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Abstract. The water surface environment characterised by complexity
and variability, is heavily influenced by weather. To address this prob-
lem, this paper proposes a water surface environment perception network
based on the fusion of visual and positional information, and proposes an
encoder-decoder based semantic segmentation neural network for classi-
fying the pixel points of the input image into three categories: water, sky
and environment (obstacles).
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1 Introduction

A good surface environment perception method is an important guarantee to
help surface ships realize autonomous unmanned navigation in waters. It is dif-
ficult to understand the complex and variable features of different water surface
objects on the basis of traditional methods, while research concerning deep learn-
ing methods lacks some practical and a priori knowledge in traditional methods.

To address this problem, this paper proposes a water surface environment
sensing technique in accordance with the fusion of visual and positional infor-
mation, which combines the advantages of both traditional methods and deep
learning methods. In the model structure, residual network acts as an encoder
to extract the information and features of different scale images. An attention
mechanism and a feature fusion module are used in the decoder enabling the
network to focus on locally focused information and feature fusion at different
scales. The bit-position information is encoded into feature vectors of the neural
network and fused with it, and the features of the encoder and decoder merge
at different stages of the decoder. After that, the model designed in this paper
is compared with the latest SOTA model in the field of semantic segmentation,
in order to qualitatively and quantitatively analyze the advantages and disad-
vantages of different models, and to confirm the effectiveness and advantages of
Swan-Net in the field of water surface environment sensing.

Compared with the existing studies, the platform position information
obtained from the inertial measurement unit (IMU) is applied as the priori
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knowledge of the water boundary and encoded into feature channels to be fused
with different scale image features. After fusing the position information, the
network can effectively improve the accuracy of water boundary estimation in
low-contrast environments.

2 Swan-Net

In this paper, a semantic segmentation model named Swan-Net is designed. The
concept and local substructure of the design are mainly refer SOTA networks in
the field of semantic segmentation in recent years. The network is also contains
an a priori water boundary knowledge encoding of the positional information,
which is obtained through an inertial measurement unit (IMU). The overall
structure of the model is shown in Fig. 1.

Fig. 1. General structure of the model

The general structure of the model is shown in the figure above, which consists
mainly of an encoder and a decoder. The model accepts an input image of size
480× 640× 3 (height×width×number of channels) and assigns each of these
pixels a category label, water, sky or environment. The final output is of the
same resolution as the input, avoiding the loss of detailed information as much
as possible.

2.1 Feature Extraction Module

The main function of the encoder is to accept the input image and extract its
features at different scales. The main composition is a ResNet101 [1] neural net-
work. That is mainly composed of a pre-convolutional layer (Conv1), four resid-
ual convolutional blocks (Res2,Res3,Res4,Res5), unlike traditional ResNet101,
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the dilated convolutions is used in Res4 and Res5. Through controlling the sam-
pling step of the convolution kernel, dilated convolutions is achieved so as to
increase the convolution kernel field of perception and reduce the number of
parameters. It can also be realized by inserting zeros in the middle of the convo-
lution kernel or by leaving the convolution kernel unchanged and sampling the
input at equal intervals.

2.2 Position Information Feature Encoding

The IMU usually consists of a three-axis accelerometer and a three-axis gyro-
scope. By fusing and solving the accelerometer and gyroscope data, it can mea-
sure the current attitude information of the platform. The attitude information
includes roll angle, pitch angle and yaw angle, referring to the angel of tilt relative
to the horizontal plane, the angel of front-to-back tilt, and the angel of rotation
of the axis perpendicular to the horizontal plane respectively. This positional
information can be regarded as a priori knowledge of the semantic components
in the image, since the position of the horizon in the image is usually related to
the current attitude of the platform. When the roll angle changes, the tilt angle
of the sea antenna also changes.

Suppose Xusvdenotes the 3D coordinates of a point in the coordinate system
of the amphibious platform, and let Rusv

cam denote the rotation matrix describing
the rotation between the platform and the camera coordinate system. Point
Xusv

i is projected to the image plane of the camera according to the following
Equation:

λcxi = KRusv
camXusv

i (1)

K is the camera calibration matrix, which is estimated during the calibra-
tion process. In this method, the points Xusv

i constituting the sea antenna are
obtained from the IMU measurements. It is assumed that Rusv

cam denotes the rota-
tion matrix of the IMU relating to the platform, while Rimu denotes the rotation
matrix of the IMU with respect to the water surface. A reasonable assumption
can be made that the Z-axis of the IMU and the camera are approximately
aligned. In principle, these geometric relationships are sufficient to compute the
vanishing point and can be used directly to estimate the sea antenna.

However, it has been shown that projecting vanishing points into the input
image leads to inaccuracies, due to the fact that the vanishing points are likely to
be projected outside the image boundaries and the calibrated radial aberration
model can reliably estimate the aberrations of points located only inside the
image. The sea antenna can therefore be obtained by projecting two points,{
Ximu

1 ,Ximu
2

}
being two points in the XZ plane of the IMU coordinate system

that are located at a horizontal angle ±αh and at a finite distance Z=ldist.
These points are rotated into a plane parallel to the water surface by following
Equation:

Xusv
i = Rimu

(
Rimu

usv

)−1
Ximu

i (2)
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Ximu
i and Xusv

i denote the points before and after the rotation, respectively.
The rotated points

{
Ximu

1 ,Ximu
2

}
are projected into the image using Eq. 1 while

considering radial distortion. The sea antenna is estimated by fitting the pro-
jected radial distortion points to a line. Through the above method, the attitude
angle information of the platform can be converted into a projection of the sea
antenna in the image, in order to fuse the projection information into the neural
network.

2.3 Feature Fusion Module

The task of the decoder is to fuse the image features extracted by the encoder
module with the information from the IMU, and after feature refinement and
upsampling, to produce the final semantic segmentation output. The decoder
accepts features from the three modules in the encoder (Res2, Res3, Res5) as
well as the encoded IMU feature channels, utilising both the more detailed infor-
mation from the high resolution features and the global semantic information
captured at lower resolutions. First, the output features from the last layer of the
encoder are fed into a spatial pyramid pooling module (ASPP) with 4 dilated
convolutions, and the output of the ASPP module passes through the attention
refinement module, which reweights the features.

The feature fusion module in the decoder aims to integrate the F3 and F2
features from the encoder with the IMU information features to achieve effective
fusion of the different path features and to take full advantage of the different
features.

The CBAM module calculates both attention on the channel and attention on
the space. The inclusion of this module will effectively help the decoder network
to learn spatially focused features.

ARM Module. The attention refinement module ARM is derived from
BiSeNet [3], a convolutional neural network module for image classification and
semantic segmentation, and is primarily used to enhance the representational
power of feature maps. It automatically learns relevant features in the input
feature map and applies these features to enhance the representational power
of the model. The ARM module enables the enhancement or weakening of the
feature representation at different locations by performing a channel-by-channel
weighted summation of the input feature map. By introducing the ARM mod-
ule, the accuracy and robustness of the model can be significantly improved,
especially when dealing with areas such as detail and edges in an image. The
overall structure of the ARM module is shown in Fig. 2.

The tensor output from the ASPP module goes one way through the raw
feature input channel without any processing. The other way goes through the
attention vector computation channel, which first goes through a global averag-
ing pooling layer. In global averaging pooling, for each channel feature map, the
features of all pixels are averaged into a single value that represents the statis-
tical features of the entire feature map. The feature maps are then subjected to
batch normalisation [4] and Sigmoid units [5] to compute the attention vector.
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Fig. 2. ARM Module diagram

After computing the attention vector, it is multiplied with the original feature
map on a channel-by-channel point-by-point basis. The original features will
be re-weighted by the attention vector, enhancing the important features and
weakening the less important ones, thus making the extracted features more
directional.

FFM Module. The main role of the feature fusion module FFM is to fuse
feature maps from multiple scales and levels to obtain richer and more com-
plete image feature information. Typically, the FFM module consists of several
branches, each of which uses different convolution kernels and pooling strategies
to extract features at different scales and then integrate these features together.
Feature maps at different scales and levels complment each other to obtain more
comprehensive and accurate image information.

Fig. 3. Feature Fusion Module diagram

The FFM module used in this paper is shown in Fig. 3. First the FFM module
stitches the output of the ARM module with the ASPP module, followed by
further feature extraction using a 3×3 convolution, batch regularisation and the
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ReLU activation function [6]. Thereafter a similar attention vector re-weighting
method as in the ARM1 module was utilised to further extract and fuse features
from different paths.

CBAM Module. The design of the CBAM module is derived from the liter-
ature [7]. The purpose of this module is mainly used to enhance the perceptual
field of each location in the feature graph, thus advancing the performance of
the network. The overall structure of CBAM is shown in Fig. 4. The CBAM
module consists of two main parts: the channel attention module and the spatial
attention module. The former is mainly used to perform attention computation
in the channel dimension in order to learn the importance of different channels
in the feature map adaptively, so as to better utilize the information of differ-
ent channels. The latter is used to perform attention computation in the spatial
dimension in order to adaptively learn the importance of different positions in
the feature map for making use of the information of different positions in the
feature map.

Fig. 4. CBAM Attention Module diagram

The results of the channel attention module are shown in Fig. 5. In the chan-
nel attention module, a one-dimensional vector is obtained by compressing the
feature map in the spatial dimension. In the compression, both global average
pooling and global maximum pooling are considered. The average pooling and
maximum pooling can be used to aggregate the spatial information of the fea-
ture map, send to a shared network, compress the spatial dimension of the input
feature map, sum and merge element by element then normalize the weights
using the Sigmoid activation function, to obtain the channel attention map.

Fig. 5. CBAM Channel Attention
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The channel attention computation process can be expressed by the following
equation:

Mc(F ) =σ(MLP (AvgPool(F )) + MLP (MaxPool(F )))
=σ(W1(W0(F c

avg)) + W1(W0(F c
max)))

(3)

where F denotes the input feature map, w0 and w1 represent the parameters
of the two layers in the multilayer perceptron model, and σ(·)denotes the Sigmoid
activation function.

The results of the spatial attention module are shown in Fig. 6, differing from
the channel attention module in the dimensionality of the processed features.
The spatial attention module uses average pooling and maximum pooling in
the channel dimension to put the two obtained H×W×1 feature descriptions
stitched together according to the channels. Then, after a 7× 7 convolutional
layer is reduced to a single channel and a Sigmoid activation function is used to
obtain the weight vector.

Fig. 6. CBAM Spatial Attention

The channel attention calculation process can be expressed by the following
equation:

Ms(F ) =σ(f7×7([AvgPool(F );MaxPool(F )]))

=σ(f7×7([F s
avg;F

s
max]))

(4)

2.4 Loss Function

The aquatic environment differs from the usual environmental dataset in that
although some obstacles may be large, the majority of pixels in a typical aquatic
scene belong to water or sky, which leads to an imbalance in the categories, and
this imbalance makes the classical cross-entropy loss inapplicable [8]. Therefore,
a weighted Focal Loss applicable to segmentation is used, calculated as follows:

Lfoc = −αt(1 − pt)γ log(pt) (5)

where pi denotes the prediction probability of the model for the sample, αt

denotes the category weights, and γ is a moderator. When γ = 0, Focal Loss
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degenerates to the ordinary cross-entropy loss function. When γ > 0, Focal Loss
decreases the loss contribution of easy-to-categorize samples and increases the
weights of hard to categorize samples, thus making these samples receive more
attention.

3 Experimental Methods and Analysis of Results

The experimental framework in this paper uses Pytorch 1.8, CUDA 11.4, TITAN
XP graphics card, cosine annealing strategy for learning rate setting, adam
optimizer [9] to update the model parameters during training, and 50 train-
ing rounds. The training data are input using a data normalization strategy
that normalizes the pixel values of each channel of the input image to a mean
of 0 and a variance of 1. The benefit of normalization is to ensure that the pixel
values of all channels are in the same range of values, preventing a particular
channel from having too much influence on the model training.

3.1 Training Dataset

The publicly available datasets used in this paper for training and testing
are: MaSTr1325 [10], MODD2, SMD [11] and USV Inland [12], and a dataset
MyDataset collected during the experiments in this paper. Images in the dataset
are shown in Fig. 7.

The network designed in this paper, as well as all other networks used for
comparison, is trained on the MaSTr1325 dataset, which contains 1325 unique
images taken over a 24-month period. Three semantic components are manually
annotated on a pixel-by-pixel basis: water, sky and environment (obstacle).

In this paper, data augmentation is used in the training. Two types of data
enhancement are chosen to suit the water environment: horizontal mirroring and
luminance transformations. An elastic distortion is also applied to the water com-
ponent of the training image to artificially simulate waves and curls, increasing
the diversity of local textures in the training set. The effect of data enhancement
is shown in figure. The final result after applying data enhancement is a total of
48724 training images.

The performance of the model is evaluated in MyDataset, as well as two
publicly available ocean datasets, MODD2 and SMD, and an inland unmanned
vessel dataset, USV Inland. MODD2 is recorded in the Adriatic coastal area,
consisting of 28 different time series, all collected by the camera and synchro-
nized with IMU measurement times. It is recorded using an unmanned surface
vessel. SMD dataset is recorded at different locations in the port of Singapore,
which consists of 66 sequences containing the following. The USV Inland is more
different from the previous dataset and is the first inland unmanned boat dataset
with multiple sensors and weather conditions in real scenarios.
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Fig. 7. Training dataset

3.2 Model Structure Ablation Experiment

In deep neural networks, ablation experiments are performed by removing certain
component parts of the network and observing the change in the performance
of the neural network to determine the effect of each substructure on the model
performance. In the Swan network designed in this paper, the model that does
not contain ASPP module, ARM module and FFM module is noted as Baseline.
In Baseline the decoder only upsamples and splices the final output with the
features from the encoder at different stages. The following table shows the
impact of different structures on the model.

The Table 1 shows that the ARM, FFM, and ASPP structures of the model
all positively influence the final F1 score, and that the first ASPP module has
the greatest improvement in model performance, followed by the FFM and ARM
modules.

3.3 Performance Comparison of Different Models

To confirm the effectiveness of the model designed in this paper, this section
compares some previous research works and the accuracy metrics of the latest
semantic segmentation models on the same dataset. A total of three current
state-of-the-art segmentation networks RefineNet [12], BiSeNet [13] and U-Net
[14] are compared, which achieve the best results in segmentation tasks in either
the self-driving car domain or the medical domain, with different encoder and
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Table 1. Model substructure ablation experiment

Method F1-score

Baseline 73.3

Baseline+ASPP 78.7

Baseline+ASPP+ARM 83.0

Baseline+ASPP+ARM+FFM1 86.8

Baseline+ASPP+ARM+FFM1+CBAM 89.7

Baseline+ASPP+ARM+FFM1+CBAM +FFM2 93.3

decoder architectures. The Table 2 summarizes the number of different model
parameters and inference times.

Table 2. Comparison of the number of parameters and inference time of different
models

Model Nparam δt (ms) FPS

RefineNet 85.7M 130 7

U-Net 28.0M 45 22

BiSeNet 47.5M 68 15

Swan 66.5M 100 10

The Table 3 summarizes the results of all models tested on MODD2 and
SMD. Swan greatly outperforms all competing networks in terms of water edge
estimation. The second best is RefineNet, with an accuracy about two pixels
lower, followed closely by BiSeNet.

Table 3. Test results of different models

Model TP100 (times) FP100 (times) F1(%)

U-Net 39.9 17.5 69.2

BiSeNet 48.4 12.1 83.8

RefineNet 49.0 2.2 91.6

Swan 51.1 3.8 93.3

The traditional target detection task generally compares the prediction
results of the model with the real annotation when evaluating the metrics, and
if the intersection ratio of the output rectangular box to the real annotated box
reaches a certain threshold and the classification is correct, it is considered as
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TP. This approach is fine for detecting small obstacles (e.g., buoys, small boats)
on the water surface. However, large vessels are usually integrated with the water
boundary, and the model can segment the vessels but the output cannot identify
this part of the vessels.

In this paper, we use the method proposed in the literature [15] in calculating
the obstacle detection index. We determine whether the detection is correct by
calculating the proportion of correctly classified pixel points in the labeled area,
and when the proportion exceeds the set threshold of 20%, it is considered as a
TP detection, otherwise it is considered as a FP detection.

In terms of TP and FP metrics, Swan receives the best recall score because of
the highest true positive (TP) detection rate, followed by RefineNet and BiSeNet.

The Fig. 8 shows the comparison of prediction results of different networks.
From the Fig. 8, it can be concluded that in the presence of mist on the sea
antenna (first row of the figure), U-Net and BiSeNet are more inaccurate in
estimating the water edge, which usually results in over- and underestimation.
RefineNet is better, but the expected water is still underestimated, while Swan
neither overestimates nor underestimates its position, and Swan has a significant
improvement.

Fig. 8. Comparison of different model forecasts

In the presence of small objects in the distance of the image and in the
absence of contrast (second row of the Fig. 8), Swan detects smaller obstacles
more accurately than the other networks, and the other three networks showe
missed detections, while Swan accurately detectes all the objects in the figure,
And it has the most TP detections and achieves the best recall, followed by
RefineNet, then BiSeNet and U-Net.

When evaluating the value of a model for engineering applications, the metric
for detecting obstacles is usually an important part. A high Precision means that
the model can detect the obstacles more accurately, while a high Recall means
that the model is better able to detect more obstacles. In practice, in order to
achieve uninterrupted autonomous navigation, it is necessary to maintain both
a certain recall to ensure that all obstacles can be found as fully as possible and
that the platform does not collide.
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It is also necessary to maintain a certain level of accuracy to prevent the
model from misreporting too many obstacles and affecting the normal operation
and obstacle avoidance of the platform, so there is also a trade-off between the
number of FP and TP detections, which is measured by the F1 score. The best
performing methods based on F1 are Swan, RefineNet, BiSeNet and U-Net. The
quality of segmentation masks can be further understood based on the accuracy
of obstacle detection overlap thresholds, recall and F1 score plots. The plots of
the four best performing networks are shown in Fig. 9.

Fig. 9. Plot of model metrics and obstacle overlap threshold

The Swan network proposed in this paper has the highest accuracy and
recall scores at medium overlap threshold, followed by RefineNet, which means
that Swan detects more obstacles with fewer FPs. Further analysis shows that
most of the TP detected by Swan but not detected by other networks are small
objects with area less than 900 pixels, proving that Swan is more advantageous
for detecting small targets.

However, RefineNet performs better when the overlap threshold is relatively
high (above 70%), predicating that the localization of RefineNet is more accu-
rate than that of Swan. However, RefineNet can show poor detection of isolated
obstacles and miss some small obstacles, leading to relatively low TP rate, that
is dangerous in real autonomous navigation. As the threshold rises above 65%,
the curves of all models drop faster, indicating that these models still have short-
comings in localization. Thus accurate obstacle segmentation is very challenging
for all models, and the models still have room for improvement upwards.

4 Conclusion

In this paper, we propose a semantic segmentation neural network, Swan-Net,
which fuses the pose information to extract the environmental semantic informa-
tion from the image, and classifies the pixels in the image into three categories:
water, sky, and environment, that can be used to provide passable area informa-
tion for surface ships and vessels. In this paper, we first integrate the positional
information into a semantic segmentation neural network as an a priori water
boundary approach, encode the platform positional information obtained from
the inertial measurement unit (IMU) into a feature channel, and apply it to
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the decoder to fuse with the image features. The decoder design makes full use
of multi-scale feature fusion, channel attention, and spatial attention mecha-
nisms, and the effectiveness of the model design is demonstrated by ablation
experiments and comparison experiments. Its advantages in the field of water
surface environment perception are illustrated through the comparison with the
existing excellent networks in the field of semantic segmentation. The next step
needs to improve the segmentation performance of the network on the inland
river scenario, so more data collection and application of new model optimiza-
tion methods needs to be considered to enhance the model performance in this
scenario.
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