
A Formal Approach for Traceability
Preservation in Software Development Process

Hao Wen1,2, Jinzhao Wu1,2, Jianmin Jiang3(B), Jianqing Li3, and Zhong Hong4

1 Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu, China
wenhao21@mails.ucas.ac.cn, himrwujzh@aliyun.com

2 University of Chinese Academy of Sciences, Beijing, China
3 College of Software Engineering, Chengdu University of Information Technology, Chengdu,

China
jjm@cuit.edu.cn, 1102418305@qq.com

4 College of Mathematics and Informatics, Fujian Normal University, Fuzhou, China
fjfzhz@fjnu.edu.cn

Abstract. Traceability is the ability to trace the usage of artifacts during the soft-
ware lifecycle process. Though the benefits of establishing a traceability software
system have been widely recognized, it is difficult to be applied well in actual
development. In this paper, we propose a new method for traceability preserva-
tion which may be used in the practical software development process. A formal
model for the traceability of software artifacts is first presented, which consists
of variable traceability relations, classification and version number controls. We
then present the composition, restriction and refinement operations in the soft-
ware development process. Next, the preservation of traceability under these three
operations is discussed respectively. To demonstrate the effectiveness of our app-
roach, we finally develop a prototype tool named Formalized Software Manage-
ment System (FSMS).

Keywords: Traceability · Preservation · Formal method · UML

1 Introduction

Traceability software refers to a system where artifacts at each phase of the software
lifecycle process can be traced by other artifacts, and is now considered as a represen-
tation of high-quality software [21,42,50]. For example, source code in the implemen-
tation phase needs to be traced to artifacts in the maintenance and testing phases, while
it can also trace artifacts from previous phases, such as requirement and design phases.

This work is supported by National Key R&D Program of China (No. 2022YFB3305104),
National Natural Science Foundation of China (Nos. 61772006, 61772004 and 12261027) and
Scientific Research Foundation for Advanced Talents of Chengdu University of Information
Technology (No. KYTZ202009).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Cai et al. (Eds.): NCTCS 2023, CCIS 1944, pp. 18–35, 2024.
https://doi.org/10.1007/978-981-99-7743-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7743-7_2&domain=pdf
https://doi.org/10.1007/978-981-99-7743-7_2

A Formal Approach for Traceability Preservation in Software Development Process 19

During the development of complex software, traceability plays an important role
in reducing maintenance cost and analyzing change impact, but it is difficult to achieve
in practice. There are several major challenges as follows: (1) In the software lifecycle
process, it is hard to represent traceability between large number of artifacts [50] in a
non-formal language (see Fig. 1); (2) Since various types of artifacts and relations are
involved in different software systems [12,42], the abstraction level of a formal model
is not easy to determine; (3) The scalability of traceability models may be impacted as
the software becomes progressively larger [12,36].

When dealing with the above challenges, the main approaches of most studies are
as followed: (1) Abstraction of artifacts and relations at different phases [19,20,26,30];
(2) Establishment of relations between artifacts in non-adjacent phases, such as the link
between source code and requirements [43]; (3) Recording of traceability using dif-
ferent storage structures, such as matrix [25] and hierarchical tree [37]. However, these
existing approaches face some problems, such as the potential loss of information about
the relations between artifacts in non-adjacent phases, and the large computational bur-
den imposed by the operations of the matrix. To solve the above problems, we propose
a formal model called a structure model [48] to describe traceability, which follows the
actual software development process to directly establish different types of relations
between artifacts.

Fig. 1. Traceability links among artifacts in the software lifecycle process

In some early studies on traceability modeling (e.g. [32,42]), the types of trace-
ability links are fixed, and then as the research progresses, most of the studies
(e.g. [19,20,26]) consider abstracting similar types of links into more general rela-
tions between artifacts. However, these approaches are somewhat constrained when
the types of traceability links in actual development are extended or modified. Fur-
thermore, although some studies [4,18] achieve the extensibility and customization of
traceability links, they do not support well the many-to-many relationship between two

20 H. Wen et al.

artifacts. Another interesting direction is to retrieve traceability links between source
and target artifacts based on the probability [6,24]. In spite of the results showing that
the majority of relevant artifacts can be retrieved, some incorrect links are also gener-
ated. Moreover, the visualization of traceability is one of the most significant aspects
of modeling. Matrices, as two-dimensional structures, are commonly used in commer-
cial tools because they can intuitively portray traceability and can be easily understood
by non experts [12,33]. In addition, linear [44], hierarchical [37], graph-based [3,41]
and cross-referenced [13,28] representations are also general methods. Nevertheless,
the issues related to scalability have not been well addressed in previous work.

Instead of using dynamic behavior to study traceability systems, the structure
model is based on the static system structure (a view similar to the structural mod-
els in UML [22] and SysML [39]), thus it avoids complex reachability algorithms
when analyzing a software system. For convenience, we adopt a similar concept as in
SysML [39], considering all the artifacts of different phases as model elements named
with various labels in a structure model. Since the structure model does not limit the
number of types of relations between model elements and supports the many-to-many
relation, developers can automatically or semi-automatically assign relations between
model elements according to the real development process using a prototyping tool
called Formalized Software Management System (FSMS) where traceability can be
simply visualized. Compared to the previous definition of the structure model [48], we
introduce version number controls and delete the set λ used for modeling constraints.

For a given structural model, composition and restriction are a kind of operations
in horizontal direction, and refinement is a kind of operations in vertical direction [31].
However, to the best of our knowledge, only few studies [11,34,38] focus on whether
traceability is preserved in different scenarios. This paper discusses in detail whether
traceability is preserved under these three operations.

Contribution. This paper makes the following contributions.

– We propose a novel formal model named structure model to describe different types
of artifacts and relations in the software development process. In contrast to classical
formal models (such as Petri nets and transition systems) that describe systems from
a behavioral perspective, our structure model can better represent traceability from
the static structure of the system and do not need to use a complex reachability
algorithm.

– We study three basic operations composition, restriction, and refinement between
structure models, respectively. The results show that combination and refinement do
not affect traceability, however restriction only preserves traceability in the vertical
direction.

– To support our work, we develop a prototype tool which can visualize traceability.

A Formal Approach for Traceability Preservation in Software Development Process 21

The remainder of this paper is structured as follows. Section 2 introduces the struc-
ture model and presents the definition of traceability. Section 3 discusses the preser-
vation of traceability based on three basic operations. Section 4 introduces our proto-
type tool. Section 5 is the related work. Section 6 concludes the paper and discusses the
future work.

2 Traceability

In this section, we will introduce a formal model called a structure model [48] which
is used to model and analyze traceability in the software development process. The
structure model consists of model elements, variable traceability relationships between
model elements, classifications and version numbers of model elements. Model ele-
ments are similar to those in SysML [39]. Based on the above concepts, developers can
model and analyze traceability without diving deep into the specific implementation
details of a software artifact.

In order to cope with the variable number of relation types between model elements,
we choose to represent the structure model with a tuple of variable length. And the con-
cept of version number is introduced in this model for the sake of subsequent analysis
of traceability. Some assistant definitions are given below. Let VN be the set of version
numbers such that ∀R ⊆ VN × VN, R is a strict total order. Note that ∞ is a special
version number which means a undetermined version number, and ∞ �∈ VN.

Definition 1. A structure model (SM) is a tuple 〈ME,≺,
1

↪→, · · · ,
n
↪→,

1
τ , · · · ,

m
τ

, υs, υe〉 with

• ME, a finite set of the model elements,
• ≺⊆ ME×ME, the containment relation such that it is a (irreflexive) partial order,

• ∀i ∈ {1, · · · , n},
i

↪→⊆ ME × ME, the dependency relation,

• ∀j ∈ {1, · · · ,m},
j
τ⊆ ME, the type set of model elements such that ∀e ∈ ME,∃τ ∈

{ 1
τ , · · · , · · · ,

m
τ } : e ∈ τ .

• υs : ME −→ VN ∪ {∞}, the initial version function, and
• υe : ME −→ VN ∪ {∞}, the final version function.

A model element is assigned the initial version number when it is created, whereas
it is assigned the final version number when it is inactivated. If the version number of a
model element is not determined, it is assigned ∞.

In order to better understand the definition, we use the structure model to represent
a simple student information management system in the following example.

Example 1. We here present the example shown in Fig. 2. In this example, the initial
requirements of a student information management system are as follows.

• R: The system shall be able to manage students’ information.
• R1: The system shall allow students to choose course.
• R2: The system shall allow students to check their course scores.

22 H. Wen et al.

Fig. 2. The partial relations among software artifacts in a system

Obviously, the requirements R1 and R2 are both contained in R. In addition to
requirements, the other model elements in Fig. 2 correspond to artifacts at different
phases of software development. U1, U2, U3, U4 represent use cases, C1, C2, C3
denote classes, S1 denotes the sequence diagram, and D1 is the corresponding imple-
mentation code of S1. For convenience, the specific detail for each artifact is not given
in Fig. 2.

There exist four types of relations between model elements: containment,
trace, extend, composition. Note that the relations between these model ele-
ments are assigned by the software engineer. Thus the student information man-
agement system can be represented by a structure model SM = 〈ME,≺
,
trace
↪→ ,

extend
↪→ ,

composition
↪→ ,

requirements
τ ,

design
τ ,

implementation
τ , υs, υe〉 with ME =

{R,R1, R2, U1, U2, U3, U4, C1, C2, C3, S1,D1},≺= {(R1, R), (R2, R)},
trace
↪→ =

{(U1, R1), (U2, R1), (U3, R1), (U4, R2), (C1, U1), (C1, U2), (C1, U3), (C2, U4),

(C3, U2), (C3, U3), (C3, U4), (S1, C1), (S1, C3), (D1, S1)},
extend

↪→ = {(U3, U2)},
composition

↪→ = {(C2, C1)},
requirements

τ = {R,R1, R2, U1, U2, U3, U4},
design

τ =

{C1, C2, C3, S1},
implementation

τ = {D1}. Here, we may suppose that the current ver-
sion number is 1.0, thus ∀e ∈ ME, υs(e) = 1.0 and υe(e) = ∞.

This example shows that developers can visually represent the model elements and
their relations using a structure model. Note that the version numbers are attributes of
model elements.

Moreover, in order to make the paper more readable, we summarize some notations
which will be used later (see Table 1).

Definition 2. Let SM = 〈ME,≺,
1

↪→, · · · ,
n
↪→,

1
τ , · · · ,

m
τ , υs, υe〉 be a structure model.

(1) A sequence rc = x1 · · · xp(p > 1) is called a relation chain in SM iff ∀i ∈
{1, · · · , p − 1}, xi, xi+1 ∈ ME, (xi, xi+1) ∈ (≺ ∪ 1

↪→ ∪· · · ∪ n
↪→) ∨ (xi+1, xi) ∈

(≺ ∪ 1
↪→ ∪· · · ∪ n

↪→). RC(SM) denotes all possible relation chains in SM.

A Formal Approach for Traceability Preservation in Software Development Process 23

Table 1. Notations.

Symbol Description

SM A structure model

rc A relation chain in SM
RC(SM) A set contains all possible relation chains in SM
dc A dependency chain in SM
DC(SM) A set contains all possible dependency chains in SM
SM1 � SM2 SM1 is a substructure of SM2

SM1 � SM2 The composition of SM1 and SM2

SM|X The restriction of SM to a given set X

ref(e) A function that refines a model element e

SM[e.ref(e)] The refinement of SM under ref(e)

(2) A sequence dc = x1 · · · xp(p > 1) is called a dependency chain in SM iff

∀i ∈ {1, · · · , p − 1}, xi, xi+1 ∈ ME, (xi, xi+1) ∈ (≺ ∪ 1
↪→ ∪· · · ∪ n

↪→).
d̂c denotes the model elements in the dependency chain dc = x1 · · · xp, that is,
d̂c = {x1, · · · , xp}. DC(SM) denotes all possible dependency chains in SM.
[dc] denotes the number of model elements in the dependency chain dc, that is,
[dc] = p.

Clearly, a relation chain does not distinguish the direction of relations, while a
dependency chain is a directed sequence. For instance, there exists a dependency chain
D1S1C3U3U2R1R in Example 1, and this dependency chain is also a relation chain.

Proposition 1. If SM is a structure model, then DC(SM) ⊆ RC(SM).

Proof. This proof is straightforward.

Proposition 1 states that the dependency chain is a special type of the relation chain.
Traceability is one of the significant criteria for assessing software quality [42].

Since there exist several different model elements (artifacts) for each phase of the soft-
ware lifecycle process, and these model elements are largely isolated, it is necessary
to correlate between various model elements through traceability [2]. Next, we will
present some related concepts and give a formal definition of traceability.

The traceability of software systems can be classified as horizontal or vertical trace-
ability [35,36,49]. The definition of traceability is as follows.

24 H. Wen et al.

Definition 3. Let SM = 〈ME,≺,
1

↪→, · · · ,
n
↪→,

1
τ , · · · ,

m
τ , υs, υe〉 be a structure model

and specify a system. Let
requirements

τ ∈ { 1
τ , · · · ,

m
τ } and

requirements
τ be the set of the

model elements for representing requirements.

(1) SM is said to be horizontally traceable iff ∀e ∈ ME,∃dc = x1 · · · xp ∈
DC(SM) : e ∈ d̂c and xp ∈requirements

τ .
(2) SM is said to be vertically traceable iff ∀e ∈ ME,∃dc = x1 · · · xp ∈ DC(SM) :

e ∈ d̂c and ∀i ∈ {1, · · · , p − 1}, υs(xi+1) ≤ υs(xi).
(3) SM is said to be traceable iff ∀e ∈ ME,∃dc = x1 · · · xp ∈ DC(SM) : e ∈

d̂c, xp ∈requirements
τ and ∀i ∈ {1, · · · , p − 1}, υs(xi+1) ≤ υs(xi).

Here, horizontal traceability considers that all software artifacts directly or indi-
rectly depend on requirements artifacts, whereas vertical traceability focuses on the ver-
sion changes of model elements [43], that is, the version number of a model element is
greater than or equal to that of its dependent model elements. Obviously, though depen-
dency chains are directed, they can be reversely traversed based on directed graphs.
Thus, forward traceability and backward traceability [5,51] are both contained in this
definition. The definition considers not only the inner traceability of a model, but also
the traceability among multiple models. Note that as long as there is an isolated artifact
in a software system, the software system is not traceable.

Example 2. For each model element of the structure model SM in Fig. 2, there is a
dependency chain containing this model element such that the elements of this chain
are directly or indirectly related to requirements. Therefore according to Definition 3(1),
SM is horizontally traceable. In addition, since all model elements in the structure
model SM have the same version number, by Definition 3(2), SM is vertically trace-
able. Thus, by Definition 3(3), SM is traceable.

3 The Preservation of Traceability

In this section, we will introduce three common operations, and explore the preservation
of traceability in the software development process.

A large-scale software project is often divided into several smaller projects which
are developed concurrently in practice. A structure model is used to model and analyze
the traceability of each project whichever is large or small. Thus, from the perspective
of traceability, every project corresponds to a structure model. The decomposition of a
complex software system into multiple subsystems can correspond to that of a structure
model into multiple substructure models.

Definition 4. Let SM′ = 〈ME′,≺′,
1

↪→′, · · · ,
n

↪→′,
1

τ ′, · · · ,
m

τ ′, υs′, υe′〉 and SM′′ =

〈ME′′,≺′′,
1

↪→′′, · · · ,
n

↪→′′,
1

τ ′′, · · · ,
m

τ ′′, υs′′, υe′′〉 be two structure models.
A structure model SM′ is called a substructure of SM′′, denoted as SM′ � SM′′,

iff ME′ ⊆ ME′′,≺′⊆≺′′, ∀i ∈ {1, · · · , n},
i

↪→′⊆
i

↪→′′,∀j ∈ {1, · · · ,m} :
j

τ ′⊆
j

τ ′′ and

A Formal Approach for Traceability Preservation in Software Development Process 25

∀e ∈ ME′ : υs′(e) = υs′′(e) ∧ υe′(e) = υe′′(e). A structure model SM′ is called
a proper substructure of SM′′, denoted as SM′ � SM′′, iff SM′ � SM′′ and
SM′ �= SM′′.

Proposition 2. Let SM′ and SM′′ be two structure models. If SM′ � SM′′, then
DC(SM′) ⊆ DC(SM′′).

Proof. According to Definition 4, all model elements and relations of SM′ are in
SM′′. Therefore, all dependency chains of SM′ are in SM′′. By Definition 2(2),
DC(SM′) ⊆ DC(SM′′).

3.1 Composition

Once all subsystems of a system are completed, all software artifacts in the subsystems
should be composed. The model elements and relations in every subsystem should be
preserved.

Definition 5. Let SM′ = 〈ME′,≺′,
1

↪→′, · · · ,
n

↪→′,
1

τ ′, · · · ,
m

τ ′, υs′, υe′〉 and SM′′ =

〈ME′′,≺′′,
1

↪→′′, · · · ,
n

↪→′′,
1

τ ′′, · · · ,
m

τ ′′, υs′′, υe′′〉 be two structure models.
If ∀e ∈ ME′ ∩ ME′′, υs′(e) = υs′′(e) ∧ υe′(e) = υe′′(e), and ≺′ ∪ ≺′′ is a

(irreflexive) partial order, the composition of SM′ and SM′′ is defined as SM′ �
SM′′ = 〈ME,≺,

1
↪→, · · · ,

n
↪→,

1
τ , · · · ,

m
τ , υs, υe〉 where ME = ME′ ∪ ME′′,≺=≺′

∪ ≺′′, ∀i ∈ {1, · · · , n}: i
↪→=

i

↪→′ ∪
i

↪→′′, ∀j ∈ {1, · · · ,m} :
j
τ=

j

τ ′ ∪
j

τ ′′, ∀e ∈ ME′ :
υs(e) = υs′(e)∧υe(e) = υe′(e), and ∀e ∈ ME′′ : υs(e) = υs′′(e)∧υe(e) = υe′′(e).
SM′, SM′′ are said to be composable.

Fig. 3. The composition of two structure models

Here, when there are different types of relations between model elements in two
composable structure models, we need to equivalently translate them into the two struc-
ture models which have the same relations before composition. For instance, in Fig. 3,
there exist two types of relations in SM1: containment and trace, while there exist two
types of relations in SM2: trace and include. SM1 and SM2 can be translated into
the following two structure models SM′ and SM′′, respectively.

26 H. Wen et al.

SM′ = 〈ME′,≺′,
trace

↪→′ ,
include

↪→′ ,
requirements

τ ′ ,
design

τ ′ , υs′, υe′〉 with
include

↪→′ = ∅,

SM′′ = 〈ME′′,≺′′,
trace

↪→′′ ,
include

↪→′′ ,
requirements

τ ′′ ,
design

τ ′′ , υs′′, υe′′〉 with ≺′′= ∅.

Obviously, SM1 = SM′ and SM2 = SM′′. Thus SM1 and SM2 have the
same type of relations after translation. Note that we need to perform a similar trans-
lation when composing two structure models with different types of classifications. By
Definition 5, SM1 and SM2 are composable. The structure model SM3 is the com-
position of SM1 and SM2 in Fig. 3.

Proposition 3. Let SM, SM′ and SM′′ be three structure models. And let every two
of the three structure models be composable. Then

(1) SM′ � SM′′ is a structure model.
(2) SM′ � SM′′ = SM′′ � SM′.
(3) (SM � SM′) � SM′′ = SM � (SM′ � SM′′).

Proof. This proof is straightforward.

Proposition 3 states that the composition of structure models has closure, commu-
tativity and associativity.

Theorem 1. Let SM,SM′ be two composable structure models. If SM and SM′ are
traceable, then SM � SM′ is traceable.

Proof. Assume that ∃SM′′ = SM � SM′ = 〈ME′′,≺′′,
1

↪→′′, · · · ,
n

↪→′′,
1

τ ′′, · · · ,
m

τ ′′

, υs′′, υe′′〉 and
requirements

τ ′′ ∈ {
1

τ ′′, · · · ,
m

τ ′′}. By Definition 5, ∀e ∈ ME′′ : e ∈
ME ∨ e ∈ ME′. When e ∈ ME, since SM is traceable, according to Defini-

tion 3 (3), ∃dc1 = x1 · · · xp ∈ DC(SM) : e ∈ ˆdc1, xp ∈requirements
τ and ∀i ∈

{1, · · · , p − 1}, υs(xi+1) ≤ υs(xi). When e ∈ ME′, since SM′ is traceable, accord-

ing to Definition 3 (3), ∃dc2 = y1 · · · yq ∈ DC(SM′) : e ∈ ˆdc2, yq ∈requirements
τ

and ∀i ∈ {1, · · · , q − 1}, υs′(yi+1) ≤ υs′(yi). By Proposition 2, SM � SM′′ ∧
SM′ � SM′′ : DC(SM) ⊆ DC(SM′′) ∧ DC(SM′) ⊆ DC(SM′′). Moreover,
υs′′(e) = υs(e) ∨ υs′′(e) = υs′(e), thus ∃dc3 = z1 · · · zk ∈ DC(SM′′) : e ∈
ˆdc3, zk ∈requirements

τ and ∀i ∈ {1, · · · , k − 1}, υs′′(zi+1) ≤ υs′′(zi). By Definition 3
(3), SM � SM′ is traceable.

This theorem shows that the composition of two traceable structure models is trace-
able.

3.2 Restriction

In Sect. 3.1, we have introduced the composition operation which describes a struc-
ture model becoming increasingly large and complex. By contrary, there exists
some research on model decomposition [1,9,45], which can automatically or semi-
automatically obtain sub-models. Thus, we next discuss how to decompose a structure
model by restriction.

A Formal Approach for Traceability Preservation in Software Development Process 27

Definition 6. Let SM = 〈ME,≺,
1

↪→, · · · ,
n
↪→,

1
τ , · · · ,

m
τ , υs, υe〉 be a structure model.

For X ⊆ ME, the restriction of SM to X is defined as a structure model SM|X =

〈ME′,≺′,
1

↪→′, · · · ,
n

↪→′,
1

τ ′, · · · ,
m

τ ′, υs′, υe′〉 with

• ME′ = X ,
• ≺′= {(x, y)|∀x, y ∈ X, (x, y) ∈≺},
• ∀i ∈ {1, · · · , n} :

i

↪→′= {(x, y)|∀x, y ∈ X, (x, y) ∈ i
↪→} ,

• ∀j ∈ {1, · · · ,m} :
j

τ ′= X∩ j
τ ,

• ∀x ∈ X, υs′(x) = υs(x), and
• ∀x ∈ X, υe′(x) = υe(x).

Here, we can obtain various substructures of a structure model by restriction.

Proposition 4. Let SM = 〈ME,≺,
1

↪→, · · · ,
n
↪→,

1
τ , · · · ,

m
τ , υs, υe〉 be a structure

model. Then ∀X ⊆ ME,SM|X � SM.

Proof. According to Definition 4 and Definition 6, the result obviously holds.

The restriction of a structure model must be the substructure of the original struc-
ture model, but the substructure of a structure model may not be the restriction of the
original model. For example, both SM2 and SM3 are obviously proper substructures
of SM1 (see Fig. 4) and thus SM2 � SM1, SM3 � SM1. Then SM2 is obviously
a restriction of SM1 to X = {R,U1, U2}, but SM3 is not SM1|X .

Fig. 4. An example for explaining the restriction of a structure model

Proposition 5. Let SM = 〈ME,≺,
1

↪→, · · · ,
n
↪→, υs, υe〉 be a structure model. If

∀X,Y ⊆ ME : SM|X � SM|Y = SM, then X ∪ Y = ME.

28 H. Wen et al.

Proof. According to Definition 5 and Definition 6, the result clearly holds.

This proposition shows that when two substructures are composed to obtain the
original structure model, the two substructures necessarily contain all the model ele-
ments of the original structure model.

Theorem 2. Let SM = 〈ME,≺,
1

↪→, · · · ,
n
↪→,

1
τ , · · · ,

m
τ , υs, υe〉 be a structure model

and SM be traceable. Then ∀X ⊆ ME, SM|X is vertically traceable.

Proof. This proof is straightforward.

Theorem 2 states that vertical traceability can be preserved after the restriction.
However, when the restricted structure model contains isolated elements or does not
contain requirements, horizontal traceability is obviously influenced.

3.3 Refinement

Refinement is another important operation during the software development process. It
means that a model at higher abstraction level is transformed into the corresponding
concrete one at lower abstraction level. Many researchers have studied the refinement
operation based on different models [1,14,46]. We here investigate the refinement oper-
ation between structure models in this subsection.

We assume a fixed setME of model elements. Let SM denotes the set of all structure
models. The empty structure model 〈∅, ∅, ∅, · · · , ∅, ∅, ∅〉 is denoted by ∅.

Definition 7. (1) A refinement function for structure models is a total function ref :
ME → SM\{∅} such that ∀e ∈ ME, ref(e) = 〈ME,≺,

1
↪→, · · · ,

n
↪→,

1
τ , · · · ,

m
τ

, υs, υe〉 where
• ∃e′ ∈ ME, e′ is a copy of e, ≺= {(x, e′) | x ∈ ME \ {e′}}, and
• ∀x, y ∈ ME, υs(x) = υs(y) ∧ υe(x) = υe(y).

(2) Let SM = 〈ME,≺,
1

↪→, · · · ,
n
↪→,

1
τ , · · · ,

m
τ , υs, υe〉 be a structure model. Let

e ∈ ME, ref(e) = 〈ME′,≺′,
1

↪→′, · · · ,
n

↪→′,
1

τ ′, · · · ,
m

τ ′, υs′, υe′〉 such that ∀x ∈
ME′, υs′(x) ≥ υs(e) ∧ υe′(x) ≥ υe(e). Moreover, let ME ∩ ME′ = ∅. The refine-

ment of SM under ref(e) is the structure model SM[e.ref(e)] = 〈ME′′,≺′′,
1

↪→′′

, · · · ,
n

↪→′′,
1

τ ′′, · · · ,
m

τ ′′, υs′′, υe′′〉 with
• ME′′ = ME ∪ ME′,
• ≺′′=≺ ∪ ≺′,

• ∃i ∈ {1, · · · , n} :
i

↪→′′=
refine

↪→′′ =
refine
↪→ ∪

refine

↪→′ ∪{(e′, e)},
• ∀j ∈ {1, · · · , n}\{i} :

j

↪→′′=
j

↪→ ∪
j

↪→′,

• ∀k ∈ {1, · · · ,m} :
k

τ ′′=
k
τ ∪

k

τ ′,
• ∀p ∈ ME′ : υs′′(p) = υs′(p) ∧ υe′′(p) = υe′(p), and

A Formal Approach for Traceability Preservation in Software Development Process 29

• ∀q ∈ ME : υs′′(q) = υs(q) ∧ υe′′(q) = υe(q).

Definition 7 shows that if the model element of a structure model is refined, then
the newly obtained structure model is the refinement of the original one. In order not to
pollute the relations between model elements in the original structure model [7,40], we
choose to first copy the model element to be refined and then create new relations based
on the replica. Thus the refinement operation includes the following steps:

(1) copy e as the new model element e′.
(2) assign e′ a new version number, then create the containment relation between e′

and all model elements of ref(e) respectively (although the model elements of
ref(e) are a more concrete representation of e, they may be regarded as descen-
dants of e).

(3) establish the refine relation between e and e′.

The refinement operation between structure models can be clearly represented
graphically. For distinguishing between different version numbers, once a model ele-
ment is assigned to a new version number, the old version number will become grey in
our tool.

For example, we assume that the model element U1 of SM1 needs to be refined
in Fig. 5 and there exists a structure model SM2 = ref(U1), then the refinement
of SM1 under ref(U1) can be represented by a new structure model SM3 =
SM1[U1.ref(U1)].

Fig. 5. An example for interpreting the refinement of a structure model

Proposition 6. Let SM1 = 〈ME1,≺1,
1

↪→1, · · · ,
n

↪→1,
1
τ1, · · · ,

m
τ1, υs1, υe1〉 be a

structure model. Moreover, let ref be a refinement function for structure models. If
∀e ∈ ME1 : SM2 = SM1[e.ref(e)], then SM1 = SM2|ME1 .

Proof. Since SM2 is a refinement of SM1 under ref(e), by Definition 7 (2), all model
elements and relations in SM1 are not change. Assume X = ME1, since X ⊆ ME2,
by Definition 6, SM1 is a restriction of SM2 to X . Thus SM1 = SM2|ME1 .

30 H. Wen et al.

This proposition states that if a structure model is refined, then the newly obtained
structure model preserves all the model elements of the original structure model.

Theorem 3. Let SM1 = 〈ME1,≺1,
1

↪→1, · · · ,
n

↪→1,
1
τ1, · · · ,

m
τ1, υs1, υe1〉 be a struc-

ture model and SM1 be traceable. Moreover, let ref be a refinement function for
structure models. If ∀e ∈ ME1 : SM2 = SM1[e.ref(e)], then SM2 is traceable.

Proof. Assume that SM2 = 〈ME2,≺2,
1

↪→2, · · · ,
n

↪→2,
1
τ2, · · · ,

m
τ2, υs2, υe2〉. Since

SM2 is a refinement of SM1 under ref(e), by Definition 7, ∀x ∈ ME2 : x ∈
ME1 ∨ x ∈ ME2 \ ME1. When x ∈ ME1, since SM1 is traceable, by Defini-

tion 3 (3), ∃dc1 = x1 · · · xp ∈ DC(SM1) : x ∈ ˆdc1, xp ∈requirements
τ and

∀i ∈ {1, · · · , p − 1}, υs1(xi+1) ≤ υs1(xi). Moreover, by Proposition 4 and Propo-
sition 6, SM1 � SM2. According to Proposition 2, DC(SM1) ⊆ DC(SM2), thus
dc1 ∈ DC(SM2). When x ∈ ME2 \ ME1, by Definition 7, ∃dc2 = y1 · · · yq ∈
DC(SM2) : yq = e ∧ y1 = x and υs2(e) ≤ υs2(x). Thus ∃dc3 = z1 · · · zk ∈
DC(SM2) : x ∈ ˆdc3, zk ∈requirements

τ and ∀i ∈ {1, · · · , k − 1}, υs2(zi+1) ≤
υs2(zi). By Definition 3 (3), SM2 is traceable.

This theorem states that the refinement operation does not change traceability in the
software development process.

4 Tool: Formalized Software Management System

In order to facilitate the investigation of traceability, a prototype tool named Formal-
ized Software Management System (FSMS) was developed with JavaScript. This tool
mainly consists of two independently developed modules (See Fig. 6 for the main inter-
face). One is a draggable drawing modules with traceability management, the other is
the consistency management module. This paper is dedicated to the former.

Developers can use different components in the toolbox to visualize the artifacts and
the relations between them in the software system, and then the graphic representation
of this system can be automatically converted to JSON format for storage. Moreover,
this tool implements several analysis functions based on the structure model, such as
change impact analysis. The tool has been deployed on the website http://124.220.63.
75/ now. More functions will be added to this tool step by step.

5 Related Work

Software traceability has been studied for many years (see References [2,36,51] for
surveys). Most of the studies (see References [4,8,15] for surveys) involving traceabil-
ity do not apply formal methods, but our work is based on formal methods to rigorously
model traceability and to analysis traceability. Therefore, we only provide some com-
parisons between our work and the most related work on traceability modeling and
change impact analysis.

http://124.220.63.75/
http://124.220.63.75/

A Formal Approach for Traceability Preservation in Software Development Process 31

Fig. 6. The main interface of the prototype tool

Goknil et al. [19,20] mainly focus on the well-defined traceability between the
requirement (R) and architecture (A), and they have investigated the reasoning, consis-
tency checking and automatic generation of trace relations based on the system’s spec-
ifications. Rempel and Mader [43] focus only on the relations between the requirement
and implementation (code) phases. However, we hold that the artifacts in the following
phases depend on those in the preceding phases, so traceability between non-adjacent or
abstract phases may be less practical to lose some implicit details in software lifecycle
process.

In [26], six types of traceability relations, which are used to analyze the evolu-
tion of the requirement and architecture, are introduced: goal dependency, temporal
dependency, service dependency, conditional dependency, task dependency and infras-
tructure dependency. Lago et al. [30] give a scoped approach to identify core traceabil-
ity paths and distinguish four relations in R&A: drive, depend-on, modify and influ-
ence. Based on the above two studies, Goknil et al. [20] generalize these trace types
into within-model traces (refines, requires) and between-model traces (satisfies, allo-
catedTo). Spanoudakis et al. [47] propose a rule-based method for establishing trace-
ability. This method contains two rules: requirements-to-object-model (RTOM) and
inter-requirement traceability (IREQ). Then based on RTOM and IREQ, four differ-
ent types of traceability relations can be generated between requirement statements and
use cases. Cleland-Huang et al. [10] present a novel concept. They consider that the
relations between various software artifacts as a direct or indirect link which can be
dynamically modified by event notifications. Obviously, neither the different number of
relations nor event-based links can be applied to a large-scale development with a very
large variety of traceability relations between artifacts. However, our structure model
does not limit the number of relation types.

Antoniol et al. [6] propose a seminal approach to retrieve traceability relations
between documentation and code based on probability. Their work uses the informa-
tion retrieval algorithm to calculate the similarity between two artifacts to establish links
between them. However, the precision is not high enough, resulting in the possibility of

32 H. Wen et al.

generating incorrect links. In order to establish high quality links, De Lucia et al. [16]
introduce a method to understand the semantic context between artifacts using Latent
Semantic Indexing, and in [23,47], how to connect heuristic rules with link retrieval is
discussed. Obviously, these methods can reduce the number of incorrect links, but can-
not avoid the error. In [17], a platform called Tarskil is used to build the semantics of
interactive traceability, which is based on first-order relational logic, thus simplifying
the reasoning of relations and consistency checking. Santos et al. [44] use a tool named
TIRT to show data with list, which is a kind of one-dimensional approach. However,
these two researches mentioned above do not well support the many-to-many relation
between artifacts. In Holten’s work [25], he propose to store adjacency relations by a
two-dimensional approach, such as traceability matrix. Although this approach is easily
understood by the stakeholder and saves storage space, the change of traceability matrix
becomes complicated when the structure of the system is changed.

Laghouaouta et al. [29] use the softgoal tree to manage the traceability of the com-
position of multi-viewmodels in theModel Driven Engineering (MDE). In [7,27], some
approaches to merging trackable links on-demanded are discussed. Obviously, these
studies are completely different from our work.

6 Conclusion and Future Work

In this paper, we have investigated how to ensure traceability under the operations such
as composition, restriction and refinement in software development process. To demon-
strate the availability of these results, we have developed a prototype tool called FSMS
that enables traceability visualization.

In future work, we will explore how to make the visualization of our tool better.
We also wish to integrate our tool with other software development platforms. On the
other hand, automated code generation is another important field of our research based
on formal methods. Since automated code generation techniques heavily rely on the
traceability, we will focus on how to automatically generate high quality code in the
software development process.

Acknowledgements. We would like to thank the anonymous reviewers for their very valuable
comments and very helpful suggestions.

References

1. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete mod-
els: application to event-B. Fund. Inform. 77(1–2), 1–28 (2007)

2. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM
Syst. J. 45(3), 515–526 (2006)

3. van Amstel, M.F., van den Brand, M.G.J., Serebrenik, A.: Traceability visualization in model
transformations with TraceVis. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307,
pp. 152–159. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30476-7_10

4. Anquetil, N., et al.: A model-driven traceability framework for software product lines. Softw.
Syst. Model. 9(4), 427–451 (2010)

https://doi.org/10.1007/978-3-642-30476-7_10

A Formal Approach for Traceability Preservation in Software Development Process 33

5. ANSI/IEEE: IEEE guide to software requirements specification, ANSI/IEEE std 830-1984
(1984)

6. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability
links between code and documentation. IEEE Trans. Softw. Eng. 28(10), 970–983 (2002)

7. Barbero, M., Fabro, M., Bézivin, J.: Traceability and provenance issues in global model
management. In: 3rd ECMDA-Traceability Workshop (2007)

8. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., och Dag, J.N.: An industrial survey of
requirements interdependencies in software product release planning. In: Proceedings Fifth
IEEE International Symposium on Requirements Engineering. IEEE (2001). https://doi.org/
10.1109/isre.2001.948547

9. Chen, H., Jiang, J., Hong, Z., Lin, L.: Decomposition of UML activity diagrams. Softw.
Pract. Exp. 48(1), 105–122 (2018)

10. Cleland-Huang, J., Chang, C., Christensen, M.: Event-based traceability for managing evo-
lutionary change. IEEE Trans. Softw. Eng. 29(9), 796–810 (2003). https://doi.org/10.1109/
tse.2003.1232285

11. Cleland-Huang, J., Chang, C.K., Ge, Y.: Supporting event based traceability through high-
level recognition of change events. In: Proceedings 26th Annual International Computer
Software and Applications, pp. 595–600. IEEE (2002)

12. Cleland-Huang, J., Gotel, O.C., Huffman Hayes, J., Mäder, P., Zisman, A.: Software trace-
ability: trends and future directions. In: Future of Software Engineering Proceedings, pp.
55–69 (2014)

13. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: a practical, extensible transformation
language. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 158–
172. Springer, Heidelberg (2006). https://doi.org/10.1007/11787044_13

14. Cusack, E.: Refinement, conformance and inheritance. Form. Asp. Comput. 3(2), 129–141
(1991). https://doi.org/10.1007/bf01898400

15. Dahlstedt, Å.G., Persson, A.: Requirements interdependencies: state of the art and future
challenges. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Require-
ments, pp. 95–116. Springer-Verlag, Heidelberg (2005). https://doi.org/10.1007/3-540-
28244-0_5

16. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Enhancing an artefact management system
with traceability recovery features. In: 2004 Proceedings of 20th IEEE International Confer-
ence on Software Maintenance, pp. 306–315. IEEE (2004)

17. Erata, F., Challenger, M., Tekinerdogan, B., Monceaux, A., Tüzün, E., Kardas, G.: Tarski:
a platform for automated analysis of dynamically configurable traceability semantics. In:
Proceedings of the Symposium on Applied Computing, pp. 1607–1614 (2017)

18. Espinoza, A., Garbajosa, J.: A study to support agile methods more effectively through trace-
ability. Innov. Syst. Softw. Eng. 7(1), 53–69 (2011)

19. Goknil, A., Kurtev, I., van den Berg, K., Veldhuis, J.W.: Semantics of trace relations in
requirements models for consistency checking and inferencing. Softw. Syst. Model. 10(1),
31–54 (2009). https://doi.org/10.1007/s10270-009-0142-3

20. Goknil, A., Kurtev, I., Berg, K.V.D.: Generation and validation of traces between require-
ments and architecture based on formal trace semantics. J. Syst. Softw. 88, 112–137 (2014).
https://doi.org/10.1016/j.jss.2013.10.006

21. Gotel, O., Finkelstein, C.: An analysis of the requirements traceability problem. In: Pro-
ceedings of IEEE International Conference on Requirements Engineering. IEEE Computer
Society Press (1994). https://doi.org/10.1109/icre.1994.292398

22. Group, O.M.: Omg unified modeling language tm (OMG UML): Version 2.5. Needham:
OMG (2015)

https://doi.org/10.1109/isre.2001.948547
https://doi.org/10.1109/isre.2001.948547
https://doi.org/10.1109/tse.2003.1232285
https://doi.org/10.1109/tse.2003.1232285
https://doi.org/10.1007/11787044_13
https://doi.org/10.1007/bf01898400
https://doi.org/10.1007/3-540-28244-0_5
https://doi.org/10.1007/3-540-28244-0_5
https://doi.org/10.1007/s10270-009-0142-3
https://doi.org/10.1016/j.jss.2013.10.006
https://doi.org/10.1109/icre.1994.292398

34 H. Wen et al.

23. Guo, J., Cleland-Huang, J., Berenbach, B.: Foundations for an expert system in domain-
specific traceability. In: 2013 21st IEEE International Requirements Engineering Conference
(RE), pp. 42–51. IEEE (2013)

24. Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation for require-
ments tracing: the study of methods. IEEE Trans. Softw. Eng. 32(1), 4–19 (2006)

25. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical
data. IEEE Trans. Visual Comput. Graph. 12(5), 741–748 (2006)

26. Shakil Khan, S., Greenwood, P., Garcia, A., Rashid, A.: On the impact of evolving
requirements-architecture dependencies: an exploratory study. In: Bellahsène, Z., Léonard,
M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 243–257. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69534-9_19

27. Kolovos, D.S., Paige, R.F., Polack, F.A.: On-demand merging of traceability links with mod-
els. In: 3rd ECMDA Traceability Workshop, pp. 47–55 (2006)

28. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language. In: Valle-
cillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 46–60. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69927-9_4

29. Laghouaouta, Y., Anwar, A., Nassar, M., Coulette, B.: A dedicated approach for model
composition traceability. Inf. Softw. Technol. 91, 142–159 (2017). https://doi.org/10.1016/j.
infsof.2017.07.002

30. Lago, P., Muccini, H., van Vliet, H.: A scoped approach to traceability management. J. Syst.
Softw. 82(1), 168–182 (2009). https://doi.org/10.1016/j.jss.2008.08.026

31. Lambolais, T., Courbis, A.L., Luong, H.V., Percebois, C.: IDF: a framework for the incre-
mental development and conformance verification of UML active primitive components. J.
Syst. Softw. 113, 275–295 (2016). https://doi.org/10.1016/j.jss.2015.11.020

32. Letelier, P.: A framework for requirements traceability in UML-based projects. In: Proceed-
ings of the 1st International Workshop on Traceability in Emerging Forms of Software Engi-
neering, pp. 30–41 (2002)

33. Li, Y., Maalej, W.: Which traceability visualization is suitable in this context? A compara-
tive study. In: Regnell, B., Damian, D. (eds.) REFSQ 2012. LNCS, vol. 7195, pp. 194–210.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28714-5_17

34. Mäder, P., Gotel, O.: Towards automated traceability maintenance. J. Syst. Softw. 85(10),
2205–2227 (2012)

35. Mäder, P., Gotel, O., Kuschke, T., Philippow, I.: Tracemaintainer-automated traceability
maintenance. In: 2008 16th IEEE International Requirements Engineering Conference. pp.
329–330. IEEE (2008)

36. Meedeniya, D., Rubasinghe, I., Perera, I.: Traceability establishment and visualization of
software artefacts in devops practice: a survey. Int. J. Adv. Comput. Sci. Appl. 10(7), 66–76
(2019)

37. Merten, T., Jüppner, D., Delater, A.: Improved representation of traceability links in require-
ments engineering knowledge using sunburst and netmap visualizations. In: 2011 4th Inter-
national Workshop on Managing Requirements Knowledge, pp. 17–21. IEEE (2011)

38. Murta, L.G., Van Der Hoek, A., Werner, C.M.: Archtrace: policy-based support for managing
evolving architecture-to-implementation traceability links. In: 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE 2006), pp. 135–144. IEEE (2006)

39. OMG: Omg systems modeling language tm version 1.5. An OMG Systems Modeling Lan-
guage TM Publication, May 2017. http://www.omg.org/spec/SysML/1.5/

40. Pavalkis, S., Nemuraitė, L., Butkienė, R.: Derived properties: a user friendly approach to
improving model traceability. Inf. Technol. Control 42(1), 48–60 (2013)

41. von Pilgrim, J., Vanhooff, B., Schulz-Gerlach, I., Berbers, Y.: Constructing and visualiz-
ing transformation chains. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008.

https://doi.org/10.1007/978-3-540-69534-9_19
https://doi.org/10.1007/978-3-540-69534-9_19
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1016/j.infsof.2017.07.002
https://doi.org/10.1016/j.infsof.2017.07.002
https://doi.org/10.1016/j.jss.2008.08.026
https://doi.org/10.1016/j.jss.2015.11.020
https://doi.org/10.1007/978-3-642-28714-5_17
http://www.omg.org/spec/SysML/1.5/

A Formal Approach for Traceability Preservation in Software Development Process 35

LNCS, vol. 5095, pp. 17–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-69100-6_2

42. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE Trans.
Softw. Eng. 27(1), 58–93 (2001)

43. Rempel, P., Mäder, P.: Preventing defects: the impact of requirements traceability complete-
ness on software quality. IEEE Trans. Softw. Eng. 43(8), 777–797 (2016)

44. Santos, W.B., de Almeida, E.S., Meira, S.R.: TIRT: a traceability information retrieval tool
for software product lines projects. In: 2012 38th Euromicro Conference on Software Engi-
neering and Advanced Applications, pp. 93–100. IEEE (2012)

45. Silva, R., Pascal, C., Hoang, T.S., Butler, M.: Decomposition tool for event-B. Softw. Pract.
Exp. 41(2), 199–208 (2011)

46. Smith, G., Derrick, J.: Specification, refinement and verification of concurrent systems-an
integration of object-Z and CSP. Form. Methods Syst. Des. 18(3), 249–284 (2001)

47. Spanoudakis, G., Zisman, A., Pérez-Miñana, E., Krause, P.: Rule-based generation of
requirements traceability relations. J. Syst. Softw. 72(2), 105–127 (2004). https://doi.org/
10.1016/s0164-1212(03)00242-5

48. Wen, H., Wu, J., Jiang, J., Tang, G., Hong, Z.: A formal approach for consistency manage-
ment in UML models. Int. J. Softw. Eng. Knowl. Eng. 33(5), 733–763 (2023)

49. Wen, L., Tuffley, D., Dromey, R.G.: Formalizing the transition from requirements’ change
to design change using an evolutionary traceability model. Innov. Syst. Softw. Eng. 10(3),
181–202 (2014). https://doi.org/10.1007/s11334-014-0230-6

50. Wiederseiner, C., Garousi, V., Smith, M.: Tool support for automated traceability of test/code
artifacts in embedded software systems. In: 2011IEEE 10th International Conference on
Trust, Security and Privacy in Computing and Communications. IEEE (2011). https://doi.
org/10.1109/trustcom.2011.151

51. Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering and model-
driven development. Softw. Syst. Model. 9(4), 529–565 (2010). https://doi.org/10.1007/
s10270-009-0145-0

https://doi.org/10.1007/978-3-540-69100-6_2
https://doi.org/10.1007/978-3-540-69100-6_2
https://doi.org/10.1016/s0164-1212(03)00242-5
https://doi.org/10.1016/s0164-1212(03)00242-5
https://doi.org/10.1007/s11334-014-0230-6
https://doi.org/10.1109/trustcom.2011.151
https://doi.org/10.1109/trustcom.2011.151
https://doi.org/10.1007/s10270-009-0145-0
https://doi.org/10.1007/s10270-009-0145-0

	A Formal Approach for Traceability Preservation in Software Development Process
	1 Introduction
	2 Traceability
	3 The Preservation of Traceability
	3.1 Composition
	3.2 Restriction
	3.3 Refinement

	4 Tool: Formalized Software Management System
	5 Related Work
	6 Conclusion and Future Work
	References

