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Abstract With the rapid evolution of deep convolutional neural networks (CNNs), 
major breakthroughs have been achieved in object detection in the field of computer 
vision. However, the majority of state-of-the-art detectors, in both one-stage and 
two-stage methods, have limits and are inadequate for usage in a real-world setting 
where each step must be thoroughly checked. This thesis investigates advanced object 
detection models and frameworks. It offers an in-depth analysis of the most recent 
object detection models, their frameworks, and the performance criteria used to 
evaluate such models. The object detection models selected are YOLOv5, Faster 
R-CNN using Detectron 2, and SSD using TensorFlow 2, and the dataset selected 
is the Vehicles-Open Images Dataset. The performance of the selected models in 
relation to many metrics is analyzed, and the findings are reported. In conclusion, 
the benefits and limits of the selected models, as well as their relative performance, 
are discussed. 

Keywords Object detection · Computer vision · Deep convolutional neural 
network · CNN · YOLOv5 · Faster R-CNN · SSD · Detectron2 · TensorFlow 2 

1 Introduction 

Humans are capable of recognizing and locating objects in an image with the blink 
of an eye. The human visual system can carry out difficult tasks such as object iden-
tification and obstacle detection quickly and accurately and with minimal conscious 
effort. It would have been impossible to think that computers can do even half of that a 
couple of decades ago. Today however, due to the ease of access to enormous quanti-
ties of data, faster machines to process the data, and improved algorithms, computers
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can be trained with almost no effort for detecting objects and labeling them for their 
respective classes in an image with high accuracy [1]. Since approximately 20 years, 
object detection has been evolving in working on detecting occurrences of visual 
objects belonging to a specific class in digital images. As a very demanding issue in 
computer vision, it is aiming to answer one question: “What objects are where?” This 
goal is trying to be accomplished by developing diverse computational models and 
techniques using state-of-the-art technologies like machine learning, artificial intel-
ligence, and so on. Additionally, it constitutes the core foundation of numerous addi-
tional computer vision tasks including captioning of an image, instance segmentation, 
image captioning, tracking an object and-so-forth. 

In addition to its importance in computer vision, object detection has a strong 
real-life importance nowadays. It is extensively applied in the real world in areas 
such as criminal investigation and autonomous driving (and robot vision). It plays an 
important, sometimes even crucial role in those domains as it reduces human involve-
ment in certain very important processes therefore reducing errors. For instance, 
autonomous driving pursues to decrease the number of traffic accidents and opti-
mizing traffic by reducing human involvement in the driving process. Going hand 
in hand with a crucial part of the autonomous driving technology is traffic sign and 
traffic light detection as well as pedestrian detection. It also improves life quality of 
people with different kinds of impairment, for example, text detection which allows 
visually impaired people to “read” street signs and currency. 

Object detection may be less prone to error than humans, but it is still far from 
perfect. In each of the above-mentioned areas, object detection is facing some diffi-
culties. The size of the pedestrians in the image or video can be too small, faces of 
people can be blocked partially or completely by other objects, texts can vary in fonts 
and languages and the image quality of traffic lights can be negatively impacted by 
bad weather conditions. These are just a few of many examples of challenges that 
can impair the accuracy of object detection. However, as mentioned, many types of 
object detection play crucial roles in real-world application and a wrong prediction 
can cause serious harm. Thus, in order to utilize the object detection model to its best 
capacity, it is vital to comprehend both its strengths and weaknesses. 

With the advent of deep neural networks, a drastic improvement in the perfor-
mance of object detection can be seen but still many of the methods are unable 
to measure how certain they are in their predictions. This becomes a considerable 
problem when a model is encountering previously unseen data as it may not be able 
to encode this input. For instance, if a model was trained with decent weather data 
and then faced with bad weather.
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2 Methods 

2.1 Dataset 

In this, we analyze the class distribution and training/validation splits to define 
the dataset utilized for all experiments in this paper. The Vehicles-Open Images 
Dataset [2] supplied by Jacob Solawetz in Roboflow was used as the dataset for the 
implementation. The primary applications for this dataset are:

• Train an object detector to differentiate among a vehicle, bus, motorbike, 
ambulance, and truck

• Detector for objects at checkpoints for autonomous vehicle
• Examine the density of ambulances in automobiles with an object detector
• Train ambulance detector
• Explore the variety and precision of the Open Images dataset 

The dataset contains a total of 627 photos of cars, with each image measuring 416 
× 416 pixels. These photos contain numerous kinds of vehicles for object detection. 
These pictures are extracted from the Open Images open-source computer vision 
datasets. This collection represents only a fraction of the Open Images dataset for 
vehicles. 

There are five designated categories, namely car, bus, motorcycle, truck, and 
ambulance. The dataset used is not proportionally balanced for all the classes, as is 
evident from the bar chart in Fig. 1. We can see that the class containing the label 
“car” is the one with the largest amount of instances in dataset, with nearly 651 
labeled objects, followed by “bus” with 141, “motorcycle” with 140, “truck” with 
136, and “ambulance” with 126. All other classes, excluding car, fall within the same 
range, which is considerably lower than the car class.

In this dataset, there are no missing annotations, meaning images that do not have 
an accompanying annotation file, or null examples, meaning images that deliberately 
do not contain any objects. In total, there are 1194 objects annotated, which roughly 
translates to 1.9 per image (average). The average image size, i.e., the size of images 
in megapixels, is 0.72 mp with images ranging from 0.29 mp to 1.05 mp. 

For using the dataset in experiments conducted in the scope of this paper, the 
dataset was split in the ratio of 7:2:1 for the training dataset, validation dataset, and 
testing dataset, respectively. Resulting in 439 images being used as a training dataset, 
125 images as a validation dataset, and 63 images as a testing dataset. 

2.2 Object Detection 

In this section, we will go through the chosen object detection models. For each 
of them, we will go through the research strategy used, all the components of the
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Fig. 1 Class distribution of the vehicles-open images dataset

model, the implementation of the model with the respective framework, the use of 
the dataset with respect to the model and the limitations faced. 

All the object detection models are trained and tested using the online platform 
of Google Colab which provides free GPU support for running such tasks requiring 
great deal of computer resources. 

2.3 YOLOv5 

The first chosen object detection model for this paper is YOLOv5. The reason to 
go with YOLOv5 is fairly simple as it is the latest version of the YOLO object 
detection models with the advantage of being implemented in Python and having 
great accessibility for integration and use in most of the fields. 

First, the repository of YOLOv5 provided by Ultralytics on GitHub is cloned. As 
this is the original source of the YOLOv5 implementation, any experiment based on 
YOLOv5 starts with the base of the code provided by Ultralytics for YOLOv5. Then, 
the requirements for running the model are installed. One of the main requirements, 
being, PyTorch as this is the framework on which YOLOv5 is built. Then, we also 
install the library for Roboflow as the dataset we are using is provided by Roboflow. 

We must put up a dataset of sample images with bounding box annotations 
surrounding the things we wish to identify in order to train our own model. Addi-
tionally, we require a dataset in YOLOv5 format. As we are using Roboflow, we can 
convert our dataset for the YOLOv5 model using the Roboflow library.
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3 Results 

In this we will go through the results obtained from all the experiments performed. As 
mentioned before all the object detection models are used to train and test the same 
dataset, which is the Vehicles-Open Images Dataset [2]. The results are subdivided 
into the three subsections corresponding to the three object detection models chosen 
to perform the experiments. First, we will see the results from the individual object 
detection models, i.e., YOLOv5, Faster R-CNN, and SSD, and then we will compare 
them. 

3.1 YOLOv5 Result 

As mentioned in Sect. 3.2.1, the training process for the YOLOv5 model was 
completed in 27 min and 46 s. The model was supplied with the parameter for 
epochs set to 500, but it stopped the training process after 294 epochs as the model 
did not observe any improvement in the results in the last 100 epochs. 

The brief summary of the YOLOv5 model that we used for this task can be 
expressed as 213 layers, 7,023,610 parameters, 0 gradients, and 15.8 GFLOPs. FLOP, 
or floating point operations per second, is a measure of performance, meaning how 
fast the computer can perform calculations. GFLOP is simply a Giga FLOP. We can 
see the metrics calculated for the validation dataset by the YOLOv5 model in Table 1. 

Let us define the columns present in the table and their meaning.

• Class: This column enlists all the classes present in the dataset.
• Images: This column gives the number of images present in the validation dataset 

for which the respective classes were tested.
• Labels: This column depicts the total value of the respective class labels present 

in the validation dataset.
• Precision: This column is the measure of the precision, which is the number of 

correct bounding box predictions.
• Recall: This column is the measure of the recall, which is the number of true 

bounding boxes that were correctly predicted.

Table 1 YOLOv5 evaluation results 

Class Images Labels Precision Recall mAP_0.5 mAP_0.5:0.95 

All 125 227 0.685 0.548 0.562 0.413 

Ambulance 125 32 0.565 0.812 0.761 0.616 

Bus 125 23 0.941 0.652 0.7 0.551 

Car 125 119 0.653 0.403 0.474 0.321 

Motorcycle 125 23 0.602 0.609 0.563 0.37 

Truck 125 30 0.666 0.266 0.313 0.209 
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• mAP_0.5: This column is the measure of mean average precision (mAP) at an 
IoU (Intersection over Union) threshold of 0.5.

• mAP_0.5:0.95: This column is the measure of the average mAP over different 
IoU thresholds, ranging from 0.5 to 0.95. 

From Table 1, we can see that for all the classes in the validation dataset, the 
precision is 68.5%, and the recall is 54.8%. The value of mAP_0.5 is 56.2% and mAP_ 
0.5:0.95 is 41.3%. The highest value of mAP_0.5 is obtained for the “Ambulance” 
class, which is 76.1%, whereas the lowest is for the “Truck” class, which is, 31.3%. 
The trend stays the same for the mAP_0.5:0.95 values, but with an overall decrease 
in the measures. 

We can see the trend of the above mentioned metrics (precision, recall, mAP_0.5, 
and mAP_0.5:0.95) in the graphs presented in Figs. 2, 3, 4 and 5. The graphs are 
generated with a smoothing value of 0.6 for the clarity of the depiction of trends. 

For better understanding of the results, we should also look at the losses in the 
YOLOv5 model. Yolo’s loss function is composed of three parts. One, box_loss which 
is the bounding box regression loss (also called Mean Squared Error). Second, object 
loss which is the confidence score of presence of object. It is the objectness loss (also 
called Binary Cross Entropy). Third, class loss which is the classification loss. As 
we can see from the figures above the box_loss is reduced to 0.02 by the last step of 
training, in contrast to it being started from a value of 0.11 in the first step. The same 
trend is observed for obj_loss and cls_loss. The cls_loss value started at 0.05 in the 
first step and was reduced to 1.31e-3 in the last step, and the obj_loss value started 
at 0.04, and by the last step it was reduced to 0.02.

Fig. 2 Precision versus epochs 

Fig. 3 Recall versus epochs
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Fig. 4 mAP_0.5 versus epochs 

Fig. 5 map_0.5–0.95 versus epochs 

Fig. 6 obj_loss value versus epochs 

Fig. 7 cls_loss value versus epochs
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Fig. 8 box_loss value versus epochs

Finally, after training the model and obtaining satisfying performance results, 
we run inference with the trained weights on the test dataset. The final outcomes 
after running the inferences are saved, and the images with the bounding boxes and 
predictions are displayed. The speed of the model for running inference on the test 
dataset is 0.5 ms preprocess, 13.7 ms inference, and 1.7 ms NMS (non-maximum 
suppression) per image at shape (1, 3, 416, 416). 

3.2 Faster R-CNN Result 

As mentioned earlier after setting the parameters and starting the training process 
of the Faster R-CNN model, it completed the process in 10 min and 29 s for 2000 
iterations. As per the overall training speed for the 2000 iterations, it took approxi-
mately 0.31 s per single iteration. For training, the model loaded 439 images in the 
COCO format from the given location of the training dataset. There were no images 
found with any usable annotations. The distribution of the instances among all the 
categories is presented in Table 2. 

During the training process, we can observe various performance metrics and loss 
function evaluations for the model. In Fig. 9, we can see that during the early steps of 
the process, the false negative value peaked at 0.98, but over the course of the process 
and by the last iteration, i.e., at step 2000, the value is reduced to approximately 0.05. 
In Fig. 10, we can observe that the class accuracy during the training process started 
from a value of 0.3 in the beginning steps but soon climbed up to 0.93 in 300 steps

Table 2 Distribution of 
instances for training Faster 
R-CNN model 

Category Instances 

Ambulance 85 

Bus 99 

Car 457 

Motorcycle 101 

Truck 96 

Total 838 
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Fig. 9 False_negative value versus steps 

Fig. 10 cls_accuracy value versus steps 

and then maintained an almost steady value with the peak value being 0.98 near the 
final iterations. 

One of the important metrics to note during the training process are the loss 
functions. As we can see in Fig. 11, the value of the loss_box_reg starts at more 
than 0.6 in the first 80 steps but then reduces to less than 0.3 after 200 steps, and 
finally is the lowest toward the final steps with the value of 0.17. The “loss_box_ 
reg” is localization loss present in the Region of Interest head which calculates the 
loss for localization of box. From the Fig. 12, we can see the value of loss_cls 
being reduced from 1.73 in the first iteration to 0.08 in the last iteration. “loss_cls” 
is the classification loss in the Region of Interest head which calculates the box 
classification loss, i.e., the value of the performance of model in labeling a correct 
class. In Fig. 13, we can see that the value of the “loss_rpn_cls” starts from 0.022 in 
the beginning and then fluctuates between 9.81e − 3 and 2.75e − 3 for iterations after 
400 and before 1400. Finally, at the end of the training process, the value reduces 
to 2.99e − 3. This value corresponds to classification loss in RPN which calculates 
the “objectness” loss, i.e., the value of the performance of model in labeling the 
foreground anchor boxes and background anchor boxes correctly. Finally, we take a 
look at the total loss which is the weighted sum of all the individual losses calculated 
during the iterations, in the Fig. 14. We can see that total loss follows the same trend 
of starting at a high value of 2.34 in the first steps and then finally reducing to value 
of 0.25 by the last step.
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Fig. 11 loss_box_reg value versus steps 

Fig. 12 loss_cls value versus steps 

Fig. 13 loss_rpn_class value versus steps 

Fig. 14 Total_loss value versus steps 

After the training process is complete with satisfying metrics, we run the inference 
on the model using the test dataset. The time taken by the model for testing the dataset 
was 9 min and 57 s, with an average of 0.165 s per iteration. For testing, the model 
loaded 63 images in the COCO format from the given location of the testing dataset. 
The distribution of the instances among all the categories is presented in Table 3.
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Table 3 Distribution of instances for testing Faster R-CNN model 

Category Instances 

Ambulance 9 

Bus 19 

Car 75 

Motorcycle 16 

Truck 10 

Total 129 

The evaluations from the inference on the testing dataset are presented in Tables 4 
and 5. 

Table 4 Evaluation of the Faster R-CNN model 

AP for IoU = 0.50:0.95 Area = all Maximum detections = 100 = 0.400 
AP for IoU = 0.50 Area = all Maximum detections = 100 = 0.613 
AP for IoU = 0.75 Area = all Maximum detections = 100 = 0.440 
AP for IoU = 0.50:0.95 Area = small Maximum detections = 100 = 0.126 
AP for IoU = 0.50:0.95 Area = medium Maximum detections = 100 = 0.104 
AP for IoU = 0.50:0.95 Area = large Maximum detections = 100 = 0.505 
AR for IoU = 0.50:0.95 Area = all Maximum detections = 1 = 0.363 
AR for IoU = 0.50:0.95 Area = all Maximum detections = 10 = 0.477 
AR for IoU = 0.50:0.95 Area = all Maximum detections = 100 = 0.478 
AR for IoU = 0.50:0.95 Area = small Maximum detections = 100 = 0.277 
AR for IoU = 0.50:0.95 Area = medium Maximum detections = 100 = 0.149 
AR for IoU = 0.50:0.95 Area = large Maximum detections = 100 = 0.580 

Table 5 Evaluation results 
per category for bbox of the 
Faster R-CNN model 

Category AP 

Car 38.262 

Ambulance 78.344 

Motorcycle 33.365 

Bus 49.999 

Truck 0.000
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3.3 SSD Result 

As mentioned in earlier, we configured the pipeline.config file with parameters for the 
training process. Before starting the actual model training, it took a few minutes to set 
up everything and read the provided pipeline file and training.record file generated 
for the dataset. The actual training process took 46 min and 31.56 s for 5000 steps. 
During the training process, we can observe various performance metrics and loss 
function evaluations for the model. For every step, we can observe the values for 
these functions. One of the main metrics for the training process is the learning rate 
of the model. We used the default values for the pretrained model for setting the base 
learning rate and its related values. From Fig. 15, we can see that the learning rate 
during the training process started with a steady increase from 0 to up until 0.4 in the 
first 2500 steps, then it maintained the learning rate around that value for the next 
1500 steps, but after that had a gradual dip and ended up at 0.38 by the final step of 
the training. 

Another important metric to keep note of during the training process is the loss 
function. The loss function, in general, is the measure of how successfully the model 
can assess a certain amount of information in a given algorithm based on the quantity 
of data provided. For this model, during training there were logs of four different 
loss functions. First one being, classification loss which loosely means the classes or 
the labels correctly identified are more than the incorrectly identified ones. From the 
Fig. 16, we can see that the classification loss value started at a high point of 0.89 
in the beginning of the training process but then steadily decreased throughout with 
exception of a bump around 1500 steps and finally reducing to the lowest value of 
0.32 after 5000 steps. 

Fig. 15 Learning rate versus steps 

Fig. 16 Classification loss versus steps
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Fig. 17 Localization loss versus steps 

Fig. 18 Regularization loss versus steps 

A second loss function that we have for this training process is the localization 
loss, which is a smooth L1 loss between the projected bounding box adjustment and 
the actual values. From Fig. 17, we can see that the value for this loss started at 0.64 
in the initial steps of training and then had a steady decline with a bit of fluctuation 
in the values but overall reducing to 0.2 by the end of the training process. 

A third loss function that is noted during this training process is regularization 
loss. Regularization process helps the model generalize better. The regularization 
loss is the loss generated by the regularization functions. For our training process, as 
we can  see in Fig.  18, the value of the regularization loss started at a low of 0.26 in 
the initial steps, then had a steep increase after 1400 steps and had its peak value of 
0.32 around 2000 steps, but then had a steady decline and finally reached the value 
of 0.27 by the end of the training process, i.e., at 5000 steps. 

Finally, we have the total loss function, which is the weighted sum of all the 
individual losses calculated during the steps of the training process. From Fig. 19, 
we can observe that the value of the total loss function started at 1.8 in the initial 
steps of training but then had a great decrease in the value and reached around 1.3 
by step 300. After that, the value had a steady decline but with various fluctuations 
along the way, with a peak value of 1.58 around 1500 steps and then the lowest value 
at the very last step of the training, 0.8.

After the successful completion of the training process, now we start with the 
testing process. For testing the model, 63 images were provided as per the dataset 
split, and the model performed the testing and evaluation in less than 1 min. The 
results from the evaluation are present in Tables 6 and 7 for the final step.
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Fig. 19 Total loss versus steps

Table 6 Evaluation results for the SSD model 

AP for IoU = 0.50:0.95 Area = all maximum detections = 100 = 0.222 
AP for IoU = 0.50 Area = all Maximum detections = 100 = 0.357 
AP for IoU = 0.75 Area = all Maximum detections = 100 = 0.264 
AP for IoU = 0.50:0.95 Area = small Maximum detections = 100 = 0.087 
AP for IoU = 0.50:0.95 Area = medium Maximum detections = 100 = 0.048 
AP for IoU = 0.50:0.95 Area = large Maximum detections = 100 = 0.276 
AR for IoU = 0.50:0.95 Area = all Maximum detections = 1 = 0.283 
AR for IoU = 0.50:0.95 Area = all Maximum detections = 10 = 0.395 
AR for IoU = 0.50:0.95 Area = all Maximum detections = 100 = 0.409 
AR for IoU = 0.50:0.95 Area = small Maximum detections = 100 = 0.171 
AR for IoU = 0.50:0.95 Area = medium Maximum detections = 100 = 0.254 
AR for IoU = 0.50:0.95 Area = large Maximum detections = 100 = 0.483 

Table 7 Evaluation of loss 
functions for the SSD model Localization loss 0.324438 

Classification Loss 0.566739 

Regularization Loss 0.271516 

Total Loss 1.162693 

3.4 Evaluation 

In this section, we will compare the results obtained from the chosen object detection 
models for this paper, i.e., YOLOv5, Faster R-CNN using Detectron2, and SSD using 
TensorFlow 2. The models are trained and tested on the same dataset in order to 
achieve results that can be compared quantitatively. We will evaluate the performance 
of the before mentioned models on some common performance metrics and also take 
a look at the time taken by each model to train on the dataset to acquire the presented 
results.
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Table 8 Evaluation of loss functions for the SSD model 

Model Total training time Total iterations Average time/step (s) 

YOLOv5 27 min 46 s 11,760 0.142 

Faster R-CNN 10 min 29 s 2000 0.315 

SSD 46 min 31.56 s 5000 0.558 

3.5 Training Time 

The time the models required for training on the dataset is presented in the Table 8. 
As we can see, the YOLOv5 model completed the training in 27 min and 46 s for 
294 epochs, which results in 11,760 iterations, whereas the Faster R-CNN model 
took 10 min and 29 s for 2000 iterations and the SSD model completed the training 
process in 46 min and 31.56 s for 5000 iterations. This gives us the average time 
taken by the models per step, as presented in the Table 8. Although Faster R-CNN 
took the least amount of time for training overall, YOLOv5 has significantly less 
time per step. The time taken by YOLOv5 model per iteration is almost half of what 
the Faster R-CNN takes. The SSD model has the longest time per iteration for the 
training process. 

3.6 Performance Metric 

One of the most important metrics to measure the performance of any object detection 
model is mean Average Precision (mAP). The value of mAP is the score generated 
by comparing the bounding box of ground truth with the bounding box detected by 
the model. The higher the value obtained for this metric mAP, the more precise are 
the findings of the model. mAP@0.5 corresponds to the mAP for Intersection over 
Union (IoU) thresholds 0.5, and mAP@0.5:0.95 corresponds to the average mAP 
for IoU thresholds from 0.5 to 0.95 with a step size of 0.05 (0.5, 0.55, 0.6, 0.65, 0.7, 
0.75, 0.8, 0.85, 0.9, 0.95). We can see the evaluation results from the three models 
for the mAP@0.5 values and mAP@0.5:0.95 values for the test dataset in Table 9. 

As is evident from the Table 9, for mAP with IoU threshold 0.5, the best results are 
obtained from the model Faster R-CNN with the precision percentage being equal 
to 61.3%. YOLOv5 comes in as close second with 56.2% for the same metric and 
SSD comes in last with a low value of 35.7%. The map@0.5 value for Faster R-CNN

Table 9 Comparison of 
mAP@0.5 and 
mAP@0.5:0.95 

Model mAP@0.5 mAP@0.5:0.95 

YOLOv5 0.562 0.413 

Faster R-CNN 0.613 0.400 

SSD 0.357 0.222 
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is almost double than of SSD with YOLOv5 being only around 8% less than Faster 
R-CNN’s value. 

For the metric of average mAP calculated over IoU thresholds ranging from 0.5 
to 0.95 with a 0.05 step value, we can see that YOLOv5 takes the first stop with the 
highest value among all the three models of 41.3%. Faster R-CNN comes a close 
second with a value of 40%, which is only slightly less than YOLOv5. The SSD 
model scores the lowest value again in this metric as well, with a percentage of 
22.2%. The mAP@0.5:0.95 value for SSD is almost half of the values obtained by 
the other two models. 

4 Conclusion 

The work done under the scope of this paper constitutes state-of-the-art object detec-
tion models and deep learning neural network frameworks. The purpose of the present 
degree project is to research the latest object detection models in deep convolutional 
neural networks, examine prominent deep object detection frameworks, and evaluate 
their performance for a certain dataset. 

After researching about the object detection models and a brief literature review 
of the object detection algorithms and frameworks, three object detection models, 
namely, YOLOv5 (You Only Look Once), Faster R-CNN (Regional Convolutional 
Neural Network) using Detectron2 framework, and SSD (Single Shot Detector) 
using TensorFlow 2 framework, were selected to perform experiments and then 
performance evaluation. The dataset was chosen with images related to autonomous 
vehicle driving, and the size of the dataset chosen was relatively small due to some 
delimitation and to allow the experiments to be conducted in a reasonable amount of 
time. 

All the models were trained and tested using Google Colab online environment. 
The YOLOv5 model was implemented using the online available source code from 
the authors at Ultralytics GitHub, the Faster R-CNN model was implemented using 
the Detectron2 framework source code available for various pretrained model in the 
official GitHub repository of Facebook AI Research Team, and the SSD model was 
implemented using the TensorFlow 2 framework’s official GitHub repository with 
pretrained models. All the models were trained on the selected custom dataset and 
optimized as required. 

The models YOLOv5 and Faster R-CNN outperformed the SSD model by a great 
margin in terms of time taken for training and the final mAP value for the test dataset. 
The YOLOv5 model proved to be the fastest, taking less than half the time taken 
by the Faster R-CNN model in training. Faster R-CNN model proved to be slightly 
more accurate than YOLOv5 for mAP@0.5, but for mAP@0.5:0.95 metric, YOLOv5 
outperformed Faster R-CNN model by a slight margin. Concluding, the findings of 
the thesis are in clear favor of YOLOv5 in terms of speed and accuracy, but with a 
slight advantage to Faster R-CNN in terms of accuracy for a trade-off of speed.
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