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1 Introduction 

It is essential and critical to validate the aerodynamic properties of an airfoil in 
designing the fluid flow application and developing the optimal characteristics in 
this regard. The aerodynamic properties of fluid flow around an airfoil are accu-
rately predicted by using the Reynolds-averaged Navier–Stokes (RANS) equations. 
However, this method has very elevated computational costs and very long progres-
sion intervals. Several researchers from the aviation industry have validated machine 
learning techniques for solving fluid flow problems that are less time-consuming 
and cost-effective. Although recent advances in computational power and efficiency 
have greatly reduced these costs, performing numerical simulations remains a time-
consuming and computationally intensive task for many practical applications. As 
a result, it was necessary to shorten the computational time and cost for solving 
problems related to fluid flow. 

Several studies, namely incompressible, steady-state flows, predict flow fields, and 
aerodynamic force coefficients of airfoils, were used to determine the characteristics 
and performance of the airfoil. 

These diversified classes of neural networks have been consistently used to ascer-
tain the visual imagery that these techniques incorporate deep learning techniques, 
and training can be done by extracting the unique features of an employed convolu-
tion layer. For explicit problems, an ANN model is adopted. When this model is used
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for the same purpose, it assists in identifying solutions that can be easily validated 
(Narendra and Parthasarathy 1990; Hunt et al. 1992). 

Ahmed and Kamal (2022) proposed that the ability of a BPNN model to predict 
the significant aerodynamic features Cl and Cd of airfoils was evaluated. The training 
was carried out for the BPNN model, validated, and tested using aerodynamic 
data obtained through numerical simulations of 440 cases. In summary, the BPNN 
produced promising results for predicting the aerodynamic coefficients of airfoils 
that were contemplated for distinct conditions. Moin and Khan (2021) cited the 
best geometric coordinates which were determined by training and comparing the 
network architecture performance of airfoil. In contrast to CFD analysis, the neural 
network was found to be proficient in capturing aerodynamic properties with sparse 
geometric information. 

Sekar and Khoo (2019) carried out investigations without directly solving the 
Navier–Stokes equations, where CNNs were used to estimate the flow field over an 
airfoil as a role of airfoil geometry, Re, and more. Chen et al. (2020) created a dataset 
of CAI to determine the CL and CD using flow condition convolution. Bhatnagar and 
Afshar (2019) used CNNs to validate velocity and pressure fields. There are reports 
that CNN is used to explain the pressure distribution pattern around the airfoils and 
to predict the nonuniform study laminar flow in the 2D or 3D domain (Hui et al. 
2020; Guo et al. 2016). However, simple ANN architectures have been extensively 
adapted for addressing the problems associated with designing of an inverse airfoil. 
Rai and Madavan designed turbomachinery airfoils utilizing pressure distribution 
(Rai and Madavan 2001) and other design variables (Rai and MAdavan 2000) as  
input to ANNs. Huang et al. (1994) used ANNs to design and evaluate the Eppler 
method, which explains the velocity distribution of the airfoil. 

The authors claimed that the lift coefficients determined by this method are highly 
accurate in contrast to the claim, and it is observed that there was a deviation between 
predicted and actual coefficients. Khurana et al. (2008) used an approach with an 
ANN on PARSEC (a common method for airfoil parameterization) airfoils as a search 
agent in order to optimize their shapes. Various reports reported the possibility of 
using supervised machine learning techniques in the field of aerodynamics (Duru 
et al. 2021). However, in the previous studies, the ANN model was trained for lesser 
cases with less range of AoA and needs further investigations to prove its adaptability. 

In this study, the test cases were increased along with the range of AoA. The 
numerical simulation was performed in CFD. This resulted in the model being more 
accurate in predicting the Cl and Cd for different airfoils. The ANN model was 
trained in MATLAB using a dataset with different operating conditions such as Re 
and AoA as input data and the corresponding CL and CD as output data. The primary 
goal of this research was to develop an ANN architecture capable of predicting the 
most important aerodynamic characteristics Cd and Cl, which were determined for 
different airfoils under various aerodynamic conditions.
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2 Methodology 

2.1 Numerical Simulation 

The numerical simulation was performed in the CFD software package Ansys Fluent 
16.0. The numerical simulations were performed on different airfoil geometries under 
various flow conditions to obtain the coefficient of lift and drag which then could be 
used as a training data set to train and validate the ANN model. The CFD analysis 
on four different NACA series airfoils, i.e., NACA 0012, NACA 0015, NACA 2412, 
and NACA 4415 was carried out. NACA 0012 and NACA 0015 are symmetrical 
airfoils and NACA 2412 and NACA 4415 are asymmetric airfoils that have various 
applications in the field of aeronautics. The simulation was performed for 20 different 
AoAs on each airfoil varying from − 10° to 10°. The Re varied from 0.5 × 106 to 5 
× 106, i.e., the Re used in the simulation was 0.5 × 106, 1  × 106, 1.5  × 106, 2  × 106, 
2.5 × 106, 3  × 106, 3.5  × 106, 4  × 106, 4.5  × 106, and 5 × 106. Each airfoil was 
simulated with each Re at the AoA varying from − 10° to 10° with a 1° increment 
between the cases. The meshing details of selected airfoils are shown in Figs. 1a–d.

Altogether, the CFD analysis of 850 such cases was performed. The K-epsilon 
turbulence model was used which is a general description of turbulence by means of 
PDE. The standard k-epsilon model was used for a much more practical approach 
which helps in minimizing the unknowns and presents a set of equations that could 
be applied to various turbulent applications (Li et al. 2020). The C-type domain 
was used with the boundary conditions given as velocity inlet and pressure outlet at 
the inlet and outlet, respectively. The velocity specification was selected as magni-
tude and direction where magnitude was changed according to the Re. The velocity 
components x and y are changed with respect to the AoA as cosα and sinα. 

When an airfoil is subjected to flow, its streamlined shape enables the flow to split 
between the airfoil’s upper and lower surfaces. The pressure in the upper surface of 
the airfoil decreases as the flow stretches over the curved upper surface, whereas in 
the flat lower section, the flow speed and pressure are constant. At the leading edge 
of the airfoil, the pressure distribution is maximum, whereas at the trailing edge, flow 
separation occurs. The static pressure distribution is predicted using CFD, and the 
contour plots are shown in Figs. 1e–h. The conditions for numerical simulations for 
airfoil flow analysis are mentioned in Table 1.

2.2 Feedforward Backpropagation Neural Network 

A feedforward backpropagation neural network (ANN) is a form of ANN that has 
three layers: the input layer, the hidden layer, and the output layer. The substantial 
number of hidden layers is determined by the nature of the challenge. The number 
of neurons or nodes in the input layer is determined by the quality of the input 
characteristics, and the number of nodes or neurons in the layer that produces output
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Fig. 1 a Meshed airfoil NACA 0012, b meshed airfoil NACA 0015, c meshed airfoil NACA 2412, 
d meshed airfoil NACA 4415, e static pressure plot of NACA 0012, f static pressure plot of NACA 
0015, g static pressure plot of NACA 2412, h static pressure plot of NACA 4415
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Fig. 1 (continued)

is determined by the number of outputs. Weighted connections transmit all processing 
items to the next layer, such as neurons or nodes. The weights of the corresponding 
neurons have been multiplied through the hidden layer’s inputs and aggregated by 
the hidden layer to generate a summed output. The output is then processed using 
the sigmoid, tan-sigmoid, or threshold activation functions (Yuan et al. 2018). This 
type of neural network is used because of its speed of functioning, accuracy, and due 
its ease of implementation. The general architecture of the model used is shown in 
Fig. 2.

The delta rule is known as the WIDROW-HOFF learning rule using a supervised 
learning technique. Our model was trained by the adaption learning function called 
gradient descent (LEARNGDM) which was adopted by the following procedure. 

1. By giving all the random values each weight wij and bj where i = 1 to  n and j = 
1 to  m. 

2. Input and output datasets are fed into the BPNN model, and the output of each 
layer is calculated by the following equation: 

y[lc1] 
j p  = f

(
N1∑
i=1 

w
[l+1] 
i j y[l] 

i p  + b[l+1] 
j

)
. 

3. Error at the output layer is computed by the below formula: 

err[L] 
j p  = f '

(
y[L] 
j p

) (
dp − y[L] 

j p

)
, 

in the ith hidden layer (i = L − 1, L − 2, … 1). 
4. The following equations are used to calculate the bias between the input and 

output layers and changes in weights 

b[l] 
i j  (n + 1) = b[l] 

i (n) + NG.err[l] j p, 

w
[l] 
i j  (n + 1) = w[l] 

i (n) + NG.err[l] j p.y
[i−1] 
j p . 

Error terms are back propagated into the neurons of the previous layer while 
calculating the changes in weights and biases.
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Fig. 2 General block diagram of BPNN

5. Steps 2–5 are repeated till the errors are lesser than the minimum specified error. 
6. The present study involves the usage of the sigmoid activation function and is 

given by the following equation: 

F(x) = 1/
(
1 + e−x

)
. 

2.3 Prediction of Aerodynamic Coefficients 

The block diagram (Fig. 3) depicts the methodology used in this neural network which 
is used as a regression analysis tool to determine airfoil aerodynamic coefficients such 
as coefficient of lift and drag (Li et al. 2019). The dataset used in our model consists 
of 850 cases obtained through CFD analysis in the ANSYS fluent software on four 
different NACA airfoils: NACA 0015, NACA 0012, NACA 2412, and NACA 4415. 
Each of these NACA series was analyzed with ten different Re ranging from 5 * 105 

to 5 * 106 for various AoA ranges.
The dataset contained two input parameters, velocity and AoA, as well as output 

parameters, Cl and Cd 70% of the data in the dataset was used for training the network, 
while 30% was used for testing and validation (Michos et al. 1983). Later, a neural 
network was trained using a backpropagation algorithm such as the Levenberg– 
Marquardt algorithm, and training continued until it reached a stopping criterion, 
which was based on the validation error, i.e., the error should reach a minimum value 
(Yildiz et al. 2415). 

The architecture of the BPNN used consists of two inputs with ten neurons in the 
hidden layer and two outputs as shown in Fig. 4.



Prediction of Airfoil Efficiency by Artificial Neural Network 9

Fig. 3 Flowchart of the steps followed

Fig. 4 Architecture of BPNN model used 

2.4 Performance Evaluation 

The following parameters are used to evaluate the performance of the BPNN model. 

1. RMSE: Lower the value of RMSE, higher the accuracy of the regression of the 
model, and it is calculated by the following formula: 

RMSE =
/
1 

n 

n∑
i=0 

|Pi  − Mi |2 .
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2. Pearson correlation coefficient (R): R-value varies from − 1 to 1; the accuracy of 
the regression model is said to be high if it has R-value near to 1. R I calculated 
by the following formula: 

R =
⎡|||√1 − ∑(Mi − Pi  )2

∑
(
Mi − Mi−

)2 . 

n number of data points in the testing subset. 
Pi predicted values for the ith aerodynamic coefficient. 
Mi mean of all measured values for the aerodynamic coefficients. 

3 Results and Discussions 

The multiple numbers of neurons or nodes that are in the hidden layer are used to 
train the ANN model to get the best RMSE value. The RMSE values associated with 
number of neurons in the hidden layer are summarized in Table 2. Ten number of 
neurons in the hidden layer gave the best RMSE value, i.e., 0.0076318 at 27 epochs. 
It was discovered that the correlation (R) value was close to one for all training, 
validation, and testing cases indicating high accuracy of the predicted value. From 
the table, it may be inferred that changes in the number of neurons affect the RMSE 
value in zig-zag fashion indicating that RMSE value is sensitive to several neurons. 

Figure 5 describes the relationship between the RMSE and neurons in the 
hidden layer. A minimum value of 0.0076318of RMSE with accurate prediction was 
achieved, but there was no continuous trend. As the number of neurons increases, 
RMSE value for neuron 10 has increased, and then, it decreased for neuron 14;

Table 2 Correlation table for different neurons 

No. of 
neurons 

Epochs RMSE * 
10−3 

Corr-coeff. 
for training 

Corr-coeff. 
for validation 

Corr-coeff. 
for testing 

Corr-coeff. 
overall 

10 27 7.6318 0.97557 0.98447 0.98303 0.97812 

14 24 6.5816 0.98402 0.98656 0.93697 0.97815 

18 12 9.553 0.97581 0.97877 0.98238 0.97716 

22 9 5.9927 0.97708 0.98695 0.97691 0.97839 

26 6 9.5672 0.9747 0.98147 0.98265 0.97691 

30 13 9.3398 0.98386 0.98061 0.94836 0.97769 

34 13 10.746 0.98359 0.97696 0.95456 0.97792 

36 5 11.265 0.97838 0.97377 0.99939 0.97757 

40 7 8.5035 0.9727 0.98105 0.97739 0.97503 

44 8 8.4694 0.9768 0.98165 0.9791 0.97809 
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Fig. 5 Neurons in hidden layer versus RMSE 

later for neurons 18 and 22, RMSE value has increased and decreased respectively. 
RMSE value for the networks with neurons 26–36 was seen to increase, whereas 
RMSE value has again decreased with an increase in neurons to 44. 

Figure 6 depicts the relationship between the RMSE value and the network used 
for the training, validation, testing, and prediction. The graph shows that it was 
proportionately high at the beginning of training and moderately decreased as training 
progressed. The RMSE value remained constant after 27 epochs at 0.0076318, and it 
did not decrease further. This performance graph only shows the best-case scenario. 
Compared to testing and validation data, RMSE value in the present study is large 
which may be due to the limited number of training data points in 850 instances.

From Fig. 7, we can conclude that the regression value for training, validation, 
and testing was near one which indicates high accuracy in the predicted values. 
BPNN model was trained and validated using the data which was obtained from the 
historical data. As each of the data points falls on the regressions line, the graphs 
demonstrate an excellent correlation between the target and projected values. In this 
work, the trained BPNN model indicates aerodynamic parameters with excellent 
accuracy and a relatively small number of inaccurate predictions when compared to 
other current models. Because machine learning techniques require a high number 
of data sets, model performance is directly related to data size. Only 850 simulated 
datasets were used to train the BPNN model in this investigation. Because 850 is 
such a small figure, it could indicate a constraint of the model’s performance. To 
improve the model’s dependability, more data from CFD simulations of various 
airfoils under various conditions must be collected. This will allow us to use this 
model to estimate aerodynamic coefficients of lift and drag for undiscovered airfoils 
under varied conditions.
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Fig. 6 Performance plot for the best RMSE case

4 Conclusions 

Validation of the BPNN model was done on basis of its efficiency to predict aerody-
namic parameters. It is evident in Fig. 7 that there is a correlation between predicted 
values and the dataset as R is near to one. This research has contributed to the 
development of a model that can be used to determine the aerodynamic coefficients 
(CL and CD) of any airfoil and evaluate its performance. About 850 instances in 
the dataset obtained from numerical simulations are used to train, test, and validate 
the developed ANN model. Regression plots showed a nearly perfect fit between 
the actual and predicted values. At epoch 27, with ten neurons in the hidden layer, 
the RMSE for the best validation performance obtained was 0.0076318. The model 
supports any Mach number between 0 and 0.7 and any Re between 0.5 × 106 and 
5 × 106. To summarize, the developed ANN model produced promising results in 
efficiently predicting the aerodynamic coefficients of various airfoils.
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Fig. 7 Regression plots for the best RMSE value

Nomenclature 

ANN Artificial neural network 
Re Reynolds number 
M Mach number 
AoA Angle of attack 
Cl Coefficient of lift 
Cd Coefficient of drag 
Cm Coefficient of moment 
BPNN Backpropagation neural network 
RMSE Root Mean Square Error 
PDE Partial Differential Equations
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