
Chapter 3
Design (Application Design) Modeling

Abstract Application design is the bridge between end user’s idea and FPGA’s
functional units. Modeling it will build up application design data structure—the
ballast stone of any EDA engine in this stage. This chapter dives into the principles
and implementations of FPGA design (application design) modeling, showing that
how these models are classified and described.

3.1 Design Description Levels

3.1.1 Abstract Levels

FPGA application design’s abstract levels are quite similar to CPU’s: natural level
[1], high level [2], low level [3], machine level [4] and physical level (Fig. 3.1).

In the field of CPU (scalar computing) application design, machine language is
a series of instruction sequences composed of “0” and “1”, directly interacting with
the hardware at the bottom layer (for FPGA application design, the binary bitstream
system); assembly language use abbreviated identifiers in its instructions to operate
on the hardware (for FPGA application design, hardware description language is
widely used to describe hardware circuits, requiring developers to have a consider-
able degree of low-level hardware knowledge); high-level language is more or less
independent to a particular type of computing architecture and has already been the
first choice for most computer programmers (for FPGA application design, it is also
getting more and more commonly used); natural language is the way of communi-
cation between humans and considered to be the ultimate way to communicate with
computing engines; there has been lots of research works in processing it (for FPGA
application design, there is still a long way to go).

Just like chip design models (Sect. 2.1), application design models can also be
theoretically described at similar abstract levels (Fig. 3.2). Related formats and stan-
dards have been intensively studied in this field to improve the design productivity.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Tu et al., FPGA EDA, https://doi.org/10.1007/978-981-99-7755-0_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7755-0_3&domain=pdf
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3
https://doi.org/10.1007/978-981-99-7755-0_3

50 3 Design (Application Design) Modeling

Fig. 3.1 Abstract levels of application design

Fig. 3.2 FPGA design description abstract levels

1. Machine-Level Description
The machine-level description of an application design refers to the expression of
the bitstream (generally in binary), which directly controls the hardware behav-
ior of the FPGA. Similar to device models, the “logical” description presents
the correlation between every programmable bits in the bitstream and hardware
resources (such as the FASM format file [5]); the “physical” description then is the
final value of each configuration bits in a physical order determined by the con-
figuration protocols (such as AMD’s BIT format file and Intel’s SOF format file).

3.1 Design Description Levels 51

2. Low-Level Description
Identical to device models, three sub-levels are shown here:
At “vanilla” level, traditional hardware description (such as Verilog, VHDL, or
Schematics) is widely used to build the design model.
At “higher” level, design descriptions with higher abstraction (such as Scala HDL,
Python HDL, Haskell HDL, XLS HDL) could be a powerful complement to
traditional descriptions.
At “lower” level, more detailed hardware descriptions (such as AMD-XDL, Intel-
VQM, BLIF, EDIF) is used to specify lower units in the FPGA design.

3. High-Level Description
The high-level description for FPGA application design refers to software-
oriented languages (such as C/C++, OpenCL, SystemC, DPC++).
Inspired by the Open Computing Language (OpenCL) programming for heteroge-
neous systems, Intel has defined the Data Parallel C++ (DPC++) design language
as its cross-architecture (CPU, GPU, FPGA) programming.

4. Natural-Level Description
The automatic conversion of natural language into a language that FPGA can
“understand” is also the future research direction of the academic community.

Fig. 3.3 FPGA design description reuse levels

52 3 Design (Application Design) Modeling

3.1.2 Reuse Levels

From application design perspective, IP-based design methodology is the mainstream
way of increasing reusability. IP (both soft ones and hard ones embedded in the
FPGA) is generally family shared, which means it can be called when using any
device under the supported families (Fig. 3.3). In modern FPGA application design
EDA tools, IP integrator is an standard function that will not be absent, enabling
users to get fast access to these predefined units.

3.2 Design Model Classifications

Similar to device (chip design) information, the design (application design) infor-
mation of an FPGA can also be organized in classes: primary class, constraint class
and report class. The “design checkpoint”, built from these models, contains all the
EDA information related to the application design.

The primary information is the torso of the design, the constraint information is
set to direct the working strategy of EDA engines, then the report information shows
the concerned metrics, helping designers to better analyze the current situation. If the
reported results are not satisfactory, the design will be modified and then recurrently
approaches the optimized goal.

3.2.1 Primary Class

Identical to device models, the primary models of application design EDA also
include logical resource structure model and configuration bit structure model. Never-
theless, the substantial contents of them are quite different from the previous chapter.
Again, the same with device models, we introduce design primary models at low
abstract level (Fig. 3.1) for the same reason.

1. Logical Resource Structure (LRS) Model
The LRS of an FPGA application design is usually presented by netlist—a term
that describes the components and connectivity of the design. A simplified hier-
archy of the design logic resource model is shown in (Fig. 3.4).
The design core logic resources in the netlist can be divided into clusters(will
accommodate in tiles in the device logic resources), each cluster is composed
of molecules(will accommodate in sites in the device logic resources), and each
molecule is composed of atoms(will accommodate in primitives in the device
logic resource). Similarly, atom is also composed of gate-level units.
The design interconnect logic resources in the netlist is composed of nets, and
a net represents the connections between FPGA units (the edges of the netlist

3.2 Design Model Classifications 53

Fig. 3.4 FPGA design logical resource structure level

Fig. 3.5 FPGA application design netlist example

hyper-graph). Each net has a single driver pin, and a set of sink pins (will accom-
modate in wires/switches in the device logic resource).
The design IO will accordingly accommodate in Pad units in the device logic
resource.
Take (Fig. 3.5) as an example, there are 12 atoms(1 LUT, 1 MUX, 8 inputs and 2
outputs) and 10 nets joining them altogether.

2. Configuration Bit Structure (CBS) Model
The CBS of an FPGA application design can also be defined from two perspec-
tives: logical and physical.
Logical bit structure collects every active configuration bit’s “logical address” of
the design, that is, which logic resource it belongs to (Fig. 3.6).

54 3 Design (Application Design) Modeling

Fig. 3.6 FPGA design configuration bit structure level (logical)

Fig. 3.7 FPGA design configuration bit structure level (physical)

Physical bit structure collects every active configuration bit’s “physical address”,
that is, which position it lies in the final bitstream according to the programming
protocol (Fig. 3.7).
After the logical and physical structure are properly identified, the configuration
data can be outputted as the desired bitstream format (Fig. 3.8).

3.2.2 Constraint Class

FPGA application design constraints work at specific stage of the design flow, for
example, routing constraints are used during the routing stage. Over-constraining or
under-constraining the design both may cause sign-off difficulties.

3.2 Design Model Classifications 55

Fig. 3.8 FPGA design configuration bit correlation

TCL (Tool Command Language), pronounced “tickle”, is an easy-to-learn script-
ing language and can run by scripts from either the Windows or Linux command-line.
The language is easily extended with new function calls and has been expanded to
support new tools and technology since its inception and adoption in the early 1990s.
It has been adopted as the standard application programming interface, or API, among
most EDA vendors to control and extend their applications.

Most of the FPGA vendors have adopted TCL as the design constraint format for
their application EDA tools, as it is easily mastered by designers who are familiar
with this industry standard language. The TCL interpreter inside the tool provides
the full power and flexibility of TCL to control the flow or set the constraints.

Modern FPGA application design constraints have the following properties:

1. Inherit from industry standard SDC (Synopsys Design Constraint) commands and
have its own expansions.

2. They are not simple strings, but are commands that follow the TCL semantic.
3. They can be interpreted like any other TCL command by the TCL interpreter.
4. They are read in and parsed sequentially the same as other TCL commands.

3.2.3 Report Class

Based on the objective (or EDA process) it addressed, the design reports can be
divided into many categories: high-level synthesis report, logic synthesis report,
physical implementation (packing/placement/routing...) report, analysis
(timing/power/resource...) report, bitstream configuration (generation/download)
report, and so on.

56 3 Design (Application Design) Modeling

Fig. 3.9 FPGA application design report helps designers to sign-off properly

Design report offers information in human readable format from a specific per-
spective to help designers focus on the metrics they concern, if any sign-off require-
ment is not met, iterative modifications can be done until getting the proper solution
(Fig. 3.9).

3.3 Design Model Implementations

The previous section listed all the design model classes: primary class, constraint
class, and report class. In this section, we will present typical implementation prac-
tices of each model (Table 3.1).

3.3.1 Logic Resource Structure Model

In FPGA application design flow, the design netlist carries different information at
different EDA stages. At logic synthesis stage, elaboration process turn the design

3.3 Design Model Implementations 57

Table 3.1 Comparison of FPGA design model implementations

Model name Abstract level Reuse level Class

Logic Resource Structure High/Low Design Primary

Configuration Bit Structure Machine Design Primary

Constraint High/Low Design Constraint

Report High/Low Design Report

Table 3.2 FPGA application design netlist formats and the EDA information they could carry
(. a is closed source)

Format Generic netlist Synthesized
netlist

Implemented
netlist

Adopter

RTLIL Yes / / Yosys

BLIF Yes Yes / Academia

GTECH.a Yes / / Synplify

EDIF Yes Yes / Industry

VQM / Yes / Quartus

XDL / Yes Yes ISE

XDEF.a / Yes Yes Vivado

VPR-Verilog / / Yes VPR

F4PGA-JASON / Yes Yes NextPnR

into gate-level representation (Generic Netlist), mapping process turn the design into
atom-level representation (Synthesized Netlist); at physical implementation stage,
cluster-level representation (Implemented Netlist) is generated.

There is no universal FPGA netlist format that can be used throughout the whole
EDA process by the time this book is written, however, (Table 3.2) still listed the
most popular legacy netlist formats and the EDA stages they could go through.

Implementation example: BLIF [6]
Berkeley Logic Interchange Format (BLIF) aimed to describe a logic-level hier-

archical circuit in textual form.
Implementation example: EDIF [7]
Electronic Design Interchange Format (EDIF) is a format that could capture all

features of circuit design. It has been accepted as a communications medium to
manufacturing equipment and an interchange format between EDA systems.

Implementation example: Intel/Altera VQM [8]
Verilog Quartus Mapping (VQM) is the Intel/Altera version text file that contains

a atom-level netlist. VQM files are typically generated by Intel/Altera Quartus.
Implementation example: AMD/Xilinx XDL [9, 10]
Xilinx Design Language (XDL) is the AMD/Xilinx version text file that repre-

sents a design netlist after mapping to the FPGA primitives. XDL files are typically
generated by AMD/Xilinx ISE.

58 3 Design (Application Design) Modeling

Table 3.3 SDC Syntax

Command Supported arguments

Mostly [Verb]_[Noun] Object / [-argument object]

Fig. 3.10 Example XML syntax for post-synthesis design report

3.3.2 Configuration Bit Structure Model

1. Logical CBS information
Implementation example: VTR-FASM [11]
FPGA Assembly (FASM) is a textual representation of a bitstream. By assigning
a symbolic name to each configurable thing in the FPGA, the resulting FASM file
shows what features are specifically configured “on”. These files provide an easy
way to write programs that manipulate bitstreams. Modifying a textual FASM file
is far easier than trying to modify a binary bitstream.

2. Physical CBS information
Implementation example: AMD/Xilinx-BIT [12, 13]
BIT files are AMD/Xilinx FPGA configuration files containing configuration
information. In this file, each four bytes is a packet (analogous to CPU instruction).
The packet could be a special header, or only carrying normal data. The header
packet follows a simple assembly-like instruction set to dictate the configuration
process.

3.3.3 Constraint Model

Synopsys’s design constraint model (SDC) (Table 3.3) is the heart of all modern
FPGA application design constraint models.

Implementation example: xDC (“x” represents the vendor)
FPGA vendors usually extend their constraint syntax based on SDC (because

SDC cannot cover some FPGA specific syntax, such as physical constraints).

3.3 Design Model Implementations 59

Fig. 3.11 Example XML syntax for packing report

Fig. 3.12 Example XML syntax for placement report

Fig. 3.13 Example XML syntax for routing report

Universal FPGA constraint syntax still needs time to be standardized across ven-
dors.

3.3.4 Report Model

Each FPGA vendor or academic organization has its own reporting style. Universal
FPGA report syntax still needs time to emerge.

60 3 Design (Application Design) Modeling

Fig. 3.14 Example XML syntax for power report

Fig. 3.15 Example XML syntax for timing report

1. Post-synthesis report
Implementation example: (Fig. 3.10)

2. Post-implementation report
Implementation example: (Figs. 3.11, 3.12 and 3.13)

3. Power report
Implementation example: (Fig. 3.14)

4. Timing report
Implementation example: (Fig. 3.15)

References

1. Wikipedia, Natural language (2022). https://en.wikipedia.org/wiki/Natural_language
2. Wikipedia, High level language (2022). https://en.wikipedia.org/wiki/High-level_

programming_language
3. Wikipedia, Assembly language. (2022) https://en.wikipedia.org/wiki/Assembly_language
4. Wikipedia, Machine code (2022). https://en.wikipedia.org/wiki/Machine_code
5. F4PGA, FPGA assembly (FASM) (2021). https://fasm.readthedocs.io/en/latest/
6. U. of California Berkeley, Berkeley logic interchange format (1992). https://people.eecs.

berkeley.edu/~alanmi/publications/other/blif.pdf
7. H.J. Kahn, R.F. Goldman, The electronic design interchange format EDIF: present and future,

in Proceedings of the 29th ACM/IEEE Design Automation Conference, Series DAC ’92 (IEEE
Computer Society Press, Washington, DC, USA, 1992), pp. 666–671

8. A. QUIP, VQM extractor and language functional description (2005)

https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/other/blif.pdf

References 61

9. C. Beckhoff, D. Koch, J. Torresen, The Xilinx design language (XDL): tutorial and use cases,
in 6th International Workshop on Reconfigurable Communication-Centric Systems-on-Chip
(ReCoSoC) (2011), pp. 1–8

10. B.J.P. Tomas, Xilinx design language (2012). http://www.ee.unlv.edu/~selvaraj/ecg707/
lecture/XilinxDesignLanguage.pdf

11. B.J.P. Tomas, FPGA assembly (FASM). https://fasm.readthedocs.io/en/latest/
12. AMD/Xilinx, Xilinx bit bitstream files. http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
13. Y. Shan, FPGA bitstream explained. http://lastweek.io/fpga/bitstream/

http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
http://www.ee.unlv.edu/~selvaraj/ecg707/lecture/XilinxDesignLanguage.pdf
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://www.pldtool.com/pdf/fmt_xilinxbit.pdf
http://lastweek.io/fpga/bitstream/
http://lastweek.io/fpga/bitstream/
http://lastweek.io/fpga/bitstream/
http://lastweek.io/fpga/bitstream/
http://lastweek.io/fpga/bitstream/

	3 Design (Application Design) Modeling
	3.1 Design Description Levels
	3.1.1 Abstract Levels
	3.1.2 Reuse Levels

	3.2 Design Model Classifications
	3.2.1 Primary Class
	3.2.2 Constraint Class
	3.2.3 Report Class

	3.3 Design Model Implementations
	3.3.1 Logic Resource Structure Model
	3.3.2 Configuration Bit Structure Model
	3.3.3 Constraint Model
	3.3.4 Report Model

	References

