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Abstract. Object detection algorithms can assist in detecting the helmet-wearing
status of electric bicycle riders, thereby saving regulatory manpower costs. How-
ever, there is currently a lack of standardized and publicly available datasets.
Additionally, the basic YOLOvVS5s object detection algorithm, due to its limited
feature extraction capabilities, may lead to numerous instances of both false nega-
tive and false positive. To enhance the model’s focus on critical information within
the feature maps, this paper introduces the CBAM attention mechanism module
into the Backbone section of YOLOVSs. This module sequentially infers attention
maps from the input feature maps along both channel and spatial dimensions inde-
pendently, and then multiplies these attention maps with the input feature maps
to achieve adaptive feature optimization. This paper have established self-built
dataset for experimental research, and the results indicate that compared to the
original YOLOVS5s model, the proposed method has improved the model’s overall
mAP score by 1.89%.
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1 Introduction

In recent years, with the rapid development of economy and the expansion of road traffic,
electric bicycles have become one of the main means of transportation for mass travel.
However, while people enjoy the convenience of electric bicycles, they often have serious
safety accidents because they do not wear helmets. According to statistics, about 80%
of the deaths of motorcycle and electric bicycle drivers are caused by craniocerebral
injury, and the correct wearing of safety helmets can greatly reduce the risk of death
in traffic accidents, which plays an important role in protecting the life safety of the
masses. Therefore, since April 2020, the Ministry of Public Security has launched a
nationwide “One helmet and one belt” safety protection action to correct unsafe behaviors
such as motorcycle and electric bicycle riders not wearing safety helmets. The current
supervision method is still based on the daily patrol of traffic police, and the workload
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is large. In this paper, the object detection algorithm is used to realize the automatic
identification of helmet wearing of electric bicycle drivers and passengers, so as to save
labor costs and improve urban management efficiency.

Currently, object detection based on deep learning can be categorized into two main
types: “two-stage detection” and “one-stage detection” [1]. The “two-stage detection”
algorithms perform object detection in two steps. Firstly, they generate candidate object
regions, and then combine these regions with CNN networks to extract features and
perform regression-based classification. The “two-stage detection” category includes
representative algorithms such as the RCNN series [2—4], SPPNet [5], and FPN [6].
These algorithms exhibit high detection accuracy but require significant computational
resources. On the other hand, the “one-stage detection” algorithms employ a single neural
network to simultaneously generate candidate regions, classify objects, and localize their
positions, eliminating the need for explicit region proposal generation. This end-to-end
training approach simplifies the complex processes of two-stage methods, significantly
improving the detection speed. However, it often leads to a decrease in localization
accuracy. Representative algorithms in this category include the YOLO series [7-10]
and SSD series [11-13].

Following the release of YOLOVS in 2020, Ultralytics Corporation introduced the
latest version, YOLOVS, in January 2023. In comparison to YOLOVS, the YOLOvS8
model employs a more complex network architecture, which allows it to achieve higher
accuracy. However, it requires more training data and computational resources to reach
optimal performance. On the other hand, YOLOVS5 offers a comprehensive advantage
of a lightweight model, speed, efficiency, and high accuracy. It has garnered widespread
attention and applications across various domains. Considering that most traffic mon-
itoring scenarios involve the use of low-power embedded devices and low-resolution
cameras, which demand lightweight models, this paper chooses YOLOVS as the foun-
dational model for implementing object detection tasks. So far, numerous researchers
have chosen YOLOVS5 as a baseline network and made targeted improvements to achieve
more accurate detection results. Wang J et al. [14] proposed an improved YOLOVS net-
work for real-time multi-scale traffic sign detection. They replaced the original feature
pyramid network in YOLOvS5 with AF-FPN, which improved the detection performance
of YOLOVS on multi-scale objects while ensuring real-time detection. Qi D et al. [15]
developed a face detector called YOLOSFace based on YOLOVS, and they designed
detectors of different sizes based on the deployment capabilities of different platforms.
Qi J et al. [16] introduced a method to incorporate the SE attention mechanism module
into the YOLOV5 model to enhance the extraction of crucial features for more accurate
identification of tomato virus diseases. Wu et al. [17] replaced the original Bottleneck
structure in the YOLOVS model with the Ghost Bottleneck composed of Ghost mod-
ules, resulting in a novel neural network model called Yolov5-Ghost. This model was
used for vehicle detection in virtual environments and effectively reduced computational
complexity.

The YOLOVS series of object detection networks consists of four versions:
YOLOVSs, YOLOv5m, YOLOvVS], and YOLOv5x. Among them, YOLOvVSs is the small-
est and lightest version, while the other three versions progressively increase the width
and depth of the YOLOVSs model to achieve better detection accuracy. The lightweight
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nature and lower computational requirements of YOLOv5s make it more suitable for
embedded devices and low-resolution cameras. Zhou et al. [18] conducted training and
testing of YOLOVS models with different parameters for construction site safety hel-
met detection. The experimental results showed that YOLOvSs achieved an average
detection speed of 110 FPS, meeting the requirements for real-time detection. Although
the YOLOVS5s series models have been applied in various domains, they require the
construction of corresponding datasets specific to the detection tasks to enable the mod-
els to extract general features of the target objects and accomplish the object detec-
tion task. Furthermore, the basal YOLOvS5s network suffers from insufficient feature
extraction capabilities due to the wastage of computational resources in redundant back-
ground regions. Consequently, it exhibits varying degrees of missed detections and false
detections in different detection tasks.

For addressing this issue, incorporating attention mechanisms at appropriate posi-
tions within object detection models can help enhance the model’s feature extraction
capabilities. In the current field of computer vision, there are two common types of
attention mechanisms: channel attention and spatial attention. Channel attention primar-
ily focuses on determining what important feature information is, while spatial attention
emphasizes where the feature information is located. In this paper, a hybrid-domain
attention mechanism known as CBAM [19] is employed. CBAM sequentially applies
both channel and spatial attention modules to enhance the adaptive feature optimization
capabilities of convolutional neural networks across various channels and pixel posi-
tions. As a result, CBAM achieves superior performance improvements compared to
single-dimensional attention mechanisms such as SE [20] and ECA [21].

To achieve automated recognition of whether electric bicycle riders are wearing
safety helmets, this paper independently constructed a dataset and conducted experi-
mental research based on it. Ultimately, the paper introduced CBAM attention mecha-
nism into the backbone section of the YOLOvS5s model. This enhancement resulted in
a significant 1.89% increase in the model’s overall mAP, effectively reducing instances
of false positives and false negatives.

2 Collection and Processing of the Dataset

Due to the absence of publicly available datasets for helmet detection, this study indepen-
dently creates a dataset of electric bicycle riders and their helmets through web scraping
and on-site photography at street intersections. The collected dataset comprises a total
of 2172 images, with 1145 images obtained through web scraping and 1027 images cap-
tured through on-site photography. The dataset includes samples with varying weather
conditions, different shooting angles, and different levels of congestion, as illustrated in
Fig. 1.

After analyzing the dataset, it was found that non-helmeted electric bicycle riders
exhibit various head features, including different hair colors and styles, as well as the
presence of various hats that bear resemblance to helmets, as shown in Fig. 2. In order to
reduce false detections, this paper proposes the introduction of an attention mechanism
to enhance the feature extraction capability of the model.

For the detection task presented in this paper, identifying the riders on electric bicy-
cles is the algorithm’s crucial first step. Given that the second step involves recognizing
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(c) different levels of congestion

Fig. 1. Partial visualizations of the dataset images.

Fig. 2. Typical examples of non-helmeted individuals.

the head region, which occupies a smaller area compared to the entire rider target and
contains limited feature information, it is essential to treat it as a distinct category for
separate recognition. Therefore, the detection categories are divided into two classes:
“NMV” (non-motorized vehicle) and “Helmet”. Additionally, other head features that
do not correspond to wearing a safety helmet are considered as background negative
samples during training. After determining the category criteria, an online annotation
tool called Make Sense was utilized to annotate the detection objects in the dataset,
generating YOLO-formatted txt files. The content of the txt files is illustrated in Table 1,
where each row represents five pieces of information for a detection box: the category
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index, normalized coordinates of the center point (X, Y), and the normalized width and
height of the bounding box.

Table 1. The content meaning of the annotated file in YOLO format.

Class Centre_X Centre_Y Width Height
0 0.508446 0.516470 0.618243 0.841216
1 0.453125 0.175042 0.098818 0.158361

After the annotation task was finished, the images along with their corresponding
annotation files were randomly split into training, validation, and testing sets in a ratio
of 8:1:1.

3 YOLOVSs Algorithm with Integrated Attention Mechanism.

3.1 CBAM Attention Mechanism

The CBAM attention mechanism [19], introduced by Sanghyun Woo et al. in 2018, con-
sists of two key modules: the Channel Attention Module (CAM) and the Spatial Attention
Module (SAM). It is a prominent example of a hybrid-domain attention mechanism.

The CAM submodule generates channel-domain attention masks by analyzing the
relationships among channels in the feature map. Its purpose is to capture the differences
in importance among channels in the feature map. Since each channel of the feature map
is considered as a feature detector, CAM focuses attention on the question of what
important feature information exists in the image. The structure of CAM is illustrated
in Fig. 3.

Channel Attention Module

MaxPool
DO —
Channel Attention
Input Feature F AvgPool Mc

Shared MLP

Fig. 3. Diagram of Channel Attention Module.

The CAM module first performs the global maximum pooling and the global aver-
age pooling operations as MaxPool and AvgPool on the input original feature map F
to aggregate spatial information of the feature map. This results in two spatial con-
text descriptors, Fy,,, and Fg,,. These descriptors are further processed by a shared
network MLP to obtain two sets of weight vectors. The weight vectors are element-
wise summed and then passed through a Sigmoid function o to merge and output a set
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of one-dimensional channel attention weights M. (F). The computation process is as
follows:

M. (F) = o (MLP(MaxPool(F)) + MLP(AvgPool(F)))

= J(Wl(Wo(FICWax)) + WI(WO(szg))). M

The shared network MLP consists of a multi-layer perceptron with a single hidden

c c . .

layer. It has parameter vectors Wy € R+*C and Wi € RC* ¥, where r is the reduction

ratio. Finally, the weight vector M. (F) is multiplied element-wise with the original
. ! . .

feature map F to obtain the new feature map F . The computation process is as follows:

F =M,F)®F. ()

The SAM submodule generates spatial-domain attention masks by analyzing the
spatial relationships among features. Its purpose is to capture the differences in impor-
tance among features in the spatial dimension of the feature map. In contrast to CAM,
which focuses on what feature information is important, SAM focuses on where the
feature information is located. SAM and CAM complement each other in this regard.
The structure of SAM is illustrated in Fig. 4.

Spatial Attention Module

Channel-refined [MaxPool, AvgPool] Spatial Attention Ms
Feature F”

Fig. 4. Diagram of Spatial Attention Module.

The SAM submodule takes the feature map F ' generated by the previous module
as input. It applies MaxPool and AvgPool operations along the channel axis to pool all
channels at the same pixel position, aggregating the channel information of the feature

. . . . P 5
map. This process results in two two-dimensional feature maps, F7;,, and F7/ Avg

These two feature maps are then concatenated and convolved with a 7 * 7 filter f 7*7. The

resulting output is passed through a Sigmoid function o to generate a two-dimensional
. . ! . .

spatial attention feature map M (F ). The computation process is as follows:

M(F') = o (f™*"([MaxPool (F’); AvgPool (F)1))

3)
= 0 (17U s Fog))-

Finally, the module performs element-wise multiplication between the spatial atten-
tion feature map M (F ) and the input feature map F , resulting in the final feature map
F' enhanced by the attention mechanism in both dimensions. The computation process
is as follows:

F' =MyF)QF . 4)
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The overall structure of the CBAM attention mechanism is illustrated in Fig. 5.
The original feature map sequentially passes through the CAM and SAM modules,
enabling the adaptive refinement of key feature information in both the channel and
spatial domains.

e N
Convolutional Block Attention Module
Channel .
Attention Asttpe?::iaolu
Module Module Refined
Input Feature lq Feature
® &—

. J

Fig. 5. The overview of CBAM.

From the above computation process, it can be observed that both the CAM and
SAM sub-modules utilize MaxPool and AvgPool pooling methods in parallel. This par-
allel utilization allows for the preservation of a greater amount of feature information
compared to using only one of these pooling methods, thereby enhancing the feature
extraction capability. Furthermore, the CBAM attention mechanism adopts a sequential
structure design, where the CAM sub-module is applied before the SAM sub-module.
This design has been validated through comparative experiments in literature [19], con-
ducted on the benchmark architecture of ResNet50, demonstrating superior application
effectiveness compared to the parallel utilization of the two sub-modules or a sequential
structure with the order reversed.

3.2 The improved YOLOvVSs + CBAM model

In this paper, an additional layer of CBAM attention mechanism is integrated into the
backbone section of YOLOVSs, aiming to maximize the enhancement of the model’s fea-
ture extraction capability. The improved YOLOvSs 4 CBAM model structure, as shown
in Fig. 3, is primarily divided into four components: the input end (Input), feature extrac-
tion network (Backbone), feature fusion network (Neck), and prediction end (Head). The
attention mechanism module is introduced in the backbone section, as indicated by the
red text in Fig. 6.

The Input component is responsible for receiving image data as input to the algo-
rithm. It mainly includes the Mosaic data augmentation method, adaptive anchor box
calculation, and adaptive image scaling. The Mosaic data augmentation method ran-
domly scales multiple images and then concatenates them into a single image, effec-
tively enriching the dataset and improving the performance of small object detection
as well as the robustness of the model. The adaptive anchor box calculation helps the
model automatically set the initial anchor box size when the dataset changes. Adaptive
image scaling processes the input image size to meet the required input dimensions of
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Fig. 6. YOLOv5s + CBAM network structure.

the network, such as by compressing or adding gray borders. This allows YOLOVS5s to
adapt to different scenes and image resolutions.

The Backbone component adopts the CSPDarknet53 structure, which mainly con-
sists of the CBS (Convolution BatchNormalization SiLU) module, C3 (CSP Bottleneck
with Three Convolutions) module, and SPPF (Spatial Pyramid Pooling-Fast) module,
as depicted on the left side of Fig. 3. Serving as the backbone network of YOLOVS,
the Backbone component is responsible for extracting generic features of the targets
through convolutional operations and transforming them into high-level semantic fea-
tures for subsequent object detection. An attention mechanism network layer is added
at the end of the Backbone, enabling the model to enhance its focus on key parts of the
feature map through a feature extraction process with a global view.

The Neck component has been incorporated into the backbone network and predic-
tion layers since YOLOV3 to fuse the features extracted by the backbone network. The
multi-scale prediction module within the Neck network layer enables the detection of
objects at three different scales simultaneously. In YOLOVS, the Neck network layer
adopts a combined structure of FPN (Feature Pyramid Network) [22] and PAN (Path
Aggregation Network) [23], leveraging their complementary roles. The FPN layer, which
conveys strong semantic features top-down, is combined with the PAN layer, which con-
veys strong localization features bottom-up. This aggregation process integrates high-
level semantic information and low-level positional information to produce three fused
and effective feature output layers, which are then passed to the prediction end.

Lastly, the Head component generates anchor boxes of different sizes based on the
feature maps outputted by the feature extraction stage. It then utilizes non-maximum
suppression (NMS) [24] to remove redundant bounding boxes and generate the positional
information of the target bounding boxes as well as their class probabilities, enabling
object detection and classification tasks.
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4 Experimental Study and Result Analysis

4.1 Experimental Environment

The experimental platform used for training and testing in this paper employed Windows
10 as the operating system. The hardware specifications included 32 GB of memory,
an Intel(R) Core(TM) 17-9700K CPU, and an NVIDIA GeForce RTX 3060 GPU with
16 GB of VRAM. The experiments were conducted using the PyTorch deep learning
framework, with the IDE environment being PyCharm 2019. The CUDA version used
was 11.6, and the programming language employed was Python 3.9.7.

4.2 Evaluation Metrics

In this paper, the performance of the model is evaluated using the following metrics:
Precision, Recall, AP (Average Precision) for each class, and mAP (mean Average
Precision) overall.
TP (True Positive) refers to the cases where positive samples are correctly detected.
FP (False Positive) refers to the cases where negative samples are incorrectly detected as
positive, including both localization errors and classification errors. FN (False Negative)
refers to the cases where positive samples are incorrectly detected as negative, also known
as missed detections.
Precision is the ratio of TP to the total number of predicted boxes. It measures the
false detection rate of the model.
. TP
Precision = ———. (@)
TP + FP
Recall is the ratio of TP to the total number of positive samples. It measures the
missed detection rate of the model.
TP
Recall = ——. (6)
TP + FN
AP is the average precision at different recall levels. It is calculated as the area under
the Precision-Recall curve and reflects the accuracy of predictions for each class.

1
AP = / Precision(Recall)d (Recall). @)
0
mAP is the average of AP values across all classes. It provides an overall measure of the

model’s accuracy.

APnmy + AP Helmer
5 .

mAP =

®)
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Table 2. Performance comparison of different models

Model mAP@0.5(%) Parameters GFLOPs FPS
YOLOvV3-SPP 90.75 61,502,815 154.6 35
YOLOVSs 90.50 7,015,519 15.8 55
YOLOv8n 88.80 3,006,038 8.1 188
YOLOv8s 90.93 11,126,358 28.4 125

4.3 Experimental Results and Analysis

In the selection of the algorithm’s base model, this paper considered four models:
YOLOv3-SPP, YOLOvV5s, YOLOvV8n, and YOLOVS8s. Performance tests were conducted
on each of these models using the same dataset. During the training phase, the num-
ber of iterations (epochs) was set to 100, and the batch size was consistent at 16. The
performance results obtained are summarized in Table 2.

Based on the data from Table 2, it is evident that YOLOv3-SPP, YOLOVSs,
and YOLOvS8s models exhibit very similar detection accuracy, all of which surpass
YOLOvVS8n. Furthermore, YOLOvS5s stands out with less parameters and lower compu-
tational load compared to both YOLOv3-SPP and YOLOVS8s. Additionally, YOLOvS5s
achieves a high frame rate of 55 fps, making it suitable for subsequent video dynamic
detection requirements. Overall, when compared to the older version YOLOvV3 and the
newer version YOLOv8, YOLOVS demonstrates its characteristics of being lightweight,
fast, efficient, and accurate. Therefore, this paper chose to build upon the YOLOvS5s base
model for further improvements.

During the process of improving the base model, the experiments were conducted
using a transfer learning approach, where the pre-trained weights file “yolovSs.pt” and
hyperparameters file “hyp.scratch.yaml” were utilized. The training was performed on
a custom dataset. During the training phase, the number of epochs was set to 100, and a
batch size of 12 was used. The model was trained using the stochastic gradient descent
(SGD) optimizer, with a learning rate of 0.01, momentum of 0.937, and weight decay of
0.0005. The Mosaic data augmentation method was employed to enhance the detection
capability for small objects.

To validate the effectiveness of the proposed method, this paper compared the
detection algorithms before and after improvement under the same experimental condi-
tions and data augmentation strategies. The resulting detection accuracy is presented in
Table 3.

According to the statistical data from Table 3, introducing the CBAM attention
mechanism into the YOLOVS network results in a 1.89% improvement in the overall
mAP (mean Average Precision) score of the model. This experimental result confirms that
incorporating the attention mechanism network helps strengthen the YOLOvS5s model’s
focus on key information within the feature maps, making the feature extraction process
more efficient and ultimately enhancing the model’s overall mAP score. Regarding the
improvements in algorithm precision and recall metrics, this paper conducted visual
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Table 3. The detection accuracy comparison between YOLOvSs and YOLOv5s + CBAM

Algorithm Classes Precision(%) Recall(%) AP/mAP@0.5(%)
YOLOVSs NMV 87.19 92.93 91.47

Helmet 79.78 94.30 89.53

all 82.50 93.58 90.50
YOLOvVS5s + CBAM NMV 86.03 96.22 94.86

Helmet 79.69 94.49 89.92

all 82.94 95.40 92.39

comparisons of the detection algorithms before and after improvement on the same test
dataset. Some of the detection result comparisons are illustrated in Fig. 7.

From Fig. 7, it can be observed that the improved YOLOvS5s + CBAM algorithm
mitigates some of the false positives or false negatives that were present in the original
algorithm. In the firstimage, the electric bicycle rider on the far right is moving away from
the camera. Due to the smaller and less distinct feature region at the rear of the electric
bicycle, this target is prone to being missed by the detection algorithm. The pink helmet
in the second image and the red helmet in the third image both represent the head features
of electric bicycle passengers. Compared to the position of the driver, these two targets
exhibit a slight offset within the entire NMV detection box. Moreover, since the training
dataset contains relatively few samples of multiple individuals riding on an electric
bicycle, these targets are more likely to be missed. In the fourth test image, the baseball
cap worn by the electric bicycle rider in the middle can be misidentified as a helmet due
to its similar shape. In response to these instances of false negatives and false positives,
the object detection algorithm with the integrated attention mechanism enhances the
model’s feature extraction capabilities from the feature maps, thereby improving the
model’s detection accuracy. Consequently, the YOLOv5s + CBAM algorithm effectively
mitigates the aforementioned errors.
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(b) Object detection results of YOLOv5s+CBAM
Fig. 7. Object detection results of YOLOvVSs and YOLOvSs + CBAM
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S5 Conclusion

Currently, the supervision of helmet usage among electric bicycle riders consumes a sub-
stantial amount of manpower. In order to save labor costs, this paper first constructs a
self-made dataset and then selects YOLOVSs as the foundational model for object detec-
tion, further improving it to achieve automated detection. To solve the problem of insuffi-
cient feature extraction capability of YOLOvSs model, this paper proposes an improved
algorithm of combined CBAM attention mechanism. The introduced CBAM attention
mechanism uses CAM submodule and SAM submodule successively to enhance the
adaptive feature optimization ability of convolutional neural network in different chan-
nels and pixel positions, thus improving the detection accuracy of the model. The exper-
imental results show that the improved YOLOvSs + CBAM algorithm can increase the
overall mAP index of the model by 1.89%, and significantly reduce instances of both
false negative and false positive.

Due to the discrepancy in target sizes between electric bicycle riders and helmets,
along with their inherent hierarchical relationship, the current improvement in this paper
is primarily observed in the boosted AP for electric bicycle riders. In the next step, we
plan to divide the detection task into two separate models. Initially, the first object
detection model will be employed to detect electric bicycle riders and export them as
input for the subsequent model. Subsequently, the second model will be utilized to
conduct helmet detection on each individual electric bicycle rider target. This strategy
will enable targeted performance optimization for each model. Moreover, we will persist
in augmenting and refining the self-constructed dataset in terms of both its quantity and
quality.

Acknowledgments. This work was supported by the High Level Innovation Team Construction
Project of Beijing Municipal Universities (No. IDHT20190506), the Science and Technology
Project of China Ministry of Housing and Urban-Rural Development (No. 2019-K-149) and the
Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture
(GJZJ20220803).

References

1. Zou, Z., Chen, K., Shi, Z., et al.: Object detection in 20 years: a survey. In: Proceedings of
the IEEE (2023)

2. Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object
detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 580-587 (2014)

3. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 1440-1448 (2015)

4. Ren, S., He, K., Girshick, R., et al.: Faster r-cnn: towards real-time object detection with
region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

5. He, K., Zhang, X., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks
for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904-1916 (2015)

6. Lin, T.Y., Dolldr, P., Girshick, R., et al.: Feature pyramid networks for object detection. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117-
2125 (2017)



56

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

S.-Y. Fu et al.

Redmon, J., Divvala, S., Girshick, R., etal.: You only look once: unified, real-time object detec-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 779-788 (2016)

Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7263-7271 (2017)

Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.
02767 (2018)

Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal speed and accuracy of object
detection. arXiv preprint arXiv:2004.10934 (2020)

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single
shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9905, pp. 21-37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-464
48-0_2

Li, Z., Zhou, F.: FSSD: feature fusion single shot multibox detector. arXiv preprint arXiv:
1712.00960 (2017)

Fu, C.Y,, Liu, W., Ranga, A., et al.: Dssd: Deconvolutional single shot detector. arXiv preprint
arXiv:1701.06659 (2017)

Wang, J., Chen, Y., Dong, Z., et al.: Improved YOLOVS network for real-time multi-scale
traffic sign detection. Neural Comput. Appl. 35(10), 7853-7865 (2023)

Qi, D., Tan, W., Yao, Q., et al.: YOLOS5Face: why reinventing a face detector. In: European
Conference on Computer Vision. Cham: Springer Nature Switzerland, pp. 228-244 (2022).
https://doi.org/10.1007/978-3-031-25072-9_15

Qi, J,, Liu, X., Liu, K., et al.: An improved YOLOVS5 model based on visual attention mech-
anism: application to recognition of tomato virus disease. Comput. Electron. Agric. 194,
106780 (2022)

Wu, T.H., Wang, T.W.,, Liu, Y.Q.: Real-time vehicle and distance detection based on improved
yolo v5 network. In: 2021 3rd World Symposium on Artificial Intelligence (WSAI). IEEE,
pp. 24-28 (2021)

Zhou, F., Zhao, H., Nie, Z.: Safety helmet detection based on YOLOVS. In: 2021 IEEE
International Conference on Power Electronics, Computer Applications (ICPECA), pp. 6-11.
IEEE (2021)

Woo, S., Park, J., Lee, J.Y., et al.. CBAM: convolutional block attention module. In:
Proceedings of the European Conference on Computer Vision (ECCV), pp. 3—19 (2018)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7132-7141 (2018)

Wang, Q., Wu, B., Zhu, P., et al.: ECA-Net: efficient channel attention for deep convolutional
neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11534-11542 (2020)

Lin, T.-Y., Dolldr, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid net-
works for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), Honolulu, HI, USA, pp. 936-944 (2017). https://doi.org/10.1109/CVPR.201
7.106

Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, pp. 8759-8768 (2018). https://doi.org/10.1109/CVPR.2018.00913

Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th International Con-
ference on Pattern Recognition (ICPR’06), Hong Kong, China, pp. 850-855 (2006). https://
doi.org/10.1109/ICPR.2006.479


http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/2004.10934
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1712.00960
http://arxiv.org/abs/1701.06659
https://doi.org/10.1007/978-3-031-25072-9_15
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2018.00913
https://doi.org/10.1109/ICPR.2006.479

	Helmet Detection Algorithm of Electric Bicycle Riders Based on YOLOv5 with CBAM Attention Mechanism Integration
	1 Introduction
	2 Collection and Processing of the Dataset
	3 YOLOv5s Algorithm with Integrated Attention Mechanism.
	3.1 CBAM Attention Mechanism
	3.2 The improved YOLOv5s + CBAM model

	4 Experimental Study and Result Analysis
	4.1 Experimental Environment
	4.2 Evaluation Metrics
	4.3 Experimental Results and Analysis

	5 Conclusion
	References


