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Abstract. The gene expression classification is the most important study in can-
cer diagnosis and drug discovery. Nevertheless, this task is very complicated to
achieve accurate results because datasets have a very large number of dimen-
sions and very few datapoints. In this paper, we propose the new ensemble learn-
ing algorithms with support vector machines (SVM) for efficiently handling the
gene expression classification task. The Sherman-Morrison-Woodbury formula
is used in the Newton SVM (NSVM) algorithm proposed by Mangasarian to
make an extension of Newton SVM for dealing with datasets having a very large
number of dimensions. Followed which, the ensemble learning trains the new
extended Newton SVM for classifying gene expression datasets with simulta-
neously large number of datapoints and dimensions. The numerical test results
on high-dimensional gene expression datasets show that our ensemble learning
algorithms of Newton SVM are significantly faster and/or more accurate than the
highly efficient standard SVM algorithm LibSVM.

Keywords: Gene expression classification · Newton Support Vector Machines ·
Ensemble learning

1 Introduction

The gene expression classification is the key study in cancer diagnosis and drug discov-
ery. Gene expression datasets typically have a very few datapoints in a high-dimensional
input space (genes). Therefore, the classification task is very complicated to achieve
accurate results due to the curse of dimensionality phenomena. It is well-known as one
of top 10 challenging problems in data mining research [25]. There have been many
researches to adapt learning models for classification to these data [9,11,13,14,19,20].
Support vector machines (SVM [23]) achieves the most accurate classification results.

TheSVMalgorithmismotivatedbystatistical learningtheory.SVMalgorithmsusethe
ideaofkernel substitution [1] fordealingwith classification, regressionandnoveltydetec-
tion tasks. Successful applications of SVMs have been reported for various fields such
as face identification, text categorization and bio-informatics [12]. In spite of the promi-
nent properties of SVMalgorithms, they are not favorable to handle the challenge of large
datasets. The training task of SVM leads to resolve the quadratic programming (QP), so
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that the computational cost of an SVM approach [17] is at least square of the number of
training datapoints and the memory requirement. This makes SVM impractical for large
datasets. The effective heuristics for scaling-up SVM learning task are to divide the origi-
nal QP into series of small problems [2,17], incremental learning [21] updating solutions
in growing training set, parallel and distributed learning [18] on PC network or choosing
interested datapoints subset [22] (active set) and boosting with SVM [7].

Our research purpose aims to scaling up SVM algorithms for dealing with high
dimensional gene expression datasets (with simultaneously large number of datapoints
and very high-dimensional input space). We propose a new extended SVM algorithm
that is derived from the finite Newton method proposed by Mangasarian [16] for classi-
fication. The Newton SVM (NSVM) only requires solutions of linear equations instead
of QP. If the dimensional input space is small enough (less than 103), even if there are
millions datapoints, the NSVM algorithm is able to classify them in minutes on a per-
sonal computer (PC). For handling gene expression datasets with a very large number
of dimensions and few training data, we propose to the new extended NSVM formu-
lation using the Sherman-Morrison-Woodbury formula [10]. Followed which, we pro-
pose ensemble learning algorithms [3,4]) using the new extended NSVM that are able
to handle gene expression datasets with simultaneously large number of datapoints and
dimensions. Numerical test results on high-dimensional gene expression datasets [15]
have shown that our ensemble learning algorithms with the new extended NSVM are
fast and accurate compared with LibSVM [5].

The paper is organized as follows. Section 2 briefly presents the NSVM algorithm
for classification tasks. In Sect. 3, we describe how to extend the NSVM to classify gene
expression datasets. The experimental results are presented in Sect. 4. We then conclude
in Sect. 5.

2 Newton Support Vector Machines

We start with a simple task for the linear binary classification, as shown in Fig. 1, with
m datapoints xi (i= 1, . . . ,m) in the n-dimensional input space Rn, having correspond-
ing classes yi = ±1. The SVM learning algorithm proposed by [23] aims to find the
best separating hyper-plane (denoted by the normal vector w ∈ Rn and the bias b ∈ R),
i.e. furthest from both class +1 and class −1. This goal is accomplished through the
maximization of the distance or margin between the supporting planes for each class
(x.w− b = +1 for class +1, x.w− b = −1 for class −1). The margin between these
supporting planes is 2/‖w‖ (where ‖w‖ is the 2-norm of the vector w). Any point xi
falling on the wrong side of its supporting plane is considered to be an error, denoted
by zi (zi ≥ 0). Therefore, SVM learning algorithms have to simultaneously maximize the
margin and minimize errors. The standard SVMs pursue these goals with the quadratic
programming of (1).

min Ψ(w,b,z) =
1
2
‖w‖2+C

m

∑
i=1

zi (1)

s.t. : yi(w.xi −b)+ zi ≥ 1

zi ≥ 0
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margin= 2
‖w‖

optimal hyperplane
〈w.x〉−b= 0

〈w.x〉−b= −1

〈w.x〉−b=+1

z j

y=+1

y= −1

zi

support vector

Fig. 1. Linear separation of the datapoints into two classes

where the positive constant C is used to tune errors and margin size.

The plane (w,b) is obtained by solving the quadratic programming (1). Then, the
classification function of a new datapoint x based on the plane is:

predict(x) = sign(w.x−b) (2)

SVM algorithms can use some other classification functions, including a polyno-
mial function of degree d, a RBF (Radial Basis Function) or a sigmoid function. For
changing from a linear to non-linear classifier, one must only substitute a kernel eval-
uation in (1) and (2) instead of the original dot product. More details about SVM and
others kernel-based learning methods can be found in [6].

Unfortunately, Platt illustrates in [17] that the computational cost requirements of
SVM solutions in (1) are at least O(m2), where m is the number of training datapoints,
making classical SVM intractable for large datasets.

The Newton-SVM (NSVM) proposed by Mangasarian [16] reformulates the SVM
problem (1). The new SVM formula achieves:

– the maximization of the margin by min(1/2)‖ w,b ‖2
– the minimization of errors by min(c/2)‖z‖2

Substituting for z = [e−D(Aw− eb)]+ (where (x)+ replaces negative components
of a vector x by zeros, e is the column vector of 1) into the objective function Ψ of the
quadratic programming (1) yields an unconstrained problem (3):
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minΨ(w,b) = (c/2)‖ [e−D(Aw− eb)]+ ‖2+(1/2)‖ w,b ‖2 (3)

By setting [w1,w2, . . .wn,b]T to u and [A −e] to E, then the unconstrained problem
(3) is rewritten by (4):

minΨ(u) = (c/2)‖ (e−DEu)+ ‖2+(1/2)uTu (4)

Mangasarian [16] has proposed the finite stepless Newton method for solving the
strongly convex unconstrained minimization problem (4).

Algorithm 1: Newton SVM learning algorithm
input :

Training dataset represented by A and D
Constant c> 0 for tuning errors, margin size

output:
(w,b)

Training:
begin

1. Create matrix E = [A − e]
2. Starting with u0 ∈ Rn+1 and i= 0
3. repeat

3.1. The gradient ofΨ at ui is:

�Ψ(ui) = c(−DE)T (e−DEui)+ +ui (5)

3.2. The generalized Hessian ofΨ at ui is:

∂ 2Ψ(ui) = c(−DE)T diag([e−DEui]∗)(−DE)+ I (6)

with diag([e−DEui]∗) denotes the (n+1)× (n+1) diagonal matrix
whose jth diagonal entry is sub-gradient of the step function (e−DEui)+
and I is the identity matrix of size (n+1)× (n+1).
3.3. Updating

ui+1 = ui −∂ 2Ψ(ui)
−1 �Ψ(ui) (7)

3.4. Increment i= i+1
until �Ψ(ui)< tol;
4. Optimal plane (w,b): (w1, w2, . . . , wn, b) via ui

end

Mangasarian has illustrated that the sequence ui of Algorithm 1 terminates at the
global minimum solution (with a number of iterations varying between 5 and 8). The
NSVM algorithm requires thus only solutions of linear equations (7) of (n+ 1) vari-
ables (w1, w2, . . . , wn, b) instead of the quadratic programming (1). If the dimensional
input space is small enough (less than 103), even if there are millions datapoints, these
algorithms are able to classify them in some minutes on a PC (being much faster than
the standard LibSVM [5] while giving competitive test correctness).
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3 Newton Support Vector Machines for Gene Expression Datasets

3.1 Newton Support Vector Machines for Classifying Large Number
of Dimensions

Gene expression classification tasks handle datasets with a very large number of dimen-
sions (many ten thousands of dimensions) and few training datapoints (hundreds of dat-
apoints). Thus, the (n+1)×(n+1)matrix ∂ 2Ψ(ui) of (6) in the NSVM algorithm is too

large and the inverse matrix ∂ 2Ψ(ui)
−1

in (7) has a high computational cost. Therefore,
the original NSVM algorithm is not suited for classifying gene expression datasets.

To overcome these problems, we propose to extend the NSVM algorithm by apply-
ing the Sherman-Morrison-Woodbury formula [10] to ∂ 2Ψ(ui)

−1
. Thus, it leads to

obtain a new dual algorithm that only depends the inverse matrix of (m)× (m) (where
m datapoints � n dimensions).

(A+UVT )−1 = A−1 −A−1U(I+VTA−1U)−1VTA−1 (8)

By settingQ= diag(
√
c[e−DEui]∗) and P=Q(−DE), we can re-write the inverse

matrix ∂ 2Ψ(ui)
−1

in Eq. (7) as follows:

∂ 2Ψ(ui)
−1

= (I+PTP)−1
(9)

Thus, the Sherman-Morrison-Woodbury formula (8) is applied to the right part of
(9), the inverse matrix ∂ 2 f (ui)

−1
is as (10):

⇒ ∂ 2Ψ(ui)
−1

= I−PT (I+PPT )−1
P (10)

The new extended NSVM formula uses ∂ 2Ψ(ui)
−1

formula in Eq. (10) to update
ui. And then, the algorithmic complexity of the new extended NSVM only depends on
the inversion of the (m)× (m) matrix (I+PPT ). Therefore, this new extended NSVM
formulation described in Algorithm 2 can handle datasets with very large number of
dimensions and few training data because the cost of storage and computation scale on
the number of training datapoints.

3.2 Ensemble Learning with Newton Support Vector Machines for Classifying
Large Amounts of High Dimensional Datapoints

For classification of massive datasets with simultaneously large number (at least 104) of
datapoints and dimensions, there are at least two problems: the learning time increases
dramatically with the training data size and the memory requirement increases accord-
ing to data size. The NSVM algorithms need to store and invert a matrix with size
(m)× (m) (the new extended NSVM) or (n+ 1)× (n+ 1) (the original NSVM). This
requires too much main memory and very high computational time.

For scaling-up the NSVM to large datasets, we propose to apply the ensemble
approach, including Bagging [4] and Arc-x4 [3] to NSVM algorithms. The proposed
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Algorithm 2: Extended Newton SVM algorithm for large number of dimen-
sions

input :
Training dataset represented by A and D
Constant c> 0 for tuning errors, margin size

output:
(w,b)

Training:
begin

1. Create matrix E = [A − e]
2. Starting with u0 ∈ Rn+1 and i= 0
3. repeat

3.1. The gradient ofΨ at ui is:

�Ψ(ui) = c(−DE)T (e−DEui)+ +ui (11)

3.2. The generalized Hessian ofΨ at ui is:

∂ 2Ψ(ui) = I−PT (I+PPT )
−1

P (12)

with Q= diag(
√
c[e−DEui]∗) and P= Q(−DE) and I is the identity

matrix of size (n+1)× (n+1).
3.3. Updating

ui+1 = ui −∂ 2Ψ(ui)
−1 �Ψ(ui) (13)

3.4. Increment i= i+1
until �Ψ(ui)< tol;
4. Optimal plane (w,b): (w1, w2, . . . , wn, b) via ui

end

ensemble learning brings out two advantages. The first one is to be able to overcome
the large scale problem and the second one is to maintain the classification accuracy.

The ensemble learning with NSVM is described as in Algorithm 3. Ensemble
learning algorithms call repeatedly NSVM learning algorithms NumIt times to clas-
sify datasets. Here, NSVM algorithms are used to train weak classifiers in ensemble
learning algorithms.

With large number of datapoints in dimensional input space being small enough,
the original NSVM described in Algorithm 1 is called in ensemble learning algorithms
for training weak classifiers.

For dealing with a very large number of dimensions and few datapoints or simulta-
neously large number of datapoints and dimensions, ensemble algorithms use the new
extended NSVM described in Algorithm 2 to train weak classifiers.

At each training step for a weak classifier, ensemble learning algorithms sample
a subset of datapoints from the training dataset according to the distribution weights
over the training datapoints. For the Arc-x4 mode, it needs increasing the weights of
incorrectly classified datapoints in last iterations so that the next weak learner is forced
to focus on the hard datapoints in the training dataset.
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Algorithm 3: Ensemble learning with Newton SVM for large amounts of high
dimensional datapoints

input :
Training dataset with m datapoints:
{xi,yi}i=1,m, xi ∈ Rn and yi ∈ ±1
Constant c> 0 for tuning errors, margin size
Number of iterations NumIt

output:
(w,b)

Training:
begin

1. Initial distribution of m datapoints: p1(i) = 1/m
2. for t ← 1 to NumIt do

2.1. Sampling St of datapoints using pt
2.2. Learning NSVMt from St : ht = NSVMt(St ,c)
2.3. if Arc-x4 then

2.3.1. Computing predicting error for each datapoint xi with previous
classifiers ht :
εi = ∑t ht(xi) 
= yi
2.3.2. Updating distribution of m datapoints:
for i ← 1 to m do

pt+1(i) = 1+εi4
Zt

(where Zt is the normalization factor)

end
end

end
3. Optimal plane (w,b) is obtained by aggregating models ht

end

4 Evaluation

Table 1. Description of Gene expression datasets

ID Datasets Classes Points Dimensions Protocol

1 ALL-AML Leukemia 2 72 7129 38 trn - 34 tst

2 Breast Cancer 2 97 24481 78 trn - 19 tst

3 Ovarian Cancer 2 253 15154 leave-1-out

4 Lung Cancer 2 181 12533 32 trn - 149 tst

5 Prostate Cancer 2 136 12600 102 trn - 34 tst

6 Ovarian Cancer NCI-QStar 2 216 373410 leave-1-out

7 Translation Initiation Sites 2 13375 927 3-fold
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We are interested in the evaluation of the performances of our ensemble learning
algorithms with NSVM in terms of the learning time, the accuracy on large datasets. To
pursue this goal, we implement ensemble learning algorithms with NSVM in C/C++,
using the high performance linear algebra library, ATLAS/Lapack [8,24]. We also use
the highly efficient standard SVM algorithm LibSVM [5] in the performance evaluation
of ensemble learning algorithms, including Arc-x4-NSVM and Bag-NSVM. All tests
were run under a machine Linux Fedora 32, Intel(R) Core i7-4790 CPU, 3.6GHz, 32
GB RAM.

The experiment uses 7 high-dimensional gene expression datasets [15] described in
Table 1. All datasets have large number of dimensions. Especially, Translation Initiation
Sites dataset has simultaneously large number of datapoints and dimensions. The test
protocols are presented in the last column of Table 1. With datasets having training set
(trn) and testing set (tst) available, we used the training data to tune the parameters
of the algorithms for obtaining a good accuracy in the learning phase. Arc-x4-NSVM
and Bag-NSVM train 50 weak NSVM classifiers. For LibSVM, NSVM, we tuned the
positive constant c for trade-off of errors and the margin size. Then the obtained model
is evaluated on the test set. If the training set and testing set are not available then
we used cross-validation protocols to evaluate the performance. With datasets having
less than three hundred datapoints, the test protocol is leave-one-out cross-validation
(loo). It involves using a single datapoint from the dataset as the testing data and the
remaining datapoints as the training data. This is repeated so many that each datapoint in
the dataset is used once as the testing data. With dataset having more than three hundred
datapoints, 3-fold cross-validation is used to evaluate the performance. The dataset is
partitioned into 3 folds. A single fold is retained as the validation set, and the remaining
2 folds are used as training data. The cross-validation process is then repeated 3 times
(folds). The results from the 3 folds are then averaged to produce the final result.

We obtain classification results in terms of the training time showed in Table 2
and Fig. 2, in terms of the classification correctness showed in Table 3 and Fig. 3. Best
results and second ones are in bold and italic.

Table 2. Classification results in terms of training time (sec)

Training time (sec)

ID Datasets LibSVM Arc-x4-NSVM Bag-NSVM

1 ALL-AML Leukemia 9.14 5.01 1.82

2 Breast Cancer 269.66 75.43 8.16

3 Ovarian Cancer 403.60 10.13 8.11

4 Lung Cancer 20.80 3.51 0.47

5 Prostate Cancer 1.6 0.7 0.51

6 Ovarian Cancer NCI-QStar 158.95 20.13 9.46

7 Translation Initiation Sites 314.00 50.27 35.72
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Table 3. Classification results in terms of accuracy (%)

Accuracy(%)

ID Datasets LibSVM Arc-x4-NSVM Bag-NSVM

1 ALL-AML Leukemia 97.06 97.06 97.06

2 Breast Cancer 73.68 84.21 73.68

3 Ovarian Cancer 100 100 100

4 Lung Cancer 98.66 98.00 97.32

5 Prostate Cancer 73.53 97.06 97.06

6 Ovarian Cancer NCI-QStar 97.69 97.22 97.22

7 Translation Initiation Sites 92.41 92.08 91.41
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Fig. 2. Comparison of training time (sec)
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Fig. 3. Comparison of accuracy (%)

The average training time of LibSVM, Arc-x4-NSVM and Bag-SVM are 168.25
sec, 23.60 sec and 9.18 sec, respectively. The comparison in terms of the training time
shows that LibSVM is 7.13 times and 18.33 times slower than our Arc-x4-NSVM and
Bag-NSVM. Our ensemble learning algorithms with NSVM are always faster than Lib-
SVM for performing all datasets.

In terms of the classification correctness, our Arc-x4-NSVM and Bag-NSVM give
very competitive accuracy compared to LibSVM. LibSVM, Arc-x4-NSVM and Bag-
NSVM achieve the average accuracy of 90.43%, 95.09% and 93.39%. Arc-x4-NSVM
has 2 wins, 2 ties, 3 losses, against LibSVM. Bag-NSVM has 1 win, 3 ties, 3 losses,
versus LibSVM.

These results show that our ensemble learning algorithm with NSVM are favorable
to deal with very high-dimensional gene expression datasets but also with simultane-
ously very large number of datapoints and dimensions, e.g. the Translation Initiation
Sites dataset. They can learn accurate classification models in short training time.

5 Conclusion and Future Works

We have presented ensemble learning algorithms with NSVM for dealing with high-
dimensional gene expression datasets. The Sherman-Morrison-Woodbury formula [10]
is used in NSVM to make the extended NSVM for very large number of dimensions
and few training datapoints. The ensemble learning [3,4]) trains the new extended
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NSVM to classify gene expression datasets with simultaneously large number of data-
points and dimensions. The numerical test results on high-dimensional gene expression
datasets [15] show that our Arc-x4-NSVM, Bag-NSVM improve the training speed
while achieving good accuracy compared with LibSVM.

In the future, we intend to provide more empirical tests on the large benchmark
of gene expression datasets. A forthcoming improvement will be to extend these algo-
rithms for multi-class classification problems.
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