60 and Nthres = 100, respectively. All
of them reach ωmax

u = 0.5 at the threshold value and will decrease immediately
after that N = Nthres satisfies. Therefore, Nthres controls the number of feedback
required to obtain the maximum value of ωu and it can be chosen based on the
task time and task area.

Figure 9(a) shows the trend of truthfulness-based factor Qr is based on dif-
ferent θ and μ which controls the growth rate above and below zero, respectively.
When τr > 0.5, Qr is positive and that the one based on a higher θ grows faster
than the one based on a lower θ. On the contrary, when τr < 0.5, Qr is negative.
As τr gradually decreases from 0.5, Qr will decreases faster if it has a lower μ.
The growth curve of time-based factor Qt is described in Fig. 9(b) which shows
that Qt with a higher ρ decreases faster. When the task is time-sensitive or the
task initiator needs data urgently, a higher value can be given to the parameter
ρ, otherwise a lower value is a good choice.



Towards Privacy-Preserving Decentralized Reputation Management 235

(a) updating factor Qr (b) updating factor Qt
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Fig. 9. The effects of different factors on Qr and Qt

Fig. 10. The truthfulness variation with the number of feedback

Figure 10 describes the trend of τr with the number of feedback N where we
assume that the ratio of belief feedback, the ratio of uncertainty feedback, vb,
vu, δ, ε and Nthres are fixed. When N < Nthres, τr is increasing with the growth
of N and obtains the maximum value at N = Nthres. On the contrary, τr is
decreasing with N after the point N = Nthres. It is reasonable that the data
which has more belief feedback has a higher truthfulness and it will decrease if
more uncertainty feedback are received. We also evaluate the data quality Qd

based on Qr and Qt as shown in Fig. 11. Apparently, Qd will increase with Qr

and Qt. However, the weight of two parameters is controlled by γ. If a task
acquires more truthful data, the γ can be set higher(> 0.5), and if a task is
time-sensitive, γ can be set lower.

Fig. 11. The variation of Qd based on Qr and Qt
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6.3 On-Chain Performance

We evaluate the on-chain performance of smart reputation update through the
confirmation time of the update transaction and the gas costs of deploying the
contract and executing its functions on Parity Ethereum. Local fog server sends
an updating transaction Tx by calling the reputation update algorithm in the
update contract. Then, the fog validator verifies the correctness of the transac-
tion. We conduct 20 sets of experiments to evaluate the on-chain performance,
the average transaction confirmation time of the updating transaction Tx is 129
ms, which is efficient in the experiment environment.

Table 1. The comparison of PPDR-VCS with existing reputation systems

Proposal Scenarios Architecture Technologies for

identity privacy

Transparency Fairness

Blomer [30] Not given Centralized Group signatures No Yes

Zhai [31] Online services Decentralized Linkable ring

signatures

No Yes

Soska [8] E-commerce Blockchain Ring signatures Yes No

ARS-PS [9] Retail marketing Blockchain Anonymous

credentials

Yes No

RepChain [11] E-commerce Blockchain Blind signatures Yes Yes

BC-DRS [10] E-commerce Blockchain None Yes Yes

PPDR-VCS Vehicular

crowdsensing

Decentralized Traceable ring

signatures

Yes Yes

7 Related Work

In this section, we compare the existing works with our system from five aspects
in Table 1.

7.1 Anonymous Reputation Systems

Privacy concerns and the prevention of different attacks for reputation systems
are frequently discussed in the rencent literature. Extensive research have made
efforts to design anonymous reputation systems to protect users’ privacy. Blomer
et al. [30] pointed out that the security properties for reputation systems are
anonymity, traceability, linkability, and non-frameability, and they proposed an
anonymous reputation system through group signatures and Σ-protocol. Zhai et
al. [31] utilized verifiable shuffles [32] and linkable ring signatures [33] to pro-
pose a tracking-resistant anonymous reputation system. Liu et al. [9] proposed
an anonymous reputation system based on PS signatures in retail marketing.
Almost all proposed systems are combined with modern e-commerce services,
such as eBay, Amazon, Yelp, etc., and the goal of these systems is to protect
raters’ privacy.
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There exist a few works addressing the issues on privacy-preserving reputa-
tion system in mobile crowdsensing applications. Wang et al. [34] proposed an
anonymous reputation management scheme. In their scheme, honest participants
are vulnerable to tracking attacks, while malicious participants can keep large
reputation values for some time even when they provide false data. To conquer
the drawbacks of the work [34], Ma et al. [35] presented a privacy-preserving rep-
utation management scheme for edge computing enhanced mobile crowdsensing.
The scheme in [35] updates the reputation values based on the deviations of the
sensing data to the final aggregating result. However, the scheme is based on
centralized model, which can not meet our decentralized requirement. Different
from the existing works, we focus on the privacy presevation of the Uploader
and provide a scheme which can combine with a specific VCS application.

7.2 Reputation Calculation Model

Jøsang [15] and Yu et al. [36] proposed trust models to calculate reputation
scores based on rating feedback, which leverage the ratio of positive feedback to
the all. However, there exist threats such as ballot and obfuscation stuffing in
Jøsang’s belief models [15], and Dempster-Shafer model [36] does not consider
the degree of participation and data quality when computing the reputation
score. To address these issues, Bhattacharjee et al. [16] proposed a quality and
quantity-unified QoI metric for published information in a mobile crowdsensing
system. In order to model the expected truthfulness of the published information,
they use generalized Richard’s curve and Kohlsrausch relaxation function to cal-
culate the weights to belief and uncertainty masses, respectively. They pointed
out that their approach outperforms Jøsang’s belief and Dempster-Shafer based
reputation models in some aspects of classification, incentivization, and scala-
bility.

We presented our data quality quantification for vehicular crowdsensing sce-
nario. Different from QnQ [16], we modify the design of the belief and uncertainty
coefficient to satisfy our scenario. Furthermore, QnQ only considers the truth-
fulness of an event to calculate the aggregate reputation score. In our system,
another time-based factor, which affects the reputation value in time-sensitive
crowdsensing tasks, is also taken into account.

7.3 Blockchain-Enabled Reputation Systems

To build a decentralized system, the blockchain has been taken into consideration
to construct reputation systems [8–11] in E-commerce environment. Soska et al.
[8] proposed an anonymous reputation system based on ring signature and the
robust transaction chain property. Different from our system, the ring signature
in [8] is used to protect the identity privacy of the customer, but the size of the
ring signature is not constant. Liu et al. [9] proposed an anonymous reputation
system based on the PoS Blockchain architecture [37]. And they focus on the
efficiency and scalability issues of a blockchain-based architecture. Zhou et al.
[10] gave a blockchain-based decentralized reputation system in the E-commerce
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environment. They did not consider the privacy pretection of users, whose rep-
utation scores are stored on the blockchain and can be accessed by others. Li
et al. [11] presented RepChain, a privacy preserving reputation system for E-
commerce platforms based on the blockchain. Different from the existing work,
our system is proposed under the VCS scenario. And we aim to accomplish
privacy-preserving trusted reputation update on the premise of minimizing the
number of times accessing the blockchain.

8 Conclusion

In this paper, we have investigated the security and privacy issues of reputation
systems in VCS scenarios. We propose a privacy-preserving decentralized reputa-
tion system by utilizing zk-SNARK, traceable ring signature and the blockchain
technology. The privacy of vehicles is protected unconditionally for their good
behaviors. Any dishonest vehicle cannot boost their reputation arbitrarily. Sybil
attacks and collusion attacks are resisted in our system. The reputation of vehi-
cles is updated trustworthily depending on the quantified data quality. We have
also implemented a prototype system based on Ethereum to verify its perfor-
mance and feasibility. For future work, we will study how to enrich our current
design and improve the decentralized feature [38] of our system. Besides, multi-
ple updating factors should also be taken into account to meet the demands of
different tasks since there are different factors that affect the performance.
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