
Chapter 5
Performance (Timing) Analysis

Abstract Timing analysis can be static or dynamic. Dynamic timing analysis (DTA)
verifies functionality of the design by applying input vectors and checking for correct
output vectors whereas static timing analysis (STA) checks static delay requirements
of the circuit without any input or output vectors. In this chapter, STA techniques
is focused since it is widely used in FPGA design flow to make sure the timing
requirements are met.

5.1 Overview

Dynamic timing analysis (DTA), also known as simulation-based timing analysis
technique, is complicated for even small FPGAs because of huge number of input
vectors and unbearable long simulation time, while static timing analysis (STA),
which could analyze a design in a very short time, is then thriving. As a mainstay of
modern FPGA design flows, STA breaks a design down into timing paths, calculates
the signal propagation delay along each path, and checks for violations of timing
constraints inside the design and at the input/output interface. STA also has been
integrated with timing-driven EDA engines to optimize FPGA’s timing performance.

The target design checkpoint (containing timing constraints and timing graph) and
device library (containing timing models) are the main inputs that a timing analysis
engine needs. The final output is the timing report (Fig. 5.1).

Standard Delay Format (SDF) is another optional output of timing engine. SDF is
an IEEE standard for the representation and interpretation of timing data (both cell
delays and interconnect delays) for use at any stage of the electronic design process
[1]. This can be used along with the netlist in a simulator to verify that design meets
its functional and timing requirements.

Given that device timing model has been discussed in Sect. 2.2.2, timing con-
straints has been discussed in Sect. 3.2.2, another main input–timing graph, derived
from target design checkpoint, will be introduced in the following section.

Before we dive into the timing calculation algorithms, here are some basic con-
cepts about STA. Figure 5.2 is the most common used picture to illustrate this.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_5

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_5&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5
https://doi.org/10.1007/978-981-99-7755-0_5

74 5 Performance (Timing) Analysis

Fig. 5.1 Typical inputs and outputs in timing analysis flow

Fig. 5.2 Typical setup/hold timing analysis

Equations 5.1 and 5.2 can accurately represents the calculations of setup time
slack (.Slacksetup) and hold time slack (.Slackhold).

.Slacksetup = Tperiod − (Tcq + Tlogic + Tnet + Tsetup − Tclkskew) (5.1)

.Slackhold = Tcq + Tlogic + Tnet − Thold − Tclkskew) (5.2)

where .Tperiod is clock period, .Tcq is defined as time it takes for data to appear on
output Q once clock is triggered (pos edge or neg edge), .Tlogic is the delay of the
combinational logic, .Tnet is the delay of the routing net, .Tclkskew is the time difference
between the clock arriving time at the two flip-flops.

To simplify the equation, .Tnet and .Tclkskew can be ignored. In order to make sure
that .Slacksetup and .Slackhold are positive, we can derive Eqs. 5.3 and 5.4 (plus . Tsetup
on both sides) from Eqs. 5.1 and 5.2.

.Tperiod > Tcq + Tlogic + Tsetup (5.3)

5.2 Timing Analysis Techniques 75

.Tcq + Tlogic + Tsetup > Thold + Tsetup (5.4)

Combine Eqs. 5.1 and 5.2, we can have Eq. 5.5.

.Thold + Tsetup < Tcq + Tlogic + Tsetup < Tperiod (5.5)

.Tcq + Tlogic + Tsetup is the data propagation delay, if it is greater than .Tperiod, the
data will not arriving when the second register is sampling, on the other hand, if it
is smaller than the register sampling window (.Thold + Tsetup), the registers could fall
into metastability.

In FPGA design, STA can be performed in different stages: post-synthesis (logical
level) and post-implementation (physical level). Post-synthesis STA (based on ideal
implementation information) is faster but less accurate than post-implementation
STA (based on real implementation information).

5.2 Timing Analysis Techniques

STA usually requires a timing graph that describes the target design from the timing
perspective, identifying all the timing paths. The timing graph consists of nodes
and edges, nodes correspond to component pins or input/output ports, and edges are
the timing path between them. Edges have attached weights that can denote some
characteristics such as delay values [2].

Timing Graph Definition: A timing graph G = N, E, s, t is a directed graph
having exactly one source node s and one sink node t , where N is a set of nodes,
and E is a set of edges. The weight associated with an edge corresponds to either the
gate delay or the interconnect delay (Fig. 5.3).

Traditional STA is deterministic (DSTA) and compute the circuit delay for a spe-
cific condition. In practice, the worst-case slow or best-case fast process is typically
used and this could lead to over-design, leaving a lot of margin on the table in terms
of PPA. Statistical STA (SSTA) then come out to address this problem. It combines

Fig. 5.3 Example of timing graph

76 5 Performance (Timing) Analysis

the delays along the timing paths which is expressed statistically (with mean and
standard deviations) to obtain the overall delay data.

SSTA is also employed by Intel in its Quartus Prime software to mitigate the effect
of random variation on longer paths [3]. By discounting the minimum/maximum
delay spread on these paths, the FPGA performance reported by STA may increase.
There are two main categories of SSTA techniques–path-based and block-based.

1. Path-based
In path-based STA technique, critical path is searched in an exhaustive way. The
statistical calculation is simple, but the paths of interest must be identified prior
to running the analysis [4– 6].

2. Block-based
In block-based STA technique, the circuit timing graph is traversed in a topo-
logical manner. In [7], two basic graph traversal algorithms–depth first search
(DFS) and breadth first search (BFS) are applied to STA module and the runtime
efficiencies is compared by testing a large number of sequential circuit instances.
The conclusion is that BFS algorithm can implement STA module more effi-
ciently than DFS algorithm. Due to its runtime advantage, many research [8– 11]
and commercial efforts have taken the block-based approach. The advantage is
completeness, and no need for path selection, however, to compute statistical max
(or min) of random variables is not trivial.

The choice of using path-based analysis or block-based analysis depends on sev-
eral factors, such as the design complexity, stage, and goal. Generally, path-based
analysis is more suitable for small or medium-sized designs, where the number of
paths is manageable and the accuracy is important. It can also be used for final verifi-
cation or optimization, where the timing margins are tight and the details are needed.
On the other hand, block-based analysis is more suitable for large designs, where the
number of paths is overwhelming and the runtime is important. It can also be used
for FPGA architecture exploration, where the timing budget is loose and the trends
are sufficient.

In some cases, it could be more optimized to combine both techniques and use
them in different stages or levels of the design. For example, one can use block-based
analysis for the system-level design, where the blocks are abstracted and the overall
timing is estimated. Then, one can use path-based analysis for the block-level design,
where the paths are detailed. The balance between accuracy and efficiency can be
obtained in this way [12].

5.3 Summary and Trends

The state-of-the-art STA engines still can not replace DTA (simulation) completely
because there are some aspects of timing verification that cannot yet be completely
captured and verified in STA [13]. Some of these limitations include:

References 77

1. Inaccurate timing models
The timing models used in FPGA STA may not accurately represent the behavior
of the actual circuit due to the complexity of the FPGA architecture.

2. Lack of support for dynamic circuits
FPGA STA assumes that the circuit is static and does not take into account
dynamic circuits such as state machines or circuits with feedback paths.

3. Impact of environmental conditions
FPGA STA assumes ideal environmental conditions, such as constant tempera-
ture and voltage, which may not hold true in the real world.

Although FPGA STA has been matured for many years, it still benefits from
emerging technologies. The following are some of the recent trends in FPGA STA:

1. Parallel acceleration
Parallel STA on different computing platforms is one of the researching hot
spots, such as multi-core CPUs [4, 14– 17] and GPUs [16, 18].

2. AI (machine learning) acceleration
ML algorithms are increasingly being used to analyze the timing characteristics
of FPGA designs [19– 21]. ML-based timing analysis can quickly identify critical
paths in the design, predict the timing behavior of the design, and optimize the
design for timing performance.

References

1. IEEE standard for standard delay format (SDF) for the electronic design process, in IEEE Std.
1497-2001 (2001), pp. 1–80

2. J.L.M. Lee, A scalable method to measure similarity between two EDA-generated timing
graphs, in 2015 International Conference on Computer, Communications, and Control Tech-
nology (I4CT) (2015), pp. 44–48

3. Intel, Guaranteeing silicon performance with FPGA timing models. https://cdrdv2-public.intel.
com/650314/wp-01139-timing-model.pdf

4. T.-W. Huang, M.D.F. Wong, UI-timer 1.0: an ultrafast path-based timing analysis algorithm for
CPPR. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35(11), pp. 1862–1875 (2016)

5. D. Mishagli, E. Koskin, E. Blokhina, Path-based statistical static timing analysis for large
integrated circuits in a weak correlation approximation, in 2019 IEEE International Symposium
on Circuits and Systems (ISCAS) (2019), pp. 1–5

6. L.-W. Chen, Y.-N. Sui, T.-C. Lee, Y.-L. Li, M.C.-T. Chao, I.-C. Tsai, T.-W. Kung, E.-C. Liu,
Y.-C. Chang, Path-based pre-routing timing prediction for modern very large-scale integration
designs, in 2022 23rd International Symposium on Quality Electronic Design (ISQED) (2022),
pp. 1–6

7. J. Lu, N. Xu, J. Yu, T. Weng, Research of timing graph traversal algorithm in static timing anal-
ysis based on FPGA, in 2017 IEEE 3rd Information Technology and Mechatronics Engineering
Conference (ITOEC) (2017), pp. 334–338

8. L. Zhang, Y. Hu, C.-P. Chen, Block based statistical timing analysis with extended canonical
timing model, in Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation
Conference, 2005., vol. 1 (2005), pp. 250–253

https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf
https://cdrdv2-public.intel.com/650314/wp-01139-timing-model.pdf

78 5 Performance (Timing) Analysis

9. R. Chen, H. Zhou, New block-based statistical timing analysis approaches without moment
matching, in Proceedings of the ASP-DAC 2007—Asia and South Pacific Design Automa-
tion Conference 2007, Series. Proceedings of the Asia and South Pacific Design Automation
Conference, ASP-DAC (2007), pp. 462–467

10. G. Luo, B. Jin, W. Zhang, A fast and simple block-based approach for common path pessimism
removal in static timing analysis, in 2015 14th International Conference on Computer-Aided
Design and Computer Graphics (CAD/Graphics) (2015), pp. 234–235

11. L. Jin, W. Fu, Y. Zheng, H. Yan, A precise block-based statistical timing analysis with max
approximation using multivariate adaptive regression splines, in 2019 IEEE 13th International
Conference on ASIC (ASICON) (2019), pp. 1–4

12. T.-W. Huang, M.D.F. Wong, OpenTimer: a high-performance timing analysis tool, in 2015
IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2015), pp. 895–
902

13. J. Bhasker, R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach,
1st edn. (Springer, 2009)

14. Y.-M. Yang, Y.-W. Chang, I.H.-R. Jiang, iTimerC: common path pessimism removal using
effective reduction methods, in 2014 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD) (2014), pp. 600–605

15. T.-W. Huang, M.D.F. Wong, D. Sinha, K. Kalafala, N. Venkateswaran, A distributed timing
analysis framework for large designs, in Proceedings of the 53rd Annual Design Automation
Conference, Series DAC ’16 (Association for Computing Machinery, New York, NY, USA,
2016). Available https://doi.org/10.1145/2897937.2897959

16. K. E. Murray, V. Betz, Tatum: parallel timing analysis for faster design cycles and improved
optimization, in 2018 International Conference on Field-Programmable Technology (FPT)
(2018), pp. 110–117

17. T.-W. Huang, G. Guo, C.-X. Lin, M.D.F. Wong, OpenTimer v2: a new parallel incremental
timing analysis engine. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 40(4):776–789
(2021)

18. Z. Guo, T.-W. Huang, Y. Lin, GPU-accelerated static timing analysis, in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD) (2020), pp. 1–9

19. S. Bian, M. Shintani, M. Hiromoto, T. Sato, LSTA: learning-based static timing analysis for
high-dimensional correlated on-chip variations, in Proceedings of the 54th Annual Design
Automation Conference 2017, Series DAC ’17 (Association for Computing Machinery, New
York, NY, USA, 2017). Available https://doi.org/10.1145/3061639.3062280

20. A.B. Kahng, U. Mallappa, L. Saul, Using machine learning to predict path-based slack from
graph-based timing analysis, in 2018 IEEE 36th International Conference on Computer Design
(ICCD) (2018), pp. 603–612

21. M.A. Savari, H. Jahanirad, NN-SSTA: a deep neural network approach for statistical static
timing analysis, Expert Syst. Appl. 149, 113309 (2020). Available https://www.sciencedirect.
com/science/article/pii/S0957417420301342

https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/2897937.2897959
https://doi.org/10.1145/3061639.3062280
https://doi.org/10.1145/3061639.3062280
https://doi.org/10.1145/3061639.3062280
https://doi.org/10.1145/3061639.3062280
https://doi.org/10.1145/3061639.3062280
https://doi.org/10.1145/3061639.3062280
https://doi.org/10.1145/3061639.3062280
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342
https://www.sciencedirect.com/science/article/pii/S0957417420301342

	5 Performance (Timing) Analysis
	5.1 Overview
	5.2 Timing Analysis Techniques
	5.3 Summary and Trends
	References

