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Abstract. With the increasing demand for public safety, the field of abnormal
human behavior recognition has undergone significant development. In address-
ing the low accuracy issue of existing abnormal behavior recognition algorithms
due to factors such as environmental influences, changes in viewpoint, and scale
variations, this study proposed an improved Spatial temporal graph convolutional
network. By incorporating spatial attention and channel attention mechanisms at
relevant positions in the network, a dynamic optimization of the skeletal structure
graph of the human body was achieved. This ensured that key nodes expressing
motion information in the skeletal graph received greater weight values, ultimately
improving the accuracy of abnormal behavior classification. To this end, an abnor-
mal behavior dataset was constructed and transformed into skeletal information
recognizable by the proposed algorithm using OpenPose. Extensive experiments
were conducted on this dataset as well as the large-scale NTU RGB + D dataset
using the improved algorithm. The results demonstrate that the algorithm has
achieved an increase of approximately 5% in recognition accuracy compared to its
pre-improvement state, placing it among the top-performing algorithms in various
comparative evaluations.

Keywords: Anomalous Behavior Recognition · Graph Convolutional Network ·
Attention Mechanism

1 Introduction

As people’s demand for and concern about public safety increased, computer vision for
the field of security became a research hotspot [1]. Among them, human abnormal behav-
ior recognition, as an important branch of security, has been widely applied in scenarios
such as smart campuses, community security, and smart elderly care. Combining artifi-
cial intelligence with traditional video surveillance systems can quickly and accurately
detect events that compromise public safety, thus better ensuring people’s security and
saving manpower and expenses, which are powerful guarantees for building a civilized
city.
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Traditional skeleton-based humanbehavior recognitionmethodsmainly rely onman-
ually designed features [2]. These methods can achieve good recognition results in cer-
tain specific actions or scenes, but their generalization ability is poor [3], and feature
extraction is complex. In recent years, with the continuous development of deep learn-
ing technology, deep learning models based on skeleton data, such as convolutional
neural networks (CNN) [4], recurrent neural networks (RNN) [5], and graph convolu-
tional neural networks (GCN) [6, 7], have been developed and applied. The method of
using CNNmodels to process skeleton data involves transforming the skeleton data into
pseudo-images and then inputting them into the network for recognition. RNN is more
suitable for processing data with temporal sequences, while human skeleton data not
only contains temporal information of the same node but also includes joint connec-
tion information of different nodes. Therefore, it often needs to be combined with CNN
models to extract spatial features. The GCN-based method takes graph data as input,
which means it contains topological graph structure data with key points and connec-
tion information. Human skeleton data meets such data requirements, so using GCN for
skeleton-based human behavior recognition has inherent advantages.

In recent years, many researchers at home and abroad have applied GCN to the field
of human behavior recognition: Shi et al. used first-order and second-order information
of joints and bones to propose a skeleton-based dual-stream adaptive graph convolutional
network (2s-AGCN) [8]. In reference [9], a graph attention networkwas designed, which
employed stacked hidden self-attention layers to assign different weights to different
nodes. Its performance was significantly superior to the contemporaneous RNN algo-
rithms. YAN et al. pioneered the introduction of spatiotemporal characteristics into the
GCN network and proposed the spatiotemporal graph convolutional network (ST-GCN)
[10], which captures both time and space dimensions of information through spatiotem-
poral graph convolution to better recognize human actions. The above research fully
utilizes the characteristics of GCN and combines the skeleton information of key points
and joint connections to learn the features of human behavior in the temporal and spatial
dimensions, and all have achieved good results. However, there are still some short-
comings. For example, the focus on different parts of the body is different in specific
scenarios, which requires different weights for different nodes and their connection rela-
tionships in each frame of skeleton data. In addition, not all channels in the input feature
channels composed of skeleton data are useful for recognizing targets. Dynamically
ignoring unimportant channel information and focusing on useful channel features will
inevitably improve the recognition effect.

Based on the above analysis, the main contribution of this study is as follows:

1) Designing an improved method to address the shortcomings of ST-GCN in feature
extraction. This method introduces a channel attention mechanism to handle the case
where all feature weights in the channel are equal. Additionally, a spatial attention
module is incorporated to give more attention to the more important parts of the
skeleton data.

2) Defining three types of abnormal behaviors, namely falling, fighting, and smoking,
whichhave a significant impact onpeople’s production anddaily life.Acorresponding
dataset was created, and the dataset was processed into skeleton data usingOpenPose.
The improved ST-GCN algorithmmentioned above was then applied to the abnormal
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behavior recognition task. Through verification and comparison, it was found that
this algorithm achieved good results.

2 ST-GCN Model with Hybrid Attention Mechanism

2.1 Constructing Spatiotemporal Graph of Human Skeleton

After processing the human body through OpenPose, a sequence of key points is
obtained, which contains the coordinate information of the keypoints and the natural
connection information between them. Utilizing this information, we can construct the
human joint spatiotemporal graph that serves as input for the ST-GCN model. The spe-
cific construction method is as follows: For a single frame of human skeleton data, the
natural connections between the keypoints are used to form the spatial graph. In Fig. 1
(a) below, the 18 skeleton points extracted by OpenPose are represented by solid yel-
low dots. The lines connecting the keypoints represent the skeletal connections of the
human body, which abstract the actions performed by the person. For the same keypoint
in different frames, the corresponding keypoints from adjacent frames are connected in
sequence. This process allows us to construct a human skeleton connection graph, with
all the keypoints as the node set, and the connections between the nodes as the edge set.
This is illustrated in Fig. 1 (b) below:

(a). Single-frame human skeleton graph.                (b). Skeleton spatiotemporal graph.

Fig. 1. Schematic diagram of human skeleton.

Assuming Fig. 1(b) represents a skeleton spatiotemporal graph with N nodes and
T frames, it can be mathematically represented by the following formula: G = (V ,E),
The set of its nodes is denoted as V = {

vti ût = 1, . . . ,T , i = 1, . . . ,N
}
. vti represents

the t th keypoint on the i th frame. vti contains the coordinate information and confidence
score of the human body keypoints in the image. E is the set of edges in the skeleton
spatiotemporal graph, consisting of two parts: ES and Et . Es = {

vtivtj(i, j) ∈ H
}
is the
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collection of connecting edges between adjacent keypoints within a frame, as shown by
the blue lines in Fig. 2. In the equation,H represents a set of naturally connected human
body joints; Ef = {

vtiv(t+1)i
}
is the collection of connecting edges between the same

keypoints in adjacent frames, as shown by the orange lines in Fig. 2. At this point, the
spatiotemporal graph of the skeleton is constructed, which can be understood as a three-
dimensional skeleton. It contains the skeletal information of human body movements
over a period of time and serves as the input for subsequent ST-GCN processing.

2.2 Spatial Temporal Graph Convolutional Networks

The advantage of graph convolutional networks lies in their ability to handle non-
Euclidean distance graph data, such as human skeletons, transportation networks, social
networks, etc. ST-GCN enriches graph convolutional networks in both the temporal and
spatial dimensions, allowing them to capture the spatiotemporal characteristics of human
body movements from skeleton sequences, thereby enabling more accurate recognition
of human actions [11].

Taking the spatial two-dimensional convolution of a typical Convolutional Neural
Network (CNN) as an example, the convolution output for a specific position can be
expressed in the following form:

fout(x) =
K∑

h=1

K∑

w=1

fin(P(x, h,w)) · w(h,w) (1)

In this equation, the feature map fin has a number of input channels denoted as c, The
convolution kernel has a size K × K , The function P represents the sampling function.
The sampling is conducted within the neighborhood (h,w) of the region x. The weight
function matrix is represented by w.

In an image, the sampling function P(h,w) refers to the collection of neighboring
pixels centered around the x pixel. In a topological graph, the set of neighboring pixels
is defined as follows:

B(vti) = {
vtj |d

(
vtj, vti

) ≤ D
}

(2)

d
(
vtj, vti

)
refers to the shortest distance from vtj to vti, and D is the threshold for the

sampling distance. In this context, the threshold D for sampling is set to 1. Therefore,
the sampling function is defined as:

P
(
vtj, vti

) = vtj (3)

In 2D convolution, the pixels within a neighborhood are arranged around the central
pixel according to a certain rule, allowing convolution operations to be performed using
predefined convolution kernels. Similarly, in graph data, the neighboring pixels obtained
from the sampling function can be divided into different subsets based on different par-
titioning strategies. Each subset is then assigned a label. By applying mapping operation
lti : B(vti) → {0, . . . ,K − 1} to the adjacent regions of node vti and assigning different
weight parameters to these adjacent regions, we can obtain a weight function w:

W
(
vti, vtj

) = W ′(lti
(
vtj

))
(4)
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Applying the newly defined sampling function and weight function to Eq. (1), we
obtain the redefined spatial graph convolution formula:

fout(vti) =
∑

vtj∈B(vti)

1

Zti
(
vtj

) fin
(
P
(
vti, vtj

)) · w(
vti, vtj

)
(5)

The normalization term Zti(vti) = |{vtk}|lti(vtk) = lti
(
vtj

)|, which is equivalent to the
basis of the corresponding subset, balances the contributions of different sub-regions to
the output. By substituting Eqs. (3) and (4) into Eq. (5), we obtain:

fout(vti) =
∑

vtj∈B(vti)

1

Zti
(
vtj

) fin
(
vtij

)
· w′(lti(vti)) (6)

In the temporal dimension, as each node is fixed to have two adjacent nodes, after
performing the spatial graph convolution mentioned above, extracting temporal features
can be achieved by applying a two-dimensional convolution to the output feature map
in the temporal dimension. This eventually enables spatiotemporal graph convolution
operations.

The above equations explain the working principle of the ST-GCN network. Regard-
ing the partitioning strategy mentioned earlier, a spatial configuration partitioning
method is employed, as illustrated in Fig. 2 below.

Fig. 2. The partitioning strategy for the human body skeleton diagram.

In the diagram, “ ×” represents the centroid of the stock price. The red area denotes
the neighborhood of green key nodes. In this partitioning strategy, subsets are formed
based on the proximity of each node to the central point, resulting in three categories.
The purple key nodes closest to the centroid are referred to as centripetal nodes, the
green nodes represent the target nodes themselves, and the yellow nodes farthest from
the centroid are referred to as centrifugal nodes. The division into these three subsets



34 Q. Wu et al.

reflects the concentric, centrifugal, and stationary motion characteristics of the human
body. This can be expressed with the following equation:

lti(vti)

⎧
⎨

⎩

0 rj = ri
1 rj < ri
2 rj > ri

(7)

In this context, ri denotes the distance between the target node and the centroid of
the skeletal structure. Similarly, rj represents the distances of each key node from the
centroid.

2.3 Attention Mechanism

This section mainly introduces two attention mechanisms incorporated in ST-GCN:
Channel Attention Module and Spatial Attention Module.

Spatial Attention Module
By incorporating the spatial attentionmechanism into the spatio-temporal graph convolu-
tional network, not only can the network parameters be learned, but it can also adaptively
capture dynamic relationships between nodes in the spatial dimension. This allows for
assigning varying importance to different positions in the human spatiotemporal skeleton
graph, enhancing crucial areas and suppressing less significant regions.

Fig. 3. Spatial attention module.

The spatial attention module, as shown in Fig. 3, is designed as follows in this study.
The input features are first subjected to bothmax pooling and average pooling operations.
Then, a convolution operation with kernel size 7×7 is performed, followed by activation
through a sigmoid function to generate a feature matrix of size 1×H ×W . Here,H and
W represent the height and width of the feature map, respectively.

M (F) = [AvgPool(F);MaxPool(F)] (8)

MS(F) = σ
(
f 7×7(M (F))

)
(9)

In this case, F represents the feature map, AvgPool stands for average pooling, and
MaxPool refers to maximum pooling. f 7×7 represents the convolutional layer with a



Algorithm for Human Abnormal Behavior Recognition 35

kernel size of 7 × 7. σ denotes the application of the sigmoid activation function, and
MS(F) represents the spatial attention parametermatrix, which is capable of dynamically
changing throughout the training process.

Channel Attention Module
After undergoing the spatial attentionmodule, the featuremapobtains preliminary spatial
features. In order to extract better motion feature representations, the channel attention
module is introduced after the spatial attention module. As shown in Fig. 4, the input
feature map is transformed from size C ×H ×W to size C × 1× 1 through two parallel
max pooling layers and average pooling layers. It then passes through a multi-layer
perceptron. In this module, the channel dimension of the feature map is first compressed
by a factor of 1/r (Reduction) through the first fully connected layer. Subsequently,
it is expanded back to the original channel dimension via the second fully connected
layer. Two activated results are obtained throughReLU activation function. Finally, these
two results are element-wise added together, and the output of the channel attention is
obtained through a sigmoid activation function. The attentionmodule performsweighted
fusion between the obtained feature weights and the corresponding channel feature
values of the original convolution in each channel domain. The fused feature map returns
to size C × H × W , allowing different weights to be manifested in the convolutional
channel features, thereby extracting key information representing the target. The specific
formula is as follows:

Mc(F) = σ(MLP(AvgPool(F))) + MLP(MaxPool(F))

= σ
(
W1

(
W0

(
Fc
avg

))
+ W1

(
W0

(
Fc
max

))) (10)

In this context, σ represents the sigmoid activation function, W0 ∈ R
C/r×C , W1 ∈

R
C×C/r , and r refer to reduction ratios. The variable C represents the size of the feature

channel dimension, andMc(F) denotes the parameter matrix used for channel attention.

Fig. 4. Channel attention module.

2.4 The Basic Unit and Structure of the Improved ST-GCN

The basic unit of ST-GCN consists of multiple processing modules. Each basic unit
includes a spatial graph convolutionmodule, a spatial attentionmodule, a temporal graph
convolution module, a channel attention module, and a dropout layer with a dropout rate
of 0.5, as shown in Fig. 5. The spatial graph convolution submodule is used to extract
motion features from individual frames of the human body. Subsequently, the spatial
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attention module assigns corresponding weights to different body parts, continuously
updating its parameters during training to help the spatial graph convolution module
better extract spatial features from the skeleton graph. The temporal convolution module
utilizes a 2D convolutionwith a kernel size of 9×1 to perform temporal convolution. The
resulting features then undergo further feature extraction through the channel attention
module. Additionally, both the spatial attentionmodule and the channel attentionmodule
are conditionedwith a batch normalization layer and an activation function layer. Finally,
in order to stabilize the training process, a residual structure is added to the basic unit.

Fig. 5. The basic unit of ST-GCN.

Fig. 6. The overall structure of the network.
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The ST-GCN network consists of 9 basic units as described above. It is shown
in Fig. 6. Before feeding the skeleton data into the ST-GCN network, it needs to be
normalized using a batch normalization module. The input channel is 3 and the output
channel is 64. The 9 basic units are named sequentially as a, b with input and output
channels both set to 64 and a stride of 1; c with input channel of 64 and output channel
of 128, and a stride of 2; d with input channel of 128 and output channel of 256, and
a stride of 1. Then, the output of the entire network is passed through global average
pooling to obtain a fixed-size feature vector. Finally, this feature vector is fed into a
softmax classifier for classification, resulting in the final prediction.

3 Experiments

3.1 Experimental Environment and Dataset

In order to evaluate the performance of the improved spatiotemporal graph convolutional
network, experiments were conducted on the NTU RGB + D dataset and a self-built
dataset of abnormal human behaviors. All experiments in this study were conducted on a
system runningWindows 10.0, equipped with an NVIDIA GeForce GXT 1080 graphics
card with 32 GBVRAM and an Intel(R) Xeon(R)W-2125 CPU@ 4.00 GHz. The entire
deep learning network was implemented using the PyTorch framework, with PyCharm
used as the integrated development environment.

1) NTU RGB + D Dataset: The dataset was acquired using three Microsoft Kinect
V2.0 sensors, with each camera capturing data from different angles. The collected
data includes depth information, 3D skeletal information, RGB images, and infrared
sequences. The NTU RGB + D dataset consists of 60 action categories and a total of
56,000 action samples. These samples were performed and recorded by 40 volunteers
from different nationalities, age groups, and genders. The dataset authors employed
two evaluation criteria: Cross-Subject (CS) and Cross-View (CV). CS refers to train-
ing and validation samples that come from different subjects, while CV refers to
training and validation samples captured from different camera views.

2) Self-built Abnormal BehaviorDataset: The self-built abnormal behavior dataset com-
prises three types of actions: falling, fighting, and smoking. These actions were
selected to better ensure the safety and civility of public areas such as communities
and campuses. As shown in Fig. 7, each action consists of over 100 video sequences,
captured from an overhead angle to simulate surveillance cameras in community
settings. Each video sequence was clipped to approximately 5 s with a frame rate of
30 frames per second. The videos were processed using the OpenPose algorithm to
obtain skeleton data, where each human skeleton consists of 18 nodes. Subsequently,
the data was converted into a format compatible with the ST-GCN network for input.

3.2 Comparative Experiments on NTU RGB + D Dataset

In this section, the effectiveness of the proposed improved spatiotemporal graph convo-
lutional network (ST-GCN) was validated on the NTU RGB + D dataset. Based on the
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Fig. 7. Self-built dataset example.

characteristics of this dataset, controlled experiments were conducted on two groups of
data: cross-subject (CS) and cross-view (CV). To horizontally compare the competitive-
ness of the proposed algorithm in human skeleton action recognition tasks, advanced
algorithms in the current action recognition field were also employed on this dataset for
comparison, including the Lie Group method [12] based on manually designed features,
CNN + Motion + Trans [13] and TCN [14] based on CNN, ST-LSTM [15] and VA-
LSTM [16] based on RNN, and ST-GCN [10], 2s-AGCN [8], and GCN-NAS [19] based
on GCN.

For all experiments, the batch size was set to 16, and the training was conducted for
60 epochs. The model utilized the SGD optimizer with a momentum value of 0.9 and
weight decay of 0.0001. The initial learning rate was set to 0.1 and was reduced by a
factor of 10 at the 20th, 30th, and 40th epoch for continued training. The results obtained
are shown in the table below:

According to Table 1, the proposed model achieved better results on this dataset
compared to the traditional method of manually designed features, Lie Group, showing
significant superiority. In contrast to traditional methods based on Euclidean distance
convolution such as TCN and ST-LSTM, the model utilizing human skeletal features
effectively reduced background interference, resulting in a significant improvement in
recognition accuracy. Compared to the previous version of the ST-GCN network, the
inclusion of a dual attention mechanism in our improved model allows for better capture
of crucial spatiotemporal features. As a result, we observed a significant improvement
in accuracy on the CS and CV datasets, with an increase of 3.1% and 4.8% respectively.
These results clearly validate the effectiveness of the improved algorithm. Additionally,
when compared to recent advanced GCN networks like 2s-AGCN and GCN-NAS, there
are some gaps. However, it is worth noting that these two algorithms introduced dual-
stream structure and automatic network search into the GCN network, increasing the
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Table 1. Accuracy of different algorithms on the NTU RGB + D dataset.

Method CS(acc/%) CV(acc/%)

Lie Group 52.3 79.6

ST-LSTM 70.4 78.8

TCN 74.8 82.6

VA-LSTM 79.5 88.2

ST-GCN 82.3 87.4

CNN + Motion + Trans 84.2 88.5

2s-AGCN 88.2 94.5

GCN-NAS 89.1 95.3

Ours 85.4 92.2

complexity of the networks significantly and adding computational burden and time
consumption.

3.3 Comparative Experiments on Self-Built Datasets

This section verified the performance of the improved spatiotemporal graph convolu-
tional network (ST-GCN) on a self-built abnormal behavior dataset. Four experiments
were conducted in this section, with one being the experimental group and the other
three as control groups. The parameter settings for the four experiments were the same
as the ablation experiments on the NTU RGB + D dataset in the previous section.

The first experiment employed the ST-GCN network to process the self-built abnor-
mal behavior dataset to verify the performance of the original ST-GCN model on this
dataset. This experiment served as the baseline for the self-built dataset, and the per-
formance of the improved ST-GCN model was compared based on this comparison.
The second experiment aimed to validate the effectiveness of the channel attention
mechanism on the abnormal behavior dataset. The third experiment aimed to validate
the effectiveness of the spatial attention module on the self-built dataset. These two
experiments were conducted as control experiments for comparison.

The final experiment was conducted to verify the improved ST-GCN model, which
fused the channel attention mechanism and the spatial attention module into the frame-
work of the spatiotemporal graph convolutional network. This model was applied to the
abnormal behavior dataset to obtain recognition accuracy.

The experimental results in Table 2 indicated that the model in this study achieved
higher accuracy rates on the self-built dataset compared to before the improvements.
In terms of horizontal comparison, the recognition accuracy for fighting actions was
significantly lower than that of falling and smoking actions under the same algorithm,
mainly due to the fact that fighting actions involve multiple targets and are more com-
plex in nature. In terms of vertical comparison, the original ST-GCN algorithm showed
better performance on various anomalous behaviors after incorporating both the channel
attention mechanism and the spatial attention mechanism. Across the entire dataset, the
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Table 2. The accuracy rates of each method on self-built datasets.

method Fall
(acc/%)

Fight
(acc/%)

Smoking
(acc/%)

All
(acc/%)

ST-GCN 88.6 85.3 88.4 87.3

CA + ST-GCN 89.9 85.8 90.1 89.6

SA + ST-GCN 90.9 86.1 90.3 90.1

CA + SA + ST-GCN 93.8 89.4 92.5 92.7

improved algorithm demonstrated a 5.4%increase in accuracy compared to before the
improvements, indicating significant improvement.

Fig. 8. Comparison chart of accuracy improvement before and after algorithmic recognition.

The figure in Fig. 8 compares the accuracy of the algorithm before and after the
improvement. Accuracy is defined as the ratio of the number of correct model predic-
tions to the total number of samples. In the ST-GCN algorithm, the accuracy steadily
increases from rounds 0 to 10, stabilizes during subsequent training, and eventually
reaches an accuracy of 87.3%. The improved algorithm also exhibits rapid improve-
ment in accuracy from rounds 0 to 10, stabilizes during further training, and ultimately
achieves an accuracy of 92.7%. This represents a 5.4% increase compared to the pre-
improvement accuracy, validating the conclusion that the dual attention mechanism
enhances the performance of the model.

In Fig. 9, the comparison of loss functions before and after the improvement is
presented. The loss function is a crucial component in deep learning, determining the
robustness of the model. In the ST-GCN algorithm, the loss function rapidly decreases
from rounds 0 to 20 and converges to 0 around round 40. In contrast, the improved
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Fig. 9. Comparison chart of loss function curves before and after algorithm improvement.

algorithm incorporates a gradually decaying learning rate, which facilitates a faster
decrease in the loss function. It converges to 0 around round 20, optimizing the overall
performance of the algorithm. Clearly, based on the experimental data, the proposed
algorithm strengthens the stability of the model.

4 Conclusion

This paper proposed a dual-attention spatiotemporal graph convolutional neural network
and applied it to skeleton-based anomaly behavior detection. By adding a spatial atten-
tion mechanism after the spatial convolutional layer of the existing ST-GCN algorithm,
the network focused more on joint information in the human skeleton data that had a
greater impact on actions. Simultaneously, a channel attention mechanism was intro-
duced into the temporal convolutional module to obtain channel features that were more
important for output channels, further improving themodel’s performance. Furthermore,
the proposed algorithm was compared with other algorithms on the widely recognized
NTU RGB + D dataset, surpassing traditional handcrafted features and some com-
monly used deep learning networks in terms of accuracy, a critical performance metric.
Finally, the algorithm was deployed for anomalous behavior detection, and on a self-
collected anomaly behavior dataset, it demonstrated improved performance compared
to the original algorithm. The recognition accuracy reached 92.7%, meeting the security
requirements of certain communities and schools.
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