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Abstract. Walking aids are commonly given to older adults to prevent
falls, but paradoxically, their use has been identified as a risk factor for
falling, which is a prevalent issue among this population, causing serious
injuries, disabilities, and even death. This has resulted in a significant
increase in public health care and the development of remote health mon-
itoring technology to enhance home care devices. One of the key issues
being addressed is the identification of falling incidents, which can aid in
the rapid arrival of assistance and prevent additional harm. This paper is
to develop intelligent walking aids using machine learning methods and
an M5Stack Core2 microcontroller. These aids analyze information from
various sensors such as accelerometers and gyroscopes to identify falls.
Touch and location sensors are also utilized to determine the device’s
usage and location in case of an emergency. The collected data is sent
to a web server in JSON format via the M5Core2’s WiFi module, allow-
ing for a quick response if necessary. The fall detection system has been
extensively tested, resulting in 99.62% accurate identification of falls.

Keywords: Fall detection · Remote health monitoring · Machine
learning · M5Stack Core2 · Intelligent walking-aid

1 Introduction

Detecting and preventing falls is crucial, especially for older adults who are more
susceptible to falls due to aging-related factors. Home care devices, including fall
detection systems, have become essential in ensuring the safety of the elderly
and individuals with chronic illnesses who wish to remain at home. This leads
to the development of a novel system that incorporates Intelligent walking aids
to detect falls and enhance user safety and quality of life. The device provides
an added layer of security, allowing users to have confidence in their mobility
and engage in activities while ensuring their safety. Over the past years, fall
detection and supervision systems have been classified into various categories.
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One of the widely adopted categories is wearable devices, which are worn on the
body and equipped with a variety of sensors placed in different areas. Since they
are worn all the time, they offer continuous monitoring and tracking of overall
activities, making them relatively reliable. The authors in [1] suggested a strong
activity recognition method for smart healthcare that involves utilizing body
sensors and a deep convolutional neural network (CNN). Various body sensors
used in healthcare, such as ECG, magnetometer, accelerometer, and gyroscope
sensors, are analyzed to extract significant features from the signal data. The
feature extraction process involves Gaussian kernel-based principal component
analysis and Z-score normalization. To evaluate the effectiveness of the proposed
approach, a publicly available standard dataset is used, and the results are com-
pared to other conventional approaches. The authors in [2] proposed an approach
for fall detection that employs three distinct sensors placed at five different loca-
tions on the subject’s body to gather data for training purposes. The UMAFall
dataset is utilized to obtain sensor readings and train models for fall detection.
Five different models are trained, each corresponding to one of the five sensor
models, and a majority voting classifier is employed to determine the final out-
put. However, for some patients, the constant wearing of these devices depicts
an inconvenience or, especially when talking about elderly people, they simply
forget to put their intelligent devices on.

In contrast to wearable systems, vision-based systems offer a comfortable and
reliable option for fall detection in-home care. The authors in [3] provided a brief
overview of vision-based fall detection, outlining recent methods and highlighting
their advantages and disadvantages, and touching on possible future research
topics. The authors in [4] examined the latest non-intrusive (vision-based) fall
detection techniques based on deep learning (DL). They also provide an overview
of benchmark datasets for fall detection and explain various metrics used to
assess the performance of these systems. The authors in [5] introduced a novel
smart camera system for real-time monitoring, recognition, and remote warning
of abnormal patient actions. The proposed method is cost-effective and easy to
deploy. It does not require ambient sensors and uses regular video camera footage
for detection. The system utilizes high-precision human body pose tracking with
MediaPipe Pose and employs the Raspberry Pi 4 device and LSTM network
for real-time classification and remote monitoring of patient actions. One of the
key advantages of these approaches is their ability to differentiate a person’s
actions without requiring them to wear a device. However, they are limited to
a single space and can intrude on a person’s privacy. For example, a vision-
based device cannot be installed in private areas like the bathroom where falls
can also occur. Additionally, some individuals may feel uncomfortable being
continuously monitored, despite the data protection measures that are inherent
in these devices.

The proposal of using an environmentally based system to address privacy
concerns in fall detection. Existing attempts with infrared sensor systems and
millimeter-wave radar sensors have limitations but offer the advantage of not
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being worn and can be installed in private spaces. The paper introduces a intel-
ligent walking aid that combines environmental solutions and wearable devices.
By adding sensors to the walking aid, it can detect falls and alert caregivers. The
device restores mobility, provides autonomy, increases confidence and safety, and
cannot be forgotten. It preserves privacy and can be used anywhere the walking
aid is taken. The cost is affordable, and the device focuses on walking activities
without the need to differentiate other activities. It primarily aims to improve
safety and mobility over long distances. The device can be combined with other
fall-detection measures, and further studies can be conducted to gather data on
falls with walking aids. The main contributions of this paper consist of:

– Build a comprehensive detection system with a user-friendly interactive inter-
face that can immediately monitor the usage and orientation of the walking
aid.

– Create a novel dataset containing over 255 data sets collected from a fall
study or real-life scenario.

– Develop a fall detection algorithm for a walking aid that uses touch as input.
This algorithm will be implemented on an M5Stack Core2 microcontroller,
which will analyze sensor data to detect falls.

– Develop a machine learning model for fall prediction and create a website
that is compatible with it. The goal is to interpret the data collected by the
M5Core2 through WiFi.

The overview of our proposed system is described in Fig. 1. There are two
kinds of walking aids that are frequently used and have been under consideration
for this particular situation. These aids are illustrated in Fig. 2. The first aid,
shown on the left (a), is a commonly used walking cane. On the right (b) is a
walking aid that stands on four feet, making the process of detecting a falling
person a bit more complicated.

Fig. 1. The overview of our proposed system of fall detection.
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Fig. 2. Two common walking aids: (a) Walking cane, (b) Four-legged walking aid

2 Materials and Methods

2.1 M5Stack Core2

To control the sensors and process data, we utilize an M5Stack Core2, which
is equipped with an ESP32 microcontroller (Fig. 3). The device can be charged
and connected to other devices with ease through its USB Type-C interface. It
comes with an inbuilt lithium battery, featuring a capacity of 390 mAh, and an
AXP192 power management chip. The battery level can be checked using the
small LED lamp located on the side of the device, which can be turned on or off
by pressing the power button located on the side of the device. A reset button
is present on the bottom of the device. The M5Stack Core2 features a two-
inch touch screen, which is ideal for user interaction. Three capacitive buttons
located at the bottom of the screen can also be programmed. Additionally, the
M5Stack Core2 has a WiFi module and supports Bluetooth, making wireless
data transfer seamless. The device features dual-core Xtensa 32-bit 240 Mhz
LX6 processors that can be controlled independently. It also comes with 16 MB
Flash memory and 8MB PSRAM. Other features include a vibration motor, an
RTC module for precise timing, a 6-axis IMU sensor, a microphone, an SD card
slot, and a loudspeaker. The M5Core2 is compatible with various programming
platforms, including the Arduino IDE, UIFlow, and MicroPython. The inbuilt
sensors can be extended by utilizing numerous external sensors compatible with
the M5Core2, which can be connected using cables and intersections if required.

Previously, M5Stack devices have been employed for medical supervision,
such as in the case of an M5StackGrey utilized to create a motion game that
encourages elderly individuals to remain active and flexible through exercise
[6]. The device communicates wirelessly with a computer and features a small
compatible vibration motor that can be controlled. In [7], the authors utilized
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Fig. 3. M5Stack Core2 ESP32 IoT Development Kit.

an affordable and easy-to-set-up ESP32-CAM Module by M5, equipped with an
OV2640 Wireless Camera Module, for a fall warning system based on visual cues.
In a similar vein, the authors in [8] proposed a fall detection system that employs
infrared sensors and transfers data wirelessly via WiFi using an M5Stack device.
Additionally, the authors in [9] employed the M5Stack Core to create a walking
aid for individuals with visual or motor impairments, with the device serving as
a sensor data collector and interpreter that sends feedback to a mobile applica-
tion through vibration alerts when obstacles are present or the path is unclear.
The M5Core2 device is particularly relevant to this study due to its built-in
gyroscope and accelerometer, which enable the detection of changes in orien-
tation and acceleration and aid in fall identification. Additionally, the device’s
WiFi module is crucial for transmitting data to a web server. Further sensors
capable of identifying touch can be connected to the M5Core2 through cables,
as discussed in Sect. 2.2. Lastly, the loudspeaker and touchscreen functionalities
are also important to this work, particularly with respect to the alarm tone and
interactive interface.

2.2 Sensors

The M5Stack Core2’s built-in MPU6886, which includes both an accelerome-
ter and a gyroscope, is employed to detect falls. Data can be obtained through
either the M5Core2’s WiFi module or via Bluetooth. While the WiFi option
is a straightforward way to wirelessly transmit data, it is reliant on a stable
internet connection and may be subject to local limitations. Alternatively, data
can be sent to a phone using Bluetooth, but this approach requires the user
to carry the phone at all times and ensure that it is not misplaced. To deter-
mine the usage of the walking aid, additional external sensors were considered.
Since the sensor unit is fixed to a crutch, it is necessary to use sensors that can
detect if the walking aid is currently being used. Various potential sensors were
explored, such as heart rate monitors, temperature sensors, and distance measur-
ing sensors. Ultimately, the solution that was chosen is the Adafruit VL6180X,
a proximity sensor that can be easily attached to the handle without requiring
physical contact. This sensor can measure objects up to a distance of 10 cm and
can be installed at the beginning of the handle to detect if a hand is placed on
the handle or not. By detecting if an object is placed before it, the sensor can
reliably determine if the walking aid is currently being used. This sensor can be
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integrated with the main code and all its features. In testing the fall detection
algorithm, only the acceleration sensor and gyroscope data were utilized to con-
serve resources. Nevertheless, a reflective sensor or a sensor capable of measuring
the distance to the ground could also be considered as an additional feature for
fall detection. These sensors could be installed at the handle, but their inclusion
would affect the power consumption of the device. Therefore, this possibility
may be examined in the future or used as a supplement if the gyroscope and
accelerometer data prove to be unreliable over time. Finally, to determine the
user’s location in case of a falling event, a GPS sensor can be integrated. The
M5Stack Atom GPS Sensor is selected for this purpose. With its addition, help
can be directed to the right location as soon as possible.

2.3 Sending M5Stack Core2 Data to a Web Server

The process of sending M5Stack Core2 data to a web server is described in
Algorithm 1. It is written in the programming language C++ with the Arduino
IDE and consists of a number of different functions, which together form the
final version of the code.

Algorithm 1 Sending M5Core2 data to a web server
if Not Found WiFi configuration on Flash then

Set up WiFi
end if
Connect to WiFi
if Not Found UUID on Flash then

Create a UUID and write it on Flash.
end if
Get the UUID of M5Core2.
if The proximity sensor detects the usage of the handle then

The device keeps on taking data from the sensor.
else

Enter a sleep mode to save energy.
end if
Create a JSON file consisting of sensor data.
Get data acceleration sensor and Gyroscope.
if Fall detected (GyroY<0.8) then Turn on the Alarm.
end if
if Help/Doctor button was pressed then

Send the JSON file to the Web server immediately.
else

Turn off the Alarm.
end if
Send the JSON file to the Web server.

The fundamental requirement for the fall detection method is a functional
WiFi connection to the M5Core2. Without an active internet connection, data
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transfer is impossible. Therefore, the first step is to verify the availability of an
internet connection, preferably one that the device has previously connected to. If
the M5Core2 finds the necessary configuration information for the WiFi network
in the flash memory, it automatically connects to the network and proceeds to
the next stage of the fall detection code. In the absence of any saved WiFi
information in the flash memory, the device prompts the user to provide a new
WiFi name and password, which are then stored in the flash memory for future
use. Once an internet connection is established, the sensor data can be collected
and added to the data that will be sent in JSON format, as required.

To ensure that the web hosting can accurately identify the device sending
data, it’s important to assign a unique identification to each M5Stack Core2.
This is achieved by generating a Universally Unique Identifier (UUID) for each
device, which is stored in its flash memory. Once generated, the UUID remains
the same and is used for all subsequent data transmissions, ensuring the device
is correctly paired with its corresponding patient.

The following step is to verify if the device is being used. As previously
mentioned, this is accomplished by monitoring the handle using a proximity
sensor. If the sensor detects handle usage, the device will continue to gather
sensor data. However, if the sensor does not detect usage for an extended period
of time, the device will enter sleep mode to save energy and wake up when touch
is detected again.

The code also includes an interactive interface with three buttons displayed
on the screen. Pressing the “Doctor” or “Help” button will trigger the alarm and
send a JSON file to the web hosting to request help immediately. The “Okay”
button, on the other hand, will turn off the alarm and send a message to the
host indicating that no help is needed if a fall has been detected by the device.

3 Results and Discussion

3.1 Data Collection

In order to estimate fall risk, several existing methods such as [10–15] have been
studied and used to generate fall-related datasets for their research purposes.
However, these datasets were not suitable for our system’s hardware architecture.
Therefore, a new dataset was created for this study to accurately determine the
occurrence of falls. The primary tool for detecting falls is the MPU6886 3-axis-
acceleration sensor and 3-axis-gyroscope, which is built into the M5Core2. While
the accelerometer measures acceleration in all directions, the gyroscope detects
the device’s orientation and the attached walking aid. Each gyroscope value
ranges from 1 to -1, indicating the current position of the crutch. Since the sensor
is not attached to the human body but to the walking aid, the methodology for
fall detection needs to be reevaluated. To conduct the experimental phase, we
need to differentiate between three states in which the crutch can fall together
with the user.

The first state that needs to be differentiated is the upright position of the
crutch, which occurs when it is not in use when the patient is standing, and
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when the person is walking. Therefore, smaller impacts on the acceleration and
gyroscope data cannot be classified as falls and must be labeled as “normal posi-
tion.” Any actions classified as “normal position” are considered harmless and
do not require any action from the system. The upright position is characterized
by a y-value of the gyroscope that is close to 1, while the x and z values should be
around 0. Since the crutch will bend slightly while the person is walking, small
variations are allowed. The forward movement can be observed in the y-value of
the acceleration data. While elderly people are generally expected to move more
slowly than younger individuals, rapid movements can still occur when they are
adjusting their walking aid for the next step. Therefore, it is crucial to monitor
both the orientation and acceleration data to determine whether the combina-
tion suggests a normal position or a fall. A visual representation of the walking
aid in an upright or normal position can be seen in Fig. 4a.

(a) Normal position with
the coordinate system.

(b) Falling position ac-
cording to the coordinate
system.

(c) Fallen position accord-
ing to the coordinate sys-
tem.

Fig. 4. Walking aids position according to the coordinate system

The second state pertains to the falling process, where the crutch loses its
upright position and continues to fall for a certain period. Detecting a fall is
crucial and significant changes in the gyroscope and acceleration data are key
indicators for this state, which is classified as “fall detected”. A fall is considered
harmful and triggers a message from the device to the web hosting, indicating
that assistance might be necessary if no further action is taken. The data gath-
ered during a fall can vary widely, as it can occur in various situations, and the
crutch’s orientation can differ greatly depending on the fall’s direction and speed.
Accurately interpreting the combination of sensor data is vital for detecting a
fall. During a fall, the acceleration data can rapidly increase to triple digits. The
y- and z-values are the most affected when falling to the left or right, while the
x- and y-values show the greatest acceleration during a forward or backward fall.
At the same time, the crutch’s orientation changes from a vertical to a horizontal
position. During a fall, the y-value of the gyroscope drops from about 1 to 0,
while the x- or z-value changes to 1 or −1, depending on the fall’s direction. If
the crutch falls to the right, the x-value drops towards −1, while it increases to
1 if it falls to the left. A forward fall is indicated by the z-value climbing up to
1, whereas a rapid decline to −1 indicates a backward fall. Figure 4b shows the
walking aid’s orientation during a fall, based on the coordinate system.
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The final stage is when the crutch is in a fallen position, which indicates that
a fall has occurred, and the walking aid is lying still on the floor. This state is
labeled as “fallen” and is characterized by little to no variation in the acceleration
and gyroscope data. Although it is not considered harmful, it may serve as an
indicator of whether the person using the crutch was able to stand up again.
The crutch is deemed to have fallen when there is no acceleration detected and
the gyroscope values suggest that the crutch is in a horizontal position (y-value
close to 0 and one of the other values around 1 or −1). A depiction of the fallen
walking aid in the coordinate system can be found in Fig. 4c.

In the experimental phase of the study, a significant amount of data was
required to be gathered while using the walking aid in different states, including
the upright position, the fallen position, and a simulated falling scenario. The
collected data was then organized and stored in tables to train the algorithm to
accurately distinguish between the three states. To achieve this, various walk-
ing patterns were simulated, and data was collected for the “normal position.”
Moreover, the crutch was made to fall under different conditions and in various
directions, and the position of the crutch after each fall was recorded as data.

To collect the first set of falling data, a walking cane was used, and the
M5Core2 was fixed on it. A total of over 257 sets of data were collected, divided
into three categories: “normal position”, “fall detected”, and “fallen”, and stored
in a table. The table includes all the necessary data from the acceleration sen-
sors and gyroscopes, such as the x, y, and z values of the gyroscope and the
x, y, and z values of the acceleration data, along with the corresponding label.
Several examples of the collected data are shown in Table 1. In order to deter-
mine whether a dataset should be labeled as “fallen”, “fall detected” or “normal
position”, the considerations outlined earlier must be taken into account. When
the crutch is in an upright or “normal position”, the y-value of the gyrosensor
will typically be around one. However, during walking, the crutch may be bent,
resulting in the y-value dropping to values of around 0.8. Therefore, the label
“normal position” is assigned to data where the y-value of the crutch is above
0.8, considering the angle that may be applied while walking.

Should the walking aid fall, the y-value of the gyroscope will drop from what
is considered upright into what can be identified as a falling event. Data, where
the y-value exceeds 0.8 and a significant acceleration, can be noted is labeled
as “fall detected”. The walking aid is considered to be falling as long as the
acceleration can be identified and the y-value of the gyro-sensor varies between
0.1 and 0.8. When the walking aid falls, the gyroscope’s y-value drops from the
upright position to indicate a falling event. Data that shows a y-value exceeding
0.8 and a significant acceleration is labeled as “fall detected”. The walking aid
is considered to be falling as long as the acceleration can be detected and the
y-value of the gyro-sensor varies between 0.1 and 0.8. Finally, the label “fallen”
is assigned to the data when the walking aid is in a horizontal position and there
is minimal acceleration detected, and the y-value of the gyro-sensor is near 0.
This combination of sensor readings strongly suggests that the walking aid has
fallen and is no longer in an upright position. To use the four-legged walking aid,
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Table 1. Representative samples of collected falling data with a walking cane.

No Label AccX AccY AccZ GyroX GyroY GyroZ

1 normal position 0,7935 13,9160 8,8501 −0,0862 1,0085 0,0388

2 normal position −17,4561 39,4287 20,9961 −0,2188 1,0361 0,0764

3 normal position −1,0986 81,4819 10,4370 −0,1743 0,9155 −0,1189

4 fall detected 217,2241 −10,4370 34,6679 −0,0234 −0,1667 −0,3433

5 fall detected 131,8969 17,3950 13,0005 0,0442 0,5579 −0,1936

6 fall detected −141,6016 27,4658 22,5830 0,0718 0,5652 0,2709

7 fallen 0,2441 14,3433 11,9019 −0,9963 0,1245 −0,0508

8 fallen 0,7935 14,2212 12,207 −0,0525 −0,0145 −0,9446

9 fallen 0,5493 12,9395 10,7422 0,8945 −0,0452 −0,3535

a second dataset was collected, comprising a total of 255 data sets. These were
classified into three categories: “normal position”, “fall detected”, and “fallen”.

3.2 Evaluation Metrics

Our performance metrics are precision, recall, and F1-score. Before defining the
metrics, we define True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) terms. TP is the number of correctly classified samples
by the algorithm. TN is the number of correctly missed samples. FP is the num-
ber of wrongly detected samples. FN is the number of wrongly missed samples.
The TN is not used in calculating our performance metrics. Precision was the
one factor that was used for the main comparison, as it is a good indicator of
how reliable a method works on a specific data set. It mainly focuses on the
identification of data as true positive or false positive and calculates how accu-
rately a method can predict a falling event of the crutch. It is calculated with
Formula 1. The recall metric measures the number of wrongly missed samples
by the algorithm. Its value decreases as the number of false negatives increases.
Recall is an important evaluation criterion in the applications that necessitate no
misses in the classification task. It is computed as the ratio of correctly detected
objects to the total number of samples (both correctly classified and missed),
the formula of recall is in Formula 2.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
=

TP

all ground truths
(2)

3.3 Applying the Machine Learning Method

In order to analyze the data on the web hosting, a classification problem needs
to be solved in order to label the received data correctly to “normal position”,
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“fall detected”, and “fallen’. Therefore it needs to be evaluated, what machine
learning method is most suitable for the specific problem by cross-validation.
The recorded data gets split into training and testing data. Most of the data,
depending on the cross-validation method, is used to train the algorithm, whereas
the rest of the data is then used to test how reliable the algorithm works on the
problem. This is done for every method, to find the best one to use. In this
specific case, the training data consisted of 2/3 of the collected data and the
testing data consisted of the other 1/3. A 5-folded cross-validation method was
used and the process was repeated ten times for each method. In this study, the
performance of Support Vector Machine [16], Neural Network [17], and Gradient
Boosting [18] models was assessed on a dataset collected from a walking cane.

Using a Cost (C) configuration of 1.00, a Regression loss epsilon (ε) of 0.10, a
Kernel RBF, a numerical tolerance of 0.0010, and an iteration limit of 100. In this
case, our data is six-dimensional, as we have six different types of information
that are processed. The Acceleration data in the X, Y, and Z-axis and the data
of the gyroscope in the X, Y, and Z-axis. Support Vector Machine finds these
Support Vector Classifiers using kernel functions, namely polynomial or radial
kernels, and moves data into a higher dimension. The values used for the kernel
functions are determined by cross-validation. In order to test SVM on this set
of data a radial Kernel was used with a regression loss ε of 0.1. As shown in
Fig. 5, SVM achieves an accuracy of 100% for predicting 134 samples of the “fall
detected” label, 97.40% for predicting the “normal position” label (75 samples),
and 100% for predicting the “fallen” label.

Fig. 5. Confusion matrix using SVM classifier.

Using the Neural Network machine learning method with a configuration of
100 neurons in the hidden layer, ReLu activation function, Adam optimization
solver, regularization of 0.0001, and a maximum number of iterations of 200.
In this case, the input nodes are the acceleration and gyroscope data and the
output is the classification of the current position of the walking aid. As shown
in Fig. 6, It achieves an accuracy of 99.25% for predicting 133 samples of “fall
detected” label, 100% for predicting the “normal position” label (77 samples),
and 100% for predicting the “fallen” label (46 samples).

Using the Gradient Boosting machine learning method with a configuration
of 100 trees, a learning rate of 0.1, a maximum depth limit of 3 for individual
trees, and a minimum subset size for the splitting of 2, and using a fraction of
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Fig. 6. Confusion matrix using Neural Network classifier.

1.00 of the training instances, As shown in Fig. 7, It achieves an accuracy of
99.25% for predicting 133 samples of “fall detected” label, 98.70% for predicting
the “normal position” label (76 samples), and 97.82% for predicting the “fallen”
label (45 samples).

Fig. 7. Confusion matrix using Gradient Boosting classifier.

3.4 Numerical Results and Discussion

In order to decide, which machine learning method was suited the best for this
data set, the confusion matrices were taken into consideration and a ROC analy-
sis was conducted. The default threshold for the ROC analysis was set to a typical
0.5. It shows the rate between True Positives (TP), meaning correctly identified
cases of the wanted attribute, and False Positives (FP), falsely classified data
as the wanted attribute. As only very few data sets were falsely classified, the
graph is drawn very close to one.

The confusion matrices the ROC analysis is based on can be seen in Figs. 5 to
7, which clearly shows how each method performed on the given data set. Figure 5
shows, that the Support Vector Machine falsely predicted two cases as a “fall
detected”, when in fact they should have been classified as normal positions.
As shown in Fig. 6, Neural Network falsely classified a fall as an already fallen
walking aid. While Naive Bayes and Gradient boosting show a few more errors
with some confusion among all classes (Fig. 7). k-NN performed quite well again,
classifying two falls falsely as a normal positions. The overall performance of the
methods compared to one another by different parameters can be seen in Table 2.
It compares the methods by AUC (Area under the curve), CA (Classification



Fall Detection Using Intelligent Walking-Aids 107

accuracy), F1, Precision, and Recall. AUC compares the curves from the ROC
analysis to detect which curve has the greatest area underneath. CA focuses on
the proportion of the examples that were classified correctly.

Table 2. Comparison between the different machine learning methods in the percent-
age of correct identifications.

Machine Learning Method AUC Precision Recall

Support Vector Machine 99.99 99.23 99.22

Neural Network 99.98 99.62 99.61

Gradient Boosting 99.34 98.84 98.83

After evaluating the methods using precision as the ultimate metric, it is clear
that the Neural Network exhibited the most promising outcomes in detecting a
falling event, with a reliability of 99.62%. On the other hand, Naive Bayes had the
poorest result, with only 97.71% precision. Overall, the Neural Network model
performed the best among all the methods, considering all the given parameters.

Once the data has been modeled and the most appropriate machine-learning
method has been chosen, the resulting model can be deployed on the web hosting
for further use. To accomplish this, the model must first be saved and then
transferred using the pickle library. Once deployed on the web hosting, the model
can analyze the data received from the M5 device and aid in identifying instances
of falling.

3.5 Website and Message Distribution

The data is sent via a WiFi connection to the web host, where the patient’s
information is stored in a database, allowing the association between the device
and the patient. Two scenarios are presented for fall detection: the first involves
detecting falls within the device itself, which conserves energy but may have a
slight risk of missing falling events during data transmission. The second sce-
nario involves continuously sending and analyzing data using machine learning,
providing more precise data collection at the expense of higher power consump-
tion. The website stores various information, including patient data, device data,
user group information, and contact lists. As shown in Fig. 8, the patient’s data
includes personal details, such as name, gender, date of birth, contact informa-
tion, and address. Device data includes sensor information and a unique iden-
tifier for matching devices with patients. The website visually displays the col-
lected data, and there are different sections for patient information, emergency
contacts, and doctor information, each with specific privileges and information
requirements based on their account types.
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Fig. 8. Layout of the patient follow-up of the website.

4 Conclusion

The paper presented a novel fall detection system using a intelligent walking aid
and machine learning methods. The system uses an M5Core2 microcontroller,
the Adafruit VL6180X proximity sensor, and the MPU6886 3-axis acceleration
and 3-axis gyro sensors to detect falls. An M5Stack Atom GPS sensor can also
be used for tracking the current position of the device. The fall detection algo-
rithm and overall system were tested with experiments, and the Neural Network
machine learning method performed best, classifying 99.62% of the data cor-
rectly. Potential solutions could involve incorporating force sensors on the handle
or feet of the walking aid or adding distance sensors to the stick to measure the
distance to the legs. Alternatively, machine learning could be utilized to analyze
walking patterns and sensor data to detect falls where the walking aid bounces
back after impact.
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