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Abstract. The fractional order Kalman filtering theory is an extension and exten-
sion of traditional integer order Kalman filters, which can solve the state esti-
mation problem of fractional order systems. At present, the descriptor fractional
order systems have been widely applied in many fields, such as circuit and sensor
fault diagnosis. However, there is currently little research on the filtering problem
of descriptor fractional order systems. This paper will focus on a fractional order
descriptor system with canonical form. Firstly, the non singular linear transforma-
tion method is applied to transform the descriptor fractional order system into two
normal fractional order subsystems. Then, based on projective theory, a fractional
order Kalman state filter with correlated noise subsystems is derived. For multi-
sensor descriptor fractional order systems, the globally optimalweightedmeasure-
ment fusion algorithm is applied to derive the optimal information fusion fractional
order Kalman filter. Simulation results verify the effectiveness and feasibility of
the proposed algorithm.

Keywords: Information fusion · fractional order systems · fractional order
Kalman filtering · weighted measurement fusion · optimal filtering

1 Introduction

Kalman filter algorithm is a common state estimation method. This method has been
widely concerned and applied since it was put forward in the 1960s. Its feature is that
it can predict the estimated value of the next moment or even the next moment accord-
ing to the current data through iteration, so as to solve the dynamic target estimation
problem with interference [1]. In addition, Kalman filter has also been widely applied
in the engineering field, such as integrated navigation [2–4], target tracking [5, 6], fault
diagnosis and detection [7, 8]. At present, many improved Kalman filtering algorithms
emerge in an endless stream. From the initial solution of linear system problems to the
present solution of nonlinear system problems, simple classical Kalman filtering at the
very beginning, Later, adaptive Kalman filtering with unknown noise statistics or model
parameters and other uncertain information [9], self-correcting Kalman filtering [10,
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11], robust Kalman filtering theory [12, 13] and so on. In recent years, with the develop-
ment of fractional-order calculus theory, the filter problem of fractional-order system has
gradually attracted people’s attention. The state estimation of fractional-order system is
a new idea and new direction of the development of the theory of state estimation, and
also meets the actual production demand.

Fractional calculus was proposed by Leibniz and L’Hospital in 1965, and then Liou-
ville and Riemann proposed the definition of fractional derivatives. However, it was
initially studied only by engineers, and it was not until the late 1960s that fractional cal-
culus was gradually developed, and it was discovered that fractional derivatives would
allowmore accurate descriptions of systems in simulationmodeling or stability analysis.
With the passing of time, the control system theory gradually develops, the traditional
calculus theory is not enough to meet the needs of production and research. Fractional
calculus became more active in the theory of control systems and played an indispens-
able role. Literature [14] and [15] proposed fractional Kalman filtering algorithm and
extended fractional Kalman filtering algorithm, and analyzed specific cases to discuss
the possibility of applying these algorithms to fractional system parameters and frac-
tional estimation, and their algorithms have been applied to image processing, signal
transmission and other fields [16, 17]. But compared with the traditional Kalman fil-
ter, its application is not so wide. At present, generalized fractional systems have been
widely used in the fields of circuit [18, 19] and sensor fault estimation [20]. The fusion
estimation problem of generalized fractional systems discussed in this paper has certain
theoretical significance and potential application value.

In this paper, a typical fractional-order singular system is firstly transformed into
two normal fractional-order subsystems by non-singular linear transformation method.
Then, a fractional-order Kalman state filter with correlated noise subsystems is derived
based on projective theory. For multi-sensor generalized fractional-order systems, the
global optimal weighted observation fusion algorithm is applied to derive the optimal
information fusion fractional-order Kalman filter, and the simulation results verify the
effectiveness of the proposed algorithm.

2 Problem Formulation

Consider the following linear generalized fractional stochastic system

M�γ x(k + 1) = �x(k) + Bw(k) (1)

x(k) = �γ x(k) −
k∑

j=1

(−1)jγjx(k − j) (2)

y(k) = Hx(k) + v(k) (3)

where x(k+1) ∈ Rn is the state of the system,� ∈ Rn×n is the target variance coefficient
matrix, B ∈ Rn×r is the target noise matrix, �γ is a fractional operator, γ is fractional
order,H is the observationmatrix of the observation equation, v(k) is the observed noise,
M ,H is the constant matrix of corresponding dimension.
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Assumption 1: M ∈ Rn×n is a singular square matrix, means rankM = n1 < n,
detM = 0.

Assumption 2: The system is regular, means ∃z ∈ C, so det(zM − �) �= 0.

Assumption 3: w(k) ∈ Rr and v(k) are zero mean uncorrelated white noise:

E

{[
w(k)

v(k)

]
[
wT(k) vT(k)

]
}

=
[
Qw 0
0 Qvδij

]
(4)

where E is the expected value, T is the transpose symbol.

Assumption 4: The system is fully observable, So there’s the matrix K that makes:

rank

[
zM − (� − KH )

H

]
= n1, rank

[
M
H

]
= n (5)

Assumption 4 leads to the existence of two non-singular square matrices R,W that
make [77]

RMW =
[
In1 0
0 0

]
,R(� − KH )W =

[
Y1 0
0 In2

]
(6)

where n1 + n2 = n.Introducing block matrix representation:

RK =
[
K1

K2

]
,RB =

[
B1

B2

]
,HW = [H1H2] (7)

and introduce state:

x(k) = W

[
x1(k)

x2(k)

]
(8)

where x1(k) ∈ Rn1 , x2(k) ∈ Rn2 .
Equation (3) is multiplied by K and subtracted by Eq. (1)

M�γ x(k + 1) = (W − KH )x(k) + Ky(k) + w(k) (9)

w(k) = Bw(k) − Kv(k) (10)

P is leftmultiplied by formula (9), and formula (6)–(8) is used to derive the observable
model as follows:

[
In1 0
0 0

][
�γ x1(k + 1)

�γ x2(k + 1)

]
=

[
Y1 0
0 In2

][
x1(k)

x2(k)

]
+

[
K1

K2

]
y(k) +

[
B1

B2

]
w(k) (11)

y(k) = [H1H2]

[
x1(k)

x2(k)

]
+ v(k) (12)
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This leads to two reduced order subsystems:

�γ x1(k + 1) = Y1x1(k) + K1y(k) + B1w(k) (13)

x2(k) = −K2y(k) − B2w(k) (14)

y(k) = H1x1(k) + H2x2(k) + v(k) (15)

by substituting Eq. (14) into Eq. (15), a subsystem with different local dynamic
transformation types and the same local state x1(k) is derived:

�γ x1(k + 1) = Y1x1(k) + K1y(k) + B1w(k) (16)

z(k) = H1x1(k) + τ(k) (17)

therein defined:

z(k) = (Im + K2H2)y(k) (18)

τ(k) = v(k) − H2B2w(k) (19)

from (17), (18)

y(k) = (Im + K2H2)
−1[H1x1(k) + τ(k)] (20)

for the transformed conventional subsystem (16), if a non-zero term is added to the right
side and substituted into formula (20), it can be obtained:

�γ x1(k + 1) =Y1x1(k) + K1(Im + K2H2)
−1 × [H1x1(k) + τ(k)] + B1w(k)+

�[z(k) − H1x1(k) − τ(k)]

=
[
Y1 + K1(Im + K2H2)

−1H1 − �H1

]
x1(k)+

�z(k) +
[
K1(Im + K2H2)

−1τ(k) + B1w(k) − �τ(k)
]

(21)

where � is the undetermined matrix and can be set:

�1 = Y1 + K1(Im + K2H2)
−1H1 − �H1 (22)

φ(k) = K1(Im + K2H2)
−1τ(k) + B1w(k) − �τ(k) (23)

Then equation of state (21) can be reduced to

�γ x1(k + 1) = �1x1(k) + �z(k) + φ(k) (24)

However, the observation equation is still Eq. (17). According to assumption 3, we
can know:

E[φ(k)] = 0
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then have

E
[
φ(k)τT (j)

]
= E[K1(Im + K2H2)

−1τ(k) + B1w(k) − �τ(k)]
= K1(Im + K2H2)

−1Qτ + E
[
B1w(k)τT (j)

]
− �Qτ

= K1(Im + K2H2)
−1Qτ − B1Qw(H2B2)

T − �Qτ (25)

and Qτ is the reciprocal covariance matrix of τ(k):

Qτ = E
[
τ(k)τT (j)

]
= Q v + H2B2Q w(H2B2)

T (26)

so you can take the undetermined matrix

� =
[
K1(Im + K2H2)

−1Qτ − B1Qw(H2B2)
T
]
Q−1

τ (27)

therefore, there is E
[
φ(k)τT (j)

] = 0, that is, φ(k) is unrelated to τ(j), and the auto-
covariance matrix of φ(k) is easily obtained:

E
[
φ(k)φT(j)

]
= K1(Im + K2H2)

−1Qτ ×
[
K1(Im + K2H2)

−1
]T

+B1QwB
T
1 + �Qτ�

T
(28)

substitute into Eq. (27) to get

E
[
φ (k)φT (j)

]
= K1(Im + K2H2)

−1Qτ ×
[
K1(Im + K2H2)

−1
]T + B1QwB

T
1+

[
K1(Im + K2H2)

−1Qτ − B1Qw(H2B2)
T
]

×
{[

K1(Im + K2H2)
−1Qτ − B1Qw(H2B2)

T
]
Q−1

τ

}T
(29)

So φ(k) has zero mean white noise, and the variance is

Qφ = K1(Im + K2H2)
−1Qτ

[
K1(Im + K2H2)

−1
]T + B1QwB

T
1

+ [K1(Im + K2H2)
−1Qτ − B1Qw(H2B2)

T ]×
{[

K1(Im + K2H2)
−1Qτ − B1Qw(H2B2)

T
]
Q−1

τ

}T
(30)

which is independent of white noise τ(k).Generalized fractional filtering problem is to
calculate the minimum variance estimation x̂(k|k) of state x(k) based on the observed
value y(1), · · · , y(k) of data obtained by multiple sensors.

3 Kalman Filter for Single Sensor Generalized Fractional Order
System

Theorem 1 For the observable singular system (1)–(3), under hypothesis 1-(4), the
reduced-order subsystem (17) and (24) has a local recursive fractional Kalman filter of
x1(k).

x̂1(k|k) = x̂1(k|k − 1) + K1(k)[z(k) − H1x̂1(k|k − 1)] (31)
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�γ x̂1(k|k − 1) = �1x̂1(k − 1|k − 1) + �z(k − 1) (32)

x̂1(k|k − 1) = �γ x̂1(k|k − 1) −
k∑

j=1

(−1)jγj x̂1(k − j|k − j) (33)

P1(k|k − 1) = (�1 + γ1)P 1(k − 1|k − 1) × (�1 + γ1)
T +

k∑

j=2

γjP1(k − j|k − j)γ T
j + Qφ (34)

P1(k|k) = (In − K1(k)H1)P1(k|k − 1) (35)

K1(k) = P1(k|k − 1)HT
1 ×

[
H1P1(k|k − 1)HT

1 + Qη

]−1
(36)

put in the initial value x̂1(0|0) = ρ01,P1(0|0) = P01.

Proof: It can be obtained from literature [13] that

x̂1(k|k − 1) = proj(x1(k)|z(1), · · · , z(k − 1)) = proj[�1x1(k − 1) + �z(k − 1) + φ(k − 1)−
k∑

j=1

(−1)jγjx1(k − j)|z(1), · · · , z(k − 1)] = �1proj[x1(k − 1)|z(1), · · · , z(k − 1)]+

�proj[z(k − 1)|z(1), · · · , z(k − 1)] −
k∑

j=1

(−1)jγjproj[x1(k − j)|z(1), · · · ,z(k − 1)]

(37)

available at this time

x̂1(k|k − 1) = �1x̂1(k − 1|k − 1) + �z(k − 1) −
k∑

j=1

(−1)jγj x̂1(k − j|k − j) (38)

So we get (32) and (33) easily.
According to literature [13], the one-step optimal linear prediction ẑ(k|k−1) of z(k)

can be obtained, i.e.

ẑ(k|k − 1) = proj[z(k)|z(1), · · · , z(k − 1)]
= proj[H1x1(k) + τ(k)|z(1), · · · , z(k − 1)]
= H1x̂1(k|k − 1) (39)

thus easy to obtain

x̂1(k|k) = x̂1(k|k − 1) + K1(k)ε(k) (40)

among them ε(k) = z(k)− ẑ(k|k−1),K1(k) = E[x1(k)εT (k)][E(ε(k)εT (k)]−1 is called
Kalman

filter gain. Define x̃1(k|k − 1) = x1(k) − x̂1(k|k − 1), then E[x1(k)εT (k)] =
E[(x̂1(k|k − 1) + x̃1(k|k − 1)).
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×(H1x̃1(k|k − 1) + τ(k))T ], By projective orthogonality we have x̂1(k|k −
1)⊥x̃1(k|k − 1), τ(k)⊥x̂1(k|k − 1), τ(k)⊥x̃1(k|k − 1), then

E[x1(k)εT (k)]=P1(k|k − 1)H
T

(41)

In the same way, we can get

E[ε(k)εT (k)] = E[(z(k) − ẑ(k|k − 1)) × (z(k) − ẑ(k|k − 1))T ] = HP1(k|k − 1)H
T + Qξ (42)

where P1(k|k − 1) = E[(x1(k) − x̂1(k|k − 1))(x1(k)− x̂1(k|k − 1))T ] is the prediction
error variance matrix.It can be obtained from (40) that

x̂1(k|k) = x̂1(k|k − 1) + P1(k|k − 1)HT
1 ×

[
H1P1(k|k − 1)HT

1 + Qη

]−1
ε(k) (43)

K1(k) = P1(k|k −1)HT
1 [H1P1(k|k −1)×HT

1 +Qη]−1 is denoted as the gain matrix
of fractional Kalman filter, then formulas (31) and (36) can be obtained.

x1(k) − x̂1(k|k − 1) = �1x1(k − 1) + �z(k − 1) + φ(k − 1) −
k∑

j=1

[
(−1)jγjx1(k − j)

]

−�1x̂1(k − 1|k − 1) − �z(k − 1) +
k∑

j=1

[
(−1)jγj x̂1(k − j|k − j)

]
= (�1 + γ1)×

[x1(k − 1) − x̂1(k − 1|k − 1)] −
k∑

j=2

(−1)jγj(x1(k − j) − x̂1(k − j|k − j)) + φ(k − 1)

(44)

where E[(x1m − x̂1m|m−1)(x1n − x̂1 n|n−1)
T ] = 0 , m �= n .It follows that:

P1(k|k − 1) = E[(x1(k) − x̂1(k|k − 1)) × (x1(k) − x̂1(k|k − 1))T ]

= (�1 + γ1)P1(k|k)(�1 + γ1)
T +

k∑

j=2

γjP1(k − j|k − j)γ T
j + Qφ (45)

where, Qφ is the autocovariance matrix of φ(k), which is given by Eq. (28) and can be
proved by Eq. (34).

It can be obtained from Eqs. (17) and (31) that

x1(k) − x̂1( k|k) = x1(k) − {x̂1( k|k − 1) + K1(k) × [z(k) − H1x̂1( k|k − 1)]}
= x1(k) − x̂1( k|k − 1) − K1(k) × [H1x1(k) + τ(k) − H1x̂1( k|k − 1)]
= [In − K1(k)H1](x1(k) − x̂1( k|k − 1)) − K1(k)τ (k) (46)

P1(k|k) = E[(x1(k) − x̂1(k|k))(x1(k) − x̂1(k|k))T ]
= [In − K1(k)H1]P1(k|k − 1) × [In − K1(k)H1]T + K1(k)QτK

T
1 (k)

= (In − K1(k)H1)P1(k|k − 1) (47)
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Theorem 2: Fractional subsystem 2 has a local recursive fractional Kalman filter under
Eqs. (14) and (15).

x̂2(k|k) = −(I + K2H2)
−1K2H1x̂1(k|k) (48)

Prove: Applying theorem 1, it can be proved easily by Eqs. (14) and (15).

4 Observational Fusion Kalman Filter for Generalized
Fractional-Order Systems

The observation fusion of generalized fractional order system is carried out for the nor-
malized subsystem, so the normalized subsystem of multi-sensor generalized fractional
order system is considered as follows.

�γ x1(k + 1) = �1x1(k) + �izi(k) + φi(k) (49)

zi(k) = H1ixi(k) + τi(k) (50)

zi(k) = (Im + K2H2i)yi(k) (51)

τi(k) = vi(k) − H2iB2w(k) (52)

H1i = GiHi = 1, · · · ,L (53)

where xi(k) ∈ Rn is the state quantity and zi(k) ∈ Rm is the observation of the ith
sensor,τi(k) ∈ Rmi is observed noise, H1i ∈ Rr is observed white noise,�1、K2、H is
a known constant matrix of appropriate dimension, and the observed matrix Hi has the
same m × n dimensional right factor H ,and

�γ x1(k + 1) =
⎡

⎢⎣
�γ x1i(k + 1)

...

�γ x1n(k + 1)

⎤

⎥⎦

Assumption 5: φi(k) ∈ Rr and τi(k) ∈ Rn are mutually independent white noises with
zero mean and variance matrices Qφi and Qτi , respectively, and

E

{[
φi(k)

τi(k)

][
φT
i (k) τTj (k)

]}
=

[
Qφiδij0

0Qτ iδij

]
δtk (53)

where E is the mean symbol and T is the transpose symbol,δtt = 1, δtk = 0 (t �= k)。

Assumption 6: (�1 H1i) is a completely observable pair.

Assumption 7: The matrix
∑L

i=1 [GT
i R

−1
ξ i Gi]−1 is invertible.
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The centralized fusion observation equation can be obtained from Eqs. (50)–(54)
that

z0(k) = H0x(k) + τ0(k) (55)

z0(k) = [zT1 (k), · · · , zTL (k)]T (56)

H0 = [HT
0 , · · · ,HT

L ]T (57)

τ0(k) = [τT1 (k), · · · τTL (k)]T (58)

The fused observation noise τ0(k) has a variance matrix

Qτ0 = diag(Qτ1 , · · · ,QτL) (59)

Equation (55) can be regarded as an observation model forH1x1(k), so the weighted
least squares (WLS) method can be applied to estimate H1x1(k) as

z(k) =
[
GT
0Q

−1
τ0 G0

]−1
GT
0Q

−1
τ0 z0(k) (60)

The weighted observation fusion equation can be obtained by substituting Eq. (60)
into (55)

z(k) = H1x(k) + τ(k) (61)

And it has fused observation noise

τ(k) =
[
G−1
0 Q−1

τ0
G0

]−1
G−1
0 Q−1

τ0
τ0(k) (61)

It has the minimum error variance matrix

Qτ =
[
G−1
0 Q−1

τ0
G0

]−1
(63)

5 Simulation Study

Generalized fractional systems have important applications in circuits[18, 19] and sensor
fault estimation[20]. Here, the canonical form of a generalized fractional order circuit
system is considered.

[
1 0
0 0

][
�γ x1(k + 1)

�γ x2(k + 1)

]
=

[
0.1 0
0 1

][
x1(k)

x2(k)

]
+

[
0
1

]
y(k) +

[
1
0

]
w(k) (64)

y(k) = [10]

[
x1(k)

x2(k)

]
+ v(k) (65)
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wherew(k) and v(k) are uncorrelated white noise with zero mean andvarianceQ = 0.01
and Qv = 0.02,respectively,n1 = 0.01,the problem is to find a generalized fractional
Kalman filter x̂(k|k) = [x̂1(k|k), x̂2(k|k)]T for state x(k).The simulation results are
shown in Fig. 1.

According to theorem 1, the model given above is simulated and analyzed. Figs. 1
and 2 show the filtering results of state values and estimated values of subsystem 1
and subsystem 2. As can be seen from the figure, the estimated value can almost keep
up with its state truth value, which is comparable to the effect of Model II. The error
is basically within 0.1, so it can be seen that the generalized fractional-order filtering
algorithm is feasible. Of course, the effect can be improved by adjusting the parameters.
Then, weighted observation fusion was explored for the above model, and simulation
analysis was carried out. Based on (64) and (65), different local observation noise error
variances were considered respectively as: Qv1 = 0.02, Qv2 = 0.1, Qv3 = 1, As shown
in Fig. 3, observation fusion is carried out on subsystem 1 after normalization, and curves
of state truth value and observation estimation are made. By analogy with Fig. 1 of local
valuation, there are obvious changes.
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Fig. 1. Comparison of true and estimated values for Subsystem 1

In order to further compare and analyze the estimation accuracy of local fusion, on the
basis of (63) and (64), different local observation noise error variances are considered
as: Qv1 = 0.02,Qv2 = 0.1,Qv3 = 1,The comparison graph of mean square error
obtained by 100-step Monte-Carlo simulation of the three fusion estimates is shown in
Fig. 4. MSEm,MSCI123, MSEguance andMSEjizhong represent the mean square error
curves of suboptimal weighted state fusion, SCI fusion, weighted observation fusion and
centralized fusion, respectively. At k = 60,then

MSEm = 0.007304659

MSCI123 = 0.00650606

MSEguance = 0.00647497

MSEjizhong = 0.00647497
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Fig. 2. Comparison between true value and estimated value of subsystem 2
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Fig. 3. Comparison of the state truth value of subsystem 1 with the weighted observation fusion
estimate

As can be seen from the figure, the actual estimation accuracy of SCI fusion is similar
to that of distributed suboptimal state fusion, but lower than that of weighted observation
fusion. The estimated accuracy of weighted observation fusion is the same as that of
centralized fusion, which is a globally optimal weighted fusion algorithm.

Note 1Based on subsystem1 afterweighted fusion, the corresponding state estimator
of subsystem 2 can also be obtained from Theorem 2. According to the optimality of the
state fusion estimation of subsystem 1, it is easy to know that the corresponding state
estimator of subsystem 2 also has the same optimality.
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Fig. 4. Comparison curve of mean square error of three fusion estimates

6 Conclusions

A fractional Kalman state filter for fractional descriptor systems is proposed in this
paper. For multi-sensor generalized fractional order system, the global optimal weighted
observation fusion algorithm is applied to derive the optimal information fusion frac-
tional order Kalman filter. The proposed algorithm has global optimality and equivalent
estimation accuracy compared with the centralized fusion algorithm, but the computa-
tional complexity is greatly reduced, which is convenient for engineering applications.
A simulation example proves the effectiveness and feasibility of the method.
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