
Predicting Code Runtime Complexity
Using ML Techniques

C. V. Deepa Shree, Jaaswin D. Kotian, Nidhi Gupta, Nikhil M. Adyapak,
and U. Ananthanagu

Abstract There are several approaches to solving every coding algorithm in
Computer Science. To achieve the same result, these methods may use various tech-
niques and reasoning. The difficulty is that as the number of inputs increases, certain
algorithms tend to perform poorly. Several metrics may be used to assess the quality
of any code. The code runtime complexity is one of these measurements. To deter-
mine this runtime complexity, substantial study and a thorough understanding of
algorithms are necessary, which is a challenging manual undertaking. In this study,
the worst-case runtime complexity of codes in programming languages C, Java and
Python are calculated as Big-O notations utilising code features like Abstract Syntax
Trees, ML approaches and static code analysis. The novelty of the research is our
labelled runtime complexity dataset which was constructed manually, implementing
Deep Learning Algorithms like Bi-LSTM and calculating Code Runtime Complexity
for the worst-case scenario as Big-O notations for codes in three languages, C, Java
and Python. To predict the runtime complexity for a given code more accurately than
the traditional legacy methods such as manually asserting code runtime complexity
or running code for different amounts of input, we have presented a more effective
manner for the same. The results portray that the XGBoost classifier outperforms
the other models with an accuracy of 96%. The current study can also be extended
to other high-level programming languages, including more training samples and
making use of graph neural networks.

C. V. Deepa Shree · J. D. Kotian · N. Gupta (B) · N. M. Adyapak · U. Ananthanagu
Department of Computer Science Engineering, PES University, Bengaluru, India
e-mail: nidhiguptx7@gmail.com

C. V. Deepa Shree
e-mail: chalapathicvenkata@gmail.com

J. D. Kotian
e-mail: kotianjashu09@gmail.com

N. M. Adyapak
e-mail: nikhiladyapak31@gmail.com

U. Ananthanagu
e-mail: ananthanagu@pes.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
N. R. Shetty et al. (eds.), Advances in Computing and Information, Lecture Notes
in Electrical Engineering 1104, https://doi.org/10.1007/978-981-99-7622-5_26

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7622-5_26&domain=pdf
mailto:nidhiguptx7@gmail.com
mailto:chalapathicvenkata@gmail.com
mailto:kotianjashu09@gmail.com
mailto:nikhiladyapak31@gmail.com
mailto:ananthanagu@pes.edu
https://doi.org/10.1007/978-981-99-7622-5_26

378 C. V. Deepa Shree et al.

Keywords Runtime complexity · Static analysis · Abstract Syntax Tree · LSTM ·
AST · graph2vec · Bi-LSTM

1 Introduction

Efficient code is the need of the hour. A lot of factors determine the efficiency of a
program. The execution time of the code is one of them. The execution time of a code
is the measure of time taken for a program to complete running without any error. An
important observation is that the actual time taken for program execution is machine-
dependent. It depends on several factors like parallelism, processor utilisation, CPU
overhead and so on. Instead of measuring the actual time taken for completion of
program execution, time complexity labels are used. This is not exactly equal to the
exact time taken for running a code snippet but is a quantification of the same as a
function of the input length.

The process of expressing execution time based on the input size is also
called asymptotic analysis. There are several asymptotic notations to express time
complexity. These are Big-O, Omega and Theta. Big-O is also known as the upper
bound of execution time. Omega represents the lower bound. Theta notation consti-
tutes both the upper and lower boundaries. It is also known as the tight bound. In our
work, we have used the Big-O notation to determine the time complexity.

Finding the time complexity of a code has a lot of applications. It can be used
in online coding platforms to help users improve and eventually that the optimal
solution. Having an idea of the algorithm’s time complexity can help developers
write better code. Most of the existing solutions online do not support static analysis.
The user is required to design various test cases of hugely varying input sizes. The
corresponding Big-O notation is then given as the output, based on the total execution
time of the algorithm. Big-O Calculator is a library that supports the Big-O notation
calculation on the Coderbyte platform. “Big-O” is a Python package restricted to
Python programs. This process is time-consuming and tedious.

A few other solutions which involve static analysis have a lot of limitations. For
instance, [1] uses text parsing and works only for programs with loops. A few other
standard procedures such as the master’s theorem and Recurrence Tree work only for
recursion-based algorithms. These must be done manually and are time-consuming.
Hence, an automated solution is required.

We aim to solve the problem at hand using machine learning (ML) and deep
learning (DL) techniques. The dataset is collected from various sources available on
the internet. As a part of the approach to solving the problem, the code is converted
into an Abstract Syntax Tree (AST) to get graph embeddings rather than directly
obtaining the word embeddings from the code.

The nodes from the AST are extracted, and a directed graph is built. This graph
is then converted into a graph embedding using Graph2Vec. We have converted the
problem at hand into a graph classification problem; hence, we use classification-
based ML and DL algorithms.

Predicting Code Runtime Complexity Using ML Techniques 379

2 Related Work

Sikka et al. [2] have presented an approach where ASTs are used to extract hand-
engineered features and code embeddings from the code snippet. The authors have
built a new dataset called CoRCoD, consisting of 933 Java codes. They have used
various ML algorithms and SVM with 1024-dimensional code embeddings using
graph2vec gave the highest accuracy amongst all the models. The authors have used
only Java codes, and no other languages have been used. Agenis-Nevers et al. [3]
have presented GuessCompx, an R package which does empirical estimation on
both the space and time complexity of the given algorithm. The package takes inputs
of multiple increasing-size test samples and tries to fit the best complexity label
to it based on running time. This process is tedious as the user must design various
samples of various sizes. Hutter et al. [4] have proposed a method of using regression
machine learning techniques to predict the actual runtime of the program. All the
runtimes have been recorded using the same environment as CPU configuration, etc.
This setup is not efficient because the same factors must be used if the model results
are to be reliable. Haridas et al. [5] worked on the representation of C/C++ programs
as graphs. They formulated a unique method that utilised a neural tensor network
to combine results from the GNN and time capsules. This fusion helped them to
improve the accuracy of the model which predicted the similarity of a given software
code to a set of codes. Although the accuracy of the similarity value was high, the
trade-off was the runtime. Gao et al. [6] worked on the prediction of the runtime
performance of DL models and neural architecture search algorithms that utilised
GNNs and a novel approach DNNPerf (a tool). Their model accepted a DL model
file, a model configuration specification and a runtime specification as input, using
which it reported the runtime performance values as the output. For the models that
implemented proprietary NVIDIA, CUDA, etc., their internal implementation details
were hidden which made it difficult to arrive at the exact runtime performance metric.
Chen et al. [7] worked on efficiently capturing code semantics with the efficient API-
based AST. Zhang et al. [8] worked on a novel way to get the huge ASTs into memory
by splitting them block-wise and processing them with the help of neural networks.
Lin et al. [16] worked on the block-wise splitting of code into different sections and
then processing them. A combination of these techniques [8, 9] can be implemented
in our study if the size of ASTs generated becomes exceptionally large, and not
sufficient to fit into memory. A tool called “J-CEL” [10] attempts to show the Big-O
notations as graphs for a visual representation of Java codes. Code clone detection
has been performed using RNNs that take in embeddings using Siamese networks
and LSTMs [11] and flow-augmented ASTs [12] for comparing the similarity of
codes. This research was useful in our research for generating ASTs in C and Java,
respectively. Our study was supposed to be based on GNNs which we plan for future
work and a study by Feng et al. [13] worked to predict vulnerabilities in functions
of programs using GNNs. Reza et al. [14] worked on predicting the complexity of
codes in the manner of lines of codes, depth of inheritance tree, object coupling,
etc., using ML techniques. This research was studied in detail due to its similarity

380 C. V. Deepa Shree et al.

with our study. Guzman et al. [15] worked on a test bench of 30 Python programs
that were tested for time complexity correctness using Big Theta time complexity
approximation.

3 Data Collection and Labelling

The dataset contains a large collection of code samples taken from various sites
such as geeks for geeks, tutorialspoint, etc. These websites contained sample codes
for various data structures and algorithms where they were either labelled with the
respective runtime complexity or they were not. If the runtime complexity was not
labelled for a respective code sample, it was analysed by two people before assigning
it a label.

“AProVE” [16] is a tool implemented to calculate runtime complexities of Java
codes and Jar files. This tool was initially explored to check if codes could be labelled.
Due to the limited functionality and prerequisite style of input to be given in the form
of certain parameters, the codes scraped to be our dataset could not be labelled by
this tool.

Further research was conducted into the Termination and Complexity Calculation
competition to obtain tools to label our dataset. Since most of the tools were not open
source and had a lot of dependencies, we chose to manually label our dataset.

The dataset contains a total of 10 runtime complexity labels, each code divided
based on the language they belong to (C, Java, or Python). The dataset currently
contains 769 codes with 41.22% Java, 42.78% Python and 15.99% C codes. The
codes included belong to data structures such as Arrays, Stacks, Queues, Linked
List, Trees and Graphs. The codes have the respective contributors’ names in them
wherever it was mentioned. Each code sample is a single file which includes the
source website of the code, the code and the contributor’s name. Using this method
helped to prevent duplication of codes while assigning the codes to their respective
time complexity label.

The 10 different complexity classes represented as Big-O notations used in this
study are O(1), O(N), O(N2), O(N3), O(log(N)), O(N log(N)), O(N * d), O(2n),
O(N!) (N factorial) and O(sqrt(N) (square root of N) for C, Java and Python as
shown in Fig. 1. The entire workflow of the study is shown in Fig. 2.

Predicting Code Runtime Complexity Using ML Techniques 381

Fig. 1 Number of code snippets for each label, programming language-wise

Fig. 2 Workflow of the proposed approach

4 Proposed Approach

4.1 Programming Language Identification

For the study, three high-level programming languages were used, C, Java and Python.
These programs can be identified by either implementing Github’s language identifier
or a python package called “Guesslang.” The language codes can also be identified
by their extensions. It is important to classify the codes by the programming language
because the packages for pre-processing and AST generation are different for each
language.

382 C. V. Deepa Shree et al.

4.2 AST Generation

An Abstract Syntax Tree is a representation of the program syntax in the form of a
tree. This does not represent every detail of the code. It contains only content-related
information. After the language was identified, the corresponding Python package
was used to obtain the AST representation. ASTs for C codes were obtained using
“pycparser.” This is a Python package which accepts C code in the form of a file
or a string and generates the corresponding AST. The C code was first compiled by
including the fake headers from the “pycparser” repository. This compiled code was
then used to generate the AST. The typedef nodes and their children were removed
from the tree as they do not contribute to determining the time complexity of the code
snippet. Similarly, for Java codes, “javalang” was used to construct the AST and for
Python, the AST module was used to get the tree. Each of these AST representations
was traversed, and all the nodes were obtained. While obtaining the nodes, these
were indexed accordingly considering the current parent of the node, along with the
addition of a random number, so each node has a unique index. This is a requirement
to construct graphs in the next step of the solution. Figures 3, 4 and 5 show the AST
representations produced by the python libraries for all three programming languages
for a simple program to display “Hello World.” Each node contains a unique number
as the index and the value of the node.

Fig. 3 A simple C program to print Hello World and its corresponding AST (without typedef nodes
and their children

Predicting Code Runtime Complexity Using ML Techniques 383

Fig. 4 A simple Java program to print Hello World and its corresponding AST

Fig. 5 A simple Python
program to print Hello World
and its corresponding AST

4.3 Construction of Directed Graph and Graph Embeddings

The extracted nodes and their features were then used to construct a directed graph
using the “network” library. Each node has a unique index and value. The value is the
class name for a few nodes and the value of the class along with the former for a few
nodes. These were assigned as node attributes and the attribute was named “feature.”
These graphs were then passed as input to the graph2vec algorithm to obtain a graph
embedding. These embeddings are NumPy arrays of shape (128,) for each graph.
This algorithm was implemented using the assistance of the “karateclub” [17] library
in Python. graph2vec library contains the Python implementation of [18]. Narayanan
et al. [18] state that graph2vec produces embeddings that are task agnostic. This made
the current algorithm more favourable than the others. The embeddings are numpy
arrays that are further used to train and test the classification models.

384 C. V. Deepa Shree et al.

4.4 Data Pre-processing

The outputs from the pre-processing steps, the AST to graph building to embeddings
resulted in a set of vector embeddings stored and processed in the form of numpy
arrays which is the independent variable, “X.” The code names, complexity and the
corresponding time complexity label were also stored. From this the time, complexity
label was extracted and made the dependent variable, “Y.” This data was then fed as
the input to the classification models. To test out the data processed so far without any
analysis, initially, these “X” and “Y” were passed to the Random Forest multi-class
classifier ML model and the confusion matrix was plotted resulting in an accuracy of
60%. Analysis of the dataset was performed, visualising the skewness of the dataset,
shown in Fig. 6, due to an imbalance in the number of code samples present in
each code complexity. This imbalance was taken care of by two different techniques,
resampling and SMOTE. Combining the “X” and “Y,” we obtained a data frame that
has 128 columns for embeddings and an extra column for the complexity class label.
This Pandas data frame was used to train and test the model.

Resampling is the procedure to reproduce samples in minority classes to make up
the majority class, known as upsampling or to cut down on the number of samples
to make it into a common lower threshold known as downsampling. SMOTE is the
technique used to intelligently find out which features contribute positively when the
samples were duplicated and generate synthetic data to cover for the imbalance in
data samples of classes. The dataset being imbalanced as shown in Fig. 6, the dataset
had to be balanced before proceeding further. By experimenting with a combination
of these techniques, the upsampling version of resampling is used in this study.

Getting the dataset to be balanced as shown in Fig. 7 was trained on different ML
models such as Random Forest, AdaBoost, XGBoost, KNN, Logistic Regression

Fig. 6 Visual representation of skewness of the dataset

Predicting Code Runtime Complexity Using ML Techniques 385

Fig. 7 Dataset distribution
for Expt-1

and Naive Bayes. In this study, a permutation and combination of experiments were
performed to analyse the performance of the models. A technique called feature
importance was performed. This technique helps us get to know the most important
features from “X” that are contributing positively towards the results. For each code
in the dataset, 128 features are the vector values in each numpy array. All the features
contribute differently towards the model prediction. By using “SHAP” [19], a library
in Python and some packages in the Random Forest model to intelligently tell the
feature importance, the top 20 features can be obtained as shown in Fig. 9. Using the
top features, the models are retrained, and the results are recomputed.

As part of the pre-processing stage, another approach was built and used. Here,
all the classes with less than 10 samples in each class were removed. This resulted in
a total of 6 classes in each language, respectively. The dataset was initially divided
into subsets of their respective languages. Resampling was performed on each of the
subsets based on classes which had the maximum frequency. The resultant subsets
gave 149 samples each for the python subsets, 165 samples each for the Java subsets
and 61 samples each for the C subsets as shown in Fig. 8. These subsets were then
combined to create the final dataset which was then used for model building and
training.

In another approach, the programming language was combined with the time
complexity as the target label. This approach was followed as the node labels for
each language are different. Before proceeding with this approach, classes with less
than 10 samples for each class were removed, as these labels were not available for
all languages. This resulted in a total of 18 classes as shown in Fig. 10. SMOTE [20]
was used to resample the dataset. This resulted in 165 samples for each class, which
is a total of 2970 samples. This dataset was then used to train the chosen classification
models as stated earlier.

386 C. V. Deepa Shree et al.

Fig. 8 Dataset distribution for Expt-2

4.5 Model Analysis and Building

4.5.1 Bi-LSTM

Many times, a reference is required to certain data which was stored previously to
predict the present output. RNNs are not capable of handling such long-term depen-
dencies as there is no control over which parts of the data need to be remembered and
which ones must be forgotten to make future predictions accurately. To overcome this
problem, we chose to use a bi-directional LSTM. The input flows in two directions,
making the Bi-LSTM different from the regular LSTM. With the regular LSTM,
we can make input flow in one direction, either backwards or forwards. However,
in bi-directional LSTM, we can make the input flow in both directions which helps
consider both the future and the past information. Bi-LSTM is usually employed
where sequence-to-sequence tasks are needed.

In this study, we re-sized the graph embeddings from 2 to 3D, as the Bi-LSTM
expects 3D data. The input shape for the embeddings passed was 128 × 1. Hence,
the first Bi-LSTM layer was allotted a total of 64 memory units. 64 as the input shape
was 128 which suggested the sum of forwards (64) and backwards (64) should be
equal to 128. We have a total of 10 classes to be predicted hence we used the SoftMax
activation function. Finally, because this is a classification problem where the data
is sparse, the sparse log loss (sparse_categorical_crossentropy in Keras) was used.
The efficient ADAM optimisation algorithm was used to find the weights, and the
accuracy metric was calculated and reported for each epoch. Figure 11 shows the
different Bi-LSTM architectures for the models in different experiments.

Predicting Code Runtime Complexity Using ML Techniques 387

Fig. 9 Sorting the embedding columns (features) by importance

4.5.2 Random Forest Classifier

This is a supervised learning and ensemble model. It makes use of the bagging method
to group the decision trees. It uses ensemble learning, which is a learning technique
for enhancing the model’s performance by combining numerous classifiers to solve
a complicated issue. Random Forest is diverse since it does not account for all the
attributes and features while building each tree. Each tree has its data and features
and thus makes complete usage of the CPU while building Random Forests. Also,
there is no need of splitting the data into training and testing sets, since there is always
25% of data that is unseen by the classifier.

388 C. V. Deepa Shree et al.

Fig. 10 Dataset distribution for Expt-3

4.5.3 K-Nearest Neighbour

K-nearest neighbour is a supervised machine learning model which is used widely.
This method makes a key assumption that the unseen data and neighbour are related
and places this new data in the class that is very alike amongst the existing classes.
This means that any unknown data points can be easily classified into one of the
existing categories, using some distance measure to estimate the similarity between
the test sample and the target classes to make the classification decision. Euclidean
distance is the most widely used distance measure to find the nearest neighbours of
each query point and we have used it as a metric as part of this research work while
training the KNN model for the classification task.

4.5.4 XGBoost

XGBoost stands for Extreme Gradient Boosting. It is an implementation of the
gradient boosting-based decision tree, which is an ensemble learner. The key idea
of this algorithm is that each predictor corrects its predecessor’s error. A variety of
hyperparameters are included in the XGBoost implementation. Tuning these hyper-
parameters can improve results depending on the job at hand. In our research work, we
have used the default hyperparameters for XGBoost as provided by the Scikit-Learn
module, since the model has performed well during both training and testing.

Predicting Code Runtime Complexity Using ML Techniques 389

a) Model 1 b) Model 2

c) Model 3 d) Model 4

e) Model 5 f) Model 6

Fig. 11 Bi-LTSM architecture for Models 1–6

390 C. V. Deepa Shree et al.

4.5.5 AdaBoost

AdaBoost is an abbreviation for adaptive boosting, which is one of the most popular
ensemble learners and is mostly used with decision trees. This algorithm builds a
learner and assigns equal weights to all the data points initially and eventually assigns
higher weights to the samples after each iteration, such that it gives more importance
to the higher weights in the next model. This process is continued until a lower
error is received. In our research work, we have used the default hyperparameters for
AdaBoost as provided by the Scikit-Learn module, since the model has performed
well during both training and testing.

4.5.6 Logistic Regression

Multinomial logistic regression is a logistic regression extension that includes native
support for multi-class classification issues. Logistic regression is restricted to two-
class classification tasks. Some extensions, such as one-vs-rest, can be utilised for
multi-class classification issues, but they require that the classification problem be
first turned into several binary classification problems. To accommodate multi-class
classification issues, the multinomial logistic regression technique is a modification
to the logistic regression model that requires altering the loss function to cross-
entropy loss and the predicted probability distribution to a multinomial probability
distribution.

4.5.7 Naive Bayes Classifier

Naive Bayes is a probabilistic machine learning model that is used for classifica-
tion tasks. The principle of this classifier is based on the Bayes theorem. It is a
supervised learning algorithm which is used in text classification that includes a
high-dimensional training dataset. This classification algorithm is used in building
fast machine learning models that can make quick predictions. It is a probabilistic
classifier, which means it predicts the probability of an object. Naive Bayes learners
and classifiers can be extremely fast compared to more sophisticated methods.

5 Metrics Used

1. Accuracy: Accuracy is one of the most important evaluation metrics when it
comes to performance evaluation. It tells us how well the trained model has
performed against the test data and is more useful when all the target classes
have the same gravity. It is defined as the ratio of the count of true predictions to
the count of all the predictions in the dataset.

Predicting Code Runtime Complexity Using ML Techniques 391

2. Precision: Precision is an evaluation metric that computes a model’s accuracy
in classifying a test record as positive. It is computed as the ratio of the count
of True positives in the dataset to the count of all the positive specimens in the
dataset.

3. Recall: Recall quantifies the ability of the model to find a positive specimen. The
higher the recall gets, the more positive the tests are being detected. This metric
focuses only on how the positive records are being classified and are independent
of the negative specimens in the dataset.

4. F-measure: Individually in some cases, neither precision nor recall gives the
required insight into a model’s performance and that is where F-measure comes
in handy. F-measure gives us a single score that handles the problems of both
precision and recall.

5. Kappa Statistics: Kappa score is used to evaluate the performance of model
classification. It is used to measure the degree of agreement amongst two judges
and is popularly referred to as inter-rater reliability.

6. AUC Score: AUC stands for area under the curve and is computed using Simpson’s
classifier. The higher the AUC score the better the classifier performs. The Y-axis
refers to the True Positive Rate (TPR) and the X-axis refers to the False Positive
Rate (FPR).

6 Experimental Results and Analysis

A permutation and combination of techniques were used to arrive at different results
and evaluation metrics. Initially, using the imbalanced dataset in Fig. 6, and running
the Random Forest model, an accuracy of 59.45% was achieved. For the same
dataset, removing complexity class codes which had less than 10 samples, which
were codes in O(2n), O(1), O(N!) (N factorial) and O(sqrt(N) (square root of N)
were removed and retrained on the same model resulting in an accuracy of 58.89%.
Since there was an imbalance in the dataset, the dataset had to be balanced. By using
the resampling technique of upsampling, different experiments were performed. By
taking only two majority classes, O(N) and O(N2) as binary classification, an accu-
racy of 88.82% was achieved. Taking the four majority classes, O(N), O(N2), O(N
log(N)) and O(log(N)) and running them on the same configurations, an accuracy
of 89.86% was achieved. Removing the class codes with less than 10 samples, an
accuracy of 94.49% was achieved. Taking all 10 complexity classes and testing on
the same configurations, an accuracy of 95.73% was achieved.Balancing the dataset
by SMOTE, taking two classes, O(N) and O(N2) as binary classification, an accu-
racy of 97.34% was achieved. Balancing the dataset by the resampling technique
of upsampling, performing feature selection and retraining on the Random Forest
model, an accuracy of 96.16% was achieved. To obtain the best results, a set of ML
models used for training were Random Forest, AdaBoost, XGBoost, KNN, Logistic
Regression and Naive Bayes. The metrics computed for these sets of models are
Accuracy, Precision, Recall, F1 score, Cohen Kappa Score and ROC AUC Score as

392 C. V. Deepa Shree et al.

shown in Experiment-1, Fig. 12, and the visual representation of results is obtained
in Fig. 13a. The Random Forest classifier was initially used, and it gave us an accu-
racy of over 90% which was termed significantly good with the kind of data that was
available. This is because Random Forest reduces the overfitting problem in decision
trees which reduces the variance which in turn improves the accuracy. Hyperparam-
eter tuning was performed on the Random Forest classifier to improve the evaluation
metrics. This included the number of decision trees being used and the max features
that will be used in the classifier. Grid Search, a hyperparameter tuning strategy, was
used to fine-tune the model and provide the best parameters the model could run
on. This strategy improved the accuracy to 91.83%. The assumption that Random
Forest gave a good accuracy was because it adds additional randomness to the model
while growing trees. It also searches for the best feature amongst a random subset
of features instead of looking for the most important feature, when splitting a node.
The pre-processed data were then tried on boosting algorithms like AdaBoost and
XGBoost which gave an accuracy of 86% and 92% respectively. The algorithm helps
in the conversion of weak learners into strong learners by combining n number of
learners. Boosting also can improve model predictions for learning algorithms. We
have used the default hyperparameters for AdaBoost as provided by the Scikit-Learn
module since the model has performed well during both training and testing with
different variations of data. The data for all the experiments are shown in Fig. 12.

The KNN algorithm gave an accuracy of 78% on the same configured data. We
use the built-in library from Scikit-Learn to train our KNN model. We split the
input and output data into train and test sets to train the model and test the model’s
accuracy on testing data. The Euclidean distance was used as the distance metric
here. KNN assumes that if a datapoint is close to another datapoint, then they belong
to similar classes. One of the reasons why KNN had lower accuracy in contrast to
other algorithms is due to its inability to work with high-dimensionality data as it
complicates the distance calculating process. Another reason could be feature scaling
where the data in all dimensions need to be scaled properly.Logistic Regression and
Naive Bayes were the next set of models that were used to analyse the behaviour of
the data. The classifiers gave an accuracy of 83% and 35% respectively. In logistic
regression, the parameter’s random state was set to 0 and multiclass was set to
multinomial to perform better. One of the reasons for Naive Bayes performing badly
might be due to the bad binning of continuous variables with multinomial Naive
Bayes. Figures 14, 15 and 16 are the confusion matrices for the different experiments.
The same models were tried for the approach where the programming language was
combined with the time complexity as the output label. Experiment 3 in Fig. 12 and
the visual representation of results obtained in Fig. 13c show the various performance
metrics obtained by the mentioned ML algorithms for this approach. The accuracy
achieved by this model was around 93% using Random Forest and around 94% for
XGBoost. Figure 18 shows the confusion matrix obtained for XGBoost. The study
was carried out on six different versions of the Bi-LSTM models. In the first model
version, resampling was done on the dataset which made the runtime complexity
labels equal in number. A total of 10 complexity labels were obtained which were

Predicting Code Runtime Complexity Using ML Techniques 393

Fig. 12 ML model metrics and results

then trained on a Bi-LSTM model with 64 memory units for a total of 25 epochs.
The loss and accuracy found are shown in Figs. 17 and 18a.

In the second model version, the embeddings were combined with the respective
language used and the runtime labels and embeddings were removed for the labels
which consisted of fewer than three codes. We then performed resampling on the
dataset, and a total of six complexity labels were obtained. This was trained on a
Bi-LSTM model with 65 memory units for a total of 50 epochs. The results are shown
in Fig. 18b.

In the third model version, similar steps were repeated as in the second model.
The only difference was that the Bi-LSTM was trained on 129 memory units. It was

394 C. V. Deepa Shree et al.

(a)

(b)

(c)

Fig. 13 a Bar chart of performance metrics of Experiment-1, b Bar chart of performance metrics
of Experiment-2, c Bar chart of performance metrics of Experiment-3

Predicting Code Runtime Complexity Using ML Techniques 395

Fig. 14 Confusion matrix for XGBoost exclusive of programming language in Experiment-1

Fig. 15 Confusion matrix for XGBoost inclusive of programming language and time complexity

more time-consuming as compared to the previous model due to the high number of
memory units. The results obtained are shown in Fig. 19a.

In the fourth model version, the runtime labels were combined with the language
used which yielded a total of 18 runtime complexity labels. This was trained on a
Bi-LSTM which consisted of 64 memory units for a total of 50 epochs. The results
are shown in Fig. 19b, and the table in Fig. 17. The fifth model consisted of similar
steps as in model four with the difference being in the number of memory units
utilised in the Bi-LSTM which was 128 in number. The results obtained are shown
in Fig. 20a.

396 C. V. Deepa Shree et al.

Fig. 16 Confusion matrix for XGBoost when both the programming language and the time
complexity are combined into a single label

Fig. 17 Accuracy and loss table for six Bi-LSTM models

(a) (b)

Fig. 18 a Loss versus accuracy plot for Bi-LSTM model 1, b loss versus accuracy plot for Bi-LSTM
model 2

Predicting Code Runtime Complexity Using ML Techniques 397

(a) (b)

Fig. 19 a Loss versus accuracy plot for Bi-LSTM model 3, b loss versus accuracy plot for Bi-LSTM
model 4

(a) (b)

Fig. 20 a Loss versus accuracy plot for Bi-LSTM model 5, b loss versus accuracy plot for Bi-LSTM
model 6

In the sixth model version, the runtime complexities which consisted of fewer
than 3 codes were removed and then steps similar to model one were followed. The
results obtained are shown in Fig. 20b. In conclusion, training the model with a
higher number of memory units reduced the loss and increased the accuracy. From
the results, model 5 performed the best with an accuracy of 92.86%.

6.1 Assumptions

The current approach does not probe into the syntactical correctness of the program. It
is assumed that all the programs are error-free. The solution presented by us does not
involve built-in python packages like sklearn, pandas, etc. This solution supports the
prediction of algorithmic time complexity. Another assumption is that the program
completes running in a finite time and has utilised such codes in the study.

398 C. V. Deepa Shree et al.

7 Limitations and Future Work

The current project is restricted to three languages, C, Python and Java. We would
like to extend it to more languages like C++ and other commonly used languages
for writing algorithms. This study can be extended to include some less commonly
used packages in these languages to identify their runtime complexity. As a part of
future work, we intend to extend the dataset by adding more data samples and trying
Graph Neural Networks, for classification, since the problem also falls under graph
classification. This can also be implemented as a tool or a web browser extension to
calculate code runtime complexity. Currently, a frontend is built using the Streamlit
Python package where the user can drop in a zip file with codes and the backend
will compute the code’s runtime complexity. This study can also be implemented as
a web browser extension for easy computation of runtime code complexity of codes
in various other high-level languages.

8 Conclusion

Predicting the code complexity can help aid in improving code quality. This can
be tedious if done manually, hence using static analysis and machine learning to
make things easier. The current approach aims at solving the current problem at
hand for three languages, C, Java and Python. With the current approach, we also
use ASTs and graph embeddings, rather than just word embeddings from programs.
We find that Random Forest, accompanied by GridSearchCV for hyperparameter
tuning, outperforms all the other models. We would also like to try various other
algorithms to achieve accurate and better results. We hope that our research helps
developers and learners who always strive to write better code.

References

1. Shunnarski A (2022) Welcome to the Big O Notation calculator! https://shunnarski.github.io/
BigO.html. Accessed 05 May 2022

2. Sikka J, Satya K, Kumar Y, Uppal S, Shah RR, Zimmermann R (2020) Learning based methods
for code runtime complexity prediction. Lect Notes Comput Sci 12035:313–325

3. Agenis-Nevers M, Bokde ND, Yaseen ZM, Shende MK (2020) An empirical estimation for
time and memory algorithm complexities: newly developed R package. Multimedia Tools Appl
80(2):2997–3015

4. Hutter F, Xu L, Hoos HH, Leyton-Brown K (2014) Algorithm runtime prediction: methods &
evaluation. Artif Intell 206:79–111

5. Haridas P, Chennupati G, Santhi N, Romero P, Eidenbenz S (2020) Code characterization with
graph convolutions and capsule networks. IEEE Access 8:136307–136315. https://doi.org/10.
1109/ACCESS.2020.3011909

6. Gao Y, Gu X, Zhang H, Lin H, Yang M (2021) Runtime performance prediction for deep
learning models with graph neural network. MSR-TR-2021-3/Microsoft

https://shunnarski.github.io/BigO.html
https://shunnarski.github.io/BigO.html
https://doi.org/10.1109/ACCESS.2020.3011909
https://doi.org/10.1109/ACCESS.2020.3011909

Predicting Code Runtime Complexity Using ML Techniques 399

7. Chen L, Ye W, Zhang S (2019) Capturing source code semantics via tree-based convolution over
API-enhanced AST. In: Proceedings of the 16th ACM international conference on computing
frontiers (n. Pag.)

8. Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X (2019) A novel neural source code
representation based on abstract syntax tree. In: 2019 IEEE/ACM 41st international conference
on software engineering (ICSE), pp 783–794. https://doi.org/10.1109/ICSE.2019.00086

9. Lin C, Ouyang Z, Zhuang J, Chen J, Li H, Wu R (2021) Improving code summarization with
block-wise abstract syntax tree splitting. In: 2021 IEEE/ACM 29th international conference
on program comprehension (ICPC), pp 184–195. https://doi.org/10.1109/ICPC52881.2021.
00026

10. Kurniawati G, Karnalim O (2018) Introducing a practical educational tool for correlating
algorithm time complexity with real program execution. J Inf Technol Comput Sci 3(1):1–15

11. Büch L, Andrzejak A (2019) Learning-based recursive aggregation of abstract syntax trees
for code clone detection. In: 2019 IEEE 26th international conference on software analysis,
evolution and reengineering (SANER), pp 95–104. https://doi.org/10.1109/SANER.2019.866
8039

12. Wang W, Li, Bo Ma, Xin Xia, Zhi Jin. “Detecting Code Clones with Graph Neural Network and
Flow-Augmented Abstract Syntax Tree.” SANER 2020, London, ON, Canada 978–1–7281–
5143–4/20/© 2020 IEEE.

13. Feng Q, Feng C, Hong W (2020) Graph neural network-based vulnerability predication. In:
2020 IEEE international conference on software maintenance and evolution (ICSME), pp
800–801. https://doi.org/10.1109/ICSME46990.2020.00096

14. Reza SM, Rahman Md, Parvez Md, Badreddin O, Al Mamun S (2020) Performance analysis of
machine learning approaches in software complexity prediction. https://doi.org/10.1007/978-
981-33-4673-4_3

15. Guzman J, Limoanco T (2017) An empirical approach to algorithm analysis resulting in approx-
imations to big theta time complexity. J Softw 12:964–976. https://doi.org/10.17706/jsw.12.
12.964-976

16. Ströder T, Aschermann C, Frohn F, Hensel J, Giesl J (2015) Aprove: termination and memory
safety of C programs. In: Tools and algorithms for the construction and analysis of systems,
pp 417–419

17. Rozemberczki B, Kiss O, Sarkar R (2020) Karate Club: An API oriented open-source python
framework for unsupervised learning on graphs. In: Presented at proceedings of the 29th ACM
international conference on information & knowledge management, Ireland

18. Narayanan A, Chandramohan M, Venkatesan R, Chen L, Liu Y, Jaiswal S (2017) graph2vec:
learning distributed representations of graphs

19. Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. In: Proceed-
ings of the 31st international conference on neural information processing systems (NIPS’17),
Red Hook, NY, USA, pp 4768–4777

20. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-
sampling technique. J Artif Intell Res 16:321–357

https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICPC52881.2021.00026
https://doi.org/10.1109/ICPC52881.2021.00026
https://doi.org/10.1109/SANER.2019.8668039
https://doi.org/10.1109/SANER.2019.8668039
https://doi.org/10.1109/ICSME46990.2020.00096
https://doi.org/10.1007/978-981-33-4673-4_3
https://doi.org/10.1007/978-981-33-4673-4_3
https://doi.org/10.17706/jsw.12.12.964-976
https://doi.org/10.17706/jsw.12.12.964-976

	 Predicting Code Runtime Complexity Using ML Techniques
	1 Introduction
	2 Related Work
	3 Data Collection and Labelling
	4 Proposed Approach
	4.1 Programming Language Identification
	4.2 AST Generation
	4.3 Construction of Directed Graph and Graph Embeddings
	4.4 Data Pre-processing
	4.5 Model Analysis and Building

	5 Metrics Used
	6 Experimental Results and Analysis
	6.1 Assumptions

	7 Limitations and Future Work
	8 Conclusion
	References

