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Abstract. In this paper, we introduce the stochastic power cover (SPC)
problem, which aims to determine the two-stage power assignment and
minimize the total expected power consumption. For this problem, we
are given a set U of n users, a set S of m sensors on the plane and k
possible scenarios, where k is a polynomial and each consists of a proba-
bility of occurrence. Each sensor s ∈ S can adjust the power it produces
by changing its radius and the relationship between them satisfies the
following power equation p (s) = c · r (s)α. The objective is to identify
the radius of each sensor in the first stage and augment the first-stage
solution in order to cover all users and minimize the expected power
over both stages. Our main result is to present an O(α)-approximation
algorithm by using the primal-dual technique.

Keywords: Power cover · Stochastic optimization · Approximation
algorithm · Primal dual

1 Introduction

The minimum power cover (MPC) problem is a classical combinatorial optimiza-
tion problem that can be defined as follows. Given a set U of n users and a set S
of m sensors on the plane. Each sensor s ∈ S can adjust the power it produces by
changing its radius and the relationship between the radio and its power satisfies
the following power equation

p (s) = c · r (s)α , (∗)

where the coefficient c > 0 and the attenuation coefficient α ≥ 1 are constants.
We call a user u ∈ U is covered by a sensor s ∈ S if the distance between u
and s is no more than r(s), where r(s) is the radius of Disk(s, r(s)) which is
the disk centered at s with radius r(s). A user is covered by a power assignment
p : S �→ R

+ if it belongs to some disk supported by p. The minimum power cover
problem is to find a power assignment p covering all users such that the total
power

∑
s∈S p(s) is as small as possible. Here, we assume that there is no limit on

the power at a sensor. For the MPC problem, when α > 1, Alt et al. [20] proved
that this problem is NP-hard. Charikar and Panigrahy [1] presented a primal-
dual algorithm to obtain a constant approximation. Biló et al. [2] presented a
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polynomial time approximation scheme (PTAS) based on a plane subdivision
and shifted the quad-tree technique.

By applying relevant constraints to MPC problem, we can obtain some vari-
ational problems, such as the prize-collecting cover problem [7,21], which needs
to pay the penalty if a user is not covered; the cover problem with submod-
ular/linear penalties [9–11,13,14]; the capacitated cover problem [12,22,23] in
which each sensor has a capacity; the partial cover problem [8,16], which requires
covering a specified number of elements and the stochastic cover problem etc.
Among them, the stochastic power cover problem is an important problem in
stochastic optimization problem and deserves careful study.

In recent years, an increasing number of people have focused on the stochastic
optimization problem [17], which is a basic method of dealing with uncertainty
for combinatorial optimization problems by building models of uncertainty using
the probability distributions of the input instances. The two-stage stochastic
optimization model is a popular stochastic model that can solve many combina-
torial optimization problems such as stochastic matching [15], stochastic facility
location [17], and stochastic set cover problem [18] etc. Additionally, there are
many useful techniques for designing approximation algorithms for stochastic
combinatorial optimization problems, including the linear programming relax-
ation approach, boosted sampling [24,25], contention resolution schemes [26],
Poisson approximation [4,19] etc.

In the field of stochastic optimization problem, there are many studies on
stochastic set cover problems. In this problem, we do not know the points we
need to cover at first, but the scenarios of uncertainty go with known prob-
ability distributions. It is possible for us to anticipate possible scenarios and
purchase some subsets in advance in the first stage. In the second stage, we
obtain the probability distribution for all the scenarios. The goal is to optimize
the first-stage decision variables to minimize the expected cost over both stages.
Ravic and Sinhac [3] proposed the stochastic set cover problem and showed that
there exists an O(logmn) approximation algorithm by analyzing the relationship
between the minimum power cover and stochastic set cover problem. Further-
more, Li et al. [4] designed an approximation algorithm with a ratio of 2(lnn+1),
in which n is the cardinality of the universe. Parthasarathy [5] designed an adap-
tive greedy algorithm with ratio H(n) for the stochastic set cover problem. For
the stochastic set cover problem with submodular penalty, Sun et al. [6] proposed
a 2η-approximation algorithm using the primal-dual technique, where η is the
maximum frequency of the element of the ground set in the set cover problem.

Inspired by the above problems, we consider the two-stage, finite-scenario
stochastic version of the minimum power cover problem, which generalizes the
minimum power cover problem and the stochastic minimum set cover problem.
For this problem, we are given a set U of n users, a set S of m sensors on the
plane and k possible scenarios, where k is a polynomial and each consists of a
probability of occurrence. Each sensor s ∈ S can adjust the power it produces
by changing its radius and the relationship between them satisfies the following
power equation p (s) = c · r (s)α, where c > 0 and the attenuation coefficient
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α ≥ 1 are some constants. The objective is to identify the radius of each sensor
in the first stage and augment the first-stage solution to cover all users and
minimize the expected power over both stages. The remainder of this paper is
organized as follows. We introduce the stochastic set cover problem in Sect. 2.
In Sect. 3, we design a polynomial-time algorithm with an approximate ratio of
O(α) by using the primal-dual technique and present the proof. In Sect. 4, we
give a brief conclusion.

2 Stochastic Power Cover Problem

Based on the definition of the minimum power cover problem, the two-stage
finite-scenario stochastic power cover problem can be defined as follows. The
input in our version of the stochastic power cover problem consists of a set U
of n users, a first-stage set U0 ⊆ U , a set S of m sensors on the plane and
k possible scenarios where k is a polynomial. As with the definition in MPC
problem introduced above, the relationship between the radius of a sensor and
the power it consumes also satisfies the power equation (∗) where c and α are
some constants. However, c > 0 will change as the scenario changes and we
usually call α ≥ 1 the attenuation coefficient. For a scenario j ∈ {1, 2, . . . , k},
we use pj to define its probability, Uj ⊆ U is the set of users that need to
be covered, which may or may not be subsets of the first-stage set U0 and the
coefficient in the power equation is denoted by cj in scenario j. In the first
stage, the coefficient in the power equation is c0. We need to anticipate possible
scenarios and determine the radius of the sensors in advance in the first stage.
In the second stage, when the coverage requirements in all the scenarios appear
in the form of the probability distribution, we need to expand the radius of
the disks or pick more disks to complement the decision of the first stage. The
objective for this problem is to find a power assignment that covers all the
users and minimizes the total power of the first stage and the expected power
consumption of the second stage.

For convenience, we use a set F of disks whose centers are sensors to represent
a power assignment for the sensor set S. If F∗ is an optimal assignment for this
problem, then for any disk Disk(s, r(s)) ∈ F∗, there is at least one user u ∈ U
that lies on the boundary of disk Disk(s, r(s)); otherwise, we may reduce the
radius of the disks to cover the same set of users and find a feasible assignment
with a lower value. Since in every scenario there are at most n points of users,
each sensor can generate up to n disks with different radius and all sensors have
a maximum of mn disks that need to be considered. For all scenarios, there are
at most kmn disks that need to be considered, so in the following, we use D to
denote such a set of all disks, (U,D, k) denotes an instance of the SPC problem.
For any D ∈ D, let c(D) represent the center sensor of D, and r(D, j) is the
radius of disk D in scenario j ∈ {1, 2, . . . , k}, U(D) denotes the users covered by
D and Uj(D) denotes the users covered by D in Uj for all j = 0, 1, . . . , k.

Based on an analysis similar to [7], in order to control the approximation ratio,
weneed toguess thediskwith themaximumradiusdenotedbyDj,max in anoptimal
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solution F∗ =
k⋃

j=0

F∗
j for j ∈ {0, 1, . . . , k}, that is r(Dj,max, j) = max

D:D∈F∗
j

r(D, j).

Let Dmax =
k⋃

j=0

Dj,max, OPT
′
is the optimal value of the residual instance about

Dmax, OPT is the optimal value of the original instance (U,D, k). Similar to the
analysis in [7], we have the following lemma:

Lemma 1. OPT = OPT
′
+

∑k
j=0 pjcjr(Dj,max, j)α.

In the guessing technique, each disk Dj,max is guessed as the disk with the
maximum radius of F∗

j for all j = 0, 1, . . . , k in the optimal solution F∗; there-
fore, by looping (k + 1)mn times, we can assume that Dmax is known. Later,
we will present a three-phase primal-dual approximation algorithm for the resid-
ual instance. And for simplicity of notation, we still use (U,D, k) to denote the
residual instance.

min
∑

D∈D
c0r(D, 0)αxD,0 +

k∑

j=1

∑

D∈D
pjcjr(D, j)αxD,j (IP)

s.t.
∑

D∈D
u∈U0(D)

xD,0 +
∑

D∈D
u∈Uj(D)

xD,j ≥ 1, ∀j ∈ {1, 2, . . . , k} ,∀u ∈ U0 ∩ Uj , (1)

∑

D∈D
u∈Uj(D)

xD,j ≥ 1, ∀j ∈ {1, 2, . . . , k} ,∀u ∈ Uj \ U0, (2)

xD,0, xD,j ∈ {0, 1} , ∀j ∈ {1, 2, . . . , k} ,∀D ∈ D. (3)

In this formulation, the variable xD,j indicates in scenario j whether we select
the disk D. That is:

xD,j =

{
1, if disk D is selected in scenario j to cover some users,
0, otherwise.

The first set of constraints of (1) guarantees that each user u ∈ U0 ∩ Uj is
covered in either the first or second stage, and constraint (2) forces the users in
Uj \ U0 must be covered in the second stage. We can obtain the linear program
by replacing constraint (3). Its LP relaxation and corresponding dual program
of the linear relaxation are as shown below:

min
∑

D∈D
c0r(D, 0)αxD,0 +

k∑

j=1

∑

D∈D
pjcjr(D, j)αxD,j (LP)

s.t.
∑

D∈D
u∈U0(D)

xD,0 +
∑

D∈D
u∈Uj(D)

xD,j ≥ 1, ∀j ∈ {1, 2, . . . , k} ,∀u ∈ U0 ∩ Uj ,

∑

D∈D
u∈Uj(D)

xD,j ≥ 1, ∀j ∈ {1, 2, . . . , k} ,∀u ∈ Uj \ U0,

xD,0, xD,j ≥ 0, ∀j ∈ {1, 2, . . . , k} ,∀D ∈ D.
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max
k∑

j=1

∑

u∈Uj

yu,j (DP)

s.t.
k∑

j=1

∑

u∈U0(D)∩Uj(D)

yu,j ≤ c0r(D, 0)α, ∀D ∈ D,

∑

u∈Uj(D)

yu,j ≤ pjcjr(D, j)α, ∀D ∈ D, j ∈ {1, 2, . . . , k} ,

yu,j ≥ 0, ∀u ∈ Uj , j ∈ {1, 2, . . . , k}

Next, we recall the definition and some geometric properties of the ρ-relaxed
independent set that have been introduced in [8], where ρ ∈ [0, 2] is a given con-
stant. Given a set U of users and a set D of disks on the plane, for any two disks
D1,D2 ∈ D, if U(D1)∩U(D2) = ∅ or d(c(D1), c(D2)) > ρmax{r(D1), r(D2)}, we
call that D is a ρ-relaxed independent set, where d(a, b)is the Euclidean distance
between points a and b.

According to the above definition, we can obtain the following lemma, and
its proof process is the same as in [8]. This lemma will be used in the later proof
of the approximate ratio of the primal-dual algorithm.

Lemma 2. For any t ∈ {2, 3, . . . }, we have max
u∈U

|{D|u ∈ U(D),D ∈ D}| ≤ t−1,

where D is a ρ-relaxed independent set with ρ = 2 sin π
t .

3 Algorithm for the SPC Problem

The algorithm is a three-phase primal-dual approximation algorithm consisting
of four steps. For ease of description and modeling, we now present some more
notations as follows: for a disk D, U(D) denotes the users covered by D, and
P (D) denotes the expected power it consumes, that is,

P (D) = c0r(D, 0)α +
k∑

j=1

pjcjr(D, j)α =
k∑

j=0

pjcjr(D, j)α,
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here p0 = 1. For a set of disks D, we also use U(D) to denote the set of users
covered by disks in D; for a solution F , let P (F) denote the expected power it
consumes, that is,

P (F) =
∑

D:D∈F
P (D) =

k∑

j=0

∑

D:D∈F
pjcjr(D, j)α.

We say a disk D ∈ D is tight if it satisfies either

k∑

j=1

∑

u∈U0(D)∩Uj(D)

yu,j = c0r(D, 0)α, (5)

or
∑

u∈Uj(D)

yu,j = pjcjr(D, j)α. (6)

The basic framework of the algorithm is shown as follows:

– Step1: In the first step, we raise the dual variables yu,j uniformly for all users
in Uj \ U0, separately for each j. All disks that become tight (satisfy Eq. (5))
have xD,j set to 1. In this way, we can find a disk set Dtight

j , where Dtight
j

can cover all users in Uj \ U0.
– Step2: In the second step, we do a greedy dual-ascent on all uncovered users

of Uj . These users are contained in U0 ∩ Uj . We also raise the dual variables
yu,j for these uncovered users, if a disk is tight (satisfy Eq. (5)), then we
select it in the stage one solution by setting xD,0 = 1, and if it is not tight
for xD,0 but is tight for xD,j , then we select it in the resource solution and
set xD,j = 1. In this way, we can find a disk set Dtight

0 and extend the disk
set Dtight

j , where Dtight
0 ∪ Dtight

j can cover all users in Uj .
– Step3: Before going into the fourth step, remove the disk Dj,last which is

the last disk added into Dtight
j (j = 0, 1, . . . , k). Then, a maximal ρ-relaxed

independent set of disks Ij is computed in a greedy manner.
– Step4: Finally, every disk in Ij has its radius enlarged 1 + ρ times. Such set

of disks together with Dj,last(j = 0, 1, . . . , k) are the output of the algorithm.
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We propose the detailed three-phase primal-dual algorithm in Algorithm 1
below.

Algorithm 1: Three − phase primal − dual algorithm

Input: A set U of n users, a disk set D, a power function P : D �→ R
+, k possible

scenarios and its probability, a set of users Uj ⊆ U, j = 0, 1, . . . , k, an interger
t ∈ {2, 3, . . . }.

Output: A subset of disks F .
1 Initially, let Dtight

j = ∅ (j = 0, 1, . . . , k), yu,j = 0 (j = 1, . . . , k, u ∈ Uj),
Xj = Uj \ U0 (j = 1, . . . , k), Rtemp

j = ∅ (j = 1, . . . , k).
2 for j = 1, . . . , k do
3 while Rtemp

j �= Uj \ U0 do
4 Increase yu,j (u ∈ Xj) simultaneously until some disks D become tight.
5 if

∑
u∈Uj(D) yu,j = pjcjr(D, j)α then

6 Dtight
j := Dtight

j ∪ {D}, xD,j := 1, Rtemp
j := Rtemp

j ∪ Uj(D),
Xj := Xj \ Uj(D).

7 end
8 end
9 end

10 Set Tj := Uj \ Rtemp
j (j = 1, . . . , k).

11 while Rtemp
j �= Uj , j = 1, . . . , k do

12 Increase yu,j (j = 1, . . . , k, u ∈ Tj) simultaneously until some disks D become tight.
13 if

∑k
j=1

∑
u∈U0(D)∩Uj(D) yu,j = c0r(D, 0)α then

14 Dtight
0 := Dtight

0 ∪ {D}, xD,0 := 1, Rtemp
j := Rtemp

j ∪ Uj(D), Tj := Tj \ Uj(D).
15 end
16 else if

∑
u∈Uj(D) yu,j = pjcjr(D, j)α then

17 Dtight
j := Dtight

j ∪ {D}, xD,j := 1, Rtemp
j := Rtemp

j ∪ Uj(D), Tj := Tj \ Uj(D).
18 end
19 end
20 for j = 0, . . . , k do
21 Let Dj,last be the last disk added into Dtight

j .

22 Set lj := |Dtight
j \ {Dj,last}|, Ij := Dtight

j \ {Dj,last}, ρ := 2 sin π
t
. Sort the disks in

Dtight
j \ {Dj,last} such that r(D1, j) ≥ r(D2, j) ≥ · · · r(Dlj , j).

23 for l
′
j = 1 to lj do

24 if there exists a disk D
l
′′
j

∈ Ij with l
′′
j < l

′
j such that U(D

l
′′
j
) ∩ U(D

l
′
j
) �= ∅

and d(c(D
l
′′
j
), c(D

l
′
j
)) ≤ ρr(D

l
′′
j

, j) then

25 Delete D
l
′
j
from Ij .

26 end
27 end
28 Fj := {D(c(D), (1 + ρ)r(D))|D ∈ Ij} ∪ Dj,last.
29 end
30 I :=

⋃k
j=0 Ij , F :=

⋃k
j=0 Fj . Output F .

Lemma 3. F is a feasible solution.

Proof. Consider a user in scenario j = 1, . . . , k, by definition of the algorithm,
it will be either covered by disks in Dtight

j , or disks in Dtight
0 (or both), so that

⋃k
j=0 Dtight

j is a feasible solution for (U,D, k). Next, we will prove that F is also
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a feasible solution. For any user u ∈ U(Dtight
j ), j = 0, . . . , k, if u is not covered

by Fj , then it must be covered by a disk Dl
′
j

∈ Dtight
j \ Fj . Following from the

definition of ρ-relaxed independent set, there is a disk Dl
′′
j

∈ Ij satisfying that
r(Dl

′′
j ,j) ≥ r(Dl

′
j
, j) and d(c(Dl

′′
j
), c(Dl

′
j
)) ≤ ρr(Dl

′′
j
, j). Therefore, we have

d(u, c(Dl
′′
j
)) ≤ d(u, c(Dl

′
j
)) + d(c(Dl

′′
j
), c(Dl

′
j
))

≤ r(Dl
′
j
, j) + ρr(Dl

′′
j
, j)

≤ (1 + ρ)r(Dl
′′
j
, j).

That implies that u is covered by disk D(c(Dl
′′
j
), (1 + ρ)r(Dl

′′
j ,j)) ∈ Fj con-

tradicting previous assumption. Therefore, F is a feasible solution.

Lemma 4. For any integer t ∈ {2, 3, 4, . . . }, the objective value of F is no more
than 2(t − 1)(1 + 2 sin π

t )
αOPT

′
+ P (Dmax).

Proof.

P (I) =
k∑

j=0

pj

∑

D:D∈Ij

cjr(D, j)α

=
∑

D:D∈I0

c0r(D, 0)α +
k∑

j=1

pj

∑

D:D∈Ij

cjr(D, j)α

=
∑

D:D∈I0

k∑

j=1

∑

u:u∈U0(D)∩Uj(D)

yu,j +

k∑

j=1

∑

D:D∈Ij

∑

u:u∈Uj(D)

yu,j

=
k∑

j=1

∑

D:D∈I0

∑

u:u∈U0(D)∩Uj(D)

yu,j +
k∑

j=1

∑

D:D∈Ij

∑

u:u∈Uj(D)

yu,j

≤
k∑

j=1

∑

u:u∈U(I0)

yu,j · |{D0|D0 ∈ I0, u ∈ U(D0)}|

+

k∑

j=1

∑

u:u∈U(Ij)

yu,j · |{Dj |Dj ∈ Ij , u ∈ U(Dj)}|

≤ (t − 1)
k∑

j=1

∑

u:u∈U(I0)

yu,j + (t − 1)
k∑

j=1

∑

u:u∈U(Ij)

yu,j

≤ (t − 1)

k∑

j=1

∑

u:u∈U(Dtight
0 \{D0,last})

yu,j + (t − 1)

k∑

j=1

∑

u:u∈U(Dtight
j \{Dj,last})

yu,j

≤ 2(t − 1)
k∑

j=1

∑

u:u∈Uj

yu,j

≤ 2(t − 1)OPT
′′

≤ 2(t − 1)OPT
′
,
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where OPT
′′

is the optimal value of the dual program. The third equation
follows from Eq. (5) and (6), the second inequation follows from Lemma 2 and
Ij is a ρ-relaxed independent set, and the third inequation follows from Ij ⊆
Dtight

j \ {Dj,last}, j = 0, 1, . . . , k and the last inequation follows from the well-
known strong duality theorem. From the inequations above, we have

P (F) = (1 + ρ)αP (I) +
k∑

j=0

pjcjr(Dj,last, j)α

≤ 2(t − 1)(1 + ρ)αOPT
′
+

k∑

j=0

pjcjr(Dj,last, j)α

≤ 2(t − 1)(1 + 2 sin
π

t
)αOPT

′
+ P (Dmax).

The first equality follows from Fj = {D(c(D), (1 + ρ)r(D, j))|D ∈ Ij} ∪
Dj,last, the second inequality follows from r(Dj,last, j) ≤ r(Dj,max, j),Dmax =
⋃k

j=0 Dj,max. Therefore, the lemma holds.

Theorem 1. There is an O(α)-approximation algorithm for the MinSPC prob-
lem.

Proof.

P (F ∪ Dmax) = P (F) + P (Dmax)

≤ 2(t − 1)(1 + 2 sin
π

t
)αOPT

′
+ 2P (Dmax)

≤ 2(t − 1)(1 + 2 sin
π

t
)α(OPT

′
+ P (Dmax))

= 2(t − 1)(1 + 2 sin
π

t
)αOPT,

where the first inequality follows from Lemma 4, and the second inequality fol-
lows from α ≥ 1, t ∈ {2, 3, 4, . . . }, and the last equality follows from Lemma 1.
Furthermore, as in the analysis in [8], the approximation of Algorithm 1 is O(α).

4 Conclusions

In this paper, we introduce the stochastic minimum power cover problem, which
generalizes the minimum power cover problem and the stochastic minimum set
cover problem. We prove an O(α)-approximation algorithm for this problem,
which can be implemented in polynomial time.

For the stochastic optimization problems, we now consider only the two-stage
finite-scenario version for the stochastic power cover problem. In the future, there
is substantial potential for us to design some algorithms for this problem with
multi-stage, exponential scenarios and more constraints which comes with great
challenges.
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