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Abstract Emotion recognition has been a problem in the field of brain–computer 
interface. Numerous ways are available for recognizing human emotions and one such 
technique is through Electroencephalogram (EEG) signals. EEG signals are record-
ings of the subject’s electrical activity in the brain. Feature extraction approaches 
such as Power Spectrum Density (PSD) and Discrete Wavelet Transform (DWT) are 
fed as features to various machine learning (ML) and deep learning (DL) models. 
This work aims to develop models that predict emotions from EEG data. In addition, 
the results of the above-mentioned feature extraction approaches are compared in 
this work. The proposed feature extraction methods and models are applied on the 
DEAP dataset. 

Keywords Emotion recognition · EEG signals · Machine learning · Deep 
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1 Introduction 

For any social being emotions are an integral part. Emotional intelligence is what 
distinguishes us, humans, from animals. Emotion can be defined as “A strong feeling 
deriving from one’s circumstances, mood, or relationships with others”. The advent 
of ML and artificial intelligence (AI) has made emotion recognition a very popular 
topic in the field of brain–computer interface (BCI). Although, there are many bio-
physical signals given out by a person which can be used for emotion recognition 
(such as facial expressions, heart rate, perspiration, voice tempo). EEG is the most 
prominent and promising approach, since signals like facial expressions and change
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Fig. 1 Valence arousal 
model 

in voice tempo can be easily faked leading to wrong interpretation. Electrical activity 
in the brain cannot be forged or tampered with. Although EEG signals show beyond 
doubt to be the best for emotion recognition, they are time-dependent and have a 
high signal-to-noise ratio. They require complex machinery to be recorded. This 
makes feature extraction for ML and DL applications a tiring task. To avoid this, two 
feature extraction techniques: Power Spectrum Density (PSD) and Discrete Wavelet 
Transform (DWT) are to be used. In our paper, we perform a comparative anal-
ysis of the above-mentioned feature extraction techniques and their implications 
in machine learning and deep learning models, namely, Support Vector Machine 
(SVM), Random Forest, K-Nearest Neighbors (KNN), Long Short-Term Memory 
(LSTM). 

The input variables are EEG signals and the output labels are the emotions gener-
ated through the valence–arousal model. The valence–arousal model, shown in Fig. 1, 
is a two-dimensional model, horizontal axis represents the valence and vertical axis 
represents arousal, proposed by Russell in 1980 [1]. The measure of degree of aver-
sion or attraction to a stimulus is valence. It ranges from negative to positive. Arousal 
is a degree of alertness to stimuli or a measure of how awake a person is to stimuli, 
ranging from passive to active as depicted in Fig. 1. 

The valence arousal model allows us to quantify emotions and is an innovative 
approach to classify emotions. Further research has been done on the model giving 
us the nine-state model of valence arousal as shown in Fig. 2 [2].

2 Background 

The DEAP dataset is a collection of EEG, physiological, and visual signals that can 
be used to analyze emotions. The description [3] provides a procedure for selecting 
stimuli, the experimental setup (explanation of the 10–20 system), self-assessment 
mannequins based upon valence, arousal, familiarity, and dominance ratings, and the



EEG Signal-Based Human Emotion Recognition Using Power … 559

Fig. 2. Nine-state model of 
valence arousal

correlation between EEG frequencies and participant ratings. The results of [1] are  
contained in a database to examine spontaneous emotions, which contains psycholog-
ical signals from 32 participants who watched and assessed their emotional responses 
to a 40 one-minute films. A brain–computer interface (BCI), commonly known as 
a brain–machine interface (BMI) or mind–machine interface (MMI), dispenses a 
non-muscular channel of communication between the human brain and a computer 
system [4]. BCI deals with how humans and machines interact and interface [5]. 
The research in this field is responsible for bridging the gap between humans and 
machines. Brain–computer interface is used to read and interpret signals from the 
brain, and great success is achieved using this approach in the clinical front. 

The brain waves are used to control the actions of robotic arm to help the people 
affected from stroke and locked-in syndrome allowing them to move their wheel chair 
or drink coffee from the cup on their own [6]. Dreamer (A Database for Emotion 
Recognition through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf 
Devices) dataset is used in [7] by capturing all the signals using portable, low-cost, 
wireless, wearable, and store brought equipment, that made it easier and shows the 
potential to use of effective computing methods. RNN, CNN, and GRU algorithms 
were used in [8] to predict EEG abnormalities. Deep learning algorithms performed 
well, with an 86.7 percent testing accuracy in predicting EEG abnormalities. Algo-
rithms like Principal Component Analysis for extracting the features and SVM, KNN, 
and ANN were used for classification in [9]. SVM has 91.3% accuracy on ten chan-
nels. In [2], Principal Component Analysis was used to extract the most important 
features, along with SAE. PCA-based covariate shift adaption boosted the accuracy. 
The accuracy obtained was 49.52 and 46.03% (valence and arousal). For arousal, the 
average and maximum classification rates were 55.7% and 67.0%, respectively, and 
for valence, 58.8 and 56.0%. References [8, 9] use the SVM technique as well. ASP 
uses data from both the left and right hemispheres of the brain. Valence and arousal 
had accuracy ratings of 55.0% and 60%, respectively. Artificial neural networks for
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emotion recognition through EEG signals were used in [10–12] which use wavelet 
energy to predict emotions through EEG signals. 

3 Methodology 

Thirty-two subjects were exposed to 40 one-minute videos and their EEG signals 
were recorded for 63 s with 3 s of baseline in the DEAP dataset. During the 63 s 
period, 32 EEG channels and 8 physiological channels captured bio-physical data. 
Facial videos are also available for the first 22 subjects, but these were not used 
in this study. The electrode placement technique employed was the 10–20 systems. 
Subjects rated each video on a scale of 1–9 for valence, arousal, dominance, and 
familiarity. The signals were denoised and down sampled from 512 to 128 Hz. 

In our work, we chose 14 channels: F3, FC5, AF3, F7, T7, P7, O1, O2, P8, T8, 
F8, AF4, FC6, and F4 that fit the Emotiv Epoch Plus model [4], which is a low-cost 
off-the-shelf EEG machine, in the hopes that the models developed in the future can 
be utilized directly in conjunction with the EEG device. To image neuronal activity in 
the subject’s frontal lobe, the electrodes F3, F4, AF3, AF4, F7, and F8 are used. Using 
the electrodes T7, T8, FC5, and FC6, the temporal lobes of the brain are imaged and 
electrodes P8, P7 are used to scan the parietal lobes. The electrodes O2 and O1 are 
used to acquire the neuronal activity of the occipital lobes. For each trial, we use a 4 s 
sliding window with a 0.5 s gap and split the 60 s EEG signal into 112 data points. 
As a result, each patient receives 4480 data points from 40 trails. Table 1 shows 
the encoding of valence arousal values into nine emotional states. Inter-personal 
emotional variation is reduced to some extent by encoding states based on range 
division. 

Table 1 Emotional states 
based on valence arousal 
rating 

Emotional state Valence range Arousal range 

Depressed 1–3 1–3 

Calm 4–6 1–3 

Relaxed 7–9 1–3 

Miserable 1–3 4–6 

Neutral 4–6 4–6 

Pleased 7–9 4–6 

Distressed 1–3 7–9 

Excited 4–6 7–9 

Happy 7–9 7–9



EEG Signal-Based Human Emotion Recognition Using Power … 561

3.1 Power Spectral Density 

Power Spectral Density provides power in each of the bandwidths based on the 
frequency. A fundamental computational EEG analysis method that can provide 
information on power, spatial distribution, or event-related temporal change of a 
frequency of interest is spectra analysis. PSD of the channels is extracted followed 
by training of different machine learning models. PSD provides the power in each 
of the spectral bins by computing the Fast Fourier Transform (FFT) and calculating 
its complex conjugate. 

Mathematically, it is represented in Eq. (1): 

X( f ) = F{x(t)} = 
∞ ∫

−∞ 
x(t)e− j2πft dt, (1) 

where x(t) is the time-domain signal, X( f ) is the FFT, and ft is the frequency to 
analyze. 

3.2 Discrete Wavelet Transform 

Discrete Wavelet Transform helps in extracting features from the time and frequency 
domains of EEG signal. A wavelet is a wave-like oscillation that is localized in time. 
A wavelet in a signal is computed from the scale and location. Daubechies 4 (db4) is 
used as a smoothing feature for identifying the changes in the EEG signals. A low-
pass scaling filter and a high-pass wavelet filter are used in DWT to create a filtering 
mechanism. The lower and higher frequency portions of the signals are separated 
using this transform decomposition. The lower frequency contents provide a good 
approximation of the signal, whereas the high-frequency contents contain the finer 
details of the fluctuation. A measurement criterion of the amount of information 
within the signal is entropy. It measures only the uncertainty in EEG signal which is 
similar to the possible configurations or the predictability. The mathematical formula 
to calculate entropy using DWT is given in Eq. (2): 

ENT j = −  
N∑

k=1

(
D j (k

2 )
)
log

(
D j (k

2 )
)
. (2) 

Wavelet energy reflects the distribution of the principle lines, wrinkles, and ridges 
in different resolutions. The square of the wavelet coefficients is summed over the 
temporal window to compute the energy for each frequency band in Eq. (3): 

ENG j = −  
N∑

k=1

(
D j (k

2 )
)
k = 1, 2, . . . ,  N . (3)
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Here, the wavelet decomposition level (frequency band) is implied as j and the number 
of wavelets coefficients within the j frequency band is referred to as k. 

3.3 Experimental Setup 

The proposed LSTM model has five LSTM layers with 512 nodes in layer1, 256 
nodes in layer 2, 128 nodes in layer 3, 64 nodes in layer 4, 32 modes in layer 5. The 
final layer is dense layer with nine nodes. The LSTM layers all have tanh activation 
function, whereas the dense layer has SoftMax activation. After each epoch, batch 
normalization and a dropout of 0.3 are done to avoid overfitting. RMSprop optimizer 
is used to avoid vanishing gradient problem (Fig. 3). The model is compiled with 
mean squared error loss. Figure 4 shows the proposed LSTM model architecture. 

In the initial approach, the entire dataset consisting of 32 subjects was combined 
and PSD and DWT features were extracted. Cross-validation after training and testing 
gave inconsistent results. This was attributed to the interpersonal emotion variance 
which results in covariate shift in the dataset, i.e., the intensity at which one person 
feels for the same emotion is different from other subjects. Hence, the approach 
was changed to individual subjects’ emotion recognition. As shown in Fig. 3, each 
subject’s data were used to extract PSD and DWT features, trained on RBF SVM, 
RF, KNN, and LSTM models separately. The PSD and DWT were calculated in

Fig. 3 Experimental setup 

Fig. 4 LSTM model 
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five frequency bins, namely Delta (4–7 Hz), Theta (8–12 Hz), Alpha (13–16 Hz), 
Beta (17–25 Hz), and Gamma (26–45 Hz). These bins are associated with the most 
emotional activity. The window size is chosen as 512 [12]. The first three seconds, 
which were the baseline seconds, were removed for each subject, after which PSD 
and DWT were calculated. PSD technique gives a total of 70 features (14 channels × 
5 bandwidths), whereas DWT gives a total of 140 (70 entropy and 70 energy) features. 
Following feature extraction, a standard scalar was used to perform normalization 
on the data, and nine-state emotion encoding were done. 

4 Experiment and Results 

PSD and DWT are calculated and saved subject-by-subject using the parameters 
provided in Sect. 3. PSD and DWT data are loaded separately for each subject. The 
labels assigned to the data are then divided into nine emotional states. The data is 
normalized and divided into test and training groups using conventional methods. 
Grid search algorithms are used to optimize parameters such as number of estimators 
in random forest, C in RBF SVM, and number of neighbors in KNN. n estimators 
= 500, C = 1e + 10, and n neighbors = 3 are the best parameters found. With a 
batch size of 100, the LSTM model was run for 100 epochs. The testing accuracies 
for all 32 participants for all four models using PSD feature extraction are shown in 
Table 2. The DWT feature extraction approach is described in Table 3.

The standard deviations and mean accuracies are shown in Table 4. The best 
mean accuracy and lowest standard deviation are found in the LSTM model with 
DWT feature extraction. Because DWT includes both time and frequency features, 
LSTM outperforms other models. With the PSD feature extraction approach, the 
mean accuracies are 91.15 (random forest), 95.46 (RBF SVM), 92.03 (KNN), and 
94.32 (KNN) (LSTM). The mean DWT accuracy is 90.96 (RF), 95.98 (RBF SVM), 
93.65 (KNN), and 96.76 (KNN) (LSTM). A bar plot depicts the accuracies of the 
four different models. The PSD mean accuracies are shown in Fig. 5. The  DWT  
mean accuracies are shown in Fig. 6.

5 Conclusion and Future Work 

We present a state-of-the-art result for interpersonal emotion classification using 
EEG signals in this paper. With only 14 input channels, the LSTM model built can 
effectively classify the nine fundamental emotions. We may infer from this research 
that developing a Unified Emotion Recognition model for every human being is 
unrealistic, and that instead, each person’s emotions must be trained separately in 
order to construct the model. Future research will focus on combining the models 
into a single algorithm and using soft voting to improve classification and identify 
the emotion activation mechanism that leads to emotion identification. Also, from
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Table 2 Subject-wise PSD-based model accuracies 

Subject RF results RBF SVM KNN Accuracy 

1 98.32 99.22 99.11 98.44 

2 88.39 95.42 91.85 93.22 

3 87.95 97.77 97.1 95.87 

4 89.06 92.97 87.61 89.62 

5 85.94 88.5 79.13 88.67 

6 94.53 98.21 96.54 96.65 

7 98.44 99.78 99.11 97.99 

8 94.75 95.2 91.52 95.17 

9 92.63 95.76 90.63 97.01 

10 90.63 93.75 86.5 92.05 

11 91.63 95.09 85.6 90.26 

12 90.18 95.31 92.97 94.5 

13 86.72 92.75 88.95 92.83 

14 85.27 95.42 94.64 92.91 

15 97.32 98.66 95.54 97.38 

16 97.66 98.88 97.99 97.71 

17 88.73 94.53 88.73 94.67 

18 91.52 97.54 96.21 96.6 

19 90.29 94.64 89.96 96.29 

20 88.73 94.64 93.3 96.34 

21 91.41 96.76 94.98 94.22 

22 87.83 91.41 84.26 83.48 

23 97.43 98.88 98.33 98.3 

24 87.61 91.74 86.16 92.75 

25 83.93 92.86 85.27 87.19 

26 86.38 92.41 90.29 92.61 

27 94.42 96.32 95.76 96.9 

28 84.82 94.53 90.85 92.77 

29 93.86 96.76 93.42 96.93 

30 94.2 94.53 92.63 95.51 

31 90.74 96.54 94.98 96.4 

32 95.65 97.88 95.31 97.04 

Mean 91.15 95.46 92.03 94.32
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Table 3 Subject-wise DWT-based model accuracies 

Subject RF result RBF SVM KNN Accuracy 

1 96.96 98.37 99.02 98.72 

2 88.93 97.72 93.16 96.44 

3 84.69 97.39 96.85 97.56 

4 89.79 95.01 92.51 94.78 

5 85.78 93.27 86.54 94.43 

6 93.7 98.81 97.5 97.61 

7 98.7 99.02 98.48 98.75 

8 93.49 95.98 94.57 96.58 

9 93.92 97.61 94.03 98.42 

10 90.45 93.27 85.88 95.87 

11 92.51 95.77 87.51 95.63 

12 88.06 93.16 90.66 95.41 

13 86.54 92.62 89.69 95.76 

14 87.08 94.57 92.83 95.14 

15 96.85 99.24 96.31 98.23 

16 97.18 97.39 96.42 97.64 

17 88.82 93.38 90.01 96.52 

18 88.17 96.09 97.61 97.94 

19 89.47 94.68 90.66 96.88 

20 87.08 94.46 93.81 97.04 

21 89.47 96.09 96.74 96.52 

22 85.78 91.97 85.56 91.96 

23 96.31 99.24 98.7 98.37 

24 90.01 93.81 89.58 96.9 

25 87.62 95.77 93.27 95.98 

26 89.14 95.87 93.81 96.71 

27 92.62 96.2 97.18 97.45 

28 86.86 95.55 92.4 95.79 

29 95.66 97.61 94.68 98.26 

30 91.31 96.96 97.5 97.39 

31 92.07 96.2 96.63 97.45 

32 95.87 98.37 96.85 98.21 

Mean 90.96 95.98 93.65 96.76
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Table 4 Mean accuracies and standard deviations 

RF SVM KNN LSTM 

Accuracy STD Accuracy STD Accuracy STD Accuracy STD 

PSD 91.15 4.76 95.46 2.56 92.03 4.79 94.32 3.44 

DWT 90.96 3.86 95.98 2.03 93.65 3.84 96.76 1.44 

Fig. 5 PSD mean accuracies 

Fig. 6 DWT mean accuracies

collecting raw EEG signals through the Emotiv Epoch Plus machine through emotion 
recognition and classification, an end-to-end algorithm was developed.
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