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1 Introduction

Computer vision is an area of artificial intelligence (Al) that enables computers and
systems to extract useful information from digital images. The quality of the image
will depend on a number of factors, including illumination, contrast and brightness.
Images that are captured in an environment having low illumination or low light are
categorized as low-light images. In many real-time applications, this low-light condi-
tion may occur. So, to overcome this, many low-light image enhancement methods
are used. This survey paper’s main goal is to investigate the various image improve-
ment techniques for low-light images. Image enhancement is a technique that helps
to improve the quality of an image. The parameters that define the image quality
are color, contrast, brightness, illumination, etc. During the image acquisition, suffi-
cient light intensity is needed. If the light intensity is low, the captured image will
give less information than the original image. In many applications, there is a possi-
bility of low-light conditions. It is necessary to create an enhancement method that
is more suited for low-light images in order to get around this. The popular low-light
image enhancement methods are Gamma transformation, Histogram equalization,
Retinex methods, machine learning and deep learning methods. In recent years,
the availability of various learning models introduces a large exploration of low-
light image enhancement methods. This survey paper divides the algorithm into
two classes, traditional methods and learning-based methods. This learning-based
algorithms are again classified into machine learning-based and deep learning-based
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methods. Section 2 describes a few existing low-light applications. Section 3 explains
the classification of enhancement methods.

2 Low-Light Images

Medical image processing has been widely used in research in recent years to diag-
nose a variety of disorders. When considering various medical imaging techniques,
this low-light environment could affect the accuracy of the diagnosis. One of the most
important methods for identifying abnormalities of the larynx is laryngeal endoscopy.
Due to the anatomical structure of the human body, it is difficult to get illuminated
images of this region. As a result, low-light images are obtained.

This enhancement scheme is also applicable for the enhancement of chest x-ray
for the detailed analysis of Covid-19 cases. Figures 1, 2 show the larynx endoscopy
image and chest x-ray image. Night traffic monitoring is a major challenge in today’s
world. These types of enhancement algorithms are useful for improving the analysis
of monitoring systems. The other important areas where this low-light condition may
exist are underwater images, foggy images, satellite images, etc. (Figs. 3, 4).

Fig. 1 Larynx endoscopy
image

Fig. 2 Covid-19 chest x-ray
image
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Fig. 3 Underwater image

Fig. 4 Foggy image

3 Methodologies

This survey paper introduces a distinction between traditional and learning-based
low-light image enhancement technique (Fig. 5).

The traditional methods are Gamma transformation, Histogram equalization and
Retinex-based methods. The learning methods are machine learning (ML) and deep
learning methods (DL). Methods based on machine learning have only recently
become available. Machine learning is a subset of artificial intelligence. They are
capable of learning by themselves without being explicitly programmed. The limita-
tions of ML algorithms are, they require supervision for feature extraction and handle
only thousands of data points. Commonly preferred ML algorithms are principal
component analysis (PCA), regression, support vector machine (SVM), etc.

[ Low-light Image Enhancement Methods ]
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Fig. 5 Classification of low-light image enhancement techniques
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Several deep learning-based image enhancement methods have also emerged since
2016. DL s a subset of the ML algorithm. Millions of data points are processed by DL
algorithms. As a result, a large number of features are extracted without supervision.
Convolution neural networks (CNNs) have been used as the foundation of deep
learning frameworks in a variety of research papers. Deep learning-based methods
can achieve excellent results in low-light image enhancement. Section 3.4 describes
about deep learning algorithms.

3.1 Gamma Transformation

A Gamma function is a nonlinear transformation. Gamma correction is a technique
used for image enhancement.

g, y) = flx, Y 9]

where ./’ represents the gamma correction parameter. By varying the parameter,
several different transformation curves can be obtained. When ‘,/* > 1, the transfor-
mation will broaden the dynamic range of the low-gray value areas of the image and
compress the range of the high-gray value areas. When ‘,/* < 1 the transformation
will have the low gray values and stretch the high gray values. When ‘,/* = 1 output
remains unchanged (Fig. 6).

A pair of complementary gamma functions by fusion is one of the methods used for
low-light image enhancement (Li et al. 2020). The pair of complementary functions
are as follows,

Fig. 6 Gamma
transformation

Output grey level

Input grey level
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n=1-(1-v) @)

ya=(1—-1- @) 3)

where x—input pixel value, y; and y,—transformed output pixels.

The inputred, green, blue (RGB) image is transformed into a hue, saturation, value
(HSV) image. The brightness of the image is determined by the value component
(V), which depends on the amount of light intensity present in the environment.
The value component is enhanced by the above transformation equations. Then two
enhanced ‘V’ components are combined by,

I =ciy1 + oy 4

where ¢; = V;/ Y V.

“I,” is the first input for the fusion process. The identical value component is
subjected to sharpening and histogram equalization to produce the second input for
the fusion. The second input for fusion is,

L=V +2H(V)—GxH(V))/2 (5)

The value components /| and /, are fused by the image fusion process. This overall
process improves the brightness of the low-light images by adjusting the dark region
and compressing the bright region. The advantage of using this gamma function is
that it generates even brightness.

3.2 Histogram Equalization

Histogram equalization (Narendra and Fitch 1981; Abdullah-Al-Wadud et al. 2007)
is one of the traditional methods for low-light image enhancement. The pixels are the
basic building blocks of an image. Each pixel holds a specific intensity value. The
histogram is a plot that shows the number of pixels versus their intensity values. The
histogram equalization algorithm uses the cumulative distribution function (CDF) to
adjust the output gray level to have a uniform distribution (Fig. 7).

Fig. 7 Example of histogram equalization
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‘I,” will serve as the input image, and ‘L’ will serve as the gray value. ‘N’ is for
the overall number of pixels in a picture, ‘I(, j)’ stands for the gray value at the point
with coordinates (i, j), and ‘n;’ stands for the number of pixels at gray level k. The
likelihood that a specific gray level ‘.’ will occur is,

P(k)y =n;/N; wherek=0,1,...,L —1 (6)

The cumulative distribution function (CDF) of the gray level of an image ‘I’ is given
by,

k
C(’<)=Zp(r); k=0,1,...,L —1 (7
0

The histogram equalization algorithm maps the original image to an enhanced image
with a uniform gray-level distribution based on CDF (Table 1). The enhanced output
image is represented as follows:

fk) = (L —1) % C(k) ®)

3.3 Retinex Theory

Retinex theory (Land 1977) is one of the major strategies employed in low-light
image enhancement. As per the Retinex theory, the observed image is represented
as the product of reflectance and illumination component (Fig. 8).

As per Retinex theory,

S(X,Y)=R(X,Y) % L(X,Y) )

where

S(X, Y)—Observed image,

R(X, Y)—Reflectance component,

L(X, Y)—Illumination component.

A low-light image is characterized as it is captured in a low illuminance region.
Illuminance is the measure of how much incident light illuminates the surface. For
images taken in dim lighting, illuminance is below the standard level. As per the
Retinex theory, the reflectance component is considered as the enhanced image,
R = S/L. By choosing the proper illumination map, the required enhanced image
is obtained. Most of the research work is carried out based on this equation. By
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Table 1 Different histogram methods

203

Histogram method

Findings

Equal area Dualistic Sub-image Histogram
Equalization (DSIHE) (Wang et al. 1999)

The input images are decomposed into two
equal area sub-images based on its original
probability density functions

Minimum Mean Brightness Error
Bi-histogram Equalization (MMBEBHE)
(Chen and Ramli 2003)

This method preserves the maximum brightness
of the image

Adaptive Histogram Equalization (AHE)
(Megha et al. 2016)

It deals with contrast restoration for medical and
other unclear images

Partially Overlapped Subblock Histogram
Equalization (POSHE) (Ganesan and Rabbani
2019)

This method separates subblock images
recursively into different sub-images with the
cumulative density function (CDF)

Contrast Limited Adaptive Histogram
Equalization (CLAHE) (Yadav et al. 2014)

This method partitions the images into
contextual regions and applies the histogram
equalization to each region.

It is a specially developed algorithm for medical
images

Recursive Mean Separate Histogram
Equalization (RMSHE) (Chen and Ramli
2013)

This is a generalized model of Bi-histogram
equalization. This method is used to provide
better and scalable brightness preservation

A Recursive Sub-image Histogram
Equalization (RSIHE) (Sim et al. 2007; Singh
2014)

It is developed to overcome the drawback of
generic histogram equalization for grayscale
images and it provides better image
compensation

An Entropy-based Dynamic Sub-histogram
Equalization (EDSHE) method (Parihar and
Verma 2016)

Recursive division of the histogram based on
the entropy of the sub histograms is performed.
Each sub-histogram is divided recursively into
two sub-histograms with equal entropy. A
dynamic range is allocated to each
sub-histogram based on entropy

A Dynamic Histogram Equalization (DHE)
(Abdullah-Al-Wadud et al. 2007)

The image histogram is partitioned based on
local minima and a unique gray value range is
assigned to each partition

A Fuzzy-based Brightness Preserving
Dynamic Histogram Equalization (BPDHE)
(Sheet et al. 2010)

It is used to reduce computational complexity,
in which execution time is dependent on image
size and nature of the histogram

Bi-histogram Equalization with a Plateau
Limit (BHEPL) (Ooi et al. 2009)

It is preferred for short processing time image
enhancement. It divides the input histogram into
two independent sub-histograms to maintain the
mean brightness

A Median Mean-based Sub-image clipped
Histogram Equalization (MMSICHE) (Singh
and Kapoor 2014)

To improve the brightness level, information
content (entropy) and better enhancement rate
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Fig. 8 Retinex model A
é é Lix, y) oy
/,1 ]'\ ¥ S(x,p)
—'-/\/\J'_
Illumination Reflection

using the illumination component, the enhanced outputs are obtained by performing
division operations. To overcome the difficulty in this division operation an inverse
term is used. The inverse term is expressed in the given equation,

R=S«+L"! (10)

Using an inverse illumination map (L), the enhanced image (R) is obtained.
Many of the deep learning model uses this Retinex theory as the basic theory. As
per the theory, illumination map is constructed by various CNN models. Current
research works are carried out in deep learning without Retinex theory also. Deep
learning models will play an important role in the enhancement of low-light images.

3.4 Deep Learning-Based Methods

Deep learning has been applied to computer vision tasks such as low-light image
enhancement in recent years due to its excellent representation and generalization
abilities. Many deep learning models use Retinex theory for their operation. A convo-
lutional neural network (CNN) is a deep learning network architecture that learns
directly from data. CNNs are especially useful for detecting patterns in images in
order to recognize objects, classes and categories.

Figure 9 shows the basic architecture of convolutional neural network (CNN). The
function of the convolution layer is to extract meaningful information by applying a
sliding window on the input matrix. The pooling layer reduces the height and width
while maintaining the depth information to conduct dimensionality reduction. Based
on the application, different types of pooling are preferred. These are maximum
pooling, average pooling and minimum pooling. Fully connected layer will perform
the classification.

A generative adversarial network (GAN) (Goodfellow et al. 2014) is an unsuper-
vised deep learning-based model. It uses unlabelled data for training. GAN contains
two competing neural networks called generator and discriminator, which compete
against one another and may evaluate, discover and follow variations within the
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Fig. 9 Convolutional neural networks

dataset. The generator generates fake samples of images and tries to fool the discrim-
inator. During the training phase, the generator and discriminator run in competition
with each other. The model is trained to function more effectively during each epoch.

A Retinex-based attention network (Huang et al. 2020) uses Retinex as the
basic theory for the learning of deep neural networks. This technique calculates an
improved image from a reflectance map. [llumination extraction block is developed
using an attention mechanism module, resulting in an illumination map prediction
network. In order to gain more precise illumination information for the input image,
this attention technique is inserted between the convolution layer and batch normal-
ization. On both low illumination images with uniform light and uneven illumination,
this model lessens the impact of noise and the augmented information that results.

A Multiscale Attention Retinex Network (MARN) (Zhang and Wang 2021) is
designed to predict a detailed inverse illumination map of the input image. When
compared with various CNN algorithms, the Multiscale Attention Retinex Network
gives better feature extraction. This MARN improves the generalization capability
of the network. Instead of using more image priors, an illumination attention map
is used to learn the model. It improves the quality of the image in various lighting
conditions. This utilizes reconstruction loss, structure similarity loss and detail loss.
If the inverse illumination is predicted, the reflectance map is calculated by using
Retinex theory and then this reflectance map is estimated as an enhanced image.

A simple generative adversarial network with a Retinex model (Ma et al. 2021),
a decomposition network is used to decompose the low-light image into illuminance
and reflection maps. For training the GAN structure unpaired datasets are used. This
provides a better generalization to the model. By using this structure, reduced training
complexity and reduced training time is achieved. This model is applied to mobile
phones with small memory.
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An enlighten GAN is a modified GAN structure (Jiang et al. 2021). It introduces
Enlighten GAN structure that can be trained without image pairs. Even with unpaired
datasets, this structure is generalized very well for various real-time images. This
model introduces a global and local discriminator structure that handles spatially
varying light conditions in the input image. The results of Enlighten GAN are
compared with several state-of-art methods. All results show the superiority of
Enlighten GAN.

Various approaches have been used to improve image segmentation (Long et al.
2015). Segmentation is the process of dividing an image into its various parts. These
basic operations are performed in many computer vision tasks. Segmentation shows
good performance during daytime or in bright light. In the case of low-light images,
segmentation is not performed well because of the presence of noise, blurredness,
etc. The process of segmentation can be divided into a single-class and multi-class
segmentation. In single-class segmentation (Wang and Ren 2018), only one object or
one feature is considered for segmentation. In multi-class segmentation (Dai and Gool
2018), multiple features are considered. In Cho et al. (2020), semantic segmentation
of low-light images with modified Cycle GAN is introduced. The modified Cycle
GAN is trained using paired dataset and the L; loss function is added to the existing
Cycle GAN for improving the performance of the segmentation.

Table 2 summarizes the low-light image enhancement techniques.

4 Conclusion

Various state-of-art methods are discussed in this paper for low-light image enhance-
ment. Many of the deep learning structures use Retinex as the basic theory of opera-
tion. The illumination map is modified by using various learning architectures, CNN,
GAN, Cyclic GAN, etc., which are a few illustrations of deep learning models. This
survey presents some works which are more suitable in a noisy environment also.
In many real-time applications, low-light conditions may occur due to the unavail-
ability of environmental light. Low-light image enhancement thus plays a crucial
role in each of these scenarios. Low-light image enhancement can be extended to the
enhancement of low-light video also.
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