
Chapter 7 
Semi-custom EDA 

Abstract In modern computing systems, FPGAs are used as dedicated program-
mable accelerators (Che et al. [ 1], Zhang et al. [ 2], Cong et al. [ 3]). General-purpose 
FPGAs are well optimized to fit a wide range of applications with a reasonable trade-
off on performance, power, and area, but are seriously sub-optimal in application-
specific contexts (Cong et al. [ 3], Neshatpour et al. [ 4]). In such case, customized 
FPGA architectures, which are highly tailored for a specific set of applications as 
well as seamless integration to other computing resources in the system, become a 
proper solution. However, developing a FPGA layout through full custom approaches 
is a time-consuming process even for industrial vendors, whose may take years to 
finalize (Greenhill et al. [ 5]). In addition, design tools such as mapping algorithms 
and bitstream generation have to be customized for different FPGA architectures, 
which lead to another time-consuming development task. Driven by the strong need, 
fast prototyping technology for customize FPGAs, especially semi-custom design 
approaches, has been insensitively researched in recent years. As such, development 
cycles of custom FPGAs can be comparable to modern ASICs, which opens the door 
to tightly integrating FPGAs to SoCs. In this section, we will first review existing EDA 
tools and then focus on critical EDA techniques that enable semi-custom designed 
FPGAs. 

7.1 Overview 

In the past two decades, fast prototyping techniques for customized FPGA archi-
tectures have been proven by many researches through semi-custom design flows 
[ 6– 14]. These works share the same principles when generating FPGA layouts: 
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Fig. 7.1 An illustrative example that compares on engineering time and effort to prototype an 
FPGA using OpenFPGA (an open-source EDA tool that enables semi-custom approaches) and 
full-custom approaches 

1. Model an FPGA architecture in synthesizable HDL netlists. 
2. Use sophisticated ASIC design tools to implement the HDL netlists into physical 

layouts. 

As illustrated in Fig. 7.1, the fast prototyping technology through semi-custom 
design flows accelerates and automates the development process of FPGAs. 

Early works rely on handcrafted HDL netlists for FPGA architectures which even 
include low-level details down to transistor-level circuit designs [ 6, 7]. However, such 
methodology requires still significant manual effort, being inefficient in designing 
diverse FPGA fabrics targeting domain-specific applications. Moreover, early works 
focus only on developing fabric generators without associated compiler support, e.g., 
HDL-to-Bitstream generation [ 6, 7]. Recent works aim to build “FPGA generators” 
in the similar concept as the memory compilers in ASIC world [ 8– 14]. The FPGA 
generators integrate both netlist generators and bitstream generators in a unified 
framework, on top of the well-known FPGA architecture exploration tool, e.g., VTR 
[ 15, 16]. Major technical features of existing FPGA generators are summarized in 
Table 7.1. 

However, to implement production quality FPGA fabrics, layout generation is only 
a small part (Fig. 7.2), when compared to other essential aspects, such as testbench 
generator and bitstream support. For example, to verify the correctness of FPGA 
fabrics before taping out, design verification is a mandatory step. Note that design 
verification for FPGAs is mainly a software problem rather than a hardware problem, 
as functionality of an FPGA is determined by a bitstream file. Therefore, to ensure 
a high coverage in verification, a number of bitstream files are required to verify 
different operating modes and utilization rates of an FPGA device. As a result, a
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Table 7.1 Comparison on EDA tools enabling semi-custom FPGA design 

Tool/metric Open 
source 

Architecture 
language 

Netlist 
generation 

Bitstream 
generation 

Testbench 
generation 

SDC 
generation 

Kuon et al. [ 6] .× .√ Automatic.a .× .× . ×
Ova et al. [ 7] .× .× Hand-

crafted 
.× .× . ×

Archipelago [ 10] .√ .× Automatic .√ .× . ×
Anderson et al. 
[ 8, 9] 

.× .√ Automatic .√ .√ . √

Mohan et al. [ 13] .× .√ Automatic .√ .√ . √
PRGA [ 11] .√ .√ Automatic .√ .× . ×
FABulous [ 12] .√ .√ Automatic.b .√ .√ . ×
OpenFPGA [ 14] .√ .√ Automatic .√ .√ . √

. aOnly netlists of a tile is automatically generated 

. bNetlists of primitive circuits, e.g., LUT and routing multiplexers, have to be hand crafted 

Fig. 7.2 Semi-custom design flow for FPGA fabrics: a production flow and b end-user flow 

functional HDL-to-Bitstream generator is a required component, being as important 
as a netlist generator. In addition, a testbench generator is required to simulate the 
bitstream downloading w.r.t. a configuration circuits, as well as check the functional 
correctness of an FPGA under different I/O mapping and bitstreams. Actually, the 
complexity of a HDL-to-Bitstream flow is significantly higher than a netlist generator, 
which covers many NP hard problems in EDA, such as placement and routing. 
In recent years, with the growth of open-source HDL-to-Bitstream tools, design 
verification has been seriously considered and included in recent EDA tools, as 
shown in Table 7.1. In short, design verification for FPGA should not only validate 
the correctness of layout but also the correctness of associated software tool chains. 

Beyond the essential components, to enable high-quality FPGA fabrics, timing 
constraints for physical design are critical. Nowadays, timing constraints are typically 
in the Synopsys Design Constraints(SDC) format, which are used to constrain timing 
paths when ASIC tools generate FPGA layouts. Without timing constraints, pin-to-
pin delays, such as LUT delays and routing delay, may be too large to satisfy the 
target performance of an FPGA. Note that, a key difference between FPGAs and 
ASICs on timing paths is that an FPGA only has critical paths when mapped to a
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specific HDL design. When implementing FPGA layouts, timing constraints cannot 
be biased to an HDL design because it may probably cause performance degradation 
on another HDL design. Therefore, the principle of the timing constraints is keep 
pin-to-pin delays on each timing path as uniform as possible, which indicates that 
every timing path is critical. Considering the large number of timing paths in a FPGA 
fabric, a SDC generator is required to avoid huge manual effort. Nowadays, to achieve 
high-performance FPGA fabrics, SDC generators are available in semi-custom EDA 
tool chains (Table 7.1). 

As architecture of FPGAs can be really different depending on their application 
context, a key value of FPGA generators is to support versatile FPGA architectures. 
Therefore, FPGA architecture description languages are needed to model compli-
cated and large-scale FPGA device in compact and human readable representations. 
By leveraging the University of Toronto FPGA Architecture Language(UTFAL) [ 17], 
FPGA generators can convert a high-level FPGA description to synthesizable HDL 
netlists, and then implement layouts through ASIC design tools. Thanks to UTFAL’s 
enriched syntax, FPGA generators can support a wide range of FPGA architec-
tures. To unlock more possibility in device modeling, extended architecture descrip-
tion language (set of architecture guidance models) has been proposed [ 18], In this 
chapter, we focus on introducing the extended architecture description language 
while UTFAL has been covered in Chap. 2. 

In short, a netlist generator, a bitstream generator and a testbench generator are 
three indispensable components in a basic semi-custom EDA framework for FPGA, 
with which designers can accomplish a functional FPGA fabric. However, as the 
growing needs of domain-specific FPGA fabrics, an expressive architecture lan-
guage is now becoming important, because it is a must-have for designers to rapidly 
evaluate and prototype innovative FPGA architectures. As researchers have proven 
the feasibility of FPGA generators with silicon results (Fig. 7.3), future trends lie on 
improving PPA of the FPGA fabrics. This drives SDC generators to be an strategi-
cally important tool, which can constrain PPA of each segment in an FPGA fabric 
through semi-custom design tools w.r.t. performance goals. 

7.2 Extended Architecture Description Language 

In this part, we focus on the extended architecture description language(set of archi-
tecture guidance models conceptualized in Chap. 2) adopted by the OpenFPGA 
framework [ 18]. Other architecture description languages may have different syntax 
when modeling FPGA fabrics but share similar principles [ 11, 12]. Therefore, we 
focus more on general principles when designing an FPGA architecture descrip-
tion language than detailed syntax, with which we believe it is easier for readers to 
understand other architecture description languages. 

UTFAL is designed for a detailed logical representation of FPGA architectures, 
providing sufficient information for EDA engines to perform packing, placement, and 
routing. However, to enable netlist generation and bitstream generation, a detailed
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(a) A 20x20 FPGA fabric (courtesy by [8]) (b) A 16x16 FPGA chip (courtesy by [13]) 

Fig. 7.3 Showcase FPGA layouts through semi-custom design approaches 

physical representation of complete FPGA fabric is required. The extended architec-
ture description language is designed to provide supplementary information on top of 
the UTFAL. It fills the blank of UTFAL when modeling circuit-level implementation 
of programmable resources (see Sect. 7.2.1), physical mode of programmable blocks 
(see Sect. 7.2.2), and configuration scheme (see Sect. 7.2.2). Therefore, the extended 
architecture description language is complementary to UTFAL without overlapping 
in syntax and information. Similar to UTFAL, the extended architecture descrip-
tion language is XML-based. Full documentation about UTFAL and the extended 
architecture description language is available on [ 19, 20], respectively. 

7.2.1 Circuit Modeling 

As circuit design is a dominant factor impacting FPGA’s PPA, the extended archi-
tecture description language provides enriched syntax to model circuit-level details 
of primitives in FPGAs, e.g., LUT, routing multiplexers. Figure 7.2 illustrates the 
different focus on modeling LUTs and routing multiplexers between UTFAL and the 
extended architecture description language. For EDA usage only, primitives can be 
treated as a black box with limited information, e.g., number of ports, port direction 
as well as pin-to-pin delays. However, to generate netlists, detailed circuit designs 
of primitives have to be modeled. On the other side, upon practical applications, 
hardware engineers may select various circuits to implement their FPGA fabrics. 
For instance, a ultra-low-power FPGA may be built with ultra-low-power circuit 
cells while a high-performance FPGA may use absolutely different circuit cells. As 
a result, the extended architecture description language is capable of modeling highly
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Fig. 7.4 Examples of extended XML syntax for LUTs 

flexible circuit design topology even down to transistor level and allows designers 
to customize any component in an FPGA. 

Among the programmable resources in an FPGA, there are two types of circuits 
whose structures have prominently impact on PPA and bitstream generator: LUTs 
and routing multiplexers. LUTs are used to implement logic functions while routing 
multiplexers are used to route signals between LUTs. In some FPGA devices, LUTs 
and routing multiplexers take 90% of chip area, critical path delays, and power 
consumption [ 21]. The choice of the circuit implementation may also impact the PPA 
of standalone circuit by .2× [ 22]. Therefore, the extended architecture description 
language provides fruitful syntax to support diverse circuit design topology and 
details for LUTs and routing multiplexers. 

Table 7.3 lists the mainstream circuit topology for LUTs and routing multiplex-
ers that are frequently used by modern FPGAs. Figure 7.4 shows an example about 
how the extended architecture description language models the internal structure 
of a fracturable 4-input LUT. Users can specify which inputs are disabled dur-
ing fracturable mode in the XML property tri_state_map. The levels and 
positions of fracturable outputs can be freely defined through the XML proper-
ties lut_frac_level and lut_output_mask. To support mode switching of 
fracturable LUTs, the port map includes a special port mode rather than the regular 
configuration port. Figure 7.5 shows another example about how a tree-like 4-input 
routing multiplexer (see Table 7.2 for schematic) is modeled by the extended archi-
tecture description language. The multiplexing structures can be customized through 
an XML property structure. Note that both input, output and even intermediate 
buffers can be customized through XML syntax, which are needed for LUTs and 
routing multiplexers in different location of an FPGA. With these modeling, a netlist 
generator can output RTL and even gate-level netlists for the LUTs and routing 
multiplexers, meanwhile bitstream generator can decode configuration bits. 

In addition to the detailed modeling, black-box modeling is also supported, where 
users can provide their own circuit implementation for primitives. When black-box 
modeling is adopt, the path to netlist should be defined through the XML property 
verilog_netlist, and only necessary information such as port list is required.
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Fig. 7.5 Examples of extended XML syntax for MUXes 

Such modeling is also frequently used as modern FPGAs are built with various third-
party IPs, e.g., Digital Signal Processor (DSP), Random Access Memory (RAM) and 
Serializer/Deserializer (SerDes). 

7.2.2 Physical Mode Modeling 

To simplify EDA algorithms, UTFAL focus on compact description of Logic Element 
(LE) architectures instead of a complete schematic-level representation. For instance, 
a complex multi-mode LE in Fig. 7.6a is modeled by multiple abstract-level operating 
modes in Fig. 7.6b, c. The abstraction indeed eases the EDA algorithms in mapping 
to FPGA resources but hides important details required by netlist and bitstream gen-
eration for the physical LEs. For example, netlist generators cannot identify which 
mode in Fig. 7.6 denotes the physical implementation of the LE. Bitstream genera-
tors may miss configuration bits to be decoded in physical mode when the operating 
modes in Fig. 7.6b, c only include a part of programmable routing resources. More-
over, configuration bits of an operating mode should be properly reorganized for the 
physical mode. For example, the configuration bits of the two 3-LUT in Fig. 7.6c 
should be mapped to the fracturable 4-LUT in Fig. 7.6a. Without a detailed circuit-
level implementation of the fracturable 4-LUT, bitstream generators cannot even 
decode configuration bits of the two 3-LUT from logic synthesis results. 

Therefore, to enable both netlist and bitstream generators, extended syntax is 
developed to 

1. distinguish between physical mode and operating modes; 
2. link the components in the various operating modes to physical mode 
3. establish the relationship between primitives in physical mode and their circuit-

level modeling (see Sect. 7.2.1). 

To be intuitive, we take the example of the multi-mode CLB shown in Fig. 7.6 
and present XML description in Fig. 7.7. The physical implementation of the LE 
is specified to be the mode phy, through syntax physical_mode_name. The  
detailed architecture of the physical LE follows the same style as the UTFAL. 
Under the physical mode, users can link primitive blocks to circuit implementa-
tions using a XML property circuit_model_name. Figure 7.7 shows how a
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Table 7.2 Different objectives between UTFAL and extended architecture description language: 
logical vs. physical modeling 

UTFAL Extended architecture description language
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Table 7.3 Various circuit designs of LUTs and routing multiplexers 

Circuit Design topology 

LUT 1. Single-output LUTs 

2. Fracturable (multi-output) LUTs 

3. LUT with hard logic, e.g., carry 

4. LUT built with standard cells 

5. LUT with RAM/ROM 

Routing multiplexer 1. One-level multiplexer 

2. Multi-level multiplexer 

3. Tree-like multiplexer 

4. Standard-cell multiplexer 

5. Multiplexer with local encoder 

6. Multiplexer with constant input 

. ∗Input and output buffering can be fully customized for both circuits 

Fig. 7.6 a Physical implementation of a LE and b, c two operating modes 

fracturable LUT flut is linked to a defined circuit model frac_lut4 in Fig. 7.4. 
Under the operating modes, each virtual pb_type has to be linked to its phys-
ical implementation through XML properties physical_pb_type_name and 
physical_mode_port. Consider the example in Fig. 7.7, the operating modes 
dlut3 and slut4, which correspond to the illustration in Fig. 7.6b, c, are linked to 
the physical mode phy which correspond to the illustration in Fig. 7.6a. The inputs 
in and outputs out of the pb_type lut4 in mode slut4 are linked to the inputs 
in[0:3] and outputs lut4_o of the pb_type flut in its physical mode phy, as  
highlighted by red dash lines in Fig. 7.6. XML syntax mode_bits allows users to 
customize the configuration bits applied to fracturable LUTs in any operating mode. 
For example, in Fig. 7.7, when the lut4 is used, the mode_bits="1" will be 
applied to the port mode of its physical module frac_lut4 in Fig. 7.4. As such, 
without modifying packing or synthesis engines, the XML syntax can map the con-
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Fig. 7.7 Examples of extended XML syntax for a LE 

Fig. 7.8 Examples of memory-bank-based configuration protocol modeling 

figuration bits from any operating mode to its physical implementation. In addition, 
such multi-mode modeling enable users to define a simplified BLE architecture in 
operating modes than physical mode, which reduces CPU time for packing. 

7.2.3 Configuration Protocol 

Programmable resources in an FPGA have to be configured through a protocol. How-
ever, configuration protocols are not modeled in UTFAL because they are well decou-
pled from packing, placement, and routing algorithms. Configuration scheme directly 
impacts bitstream generators, which is essential to a complete tool chain. More impor-
tantly, configuration protocol could be really different in FPGAs, depending on the 
application context. Extended architecture description language is developed to sup-
port versatile configuration protocols. Figure 7.8 shows an example of modeling a 
memory-bank-based configuration protocol, where other types of configuration pro-
tocol can be specified through XML property type. Through memory banks, each 
configuration memory cell can be accessed by enabling dedicated Bit-Line (BL) and 
Word-Line (WL). Note that the circuit implementation of a memory cell can be not
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Fig. 7.9 Example of a, a memory organization using decoders; b single memory bank across the 
fabric; and c multiple memory banks across the fabric 

limited to a SRAM, as shown in Fig. 7.9. For example, flip-flops or latches can also 
used as the fundamental cell in memory banks. The circuit model of configuration 
memory cell can be specified through XML property circuit_model_name. In  
addition, as FPGA size grows, multiple configuration regions are adapted to avoid 
long configuration time as well as challenges in physical design due to large para-
sitic in BL/WL interconnection. Figure 7.9b, c shows illustrative examples of single-
region and 4-region memory banks, respectively. Therefore, the number of configu-
ration regions can be customized through the XML property num_regions. Note  
that other configuration protocols, such as configuration chains and frame-based, 
are parameterized as memory banks, where different number of regions and various 
circuit implementation may also be applied. 

In practice, configuration scheme for each tile or lower level primitive may need 
full customization. Take the example of memory bank, chip designer may need 
to customize which tiles to share BLs and WLs, in order to optimize in physical 
design and configuration time. Figure 7.10 shows an example file where designers 
can specify BL and WL sharing for each tile in each configuration region of an FPGA 
fabric. Two tiles share the same BL when their column index are same. Two tiles 
share the same WL when their row index are same. Consider the example in Fig. 7.10, 
the two tiles grid_io_bottom_1__0_ and grid_io_bottom_2__0_ are 
configured by the same WL but through two different BLs, where the BLs and WLs
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Fig. 7.10 Examples of fabric key file modeling BL/WL sharing 

Fig. 7.11 Flowchart of netlist generator and graph-based modeling for modules 

are controlled by region 0. For each region, different set of BLs and WLs are 
used to control the tiles under it. A tile can only be controlled by a configuration 
region. We refer interested reader to [ 20] for details. 

7.3 Netlist Generator 

As a cornerstone of the semi-custom design tools, netlist generators aim to translate 
a high-level architecture description to HDL netlists which can be adapted by ASIC 
tools to implement physical layouts. In early works, netlist generators is a simple
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HDL code generator [ 6– 10], which outputs internal device modeling to a synthesiz-
able HDL format in a straightforward way. However, such native HDL translation 
of FPGA fabric imposes strong limitation when implementing physical layouts. For 
example, considering the HDL netlist which model a complete routing fabric as a flat-
ten graph, the file sizes of netlists increase exponentially when FPGA size increases, 
which causes a long runtime in physical design. Furthermore, flatten netlists force a 
high design complexity when implementing an FPGA fabric, since a 4K-LUT FPGA 
may contain 8+ millions of logic gates. As a result, the physical design runtime of 
a medium sized FPGA is more than 24 h [ 8], while the physical design may fail for 
large sized FPGAs [ 23]. Modern netlist generators are designed to not only a simple 
code generator but also contain many features which make outputted netlists to be: 

1. physical design friendly; 
2. compatible with multiple HDL format and their standards; 
3. human-readable, easy to debug and backtrace errors. 

To enable these features, as depicted in Fig. 7.11, the implementation of the netlist 
generators is based on two steps: 

1. Create a graph of modules which represent the complete FPGA fabric; 
2. Build a number of netlist writers which output the module graph into selected 

file formats. 

In the graph-based modeling, the whole FPGA fabric is represented as a tree of 
modules and their instances, as shown in Fig. 7.11. Modeling an FPGA fabric in a 
graph allows EDA tool to easily adjust hierarchy of netlists. For example, through 
graph merging, sub-modules can be merged which unlocks more opportunity in 
physical design optimization. It is also straightforward to profile the FPGA fabric, 
e.g., get the depth of netlists, count number of unique modules, etc., which can 
provide critical information for physical designers. A graph can be outputted to 
different file formats through various netlist writers, such as Verilog writer. As such, 
netlist writers consider a graph as an input, being decoupled from rest of engines 
in netlist generators. This can avoid massive code changes in core engine when 
developing a new netlist writer. 

The auto-generated fabric netlists include both a programmable fabric with con-
figuration protocol embedded. To be physical design friendly, netlist generators are 
capable of outputting netlist in different levels, e.g., Register-Transfer Level (RTL) 
and Gate-level (GL). Netlists at different levels of details unlock optimization oppor-
tunities through different design flows. As illustrated in Fig. 7.12, RTL (behavioral) 
netlists can be optimized through synthesis tools to standard cells and then physi-
cally implemented to layouts. Alternatively, GL (denoted as technology-mapped in 
Fig. 7.12) netlists are preferred as an direct input to physical design tool, when chip 
designers require specific standard cells to implement primitive circuits which are not 
synthesizable. The choice of design flows really depends on the PPA requirements and 
expertise of chip designers. For example, for ultra-high-performance FPGA, some 
specific cells are required in gate-level netlists and synthesis should be skipped.
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Fig. 7.12 An example of physical-design-friendly netlist generators 

Fig. 7.13 An example of hierarchical Verilog netlists modeling a FPGA fabric 

On the other side, the hierarchy of netlists also impact the physical design signif-
icantly. Figure 7.13 illustrates an example of Verilog netlists which are outputted by 
the OpenFPGA, which models a complete FPGA fabric in a hierarchical way. Note 
that highly hierarchical fabrics are generated, where large FPGAs can be built with 
a small number of repeatable tiles including routing blocks. Tiles and routing blocks 
are built with common primitive blocks, located in the sub_module directory, 
which can maximize the reuse of primitive netlists. Repeatable tiles can efficiently 
reduce the file sizes, total runtime, and design complexity of physical design flow. 
For example, in a physical design methodology, only unique tiles are placed and
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Fig. 7.14 An example of auto-generated human-readable netlists corresponding to architecture 
definition 

routed, while the top-level fabric is only an assemble of the tiles which are treated 
as black boxes [ 23]. 

Note that different physical design tools may require different HDL formats and 
their specific variants. Verilog is a popular HDL format for most physical design 
tools, while VHDL is more popular as a strict behavioral modeling for FPGA fabrics. 
Modern netlist generators include various netlist writers to convert a graph represen-
tation of FPGA fabric to the file format which meets downstream tool requirements. 
Even when considering Verilog format, various netlist styles may be demanded, 
in order to be compatible with latest Verilog standards. For instance, the syntax 
default_nettype is introduced to force strict wire definition in Verilog 2001. 
Supporting diverse syntax allows the auto-generated netlists to be more human read-
able and easier to back-trace errors for chip designers, especially when there are 
implementation errors during physical design flow. To further improve readability of 
outputted netlists, names of modules, ports, and nets should be human readable and 
correspond to architecture description. Figure 7.14 shows an example how the out-
putted netlist can be easy to correlated to the architecture description. In Fig. 7.14a, 
a programmable block clb with two input ports and one output is defined using 
the UTFAL. Figure 7.14b presents the Verilog codes which are outputted by OpenF-
PGA, corresponding to the programmable block clb. The port name and port size 
are consistent between the architecture description and the netlists, through which 
chip designer can backtrace the changes in netlists to a specific portion of architecture 
file. For instance, the port I of clb in Fig. 7.14a is named as clb_I in Fig. 7.14b. 

We refer interested readers to [ 20] for a detailed implementation of netlist gener-
ator.
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Fig. 7.15 Principles of Verilog testbenches: (1) using common input stimuli; (2) applying bitstream; 
(3) checking output vectors 

Table 7.4 Auto-generated testbench features 

Testbench Runtime Test vector Test coverage 

Full Long Random stimulus Full fabric 

Preconfigured Short Random 
stimulus/formal 
method 

Programmable fabric 
only 

7.4 Testbench Generator 

It is essential to validate the correctness of FPGA fabrics before tape-out. However, 
a key difference between the design verification for FPGAs and ASICs lies on bit-
streams. As highlighted in Fig. 7.15, an FPGA carries a specific functionality only 
when an associated bitstream is loaded. To ensure a high verification coverage, chip 
designers need a number of bitstream files, each of which is designed to validate 
a specific part of the FPGA. The bitstream files could be either synthetic (not syn-
thesizable through HDL-to-bitstream tools) or based on a user’s RTL design. To 
validate the various bitstream on an FPGA, testbenches have to be generated with 
dedicated I/O mapping for each configuration. Note that for most applications, only 
part of FPGA I/Os are used and for each application, each FPGA I/O may be used 
in a different way. Testbench generators assign the I/O mapping based on the results 
from HDL-to-Bitstream results. To enable self-testing, the FPGA and user’s RTL 
design (simulated using an HDL simulator) are driven by the same input stimuli, and 
any mismatch on their outputs are reported as errors. 

To trade-off runtime and coverage, as listed in Table 7.4, two types of testbenches 
are typically generated to validate the correctness of the fabric before tape-out: 
full and preconfigured. Full testbench aims at simulating an entire FPGA operat-
ing period, consisting of two phases: 

1. the configuration phase, where the bitstream file is loaded to the programmable 
fabric through a configuration protocol, as highlighted by the green rectangle of 
Fig. 7.16; 

2. the operating phase, where random input vectors are applied to drive both Devices 
Under Test (DUTs), as highlighted by the red rectangle of Fig. 7.16.
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Fig. 7.16 Illustration on the waveforms in full testbench 

Using the full testbench, chip designers can validate both the configuration circuits 
and programming fabric of an FPGA. However, the random testing vectors used in the 
full testbench may result in only a small set of functional coverage. On the other side, 
as the bitstream size increases exponentially with the FPGA size, the number of clock 
cycles required to load the bitstream becomes a dominating factor (more than 90%) 
in the verification runtime. For instance, HDL simulation of a full testbench including 
a 800k-bit bitstream consumes a 24-hour runtime when using a commercial state-
of-the-art simulator. In short, even there are significant limitations, the full testbench 
remains a must-run verification, since it fully validates the configuration protocol. 

To improve the coverage, the preconfigured testbench is proposed, which skips the 
time-consuming configuration phase and focus on the operating phase. As a result, 
sufficient number of testing vectors can be applied to ensure functional correctness 
of a mapped FPGA design, while simulation runtime is fairly small. To apply testing 
vectors to mapped I/Os of an FPGA, a preconfigured FPGA, which is instantiated 
with the user’s bitstream, is encapsulated with the same port mapping as the user’s 
RTL design, as illustrated in Fig. 7.17. Note that beyond the functional verification 
show in Fig. 7.15, the preconfigured FPGA module can be also fed to a formal tool 
for a 100% coverage formal verification against user’s RTL design. Compared to the 
full testbench, the preconfigured testbench significantly accelerates the functional 
verification especially for large FPGAs. 

We believe that with proper use of the two types of testbenches, the verification 
process for FPGAs can be significantly simplified or even automated.
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Fig. 7.17 Internal structure of a pre-configured FPGA module 

7.5 Showcase 

In this part, three FPGA fabrics produced by semi-custom EDA approaches are 
presented and then compared to a commercial baseline Stratix IV [ 24]: 

1. a.20 × 20 homogeneous FPGA using a commercial 40 nm technology, built with 
standard cells only [ 8] (see layout in Fig. 7.3a); 

2. a.20 × 20 homogeneous FPGA using a commercial 40 nm technology, built with 
standard cells only [ 18] (see layout in Fig. 7.18a); 

3. a .32 × 32 heterogeneous FPGA using a commercial 12 nm technology, built 
with a mix of standard cells and custom cells [ 14] (see layout in Fig. 7.18b). 

Note that through semi-custom approaches, the layout generation of the FPGA fabrics 
are within 24 h, but their architectures, technologies, and detailed methodologies 
are different. In all the FPGAs, each tile includes 10 Logic Elements (LEs) and a 
local routing architecture with 50% connectivity. The LE of homogeneous FPGAs 
consists of a 6-input fracturable LUT, a 4-input LUT, two 1-bit adders, and two flip-
flops, which can operate in 6 different modes. The heterogeneous FPGA employs a 
simplified LE but without the 4-input LUT and also consists of a column of 512 Kb 
Block RAMs (BRAMs), generated by a foundry memory compiler. Full details about 
the showcased FPGA fabrics are listed in Table 7.5.
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Fig. 7.18 Complete layout of FPGA fabrics 

Table 7.5 Comparison on the FPGAs in Figs. 7.3a and  7.18 

Resource/capacity Standard homo [ 8] Custom homo [ 18] Standard hetero [ 14] 

Array size .20 × 20 .20 × 20 . 32 × 32

Tileable routing .× .× . √
Fracturable 6-input 
LUTs 

4k.a 4k 9.92 k 

4-input LUTs N/A 8k N/A 

1-bit full adder 8k 8k 19.84 k 

Flip-flops 8k 8k 19.84 k 

Block RAM N/A N/A 512 k bits 

I/Os N/A.b 480 124 

Routing channel width 300 300 200 

Routing wires 87% L4 87% L4 L4 

13% L16 13% L16 

.Fcin 0.055 0.055 0.15 

Routing multiplexer tree-like one/two-level tree-like 

Backend details Standard homo [ 8] Custom homo [ 18] Standard hetero [ 14] 

Tool Cadence encounter 
v09.12 

Cadence Innovus 19.1 Synopsys ICC2 
2019.03 

Layout area 16.89.mm2 7.mm2 9. mm2

Flow type Flatten Two-step flatten Hierarchical 

Runtime (h) 20–24 24 12 

Peak memory (GB) 64 60 215 

. aEach 6-input LUT contains 8 inputs 

. bNot reported
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7.5.1 Methodologies 

The homogeneous FPGA in [ 8] is generated by an in-house netlist generator based 
on VTR, while the rest of FPGA fabrics are generated by OpenFPGA [ 18]. Note 
that the netlists for the homogeneous FPGA in [ 8] were auto-generated in behavioral 
Verilog codes and optimized by Synopsys Design Compiler before physical design 
with a strategy to balance area and delay. The netlists auto-generated by OpenFPGA 
are technology mapped and directly used for physical design tools. Regarding cir-
cuit designs, the homogeneous FPGA in [ 8] and the heterogeneous FPGA in [ 14] 
is built with standard cells provided by a commercial 40nm technology, while the 
homogeneous FPGA in [ 18] adapts custom cells for routing multiplexers and config-
uration memory elements. Note that the homogeneous FPGA in [ 18] uses two-level  
structures for the multiplexers in Connection Blocks (CBs) and Switch Blocks (SBs) 
and local routing architecture, while one-level structure for those in LE. To guarantee 
high-performance, routing multiplexers are buffered at both inputs and outputs while 
LUTs are buffered at inputs, outputs, and every two intermediate stages. 

The FPGA fabrics are implemented using three different physical design strate-
gies. The homogeneous FPGA in [ 8] was implemented using a flatten backend flow 
with design constraints to force layout regularities. The homogeneous FPGA in [ 18] 
was implemented using a two-step backend flow where Configurable Logic Blocks 
(CLBs) are P&Red first and then instantiated at the top-level as hard macros. To 
leverage the symmetry of an FPGA fabric, the heterogeneous FPGA adopted a more 
hierarchical backend flow, where a library of hard macros for CLBs, CBs, and SBs 
is built and then assembled in the final layout. The hierarchical backend flow allows 
chip designers to optimize each hard macro with respect to the timing constraints 
generated by our tool with few combinational loops to be broken. Therefore, the 
heterogeneous FPGA is larger in array size, while its backend is .2× faster than the 
homogeneous. Commercial signoff tools are then used to ensure that all the fabrics 
are DRC-clean, and timing extraction is performed by using Synopsys PrimeTime. 

7.5.2 Performance Evaluation 

For a comprehensive analysis, the area, pin-to-pin delays, and the delays of the imple-
mented benchmarks are considered when evaluating the FPGA fabrics. Table 7.6 
compares the custom homogeneous FPGA in [ 18] to two baselines, a commercial 
Stratix-IV FPGA and the standard homogeneous FPGA in [ 8]. We believe it is a 
fair comparison since these FPGAs are similar in architecture and also implemented 
using 40nm technologies. The results prove the high value of using one-level and two-
level multiplexing structures as well as an optimized cell library, which can improve 
the area by 42% and path delay by 30% when compared to a standard cell FPGA. 
Indeed, there are considerable gaps in area (60%) and path delays (20%) between 
the semi-custom-designed FPGAs and the full-custom-designed commercial FPGA.
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Table 7.6 Area and delay comparison between [ 8, 14, 18] and Stratix IV 

Generality Standard 
homo [ 8] 

Custom homo 
[ 18] 

Standard hetero 
[ 14] 

Stratix IV 

Technology 40 nm 40 nm 40 nm 12nm 

Cell Library Standard Custom.a Custom Standard 

Tile Area 30,625 17,648 11,050 8,373 

(.µm2) (100%) (-42%) (-63%) (-72%) 

Path delay (ns) Standard homo 
[ 8] 

Custom homo 
[ 18] 

Standard hetero 
[ 14] 

Stratix IV 

Process Corner TT SS SS.b TT 

6-LUT 0.5 0.27 0.28 0.23 

(100%) (. −46%) (. −44%) (. −54%) 

20-bit 1.63 2.12 1.23 1.13 

Adder.c (100%) (+30%) (-25%) (. −31%) 

Local 0.27 0.17 0.23 0.15 

Routing.d (100%) (. −37%) (-15%) (. −44%) 

L4 track.e 2.53 0.82 0.59 0.75 

(100%) (. −67%) (. −76%) (. −70%) 

Average 100% . −30% . −40% (. −50%) 

. aUse custom cells only in routing multiplexers and configuration chains 

. bThe rest are standard cells. See details in [ 18] 

. cConsider the slow model in Quartus STA 

. dLocal routing path starts from a BLE output and ends at a BLE input 

. eLX track: FF.→length-X wire.→Local Routing.→LUT.→FF 

Even though there is an intrinsic PPA gap between standard-cell layouts and full-
custom layouts, the performance gap can be reduced through a careful co-design 
between backend strategies and custom cell implementations [ 7]. 

For performance benchmarking, eight MCNC circuits are selected to fit all the 
40nm FPGAs. Each benchmark is verified through the verification techniques in 
Sect. 7.4, using Mentor ModelSim and Synopsys Formality. Quartus 18.1.0 is used 
to implement the same benchmark set as the industry baseline, and the device model is 
set to the Stratix IV EP4S40G2F40C2. Figure 7.19a shows that FPGAs using custom 
cells is .2× slower on average than the Stratix IV. The gap comes from the hardware 
lags in performance, with an average of 20%. When critical paths consist of multiple 
routing paths listed in [Tab. 7.6], the delay difference will aggregate. The gap comes 
from sources: 

1. the hardware lags in performance with an average of 10%. When critical paths 
consist of multiple routing paths listed in Table 7.6, the delay difference will 
aggregate. Therefore, the longer the critical path is, the larger the performance 
gap will be.
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Fig. 7.19 Delay comparison between OpenFPGA and [ 8] (marked as previous works) using 
selected MCNC benchmarks 

2. previous studies have shown a large gap between VPR CAD algorithms and 
commercial counterparts [ 25]. The performance gap may be as large as 55% on 
average, fully shadowing any efficiency on hardware. 

This indicates that developing efficient CAD algorithms that can match industry 
quality should be a frontier for the open-source FPGA research community. 

We compare the heterogeneous FPGA in Fig. 7.18b to the homogeneous FPGA 
[ 8], as both FPGAs are implemented by standard cells and also similar in architecture 
while using different technologies. Our results show that using semi-custom design 
approaches, FPGA architectures can be portable between different technology nodes 
and benefit significant performance improvements. In Table 7.6, the 12 nm FPGA is 
72% smaller in area and 50% faster in path than the 40nm baseline. In Fig. 7.19b, the 
heterogeneous FPGA is .3× faster on average in benchmark delays than the 40 nm 
baseline.
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7.6 Summary and Trends 

Semi-custom design approaches have become a warm research topics in recent years, 
as different design methodology than commercial state-of-the-art FPGAs that are 
built through full custom approaches. 

To enable semi-custom design approaches, innovative EDA tools have been devel-
oped as an unified framework for netlist generation, testbench generation and bit-
stream generation. Due to the automation in modern EDA tools, development cycle 
of FPGA layouts as well as engineering effort can be remarkably reduced. However, 
the semi-custom design approach is in its infancy stage, as we see non-negligible 
PPA gaps against commercial FPGAs. 

Since most of the EDA tools are accessible in open-source community, future 
researches may focus on performance improvement on the design methodology, 
e.g., physical design techniques. In addition, being tightly integrated to architecture 
exploration tools, the EDA tools enable fast prototyping for innovative FPGA archi-
tectures. In other words, architecture exploration can achieve realistic PPA evaluation 
in a short development cycle, and effectiveness of architecture enhancements can be 
validated through layout-level results in a short period, as compared the full-custom 
approach. Also, with the expansion in open-source community for FPGAs, novel 
EDA algorithms, e.g., packing, placement and routing, may be studied and validated 
through physical FPGA fabrics using semi-custom design approach. Previously, the 
validation of EDA algorithms is typically based on hypothetical FPGA fabrics and 
high-level analysis methods, which has been proven to be inaccurate. 

In short, semi-custom design approaches have changed the cost function to design, 
evaluate, and produce new FPGA fabrics, stimulating many research opportunitie 
in novel FPGA architecture, efficient physical design techniques, and novel EDA 
algorithms. 

References 

1. S. Che, J. Li, J.W. Sheaffer, K. Skadron, J. Lach, Accelerating compute-intensive applications 
with GPUS and FPGAs, in 2008 Symposium on Application Specific Processors (2008), pp. 
101–107 

2. C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, Optimizing FPGA-based accelerator design 
for deep convolutional neural networks, in Proceedings of the 2015 ACM/SIGDA International 
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15. (Association for Computing 
Machinery, New York, NY, USA, 2015), pp. 161–170. [Online]. Available: https://doi.org/10. 
1145/2684746.2689060 

3. J. Cong, Z. Fang, M. Huang, L. Wang, D. Wu, CPU-FPGA coscheduling for big data applica-
tions. IEEE Design Test 35(1), 16–22 (2018) 

4. K. Neshatpour, H.M. Mokrani, A. Sasan, H. Ghasemzadeh, S. Rafatirad, H. Homayoun, Archi-
tectural considerations for FPGA acceleration of machine learning applications in mapreduce,” 
in Proceedings of the 18th International Conference on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, ser. SAMOS ’18 (Association for Computing Machinery,

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060


108 7 Semi-custom EDA

New York, NY, USA 2018), pp. 89–96. [Online]. Available: https://doi.org/10.1145/3229631. 
3229639 

5. D. Greenhill, R. Ho, D. Lewis, H. Schmit, K.H. Chan, A. Tong, S. Atsatt, D. How, P. McElheny, 
K. Duwel, J. Schulz, D. Faulkner, G. Iyer, G. Chen, H.K. Phoon, H.W. Lim, W.-Y. Koay, 
T. Garibay, 3.3 a 14nm 1ghz FPGA with 2.5d transceiver integration, in 2017 IEEE International 
Solid-State Circuits Conference (ISSCC) (2017), pp. 54–55 

6. I. Kuon, A. Egier, J. Rose, Design, layout and verification of an FPGA using automated tools, in 
Proceedings of the 2005 ACM/SIGDA 13th International Symposium on Field-Programmable 
Gate Arrays, ser. FPGA ’05 (Association for Computing Machinery, New York, NY, USA, 
2005), pp. 215–226. [Online]. Available: https://doi.org/10.1145/1046192.1046220 

7. Aken’Ova, V., Saleh, R., A “soft++” EFPGA physical design approach with case studies in 180 
nm and 90 nm, in IEEE Computer Society Annual Symposium on Emerging VLSI Technologies 
and Architectures (ISVLSI’06) (2006), pp. 6 

8. J.H. Kim, J.H. Anderson, Synthesizable FPGA fabrics targetable by the verilog-to-routing 
(VTR) CAD flow, in 2015 25th International Conference on Field Programmable Logic and 
Applications (FPL) (2015), pp. 1–8 

9. B. Grady, J.H. Anderson, Synthesizable heterogeneous FPGA fabrics, in 2018 International 
Conference on Field-Programmable Technology (FPT) (2018), pp. 222–229 

10. H.J. Liu, Archipelago - an open source FPGA with toolflow support (2014) 
11. A. Li, D. Wentzlaff, Prga: an open-source FPGA research and prototyping framework, in 

The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser.  
FPGA ’21. (Association for Computing Machinery, New York, NY, USA, 2021), pp. 127–137. 
[Online]. Available: https://doi.org/10.1145/3431920.3439294 

12. D. Koch, N. Dao, B. Healy, J. Yu, A. Attwood, Fabulous: an embedded FPGA framework, 
in The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser.  
FPGA ’21. (Association for Computing Machinery, New York, NY, USA, 2021), pp. 45–56. 
[Online]. Available: https://doi.org/10.1145/3431920.3439302 

13. P. Mohan, O. Atli, O. Kibar, M. Zackriya, L. Pileggi, K. Mai, Top-down physical design of 
soft embedded FPGA fabrics, in The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’21. (Association for Computing Machinery, New York, 
NY, USA, 2021), pp. 1–10. [Online]. Available: https://doi.org/10.1145/3431920.3439297 

14. X. Tang, E. Giacomin, B. Chauviere, A. Alacchi, P.-E. Gaillardon, OpenFPGA: an open-source 
framework for agile prototyping customizable FPGAs. IEEE Micro 40(4), 41–48 (2020) 

15. J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr, S. Wang, T. Liu, 
N. Ahmed, K.B. Kent, J. Anderson, J. Rose, V. Betz, VTR 7.0: next generation architecture 
and cad system for FPGAs. ACM Trans. Reconfigurable Technol. Syst. 7(2) (2014). [Online]. 
Available: https://doi.org/10.1145/2617593 

16. K.E. Murray, O. Petelin, S. Zhong, J.M. Wang, M. Eldafrawy, J.-P. Legault, E. Sha, A.G. 
Graham, J. Wu, M.J.P. Walker, H. Zeng, P. Patros, J. Luu, K.B. Kent, V. Betz, VTR 8: high-
performance cad and customizable FPGA architecture modelling. ACM Trans. Reconfigurable 
Technol. Syst. 13(2) (2020). [Online]. Available: https://doi.org/10.1145/3388617 

17. J. Luu, Architecture-aware packing and cad infrastructure for field-programmable gate arrays. 
Ph.D. dissertation, University of Toronto (2014) 

18. X. Tang, E. Giacomin, A. Alacchi, B. Chauviere, P.-E. Gaillardon, OpenFPGA: an opensource 
framework enabling rapid prototyping of customizable FPGAs, in 2019 29th International 
Conference on Field Programmable Logic and Applications (FPL). (IEEE, 2019), pp. 367– 
374 

19. V. to Routing, Verilog-to-routing documentation (2022) [Online]. Available: https://docs. 
verilogtorouting.org/en/latest/arch/ 

20. X. Tang, OpenFPGA documentation (2022). [Online]. Available: https://openfpga.readthedocs. 
io/en/master/ 

21. I. Kuon, R. Tessier, J. Rose (2008) 
22. X. Tang, E. Giacomin, G. De Micheli, P.-E. Gaillardon, Circuit designs of high-performance 

and low-power rram-based multiplexers based on 4t(ransistor)1r(ram) programming structure. 
IEEE Trans. Circ. Syst. I: Regular Papers 64(5), 1173–1186 (2017)

https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/3229631.3229639
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/1046192.1046220
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439294
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439302
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/3431920.3439297
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://doi.org/10.1145/3388617
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://docs.verilogtorouting.org/en/latest/arch/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/
https://openfpga.readthedocs.io/en/master/


References 109

23. G. Gore, X. Tang, P.-E. Gaillardon, A scalable and robust hierarchical floorplanning to enable 
24-hour prototyping for 100k-LUT FPGAs, in Proceedings of the 2021 International Sympo-
sium on Physical Design, ser. ISPD ’21. (Association for Computing Machinery, New York, 
NY, USA, 2021), pp. 135–142. [Online]. Available: https://doi.org/10.1145/3439706.3447047 

24. D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane, A. Lee, P. Pan, Architectural 
enhancements in Stratix-III™and Stratix-IV™, in  Proceedings of the ACM/SIGDA International 
Symposium on Field Programmable Gate Arrays, FPGA ’09. (Association for Computing 
Machinery, New York, NY, USA, 2009), pp. 33–42. [Online]. Available: https://doi.org/10. 
1145/1508128.1508135 

25. E. Hung, Mind the (synthesis) gap: examining where academic FPGA tools lag behind industry, 
in 2015 25th International Conference on Field Programmable Logic and Applications (FPL) 
(2015), pp. 1–4

https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135
https://doi.org/10.1145/1508128.1508135

	7 Semi-custom EDA
	7.1 Overview
	7.2 Extended Architecture Description Language
	7.2.1 Circuit Modeling
	7.2.2 Physical Mode Modeling
	7.2.3 Configuration Protocol

	7.3 Netlist Generator
	7.4 Testbench Generator
	7.5 Showcase
	7.5.1 Methodologies
	7.5.2 Performance Evaluation

	7.6 Summary and Trends
	References




