
Chapter 7
Semi-custom EDA

Abstract In modern computing systems, FPGAs are used as dedicated program-
mable accelerators (Che et al. [1], Zhang et al. [2], Cong et al. [3]). General-purpose
FPGAs are well optimized to fit a wide range of applications with a reasonable trade-
off on performance, power, and area, but are seriously sub-optimal in application-
specific contexts (Cong et al. [3], Neshatpour et al. [4]). In such case, customized
FPGA architectures, which are highly tailored for a specific set of applications as
well as seamless integration to other computing resources in the system, become a
proper solution. However, developing a FPGA layout through full custom approaches
is a time-consuming process even for industrial vendors, whose may take years to
finalize (Greenhill et al. [5]). In addition, design tools such as mapping algorithms
and bitstream generation have to be customized for different FPGA architectures,
which lead to another time-consuming development task. Driven by the strong need,
fast prototyping technology for customize FPGAs, especially semi-custom design
approaches, has been insensitively researched in recent years. As such, development
cycles of custom FPGAs can be comparable to modern ASICs, which opens the door
to tightly integrating FPGAs to SoCs. In this section, we will first review existing EDA
tools and then focus on critical EDA techniques that enable semi-custom designed
FPGAs.

7.1 Overview

In the past two decades, fast prototyping techniques for customized FPGA archi-
tectures have been proven by many researches through semi-custom design flows
[6– 14]. These works share the same principles when generating FPGA layouts:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_7

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_7&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7
https://doi.org/10.1007/978-981-99-7755-0_7

86 7 Semi-custom EDA

Fig. 7.1 An illustrative example that compares on engineering time and effort to prototype an
FPGA using OpenFPGA (an open-source EDA tool that enables semi-custom approaches) and
full-custom approaches

1. Model an FPGA architecture in synthesizable HDL netlists.
2. Use sophisticated ASIC design tools to implement the HDL netlists into physical

layouts.

As illustrated in Fig. 7.1, the fast prototyping technology through semi-custom
design flows accelerates and automates the development process of FPGAs.

Early works rely on handcrafted HDL netlists for FPGA architectures which even
include low-level details down to transistor-level circuit designs [6, 7]. However, such
methodology requires still significant manual effort, being inefficient in designing
diverse FPGA fabrics targeting domain-specific applications. Moreover, early works
focus only on developing fabric generators without associated compiler support, e.g.,
HDL-to-Bitstream generation [6, 7]. Recent works aim to build “FPGA generators”
in the similar concept as the memory compilers in ASIC world [8– 14]. The FPGA
generators integrate both netlist generators and bitstream generators in a unified
framework, on top of the well-known FPGA architecture exploration tool, e.g., VTR
[15, 16]. Major technical features of existing FPGA generators are summarized in
Table 7.1.

However, to implement production quality FPGA fabrics, layout generation is only
a small part (Fig. 7.2), when compared to other essential aspects, such as testbench
generator and bitstream support. For example, to verify the correctness of FPGA
fabrics before taping out, design verification is a mandatory step. Note that design
verification for FPGAs is mainly a software problem rather than a hardware problem,
as functionality of an FPGA is determined by a bitstream file. Therefore, to ensure
a high coverage in verification, a number of bitstream files are required to verify
different operating modes and utilization rates of an FPGA device. As a result, a

7.1 Overview 87

Table 7.1 Comparison on EDA tools enabling semi-custom FPGA design

Tool/metric Open
source

Architecture
language

Netlist
generation

Bitstream
generation

Testbench
generation

SDC
generation

Kuon et al. [6] .× .√ Automatic.a .× .× . ×
Ova et al. [7] .× .× Hand-

crafted
.× .× . ×

Archipelago [10] .√ .× Automatic .√ .× . ×
Anderson et al.
[8, 9]

.× .√ Automatic .√ .√ . √

Mohan et al. [13] .× .√ Automatic .√ .√ . √
PRGA [11] .√ .√ Automatic .√ .× . ×
FABulous [12] .√ .√ Automatic.b .√ .√ . ×
OpenFPGA [14] .√ .√ Automatic .√ .√ . √

. aOnly netlists of a tile is automatically generated

. bNetlists of primitive circuits, e.g., LUT and routing multiplexers, have to be hand crafted

Fig. 7.2 Semi-custom design flow for FPGA fabrics: a production flow and b end-user flow

functional HDL-to-Bitstream generator is a required component, being as important
as a netlist generator. In addition, a testbench generator is required to simulate the
bitstream downloading w.r.t. a configuration circuits, as well as check the functional
correctness of an FPGA under different I/O mapping and bitstreams. Actually, the
complexity of a HDL-to-Bitstream flow is significantly higher than a netlist generator,
which covers many NP hard problems in EDA, such as placement and routing.
In recent years, with the growth of open-source HDL-to-Bitstream tools, design
verification has been seriously considered and included in recent EDA tools, as
shown in Table 7.1. In short, design verification for FPGA should not only validate
the correctness of layout but also the correctness of associated software tool chains.

Beyond the essential components, to enable high-quality FPGA fabrics, timing
constraints for physical design are critical. Nowadays, timing constraints are typically
in the Synopsys Design Constraints(SDC) format, which are used to constrain timing
paths when ASIC tools generate FPGA layouts. Without timing constraints, pin-to-
pin delays, such as LUT delays and routing delay, may be too large to satisfy the
target performance of an FPGA. Note that, a key difference between FPGAs and
ASICs on timing paths is that an FPGA only has critical paths when mapped to a

88 7 Semi-custom EDA

specific HDL design. When implementing FPGA layouts, timing constraints cannot
be biased to an HDL design because it may probably cause performance degradation
on another HDL design. Therefore, the principle of the timing constraints is keep
pin-to-pin delays on each timing path as uniform as possible, which indicates that
every timing path is critical. Considering the large number of timing paths in a FPGA
fabric, a SDC generator is required to avoid huge manual effort. Nowadays, to achieve
high-performance FPGA fabrics, SDC generators are available in semi-custom EDA
tool chains (Table 7.1).

As architecture of FPGAs can be really different depending on their application
context, a key value of FPGA generators is to support versatile FPGA architectures.
Therefore, FPGA architecture description languages are needed to model compli-
cated and large-scale FPGA device in compact and human readable representations.
By leveraging the University of Toronto FPGA Architecture Language(UTFAL) [17],
FPGA generators can convert a high-level FPGA description to synthesizable HDL
netlists, and then implement layouts through ASIC design tools. Thanks to UTFAL’s
enriched syntax, FPGA generators can support a wide range of FPGA architec-
tures. To unlock more possibility in device modeling, extended architecture descrip-
tion language (set of architecture guidance models) has been proposed [18], In this
chapter, we focus on introducing the extended architecture description language
while UTFAL has been covered in Chap. 2.

In short, a netlist generator, a bitstream generator and a testbench generator are
three indispensable components in a basic semi-custom EDA framework for FPGA,
with which designers can accomplish a functional FPGA fabric. However, as the
growing needs of domain-specific FPGA fabrics, an expressive architecture lan-
guage is now becoming important, because it is a must-have for designers to rapidly
evaluate and prototype innovative FPGA architectures. As researchers have proven
the feasibility of FPGA generators with silicon results (Fig. 7.3), future trends lie on
improving PPA of the FPGA fabrics. This drives SDC generators to be an strategi-
cally important tool, which can constrain PPA of each segment in an FPGA fabric
through semi-custom design tools w.r.t. performance goals.

7.2 Extended Architecture Description Language

In this part, we focus on the extended architecture description language(set of archi-
tecture guidance models conceptualized in Chap. 2) adopted by the OpenFPGA
framework [18]. Other architecture description languages may have different syntax
when modeling FPGA fabrics but share similar principles [11, 12]. Therefore, we
focus more on general principles when designing an FPGA architecture descrip-
tion language than detailed syntax, with which we believe it is easier for readers to
understand other architecture description languages.

UTFAL is designed for a detailed logical representation of FPGA architectures,
providing sufficient information for EDA engines to perform packing, placement, and
routing. However, to enable netlist generation and bitstream generation, a detailed

7.2 Extended Architecture Description Language 89

(a) A 20x20 FPGA fabric (courtesy by [8]) (b) A 16x16 FPGA chip (courtesy by [13])

Fig. 7.3 Showcase FPGA layouts through semi-custom design approaches

physical representation of complete FPGA fabric is required. The extended architec-
ture description language is designed to provide supplementary information on top of
the UTFAL. It fills the blank of UTFAL when modeling circuit-level implementation
of programmable resources (see Sect. 7.2.1), physical mode of programmable blocks
(see Sect. 7.2.2), and configuration scheme (see Sect. 7.2.2). Therefore, the extended
architecture description language is complementary to UTFAL without overlapping
in syntax and information. Similar to UTFAL, the extended architecture descrip-
tion language is XML-based. Full documentation about UTFAL and the extended
architecture description language is available on [19, 20], respectively.

7.2.1 Circuit Modeling

As circuit design is a dominant factor impacting FPGA’s PPA, the extended archi-
tecture description language provides enriched syntax to model circuit-level details
of primitives in FPGAs, e.g., LUT, routing multiplexers. Figure 7.2 illustrates the
different focus on modeling LUTs and routing multiplexers between UTFAL and the
extended architecture description language. For EDA usage only, primitives can be
treated as a black box with limited information, e.g., number of ports, port direction
as well as pin-to-pin delays. However, to generate netlists, detailed circuit designs
of primitives have to be modeled. On the other side, upon practical applications,
hardware engineers may select various circuits to implement their FPGA fabrics.
For instance, a ultra-low-power FPGA may be built with ultra-low-power circuit
cells while a high-performance FPGA may use absolutely different circuit cells. As
a result, the extended architecture description language is capable of modeling highly

90 7 Semi-custom EDA

Fig. 7.4 Examples of extended XML syntax for LUTs

flexible circuit design topology even down to transistor level and allows designers
to customize any component in an FPGA.

Among the programmable resources in an FPGA, there are two types of circuits
whose structures have prominently impact on PPA and bitstream generator: LUTs
and routing multiplexers. LUTs are used to implement logic functions while routing
multiplexers are used to route signals between LUTs. In some FPGA devices, LUTs
and routing multiplexers take 90% of chip area, critical path delays, and power
consumption [21]. The choice of the circuit implementation may also impact the PPA
of standalone circuit by .2× [22]. Therefore, the extended architecture description
language provides fruitful syntax to support diverse circuit design topology and
details for LUTs and routing multiplexers.

Table 7.3 lists the mainstream circuit topology for LUTs and routing multiplex-
ers that are frequently used by modern FPGAs. Figure 7.4 shows an example about
how the extended architecture description language models the internal structure
of a fracturable 4-input LUT. Users can specify which inputs are disabled dur-
ing fracturable mode in the XML property tri_state_map. The levels and
positions of fracturable outputs can be freely defined through the XML proper-
ties lut_frac_level and lut_output_mask. To support mode switching of
fracturable LUTs, the port map includes a special port mode rather than the regular
configuration port. Figure 7.5 shows another example about how a tree-like 4-input
routing multiplexer (see Table 7.2 for schematic) is modeled by the extended archi-
tecture description language. The multiplexing structures can be customized through
an XML property structure. Note that both input, output and even intermediate
buffers can be customized through XML syntax, which are needed for LUTs and
routing multiplexers in different location of an FPGA. With these modeling, a netlist
generator can output RTL and even gate-level netlists for the LUTs and routing
multiplexers, meanwhile bitstream generator can decode configuration bits.

In addition to the detailed modeling, black-box modeling is also supported, where
users can provide their own circuit implementation for primitives. When black-box
modeling is adopt, the path to netlist should be defined through the XML property
verilog_netlist, and only necessary information such as port list is required.

7.2 Extended Architecture Description Language 91

Fig. 7.5 Examples of extended XML syntax for MUXes

Such modeling is also frequently used as modern FPGAs are built with various third-
party IPs, e.g., Digital Signal Processor (DSP), Random Access Memory (RAM) and
Serializer/Deserializer (SerDes).

7.2.2 Physical Mode Modeling

To simplify EDA algorithms, UTFAL focus on compact description of Logic Element
(LE) architectures instead of a complete schematic-level representation. For instance,
a complex multi-mode LE in Fig. 7.6a is modeled by multiple abstract-level operating
modes in Fig. 7.6b, c. The abstraction indeed eases the EDA algorithms in mapping
to FPGA resources but hides important details required by netlist and bitstream gen-
eration for the physical LEs. For example, netlist generators cannot identify which
mode in Fig. 7.6 denotes the physical implementation of the LE. Bitstream genera-
tors may miss configuration bits to be decoded in physical mode when the operating
modes in Fig. 7.6b, c only include a part of programmable routing resources. More-
over, configuration bits of an operating mode should be properly reorganized for the
physical mode. For example, the configuration bits of the two 3-LUT in Fig. 7.6c
should be mapped to the fracturable 4-LUT in Fig. 7.6a. Without a detailed circuit-
level implementation of the fracturable 4-LUT, bitstream generators cannot even
decode configuration bits of the two 3-LUT from logic synthesis results.

Therefore, to enable both netlist and bitstream generators, extended syntax is
developed to

1. distinguish between physical mode and operating modes;
2. link the components in the various operating modes to physical mode
3. establish the relationship between primitives in physical mode and their circuit-

level modeling (see Sect. 7.2.1).

To be intuitive, we take the example of the multi-mode CLB shown in Fig. 7.6
and present XML description in Fig. 7.7. The physical implementation of the LE
is specified to be the mode phy, through syntax physical_mode_name. The
detailed architecture of the physical LE follows the same style as the UTFAL.
Under the physical mode, users can link primitive blocks to circuit implementa-
tions using a XML property circuit_model_name. Figure 7.7 shows how a

92 7 Semi-custom EDA

Table 7.2 Different objectives between UTFAL and extended architecture description language:
logical vs. physical modeling

UTFAL Extended architecture description language

7.2 Extended Architecture Description Language 93

Table 7.3 Various circuit designs of LUTs and routing multiplexers

Circuit Design topology

LUT 1. Single-output LUTs

2. Fracturable (multi-output) LUTs

3. LUT with hard logic, e.g., carry

4. LUT built with standard cells

5. LUT with RAM/ROM

Routing multiplexer 1. One-level multiplexer

2. Multi-level multiplexer

3. Tree-like multiplexer

4. Standard-cell multiplexer

5. Multiplexer with local encoder

6. Multiplexer with constant input

. ∗Input and output buffering can be fully customized for both circuits

Fig. 7.6 a Physical implementation of a LE and b, c two operating modes

fracturable LUT flut is linked to a defined circuit model frac_lut4 in Fig. 7.4.
Under the operating modes, each virtual pb_type has to be linked to its phys-
ical implementation through XML properties physical_pb_type_name and
physical_mode_port. Consider the example in Fig. 7.7, the operating modes
dlut3 and slut4, which correspond to the illustration in Fig. 7.6b, c, are linked to
the physical mode phy which correspond to the illustration in Fig. 7.6a. The inputs
in and outputs out of the pb_type lut4 in mode slut4 are linked to the inputs
in[0:3] and outputs lut4_o of the pb_type flut in its physical mode phy, as
highlighted by red dash lines in Fig. 7.6. XML syntax mode_bits allows users to
customize the configuration bits applied to fracturable LUTs in any operating mode.
For example, in Fig. 7.7, when the lut4 is used, the mode_bits="1" will be
applied to the port mode of its physical module frac_lut4 in Fig. 7.4. As such,
without modifying packing or synthesis engines, the XML syntax can map the con-

94 7 Semi-custom EDA

Fig. 7.7 Examples of extended XML syntax for a LE

Fig. 7.8 Examples of memory-bank-based configuration protocol modeling

figuration bits from any operating mode to its physical implementation. In addition,
such multi-mode modeling enable users to define a simplified BLE architecture in
operating modes than physical mode, which reduces CPU time for packing.

7.2.3 Configuration Protocol

Programmable resources in an FPGA have to be configured through a protocol. How-
ever, configuration protocols are not modeled in UTFAL because they are well decou-
pled from packing, placement, and routing algorithms. Configuration scheme directly
impacts bitstream generators, which is essential to a complete tool chain. More impor-
tantly, configuration protocol could be really different in FPGAs, depending on the
application context. Extended architecture description language is developed to sup-
port versatile configuration protocols. Figure 7.8 shows an example of modeling a
memory-bank-based configuration protocol, where other types of configuration pro-
tocol can be specified through XML property type. Through memory banks, each
configuration memory cell can be accessed by enabling dedicated Bit-Line (BL) and
Word-Line (WL). Note that the circuit implementation of a memory cell can be not

7.2 Extended Architecture Description Language 95

Fig. 7.9 Example of a, a memory organization using decoders; b single memory bank across the
fabric; and c multiple memory banks across the fabric

limited to a SRAM, as shown in Fig. 7.9. For example, flip-flops or latches can also
used as the fundamental cell in memory banks. The circuit model of configuration
memory cell can be specified through XML property circuit_model_name. In
addition, as FPGA size grows, multiple configuration regions are adapted to avoid
long configuration time as well as challenges in physical design due to large para-
sitic in BL/WL interconnection. Figure 7.9b, c shows illustrative examples of single-
region and 4-region memory banks, respectively. Therefore, the number of configu-
ration regions can be customized through the XML property num_regions. Note
that other configuration protocols, such as configuration chains and frame-based,
are parameterized as memory banks, where different number of regions and various
circuit implementation may also be applied.

In practice, configuration scheme for each tile or lower level primitive may need
full customization. Take the example of memory bank, chip designer may need
to customize which tiles to share BLs and WLs, in order to optimize in physical
design and configuration time. Figure 7.10 shows an example file where designers
can specify BL and WL sharing for each tile in each configuration region of an FPGA
fabric. Two tiles share the same BL when their column index are same. Two tiles
share the same WL when their row index are same. Consider the example in Fig. 7.10,
the two tiles grid_io_bottom_1__0_ and grid_io_bottom_2__0_ are
configured by the same WL but through two different BLs, where the BLs and WLs

96 7 Semi-custom EDA

Fig. 7.10 Examples of fabric key file modeling BL/WL sharing

Fig. 7.11 Flowchart of netlist generator and graph-based modeling for modules

are controlled by region 0. For each region, different set of BLs and WLs are
used to control the tiles under it. A tile can only be controlled by a configuration
region. We refer interested reader to [20] for details.

7.3 Netlist Generator

As a cornerstone of the semi-custom design tools, netlist generators aim to translate
a high-level architecture description to HDL netlists which can be adapted by ASIC
tools to implement physical layouts. In early works, netlist generators is a simple

7.3 Netlist Generator 97

HDL code generator [6– 10], which outputs internal device modeling to a synthesiz-
able HDL format in a straightforward way. However, such native HDL translation
of FPGA fabric imposes strong limitation when implementing physical layouts. For
example, considering the HDL netlist which model a complete routing fabric as a flat-
ten graph, the file sizes of netlists increase exponentially when FPGA size increases,
which causes a long runtime in physical design. Furthermore, flatten netlists force a
high design complexity when implementing an FPGA fabric, since a 4K-LUT FPGA
may contain 8+ millions of logic gates. As a result, the physical design runtime of
a medium sized FPGA is more than 24 h [8], while the physical design may fail for
large sized FPGAs [23]. Modern netlist generators are designed to not only a simple
code generator but also contain many features which make outputted netlists to be:

1. physical design friendly;
2. compatible with multiple HDL format and their standards;
3. human-readable, easy to debug and backtrace errors.

To enable these features, as depicted in Fig. 7.11, the implementation of the netlist
generators is based on two steps:

1. Create a graph of modules which represent the complete FPGA fabric;
2. Build a number of netlist writers which output the module graph into selected

file formats.

In the graph-based modeling, the whole FPGA fabric is represented as a tree of
modules and their instances, as shown in Fig. 7.11. Modeling an FPGA fabric in a
graph allows EDA tool to easily adjust hierarchy of netlists. For example, through
graph merging, sub-modules can be merged which unlocks more opportunity in
physical design optimization. It is also straightforward to profile the FPGA fabric,
e.g., get the depth of netlists, count number of unique modules, etc., which can
provide critical information for physical designers. A graph can be outputted to
different file formats through various netlist writers, such as Verilog writer. As such,
netlist writers consider a graph as an input, being decoupled from rest of engines
in netlist generators. This can avoid massive code changes in core engine when
developing a new netlist writer.

The auto-generated fabric netlists include both a programmable fabric with con-
figuration protocol embedded. To be physical design friendly, netlist generators are
capable of outputting netlist in different levels, e.g., Register-Transfer Level (RTL)
and Gate-level (GL). Netlists at different levels of details unlock optimization oppor-
tunities through different design flows. As illustrated in Fig. 7.12, RTL (behavioral)
netlists can be optimized through synthesis tools to standard cells and then physi-
cally implemented to layouts. Alternatively, GL (denoted as technology-mapped in
Fig. 7.12) netlists are preferred as an direct input to physical design tool, when chip
designers require specific standard cells to implement primitive circuits which are not
synthesizable. The choice of design flows really depends on the PPA requirements and
expertise of chip designers. For example, for ultra-high-performance FPGA, some
specific cells are required in gate-level netlists and synthesis should be skipped.

98 7 Semi-custom EDA

Fig. 7.12 An example of physical-design-friendly netlist generators

Fig. 7.13 An example of hierarchical Verilog netlists modeling a FPGA fabric

On the other side, the hierarchy of netlists also impact the physical design signif-
icantly. Figure 7.13 illustrates an example of Verilog netlists which are outputted by
the OpenFPGA, which models a complete FPGA fabric in a hierarchical way. Note
that highly hierarchical fabrics are generated, where large FPGAs can be built with
a small number of repeatable tiles including routing blocks. Tiles and routing blocks
are built with common primitive blocks, located in the sub_module directory,
which can maximize the reuse of primitive netlists. Repeatable tiles can efficiently
reduce the file sizes, total runtime, and design complexity of physical design flow.
For example, in a physical design methodology, only unique tiles are placed and

7.3 Netlist Generator 99

Fig. 7.14 An example of auto-generated human-readable netlists corresponding to architecture
definition

routed, while the top-level fabric is only an assemble of the tiles which are treated
as black boxes [23].

Note that different physical design tools may require different HDL formats and
their specific variants. Verilog is a popular HDL format for most physical design
tools, while VHDL is more popular as a strict behavioral modeling for FPGA fabrics.
Modern netlist generators include various netlist writers to convert a graph represen-
tation of FPGA fabric to the file format which meets downstream tool requirements.
Even when considering Verilog format, various netlist styles may be demanded,
in order to be compatible with latest Verilog standards. For instance, the syntax
default_nettype is introduced to force strict wire definition in Verilog 2001.
Supporting diverse syntax allows the auto-generated netlists to be more human read-
able and easier to back-trace errors for chip designers, especially when there are
implementation errors during physical design flow. To further improve readability of
outputted netlists, names of modules, ports, and nets should be human readable and
correspond to architecture description. Figure 7.14 shows an example how the out-
putted netlist can be easy to correlated to the architecture description. In Fig. 7.14a,
a programmable block clb with two input ports and one output is defined using
the UTFAL. Figure 7.14b presents the Verilog codes which are outputted by OpenF-
PGA, corresponding to the programmable block clb. The port name and port size
are consistent between the architecture description and the netlists, through which
chip designer can backtrace the changes in netlists to a specific portion of architecture
file. For instance, the port I of clb in Fig. 7.14a is named as clb_I in Fig. 7.14b.

We refer interested readers to [20] for a detailed implementation of netlist gener-
ator.

100 7 Semi-custom EDA

Fig. 7.15 Principles of Verilog testbenches: (1) using common input stimuli; (2) applying bitstream;
(3) checking output vectors

Table 7.4 Auto-generated testbench features

Testbench Runtime Test vector Test coverage

Full Long Random stimulus Full fabric

Preconfigured Short Random
stimulus/formal
method

Programmable fabric
only

7.4 Testbench Generator

It is essential to validate the correctness of FPGA fabrics before tape-out. However,
a key difference between the design verification for FPGAs and ASICs lies on bit-
streams. As highlighted in Fig. 7.15, an FPGA carries a specific functionality only
when an associated bitstream is loaded. To ensure a high verification coverage, chip
designers need a number of bitstream files, each of which is designed to validate
a specific part of the FPGA. The bitstream files could be either synthetic (not syn-
thesizable through HDL-to-bitstream tools) or based on a user’s RTL design. To
validate the various bitstream on an FPGA, testbenches have to be generated with
dedicated I/O mapping for each configuration. Note that for most applications, only
part of FPGA I/Os are used and for each application, each FPGA I/O may be used
in a different way. Testbench generators assign the I/O mapping based on the results
from HDL-to-Bitstream results. To enable self-testing, the FPGA and user’s RTL
design (simulated using an HDL simulator) are driven by the same input stimuli, and
any mismatch on their outputs are reported as errors.

To trade-off runtime and coverage, as listed in Table 7.4, two types of testbenches
are typically generated to validate the correctness of the fabric before tape-out:
full and preconfigured. Full testbench aims at simulating an entire FPGA operat-
ing period, consisting of two phases:

1. the configuration phase, where the bitstream file is loaded to the programmable
fabric through a configuration protocol, as highlighted by the green rectangle of
Fig. 7.16;

2. the operating phase, where random input vectors are applied to drive both Devices
Under Test (DUTs), as highlighted by the red rectangle of Fig. 7.16.

7.4 Testbench Generator 101

Fig. 7.16 Illustration on the waveforms in full testbench

Using the full testbench, chip designers can validate both the configuration circuits
and programming fabric of an FPGA. However, the random testing vectors used in the
full testbench may result in only a small set of functional coverage. On the other side,
as the bitstream size increases exponentially with the FPGA size, the number of clock
cycles required to load the bitstream becomes a dominating factor (more than 90%)
in the verification runtime. For instance, HDL simulation of a full testbench including
a 800k-bit bitstream consumes a 24-hour runtime when using a commercial state-
of-the-art simulator. In short, even there are significant limitations, the full testbench
remains a must-run verification, since it fully validates the configuration protocol.

To improve the coverage, the preconfigured testbench is proposed, which skips the
time-consuming configuration phase and focus on the operating phase. As a result,
sufficient number of testing vectors can be applied to ensure functional correctness
of a mapped FPGA design, while simulation runtime is fairly small. To apply testing
vectors to mapped I/Os of an FPGA, a preconfigured FPGA, which is instantiated
with the user’s bitstream, is encapsulated with the same port mapping as the user’s
RTL design, as illustrated in Fig. 7.17. Note that beyond the functional verification
show in Fig. 7.15, the preconfigured FPGA module can be also fed to a formal tool
for a 100% coverage formal verification against user’s RTL design. Compared to the
full testbench, the preconfigured testbench significantly accelerates the functional
verification especially for large FPGAs.

We believe that with proper use of the two types of testbenches, the verification
process for FPGAs can be significantly simplified or even automated.

102 7 Semi-custom EDA

Fig. 7.17 Internal structure of a pre-configured FPGA module

7.5 Showcase

In this part, three FPGA fabrics produced by semi-custom EDA approaches are
presented and then compared to a commercial baseline Stratix IV [24]:

1. a.20 × 20 homogeneous FPGA using a commercial 40 nm technology, built with
standard cells only [8] (see layout in Fig. 7.3a);

2. a.20 × 20 homogeneous FPGA using a commercial 40 nm technology, built with
standard cells only [18] (see layout in Fig. 7.18a);

3. a .32 × 32 heterogeneous FPGA using a commercial 12 nm technology, built
with a mix of standard cells and custom cells [14] (see layout in Fig. 7.18b).

Note that through semi-custom approaches, the layout generation of the FPGA fabrics
are within 24 h, but their architectures, technologies, and detailed methodologies
are different. In all the FPGAs, each tile includes 10 Logic Elements (LEs) and a
local routing architecture with 50% connectivity. The LE of homogeneous FPGAs
consists of a 6-input fracturable LUT, a 4-input LUT, two 1-bit adders, and two flip-
flops, which can operate in 6 different modes. The heterogeneous FPGA employs a
simplified LE but without the 4-input LUT and also consists of a column of 512 Kb
Block RAMs (BRAMs), generated by a foundry memory compiler. Full details about
the showcased FPGA fabrics are listed in Table 7.5.

7.5 Showcase 103

Fig. 7.18 Complete layout of FPGA fabrics

Table 7.5 Comparison on the FPGAs in Figs. 7.3a and 7.18

Resource/capacity Standard homo [8] Custom homo [18] Standard hetero [14]

Array size .20 × 20 .20 × 20 . 32 × 32

Tileable routing .× .× . √
Fracturable 6-input
LUTs

4k.a 4k 9.92 k

4-input LUTs N/A 8k N/A

1-bit full adder 8k 8k 19.84 k

Flip-flops 8k 8k 19.84 k

Block RAM N/A N/A 512 k bits

I/Os N/A.b 480 124

Routing channel width 300 300 200

Routing wires 87% L4 87% L4 L4

13% L16 13% L16

.Fcin 0.055 0.055 0.15

Routing multiplexer tree-like one/two-level tree-like

Backend details Standard homo [8] Custom homo [18] Standard hetero [14]

Tool Cadence encounter
v09.12

Cadence Innovus 19.1 Synopsys ICC2
2019.03

Layout area 16.89.mm2 7.mm2 9. mm2

Flow type Flatten Two-step flatten Hierarchical

Runtime (h) 20–24 24 12

Peak memory (GB) 64 60 215

. aEach 6-input LUT contains 8 inputs

. bNot reported

104 7 Semi-custom EDA

7.5.1 Methodologies

The homogeneous FPGA in [8] is generated by an in-house netlist generator based
on VTR, while the rest of FPGA fabrics are generated by OpenFPGA [18]. Note
that the netlists for the homogeneous FPGA in [8] were auto-generated in behavioral
Verilog codes and optimized by Synopsys Design Compiler before physical design
with a strategy to balance area and delay. The netlists auto-generated by OpenFPGA
are technology mapped and directly used for physical design tools. Regarding cir-
cuit designs, the homogeneous FPGA in [8] and the heterogeneous FPGA in [14]
is built with standard cells provided by a commercial 40nm technology, while the
homogeneous FPGA in [18] adapts custom cells for routing multiplexers and config-
uration memory elements. Note that the homogeneous FPGA in [18] uses two-level
structures for the multiplexers in Connection Blocks (CBs) and Switch Blocks (SBs)
and local routing architecture, while one-level structure for those in LE. To guarantee
high-performance, routing multiplexers are buffered at both inputs and outputs while
LUTs are buffered at inputs, outputs, and every two intermediate stages.

The FPGA fabrics are implemented using three different physical design strate-
gies. The homogeneous FPGA in [8] was implemented using a flatten backend flow
with design constraints to force layout regularities. The homogeneous FPGA in [18]
was implemented using a two-step backend flow where Configurable Logic Blocks
(CLBs) are P&Red first and then instantiated at the top-level as hard macros. To
leverage the symmetry of an FPGA fabric, the heterogeneous FPGA adopted a more
hierarchical backend flow, where a library of hard macros for CLBs, CBs, and SBs
is built and then assembled in the final layout. The hierarchical backend flow allows
chip designers to optimize each hard macro with respect to the timing constraints
generated by our tool with few combinational loops to be broken. Therefore, the
heterogeneous FPGA is larger in array size, while its backend is .2× faster than the
homogeneous. Commercial signoff tools are then used to ensure that all the fabrics
are DRC-clean, and timing extraction is performed by using Synopsys PrimeTime.

7.5.2 Performance Evaluation

For a comprehensive analysis, the area, pin-to-pin delays, and the delays of the imple-
mented benchmarks are considered when evaluating the FPGA fabrics. Table 7.6
compares the custom homogeneous FPGA in [18] to two baselines, a commercial
Stratix-IV FPGA and the standard homogeneous FPGA in [8]. We believe it is a
fair comparison since these FPGAs are similar in architecture and also implemented
using 40nm technologies. The results prove the high value of using one-level and two-
level multiplexing structures as well as an optimized cell library, which can improve
the area by 42% and path delay by 30% when compared to a standard cell FPGA.
Indeed, there are considerable gaps in area (60%) and path delays (20%) between
the semi-custom-designed FPGAs and the full-custom-designed commercial FPGA.

7.5 Showcase 105

Table 7.6 Area and delay comparison between [8, 14, 18] and Stratix IV

Generality Standard
homo [8]

Custom homo
[18]

Standard hetero
[14]

Stratix IV

Technology 40 nm 40 nm 40 nm 12nm

Cell Library Standard Custom.a Custom Standard

Tile Area 30,625 17,648 11,050 8,373

(.µm2) (100%) (-42%) (-63%) (-72%)

Path delay (ns) Standard homo
[8]

Custom homo
[18]

Standard hetero
[14]

Stratix IV

Process Corner TT SS SS.b TT

6-LUT 0.5 0.27 0.28 0.23

(100%) (. −46%) (. −44%) (. −54%)

20-bit 1.63 2.12 1.23 1.13

Adder.c (100%) (+30%) (-25%) (. −31%)

Local 0.27 0.17 0.23 0.15

Routing.d (100%) (. −37%) (-15%) (. −44%)

L4 track.e 2.53 0.82 0.59 0.75

(100%) (. −67%) (. −76%) (. −70%)

Average 100% . −30% . −40% (. −50%)

. aUse custom cells only in routing multiplexers and configuration chains

. bThe rest are standard cells. See details in [18]

. cConsider the slow model in Quartus STA

. dLocal routing path starts from a BLE output and ends at a BLE input

. eLX track: FF.→length-X wire.→Local Routing.→LUT.→FF

Even though there is an intrinsic PPA gap between standard-cell layouts and full-
custom layouts, the performance gap can be reduced through a careful co-design
between backend strategies and custom cell implementations [7].

For performance benchmarking, eight MCNC circuits are selected to fit all the
40nm FPGAs. Each benchmark is verified through the verification techniques in
Sect. 7.4, using Mentor ModelSim and Synopsys Formality. Quartus 18.1.0 is used
to implement the same benchmark set as the industry baseline, and the device model is
set to the Stratix IV EP4S40G2F40C2. Figure 7.19a shows that FPGAs using custom
cells is .2× slower on average than the Stratix IV. The gap comes from the hardware
lags in performance, with an average of 20%. When critical paths consist of multiple
routing paths listed in [Tab. 7.6], the delay difference will aggregate. The gap comes
from sources:

1. the hardware lags in performance with an average of 10%. When critical paths
consist of multiple routing paths listed in Table 7.6, the delay difference will
aggregate. Therefore, the longer the critical path is, the larger the performance
gap will be.

106 7 Semi-custom EDA

Fig. 7.19 Delay comparison between OpenFPGA and [8] (marked as previous works) using
selected MCNC benchmarks

2. previous studies have shown a large gap between VPR CAD algorithms and
commercial counterparts [25]. The performance gap may be as large as 55% on
average, fully shadowing any efficiency on hardware.

This indicates that developing efficient CAD algorithms that can match industry
quality should be a frontier for the open-source FPGA research community.

We compare the heterogeneous FPGA in Fig. 7.18b to the homogeneous FPGA
[8], as both FPGAs are implemented by standard cells and also similar in architecture
while using different technologies. Our results show that using semi-custom design
approaches, FPGA architectures can be portable between different technology nodes
and benefit significant performance improvements. In Table 7.6, the 12 nm FPGA is
72% smaller in area and 50% faster in path than the 40nm baseline. In Fig. 7.19b, the
heterogeneous FPGA is .3× faster on average in benchmark delays than the 40 nm
baseline.

References 107

7.6 Summary and Trends

Semi-custom design approaches have become a warm research topics in recent years,
as different design methodology than commercial state-of-the-art FPGAs that are
built through full custom approaches.

To enable semi-custom design approaches, innovative EDA tools have been devel-
oped as an unified framework for netlist generation, testbench generation and bit-
stream generation. Due to the automation in modern EDA tools, development cycle
of FPGA layouts as well as engineering effort can be remarkably reduced. However,
the semi-custom design approach is in its infancy stage, as we see non-negligible
PPA gaps against commercial FPGAs.

Since most of the EDA tools are accessible in open-source community, future
researches may focus on performance improvement on the design methodology,
e.g., physical design techniques. In addition, being tightly integrated to architecture
exploration tools, the EDA tools enable fast prototyping for innovative FPGA archi-
tectures. In other words, architecture exploration can achieve realistic PPA evaluation
in a short development cycle, and effectiveness of architecture enhancements can be
validated through layout-level results in a short period, as compared the full-custom
approach. Also, with the expansion in open-source community for FPGAs, novel
EDA algorithms, e.g., packing, placement and routing, may be studied and validated
through physical FPGA fabrics using semi-custom design approach. Previously, the
validation of EDA algorithms is typically based on hypothetical FPGA fabrics and
high-level analysis methods, which has been proven to be inaccurate.

In short, semi-custom design approaches have changed the cost function to design,
evaluate, and produce new FPGA fabrics, stimulating many research opportunitie
in novel FPGA architecture, efficient physical design techniques, and novel EDA
algorithms.

References

1. S. Che, J. Li, J.W. Sheaffer, K. Skadron, J. Lach, Accelerating compute-intensive applications
with GPUS and FPGAs, in 2008 Symposium on Application Specific Processors (2008), pp.
101–107

2. C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, Optimizing FPGA-based accelerator design
for deep convolutional neural networks, in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15. (Association for Computing
Machinery, New York, NY, USA, 2015), pp. 161–170. [Online]. Available: https://doi.org/10.
1145/2684746.2689060

3. J. Cong, Z. Fang, M. Huang, L. Wang, D. Wu, CPU-FPGA coscheduling for big data applica-
tions. IEEE Design Test 35(1), 16–22 (2018)

4. K. Neshatpour, H.M. Mokrani, A. Sasan, H. Ghasemzadeh, S. Rafatirad, H. Homayoun, Archi-
tectural considerations for FPGA acceleration of machine learning applications in mapreduce,”
in Proceedings of the 18th International Conference on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, ser. SAMOS ’18 (Association for Computing Machinery,

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060

108 7 Semi-custom EDA

New York, NY, USA 2018), pp. 89–96. [Online]. Available: https://doi.org/10.1145/3229631.
3229639

5. D. Greenhill, R. Ho, D. Lewis, H. Schmit, K.H. Chan, A. Tong, S. Atsatt, D. How, P. McElheny,
K. Duwel, J. Schulz, D. Faulkner, G. Iyer, G. Chen, H.K. Phoon, H.W. Lim, W.-Y. Koay,
T. Garibay, 3.3 a 14nm 1ghz FPGA with 2.5d transceiver integration, in 2017 IEEE International
Solid-State Circuits Conference (ISSCC) (2017), pp. 54–55

6. I. Kuon, A. Egier, J. Rose, Design, layout and verification of an FPGA using automated tools, in
Proceedings of the 2005 ACM/SIGDA 13th International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’05 (Association for Computing Machinery, New York, NY, USA,
2005), pp. 215–226. [Online]. Available: https://doi.org/10.1145/1046192.1046220

7. Aken’Ova, V., Saleh, R., A “soft++” EFPGA physical design approach with case studies in 180
nm and 90 nm, in IEEE Computer Society Annual Symposium on Emerging VLSI Technologies
and Architectures (ISVLSI’06) (2006), pp. 6

8. J.H. Kim, J.H. Anderson, Synthesizable FPGA fabrics targetable by the verilog-to-routing
(VTR) CAD flow, in 2015 25th International Conference on Field Programmable Logic and
Applications (FPL) (2015), pp. 1–8

9. B. Grady, J.H. Anderson, Synthesizable heterogeneous FPGA fabrics, in 2018 International
Conference on Field-Programmable Technology (FPT) (2018), pp. 222–229

10. H.J. Liu, Archipelago - an open source FPGA with toolflow support (2014)
11. A. Li, D. Wentzlaff, Prga: an open-source FPGA research and prototyping framework, in

The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’21. (Association for Computing Machinery, New York, NY, USA, 2021), pp. 127–137.
[Online]. Available: https://doi.org/10.1145/3431920.3439294

12. D. Koch, N. Dao, B. Healy, J. Yu, A. Attwood, Fabulous: an embedded FPGA framework,
in The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’21. (Association for Computing Machinery, New York, NY, USA, 2021), pp. 45–56.
[Online]. Available: https://doi.org/10.1145/3431920.3439302

13. P. Mohan, O. Atli, O. Kibar, M. Zackriya, L. Pileggi, K. Mai, Top-down physical design of
soft embedded FPGA fabrics, in The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’21. (Association for Computing Machinery, New York,
NY, USA, 2021), pp. 1–10. [Online]. Available: https://doi.org/10.1145/3431920.3439297

14. X. Tang, E. Giacomin, B. Chauviere, A. Alacchi, P.-E. Gaillardon, OpenFPGA: an open-source
framework for agile prototyping customizable FPGAs. IEEE Micro 40(4), 41–48 (2020)

15. J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr, S. Wang, T. Liu,
N. Ahmed, K.B. Kent, J. Anderson, J. Rose, V. Betz, VTR 7.0: next generation architecture
and cad system for FPGAs. ACM Trans. Reconfigurable Technol. Syst. 7(2) (2014). [Online].
Available: https://doi.org/10.1145/2617593

16. K.E. Murray, O. Petelin, S. Zhong, J.M. Wang, M. Eldafrawy, J.-P. Legault, E. Sha, A.G.
Graham, J. Wu, M.J.P. Walker, H. Zeng, P. Patros, J. Luu, K.B. Kent, V. Betz, VTR 8: high-
performance cad and customizable FPGA architecture modelling. ACM Trans. Reconfigurable
Technol. Syst. 13(2) (2020). [Online]. Available: https://doi.org/10.1145/3388617

17. J. Luu, Architecture-aware packing and cad infrastructure for field-programmable gate arrays.
Ph.D. dissertation, University of Toronto (2014)

18. X. Tang, E. Giacomin, A. Alacchi, B. Chauviere, P.-E. Gaillardon, OpenFPGA: an opensource
framework enabling rapid prototyping of customizable FPGAs, in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). (IEEE, 2019), pp. 367–
374

19. V. to Routing, Verilog-to-routing documentation (2022) [Online]. Available: https://docs.
verilogtorouting.org/en/latest/arch/

20. X. Tang, OpenFPGA documentation (2022). [Online]. Available: https://openfpga.readthedocs.
io/en/master/

21. I. Kuon, R. Tessier, J. Rose (2008)
22. X. Tang, E. Giacomin, G. De Micheli, P.-E. Gaillardon, Circuit designs of high-performance

and low-power rram-based multiplexers based on 4t(ransistor)1r(ram) programming structure.
IEEE Trans. Circ. Syst. I: Regular Papers 64(5), 1173–1186 (2017)

https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/

References 109

23. G. Gore, X. Tang, P.-E. Gaillardon, A scalable and robust hierarchical floorplanning to enable
24-hour prototyping for 100k-LUT FPGAs, in Proceedings of the 2021 International Sympo-
sium on Physical Design, ser. ISPD ’21. (Association for Computing Machinery, New York,
NY, USA, 2021), pp. 135–142. [Online]. Available: https://doi.org/10.1145/3439706.3447047

24. D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane, A. Lee, P. Pan, Architectural
enhancements in Stratix-III™and Stratix-IV™, in Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’09. (Association for Computing
Machinery, New York, NY, USA, 2009), pp. 33–42. [Online]. Available: https://doi.org/10.
1145/1508128.1508135

25. E. Hung, Mind the (synthesis) gap: examining where academic FPGA tools lag behind industry,
in 2015 25th International Conference on Field Programmable Logic and Applications (FPL)
(2015), pp. 1–4

https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135

	7 Semi-custom EDA
	7.1 Overview
	7.2 Extended Architecture Description Language
	7.2.1 Circuit Modeling
	7.2.2 Physical Mode Modeling
	7.2.3 Configuration Protocol

	7.3 Netlist Generator
	7.4 Testbench Generator
	7.5 Showcase
	7.5.1 Methodologies
	7.5.2 Performance Evaluation

	7.6 Summary and Trends
	References

