
Chapter 3 
Design (Application Design) Modeling 

Abstract Application design is the bridge between end user’s idea and FPGA’s 
functional units. Modeling it will build up application design data structure—the 
ballast stone of any EDA engine in this stage. This chapter dives into the principles 
and implementations of FPGA design (application design) modeling, showing that 
how these models are classified and described. 

3.1 Design Description Levels 

3.1.1 Abstract Levels 

FPGA application design’s abstract levels are quite similar to CPU’s: natural level 
[ 1], high level [ 2], low level [ 3], machine level [ 4] and physical level (Fig. 3.1). 

In the field of CPU (scalar computing) application design, machine language is 
a series of instruction sequences composed of “0” and “1”, directly interacting with 
the hardware at the bottom layer (for FPGA application design, the binary bitstream 
system); assembly language use abbreviated identifiers in its instructions to operate 
on the hardware (for FPGA application design, hardware description language is 
widely used to describe hardware circuits, requiring developers to have a consider-
able degree of low-level hardware knowledge); high-level language is more or less 
independent to a particular type of computing architecture and has already been the 
first choice for most computer programmers (for FPGA application design, it is also 
getting more and more commonly used); natural language is the way of communi-
cation between humans and considered to be the ultimate way to communicate with 
computing engines; there has been lots of research works in processing it (for FPGA 
application design, there is still a long way to go). 

Just like chip design models (Sect. 2.1), application design models can also be 
theoretically described at similar abstract levels (Fig. 3.2). Related formats and stan-
dards have been intensively studied in this field to improve the design productivity. 
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Fig. 3.1 Abstract levels of application design 

Fig. 3.2 FPGA design description abstract levels 

1. Machine-Level Description 
The machine-level description of an application design refers to the expression of 
the bitstream (generally in binary), which directly controls the hardware behav-
ior of the FPGA. Similar to device models, the “logical” description presents 
the correlation between every programmable bits in the bitstream and hardware 
resources (such as the FASM format file [ 5]); the “physical” description then is the 
final value of each configuration bits in a physical order determined by the con-
figuration protocols (such as AMD’s BIT format file and Intel’s SOF format file).
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2. Low-Level Description 
Identical to device models, three sub-levels are shown here: 
At “vanilla” level, traditional hardware description (such as Verilog, VHDL, or 
Schematics) is widely used to build the design model. 
At “higher” level, design descriptions with higher abstraction (such as Scala HDL, 
Python HDL, Haskell HDL, XLS HDL) could be a powerful complement to 
traditional descriptions. 
At “lower” level, more detailed hardware descriptions (such as AMD-XDL, Intel-
VQM, BLIF, EDIF) is used to specify lower units in the FPGA design. 

3. High-Level Description 
The high-level description for FPGA application design refers to software-
oriented languages (such as C/C++, OpenCL, SystemC, DPC++). 
Inspired by the Open Computing Language (OpenCL) programming for heteroge-
neous systems, Intel has defined the Data Parallel C++ (DPC++) design language 
as its cross-architecture (CPU, GPU, FPGA) programming. 

4. Natural-Level Description 
The automatic conversion of natural language into a language that FPGA can 
“understand” is also the future research direction of the academic community. 

Fig. 3.3 FPGA design description reuse levels
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3.1.2 Reuse Levels 

From application design perspective, IP-based design methodology is the mainstream 
way of increasing reusability. IP (both soft ones and hard ones embedded in the 
FPGA) is generally family shared, which means it can be called when using any 
device under the supported families (Fig. 3.3). In modern FPGA application design 
EDA tools, IP integrator is an standard function that will not be absent, enabling 
users to get fast access to these predefined units. 

3.2 Design Model Classifications 

Similar to device (chip design) information, the design (application design) infor-
mation of an FPGA can also be organized in classes: primary class, constraint class 
and report class. The “design checkpoint”, built from these models, contains all the 
EDA information related to the application design. 

The primary information is the torso of the design, the constraint information is 
set to direct the working strategy of EDA engines, then the report information shows 
the concerned metrics, helping designers to better analyze the current situation. If the 
reported results are not satisfactory, the design will be modified and then recurrently 
approaches the optimized goal. 

3.2.1 Primary Class 

Identical to device models, the primary models of application design EDA also 
include logical resource structure model and configuration bit structure model. Never-
theless, the substantial contents of them are quite different from the previous chapter. 
Again, the same with device models, we introduce design primary models at low 
abstract level (Fig. 3.1) for the same reason. 

1. Logical Resource Structure (LRS) Model 
The LRS of an FPGA application design is usually presented by netlist—a term 
that describes the components and connectivity of the design. A simplified hier-
archy of the design logic resource model is shown in (Fig. 3.4). 
The design core logic resources in the netlist can be divided into clusters(will 
accommodate in tiles in the device logic resources), each cluster is composed 
of molecules(will accommodate in sites in the device logic resources), and each 
molecule is composed of atoms(will accommodate in primitives in the device 
logic resource). Similarly, atom is also composed of gate-level units. 
The design interconnect logic resources in the netlist is composed of nets, and 
a net represents the connections between FPGA units (the edges of the netlist
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Fig. 3.4 FPGA design logical resource structure level 

Fig. 3.5 FPGA application design netlist example 

hyper-graph). Each net has a single driver pin, and a set of sink pins (will accom-
modate in wires/switches in the device logic resource). 
The design IO will accordingly accommodate in Pad units in the device logic 
resource. 
Take (Fig. 3.5) as an example, there are 12 atoms(1 LUT, 1 MUX, 8 inputs and 2 
outputs) and 10 nets joining them altogether. 

2. Configuration Bit Structure (CBS) Model 
The CBS of an FPGA application design can also be defined from two perspec-
tives: logical and physical. 
Logical bit structure collects every active configuration bit’s “logical address” of 
the design, that is, which logic resource it belongs to (Fig. 3.6).
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Fig. 3.6 FPGA design configuration bit structure level (logical) 

Fig. 3.7 FPGA design configuration bit structure level (physical) 

Physical bit structure collects every active configuration bit’s “physical address”, 
that is, which position it lies in the final bitstream according to the programming 
protocol (Fig. 3.7). 
After the logical and physical structure are properly identified, the configuration 
data can be outputted as the desired bitstream format (Fig. 3.8). 

3.2.2 Constraint Class 

FPGA application design constraints work at specific stage of the design flow, for 
example, routing constraints are used during the routing stage. Over-constraining or 
under-constraining the design both may cause sign-off difficulties.
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Fig. 3.8 FPGA design configuration bit correlation 

TCL (Tool Command Language), pronounced “tickle”, is an easy-to-learn script-
ing language and can run by scripts from either the Windows or Linux command-line. 
The language is easily extended with new function calls and has been expanded to 
support new tools and technology since its inception and adoption in the early 1990s. 
It has been adopted as the standard application programming interface, or API, among 
most EDA vendors to control and extend their applications. 

Most of the FPGA vendors have adopted TCL as the design constraint format for 
their application EDA tools, as it is easily mastered by designers who are familiar 
with this industry standard language. The TCL interpreter inside the tool provides 
the full power and flexibility of TCL to control the flow or set the constraints. 

Modern FPGA application design constraints have the following properties: 

1. Inherit from industry standard SDC (Synopsys Design Constraint) commands and 
have its own expansions. 

2. They are not simple strings, but are commands that follow the TCL semantic. 
3. They can be interpreted like any other TCL command by the TCL interpreter. 
4. They are read in and parsed sequentially the same as other TCL commands. 

3.2.3 Report Class 

Based on the objective (or EDA process) it addressed, the design reports can be 
divided into many categories: high-level synthesis report, logic synthesis report, 
physical implementation (packing/placement/routing...) report, analysis 
(timing/power/resource...) report, bitstream configuration (generation/download) 
report, and so on.
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Fig. 3.9 FPGA application design report helps designers to sign-off properly 

Design report offers information in human readable format from a specific per-
spective to help designers focus on the metrics they concern, if any sign-off require-
ment is not met, iterative modifications can be done until getting the proper solution 
(Fig. 3.9). 

3.3 Design Model Implementations 

The previous section listed all the design model classes: primary class, constraint 
class, and report class. In this section, we will present typical implementation prac-
tices of each model (Table 3.1). 

3.3.1 Logic Resource Structure Model 

In FPGA application design flow, the design netlist carries different information at 
different EDA stages. At logic synthesis stage, elaboration process turn the design
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Table 3.1 Comparison of FPGA design model implementations 

Model name Abstract level Reuse level Class 

Logic Resource Structure High/Low Design Primary 

Configuration Bit Structure Machine Design Primary 

Constraint High/Low Design Constraint 

Report High/Low Design Report 

Table 3.2 FPGA application design netlist formats and the EDA information they could carry 
(. a is closed source) 

Format Generic netlist Synthesized 
netlist 

Implemented 
netlist 

Adopter 

RTLIL Yes / / Yosys 

BLIF Yes Yes / Academia 

GTECH.a Yes / / Synplify 

EDIF Yes Yes / Industry 

VQM / Yes / Quartus 

XDL / Yes Yes ISE 

XDEF.a / Yes Yes Vivado 

VPR-Verilog / / Yes VPR 

F4PGA-JASON / Yes Yes NextPnR 

into gate-level representation (Generic Netlist), mapping process turn the design into 
atom-level representation (Synthesized Netlist); at physical implementation stage, 
cluster-level representation (Implemented Netlist) is generated. 

There is no universal FPGA netlist format that can be used throughout the whole 
EDA process by the time this book is written, however, (Table 3.2) still listed the 
most popular legacy netlist formats and the EDA stages they could go through. 

Implementation example: BLIF [ 6] 
Berkeley Logic Interchange Format (BLIF) aimed to describe a logic-level hier-

archical circuit in textual form. 
Implementation example: EDIF [ 7] 
Electronic Design Interchange Format (EDIF) is a format that could capture all 

features of circuit design. It has been accepted as a communications medium to 
manufacturing equipment and an interchange format between EDA systems. 

Implementation example: Intel/Altera VQM [ 8] 
Verilog Quartus Mapping (VQM) is the Intel/Altera version text file that contains 

a atom-level netlist. VQM files are typically generated by Intel/Altera Quartus. 
Implementation example: AMD/Xilinx XDL [ 9, 10] 
Xilinx Design Language (XDL) is the AMD/Xilinx version text file that repre-

sents a design netlist after mapping to the FPGA primitives. XDL files are typically 
generated by AMD/Xilinx ISE.
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Table 3.3 SDC Syntax 

Command Supported arguments 

Mostly [Verb]_[Noun] Object / [-argument object] 

Fig. 3.10 Example XML syntax for post-synthesis design report 

3.3.2 Configuration Bit Structure Model 

1. Logical CBS information 
Implementation example: VTR-FASM [ 11] 
FPGA Assembly (FASM) is a textual representation of a bitstream. By assigning 
a symbolic name to each configurable thing in the FPGA, the resulting FASM file 
shows what features are specifically configured “on”. These files provide an easy 
way to write programs that manipulate bitstreams. Modifying a textual FASM file 
is far easier than trying to modify a binary bitstream. 

2. Physical CBS information 
Implementation example: AMD/Xilinx-BIT [ 12, 13] 
BIT files are AMD/Xilinx FPGA configuration files containing configuration 
information. In this file, each four bytes is a packet (analogous to CPU instruction). 
The packet could be a special header, or only carrying normal data. The header 
packet follows a simple assembly-like instruction set to dictate the configuration 
process. 

3.3.3 Constraint Model 

Synopsys’s design constraint model (SDC) (Table 3.3) is the heart of all modern 
FPGA application design constraint models. 

Implementation example: xDC (“x” represents the vendor) 
FPGA vendors usually extend their constraint syntax based on SDC (because 

SDC cannot cover some FPGA specific syntax, such as physical constraints).
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Fig. 3.11 Example XML syntax for packing report 

Fig. 3.12 Example XML syntax for placement report 

Fig. 3.13 Example XML syntax for routing report 

Universal FPGA constraint syntax still needs time to be standardized across ven-
dors. 

3.3.4 Report Model 

Each FPGA vendor or academic organization has its own reporting style. Universal 
FPGA report syntax still needs time to emerge.
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Fig. 3.14 Example XML syntax for power report 

Fig. 3.15 Example XML syntax for timing report 

1. Post-synthesis report 
Implementation example: (Fig. 3.10) 

2. Post-implementation report 
Implementation example: (Figs. 3.11, 3.12 and 3.13 ) 

3. Power report 
Implementation example: (Fig. 3.14) 

4. Timing report 
Implementation example: (Fig. 3.15) 
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