
Chapter 5 
Performance (Timing) Analysis 

Abstract Timing analysis can be static or dynamic. Dynamic timing analysis (DTA) 
verifies functionality of the design by applying input vectors and checking for correct 
output vectors whereas static timing analysis (STA) checks static delay requirements 
of the circuit without any input or output vectors. In this chapter, STA techniques 
is focused since it is widely used in FPGA design flow to make sure the timing 
requirements are met. 

5.1 Overview 

Dynamic timing analysis (DTA), also known as simulation-based timing analysis 
technique, is complicated for even small FPGAs because of huge number of input 
vectors and unbearable long simulation time, while static timing analysis (STA), 
which could analyze a design in a very short time, is then thriving. As a mainstay of 
modern FPGA design flows, STA breaks a design down into timing paths, calculates 
the signal propagation delay along each path, and checks for violations of timing 
constraints inside the design and at the input/output interface. STA also has been 
integrated with timing-driven EDA engines to optimize FPGA’s timing performance. 

The target design checkpoint (containing timing constraints and timing graph) and 
device library (containing timing models) are the main inputs that a timing analysis 
engine needs. The final output is the timing report (Fig. 5.1). 

Standard Delay Format (SDF) is another optional output of timing engine. SDF is 
an IEEE standard for the representation and interpretation of timing data (both cell 
delays and interconnect delays) for use at any stage of the electronic design process 
[ 1]. This can be used along with the netlist in a simulator to verify that design meets 
its functional and timing requirements. 

Given that device timing model has been discussed in Sect. 2.2.2, timing con-
straints has been discussed in Sect. 3.2.2, another main input–timing graph, derived 
from target design checkpoint, will be introduced in the following section. 

Before we dive into the timing calculation algorithms, here are some basic con-
cepts about STA. Figure 5.2 is the most common used picture to illustrate this. 
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Fig. 5.1 Typical inputs and outputs in timing analysis flow 

Fig. 5.2 Typical setup/hold timing analysis 

Equations 5.1 and 5.2 can accurately represents the calculations of setup time 
slack (.Slacksetup) and hold time slack (.Slackhold). 

.Slacksetup = Tperiod − (Tcq + Tlogic + Tnet + Tsetup − Tclkskew) (5.1) 

.Slackhold = Tcq + Tlogic + Tnet − Thold − Tclkskew) (5.2) 

where .Tperiod is clock period, .Tcq is defined as time it takes for data to appear on 
output Q once clock is triggered (pos edge or neg edge), .Tlogic is the delay of the 
combinational logic, .Tnet is the delay of the routing net, .Tclkskew is the time difference 
between the clock arriving time at the two flip-flops. 

To simplify the equation, .Tnet and .Tclkskew can be ignored. In order to make sure 
that .Slacksetup and .Slackhold are positive, we can derive Eqs. 5.3 and 5.4 (plus . Tsetup
on both sides) from Eqs. 5.1 and 5.2. 

.Tperiod > Tcq + Tlogic + Tsetup (5.3)
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.Tcq + Tlogic + Tsetup > Thold + Tsetup (5.4) 

Combine Eqs. 5.1 and 5.2, we can have Eq. 5.5. 

.Thold + Tsetup < Tcq + Tlogic + Tsetup < Tperiod (5.5) 

.Tcq + Tlogic + Tsetup is the data propagation delay, if it is greater than .Tperiod, the  
data will not arriving when the second register is sampling, on the other hand, if it 
is smaller than the register sampling window (.Thold + Tsetup), the registers could fall 
into metastability. 

In FPGA design, STA can be performed in different stages: post-synthesis (logical 
level) and post-implementation (physical level). Post-synthesis STA (based on ideal 
implementation information) is faster but less accurate than post-implementation 
STA (based on real implementation information). 

5.2 Timing Analysis Techniques 

STA usually requires a timing graph that describes the target design from the timing 
perspective, identifying all the timing paths. The timing graph consists of nodes 
and edges, nodes correspond to component pins or input/output ports, and edges are 
the timing path between them. Edges have attached weights that can denote some 
characteristics such as delay values [ 2]. 

Timing Graph Definition: A timing graph G = N, E, s, t is a directed graph 
having exactly one source node s and one sink node t , where N is a set of nodes, 
and E is a set of edges. The weight associated with an edge corresponds to either the 
gate delay or the interconnect delay (Fig. 5.3). 

Traditional STA is deterministic (DSTA) and compute the circuit delay for a spe-
cific condition. In practice, the worst-case slow or best-case fast process is typically 
used and this could lead to over-design, leaving a lot of margin on the table in terms 
of PPA. Statistical STA (SSTA) then come out to address this problem. It combines 

Fig. 5.3 Example of timing graph
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the delays along the timing paths which is expressed statistically (with mean and 
standard deviations) to obtain the overall delay data. 

SSTA is also employed by Intel in its Quartus Prime software to mitigate the effect 
of random variation on longer paths [ 3]. By discounting the minimum/maximum 
delay spread on these paths, the FPGA performance reported by STA may increase. 
There are two main categories of SSTA techniques–path-based and block-based. 

1. Path-based 
In path-based STA technique, critical path is searched in an exhaustive way. The 
statistical calculation is simple, but the paths of interest must be identified prior 
to running the analysis [ 4– 6]. 

2. Block-based 
In block-based STA technique, the circuit timing graph is traversed in a topo-
logical manner. In [ 7], two basic graph traversal algorithms–depth first search 
(DFS) and breadth first search (BFS) are applied to STA module and the runtime 
efficiencies is compared by testing a large number of sequential circuit instances. 
The conclusion is that BFS algorithm can implement STA module more effi-
ciently than DFS algorithm. Due to its runtime advantage, many research [ 8– 11] 
and commercial efforts have taken the block-based approach. The advantage is 
completeness, and no need for path selection, however, to compute statistical max 
(or min) of random variables is not trivial. 

The choice of using path-based analysis or block-based analysis depends on sev-
eral factors, such as the design complexity, stage, and goal. Generally, path-based 
analysis is more suitable for small or medium-sized designs, where the number of 
paths is manageable and the accuracy is important. It can also be used for final verifi-
cation or optimization, where the timing margins are tight and the details are needed. 
On the other hand, block-based analysis is more suitable for large designs, where the 
number of paths is overwhelming and the runtime is important. It can also be used 
for FPGA architecture exploration, where the timing budget is loose and the trends 
are sufficient. 

In some cases, it could be more optimized to combine both techniques and use 
them in different stages or levels of the design. For example, one can use block-based 
analysis for the system-level design, where the blocks are abstracted and the overall 
timing is estimated. Then, one can use path-based analysis for the block-level design, 
where the paths are detailed. The balance between accuracy and efficiency can be 
obtained in this way [ 12]. 

5.3 Summary and Trends 

The state-of-the-art STA engines still can not replace DTA (simulation) completely 
because there are some aspects of timing verification that cannot yet be completely 
captured and verified in STA [ 13]. Some of these limitations include:
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1. Inaccurate timing models 
The timing models used in FPGA STA may not accurately represent the behavior 
of the actual circuit due to the complexity of the FPGA architecture. 

2. Lack of support for dynamic circuits 
FPGA STA assumes that the circuit is static and does not take into account 
dynamic circuits such as state machines or circuits with feedback paths. 

3. Impact of environmental conditions 
FPGA STA assumes ideal environmental conditions, such as constant tempera-
ture and voltage, which may not hold true in the real world. 

Although FPGA STA has been matured for many years, it still benefits from 
emerging technologies. The following are some of the recent trends in FPGA STA: 

1. Parallel acceleration 
Parallel STA on different computing platforms is one of the researching hot 
spots, such as multi-core CPUs [ 4, 14– 17] and GPUs [ 16, 18]. 

2. AI (machine learning) acceleration 
ML algorithms are increasingly being used to analyze the timing characteristics 
of FPGA designs [ 19– 21]. ML-based timing analysis can quickly identify critical 
paths in the design, predict the timing behavior of the design, and optimize the 
design for timing performance. 
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