
Stochastic Resource Allocation with Time
Windows

Yang Li1 and Bin Xin2(B)

1 Beijing Institute of Electronic System Engineering, Beijing 100854, China
2 School of Automation, Beijing Institute of Technology, Beijing 100081, China

brucebin@bit.edu.cn

Abstract. The stochastic resource allocation problem with time windows
(SRAPTW) refers to a class of combinatorial optimization problems which are
aimed at finding the optimal scheme of assigning resources to given tasks within
their time windows. In SRAPTW, the capability of resources to accomplish tasks
is quantitatively characterized by probability. The expected allocation scheme
should include not only the task-resource pairings but also their allocation time.
This paper formulates SRAPTW as a nonlinear mixed 0–1 programming problem
with the objective of maximizing the reward of completing specified tasks. Then, a
general encoding/decodingmethod is proposed for the representation of solutions,
and several different problem-solvingmethodologies are presented and compared.
Results of computational experiments show that the utilization of SRAPTW-
specific knowledge can bring in excellent performance, and a constructive heuristic
combiningmaximalmarginal return strategy andmaximal probability strategy has
remarkable advantages, especially in larger-scale cases.

Keywords: Stochastic Resource Allocation · Time Windows · Constructive
Heuristic

1 Introduction

The stochastic resource allocation problem with time windows (SRAPTW) refers to
a class of combinatorial optimization problems which are aimed at finding the optimal
scheme of assigning resources to given tasks within certain time windows. As a complex
variant of the stochastic resource allocation problems (SRAP) [1, 2], a prominent feature
of SRAPTW is that the capability of resources to accomplish tasks is quantitatively
characterized by probability within certain time windows.

SRAPTW widely exists in the control of complex systems which involve the allo-
cation of multiple sensors and actuators for various control tasks. When sensors or
actuators are used for moving targets especially those time-critical ones, the time win-
dows of resource allocation are one of the key factors to check the feasibility of task
scheduling and execution.

Previous studies on SRAP, such as sensor-target assignment problem and weapon-
target assignment problem, were focused on the allocation of resources to tasks with-
out time windows [1–8]. In fact, time windows widely exist in the resource allocation

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Xin et al. (Eds.): IWACIII 2023, CCIS 1931, pp. 348–358, 2024.
https://doi.org/10.1007/978-981-99-7590-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7590-7_28&domain=pdf
http://orcid.org/0000-0001-9989-0418
https://doi.org/10.1007/978-981-99-7590-7_28

Stochastic Resource Allocation with Time Windows 349

problems from diverse fields, e.g., emergency and rescue [9], communication channel
management [10], traffic resources management [11], transportation and logistics [12–
14], defense resources allocation [15]. Unlike common resource allocation problems
involving time windows, the success probability of resources to accomplish tasks is
time-dependent in SRAPTW. Therefore, the time windows in SRAPTW not only bring
constraints, but also relate to the distribution of success probability, which means the
task performance of resources is sensitive to the execution time of tasks. In this sense,
solving SRAPTW involves the matching of resources and tasks as well as determining
the execution time of tasks, so as to optimize the overall task performance.

This paper is aimed at formulating SRAPTW and proposing efficient strategies and
algorithms for solving it. The contribution of the paper is summarized as follows:

1) Formulate the SRAPTW as a nonlinear mixed 0–1 programming problem.
2) Provide a general encoding/decodingmethod for representing solutions anddesigning

search algorithms to solve SRAPTW.
3) Propose four different SRAPTW algorithms which combine knowledge-dependent

constructive heuristic and random search. Conduct comparative computational
experiments to identify their pros and cons.

The rest of the paper is structured as follows. Section 2 presents the problem for-
mulation. Section 3 presents the proposed algorithms. Section 4 presents computational
experiments. Section 5 concludes the paper.

2 Problem Formulation

2.1 Problem Description

Stochastic resource allocation (SRA) refers to the scenarios in which the capability of a
resource (e.g., a person or a robot) to complete tasks is characterized by probabilities. An
allocation scenario of m resources and n tasks is considered. The probability of the ith
resource (i = 1, 2, · · · ,m) to complete the jth task (j = 1, 2, · · · , n) also depends on the
allocation time. So, if the probability, denoted by Pij(t), is lower than certain threshold or
even becomes 0, the allocation will be abandoned. Generally, the allocation of resources
to tasks needs to be handled within specified timewindows. Thus, the problem is an SRA
problem with time windows (SRAPTW). Assume that each task, once accomplished,
will bring a reward. Denote the reward of the jth task by vj. The objective of SRAPTW
is to maximize the total reward of allocating resources to tasks within specified time
windows. Besides, resources when assigned usually have to satisfy some constraints.
For example, for one resource, there will be some time interval between one allocation
and its next, as well as an allowable maximal number of tasks to be allocated. For each
task, it is allowed that multiple resources can be used but each resource can be used only
once.

2.2 Optimization Model

The SRAPTWcan be formulated as an optimization problem. Assume that the execution
of tasks about each resource is mutually independent. Then, the objective of the problem

350 Y. Li and B. Xin

can be presented as follows:

max J1(X ,T) =
∑n

j=1
vj

(
1 −

∏m

i=1

(
1 − pij(tij)xij

))
(1)

where J1(X ,T) represents the objective function, X and T are the decision matrices,
X = [

xij
]
m×n represents the resource-task allocation relation, T = [

tij
]
m×n represents

the task execution time for each resource-task pair when allocated, and P = [
pij(tij)

]
m×n

represents the success probability that a resource can accomplish a task at specific time.
A detailed description of other parameters is presented in Table 1.

The objective shown in Eq. (1) can be equivalently converted to the following

minJ2(X ,T) =
∑n

j=1 vj
∏m

i=1

(
1 − pij(tij)xij

)
∑n

j=1 vj
(2)

where J2(X ,T) is a normalized objective function.

Table 1. Explanation of Model Parameters.

Symbol Explanation

vj Reward of accomplishing task j

xij xij = 1 means that task j is allocated to resource i; xij = 0 otherwise

tij The task execution time for resource i to execute task j

pij(tij) The success probability that resource i can accomplish task j at the time tij

TWij The time interval for resource i to execute task j

t−ij The lower bound of the time interval for resource i to execute task j

t+ij The upper bound of the time interval for resource i to execute task j

The following constraints have to be satisfied.

Range of Decision Variables. It is obvious that the allocation variable is of 0–1 type
and the allocation time should be determined within specified time window.

xij ∈ {0, 1},∀i ∈ {1, 2, · · · ,m},∀j ∈ {1, 2, · · · , n} (3)

tij ∈ [t−ij , t+ij],∀i ∈ {1, 2, · · · ,m},∀j ∈ {1, 2, · · · , n} (4)

Maximal Number of Tasks to be Allocated for Each Resource. For resource i, the
maximal number of tasks which can be allocated to it should not exceed ni.

∑n

j=1
xij ≤ ni,∀i ∈ {1, 2, · · · ,m} (5)

Stochastic Resource Allocation with Time Windows 351

Maximal Number of Resources to be Allocated for Each Task. For task j, the
maximal number of resources which can be allocated to it should not exceed mj.

∑m

i=1
xij ≤ mj,∀j ∈ {1, 2, · · · , n} (6)

Time Interval for EachResource to Execute TwoTasks. For resource i, the execution
of any two tasks assigned to it should be separated at least τi.

|tij − tik | ≥ τi,∀i ∈ {1, 2, · · · ,m},∀j, k ∈ {1, 2, · · · , n}, j �= k (7)

To sum up, the optimization model for SRAPTW can be formulated as follow:

min J2(X ,T), s.t.(3) ∼ (7).

Obviously, SRAPTW is a nonlinear mixed-variable programming problem.

2.3 Problem Analysis

From the problem formulation shown above, the following properties can be derived:

Property 1: The more resources are allocated without violating any constraints, the
better the objective value will be. Stated another way, for any X, if more xij can become
1, J2(X,T) can be improved.

Property 2: For any X, the larger pij(tij) is, the better the objective value.

Property 3: If all t∗ij = argmin(pij(tij)),∀i ∈ {1, 2, · · · ,m},∀ j ∈ {1, 2, · · · , n}, do not
have conflicts w.r.t. constraints (7), then tij = t∗ij will be a necessary condition for any
xij = 1.

As demonstrated later, these properties are beneficial to design efficient problem-
specific strategies or operators to solve SRAPTW.

3 Algorithm Design

3.1 Solution Representation

The decision variables X (binary valued) and T (real valued) are straightforward repre-
sentation of solutions to SRAPTW. However, it will be more convenient to utilize the
problem-domain knowledge in SRAPTW by use of permutation-based encoding and
decoding schemes.

According to Property 1, for a feasible X which does not violate the constraints (3),
(5) or (6), changingmore xij from0 to 1will bring the improvement of the objective value.
In this sense, for an empty X (all zero elements), the order of making each xij become
one while ensuing constraint satisfaction can be a key factor to generate a feasible and
even high-quality solution. In other words, the permutation of all resource-task pairs can
be used as a main component of solution representation.

352 Y. Li and B. Xin

For the execution time regarding each pair, we can determine the value of each tij
from its time window according to certain rules, e.g., unbiased random sampling or
biased heuristic selection.

To sum up, the permutation of all resource-task pairs and corresponding execution
time can be used to represent a solution to SRAPTW. The detailed encoding-decoding
scheme is described as follows.

Encoding Scheme. For a resource-task pair (briefly called an RT pair) denoted by i-j
(i ∈ {1, 2, · · · ,m},j ∈ {1, 2, · · · , n}), we use the number n ×(i−1) + j to represent it.
Then, the permutation of all RT pairs is formally a permutation of the integers from 1
to m × n. The matrix of the execution time regarding each RT pair, together with the
permutation, constitutes the encoding scheme.

For example, for an SRAPTW of 2 resources and 2 tasks with time windows TW11
= [0, 0.1], TW12 = [0.3, 0.4], TW21 = [0.2, 0.3] and TW22 = [0.5, 0.9], the permutation
4-1-3-2 and the matrix of execution time [0.05, 0.38; 0.25, 0.78] represent a solution.

Decoding Scheme. For a given permutation Pe and a matrix of execution timeT =[
t′ij

]

m×n
, xij = 1 for each RT pair will be checked, in the order indicated by Pe, to see if

it violates constraints (5), (6) or (7). If no constraints violation occurs, then let xij = 1
and tij = t′ij; otherwise, let xij = 0 and tij = ∞.

Based on the above representation scheme, a feasible solution can be generated by
decoding after determining a permutation of all RT pairs and a execution time matrix.
Both the permutation and the execution time matrix can be generated in different ways.
For example, they can be generated by random sampling or constructive heuristics.

3.2 Constructive Heuristics

Constructive heuristics represent a philosophy of straightforwardly generating a solution
to a complex problem by determining its components step by step, rather than imple-
menting samplings in solution space as widely adopted in various search algorithms
such as improvement heuristics and metaheuristics [16–18]. In comparison with search
algorithms, constructive heuristics do not need function evaluations to improve solutions
in an iterative way. To design efficient constructive heuristics, the permutation of all RT
pairs and the execution time matrix can be generated by utilizing SRAPTW-specific
knowledge, e.g., the three properties shown in Subsect. 2.3. To utilize Properties 2 and
3, the execution time will be set to t∗ij if it does not violate any constraint. The permu-
tation can be constructed by using the rule-based method based on maximal marginal
return (MMR) [6, 19]. The marginal return means the improvement of the objective
value with reference to its current value brought by choosing one RT pair. MMR is a rule
for constructing a solution incrementally, and in each step, the RT pair with maximal
marginal return without constraint violation will be added into the allocation scheme.
In fact, since the MMR-based procedure can generate a complete solution directly, it
is unnecessary to get the permutation as a preliminary which is de facto implicated in
the procedure. To save space, the rationale of MMR will not be presented here in more
detail, and interested readers may refer to the reference [6]. Instead, we provide the
pseudo-code of the procedure in Procedure 1.

Stochastic Resource Allocation with Time Windows 353

Input: The initial execution time matrix T
Output: allocation scheme X, final execution time matrix T, objective value F
X = Omxn ; % All zeros
CS1 = Omx1 ; % The flag of constraint 5
CS2 = Onx1 ; % The flag of constraint 6
Temp = inf * ones(m,n) ; % All infinities
cnt = 0 ;
For i = 1 to m

For j = 1 to n
r(i,j) = vj *) ; % Calculate the initial marginal return for each RT

pair
End

End
For k = 1 to m*n

[w,g] = max(r) ; % Get the maximum for each column of the matrix r
% w records the maximum values
% g records the row number of each maximum in each column

[u,h] = max(w) ; % Get the maximum of the vector w
% u records the maximum value
% g records the column number of the maximum in w

i = g(h) ; % the hth element of the vector g
j = h ; % i-j indicates the RT pair with the maximal marginal return
If CS1(i) < ni && CS2(j) < mj && min(|tij-Temp(i,:)|)

X(i,j) = 1; CS1(i) = CS1(i) + 1 ; CS2(j) = CS2(j) + 1 ;
Temp(i,CS2(j)) = tij ;
If CS1(i) == mi cnt = cnt +1; end
If CS2(j) == nj cnt = cnt +1; end
If cnt == m+n break ; end
r(:,j) = r(:,j) * (1 -)) ;

End
r(i,j) = - inf ;

End
F = 0 ; q = ones(n,1) ;
For j=1 to n

For i = 1 to m
q(j) = q(j) * (1 - X(i,j) *)) ;

End
F = F + vj * q(j) ;

End
T = (1./X) * T ; F = F / sum(v) ;
Return X, T, F

Procedure 2. MMR(T)

Since the core of this constructive heuristic is the MMR-based procedure combined
with the execution time setting based onmaximal probability, we name it byMMR-MP.
The time complexity of determining all the execution time with maximal probability is

354 Y. Li and B. Xin

O(mnl) where l represents the number of time samplings in each time window. From
the pseudo-code of MMR-MP, the worst-case time complexity of MMR procedure is
O(m2n2). So, the time complexity of MMR-MP is O(m2n2 + mnl).

3.3 Random Search

Different from the constructive heuristic MMR-MP, the random search here refers to
certain unbiased search process to find better solutions. Since any solution involves
two parts, i.e., the permutation and the execution time matrix, we have three different
strategies to implement random search:

Strategy 1:MMR for permutation (implicit) & Random sampling of execution time
Strategy 2: Random permutation & Execution time with maximal probability
Strategy 3: Random permutation & Random sampling of execution time
Random permutation can be achieved in MATLAB by the command randperm(n ∗

m) while the random sampling of execution time can be conducted by implementing
tij = t−ij + (t+ij − t−ij) × rand where rand is a random number following the uniform
distribution in (0,1). The three versions of random search resulting from these strategies
are named MMR-RS, RP-MP and RP-RS, respectively. In fact, similar to MMR-MP,
both MMR-RS and RP-MP utilize SRAPTW-specific knowledge while maintaining
certain randomness. In contrast, RP-RS is a pure random search without search bias.
Denote the allowable number of random samplings (function evaluations) by N. Then,
the time complexity of MMR-RS, RP-MP and RP-RS is O(Nm2n2), O((N + l)mn) and
O(Nmn), respectively.

4 Computational Experiments

The goal of the computational experiments is to validate the performance of the proposed
algorithms including MMR-MP, MMR-RS, RP-MP and RP-RS. All tests are conducted
on a Lenovo Laptop X1 with Intel Core i7 CPU (1.8GHz) and 16GB RAM. For each
SRAPTW instance, the random search algorithms including MMR-RS, RP-MP and
RP-RS will run 25 times for making a statistical analysis of results.

4.1 Experiments Configuration

Test case generator:The task rewards are generated by following a uniform distribution
vj ∼ U (1,1 + δ) where U(a,b) represents a uniform distribution in the interval (a,b),
and δ is a control parameter. All time windows TW ij are randomly generated from the
interval (0,1). The success probability pij

(
tij

) ∼ N (μij,σ 2
ij) where N (μ, σ 2) represents

a Gauss distribution with mean μ and standard deviation σ . Let μij ∼ U (0,1) and
(σ ij − ε) ∼ U (0,t+ij − t−ij) where ε is a positive number for regulating the distribution
of success probability. A larger ε implies a smaller change of success probability within
corresponding time window. For constraints (5) and (6), mi = �α × rand i�, nj =
�β × rand j� where �·� is the ceiling operator, and α and β are control parameters, and
rand i, rand j ∼U(0,1). For constraint (7), τi ∼ U (τ−

i , τ+
i)where τ−

i and τ+
i are control

parameters.

Stochastic Resource Allocation with Time Windows 355

The following cases are generated.

, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,

, , , , ,

Case 1: m=5, n=5,
Case 2: m=5, n=5,
Case 3: m=5, n=5,
Case 4: m=5, n=5,
Case 5: m=5, n=5,
Case 6: m=5, n=10,
Case 7: m=10, n=5,
Case 8: m=10, n=5,
Case 9: m=10, n=10,
Case 10: m=20, n=10, , , , ,

In each case, ten different instances are generated by following the probability dis-
tribution preset in the test case generator. Detailed data about the total 100 instances and
related results will be released online and can be acquired by contacting the authors.

Parameter Setting: For all random search algorithms, the maximal number of function
evaluations (samplings) is set as 10 ×m× n. For determining the time for the maximal
probability in each time window, even samplings within [0,1] are conducted and the
minimal spacing is set to 0.001.

4.2 Performance Comparison

For each instance in each case, the results of all algorithms, i.e., obtained objective values
in 25 runs, will be compared byWilcoxon ranksum test with 0.05 significance level. For
two algorithms A and B, the indicator of the ranksum test h = 1 means the performance
of A is significantly different from that of B. In this case, if the mean of the results
obtained by A is smaller (larger) than that by B, then A gets a score of + 1 (−1) and B
gets a score of −1 (+1); otherwise, both A and B get zero. In each case, the highest and
lowest scores are 30 and –30, respectively. The scores of four algorithms in 10 cases
(totally 100 instances) are summarized in Table 2. To save space, detailed results for each
instance will not be presented. The average runtime of the four algorithms in different
cases is shown in Fig. 1.

Table 2. Statistical results of algorithm comparison (scores)

Algorithm Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case
10

RP-RS −16 −18 −24 −26 −24 −29 −30 −30 −30 −30

RP-MP 25 28 27 25 15 −11 9 12 −4 −10

MMR-RS 8 4 −3 −5 9 22 −7 −3 12 10

MMR-MP −17 −14 0 6 0 18 28 21 22 30

356 Y. Li and B. Xin

Fig. 1. The average runtime of four algorithms in different cases.

From Table 2, the following results can be found:

1) RP-MP has obvious advantages in Cases 1, 2, 3 and 4; in contrast, it is not a good
solver in Cases 6 and 10;

2) MMR-MP takes the first place in Cases 7, 8, 9 and 10 (especially wins all in the
larger-scale Case 10). However, it was defeated by RP-MP in Cases 1, 2, 3, 4 and 5
and performs poorly in Cases 1 and 2.

3) MMR-RS gets the highest score in Case 6, and shows its advantage over RP-MP and
RP-RS but loses to MMR-MP in Cases 9 and 10.

4) RP-RS has no advantage in almost all cases. In Cases 7, 8, 9 and 10, it was completely
defeated by the other algorithms. This implies that pure random search without use
of problem-specific knowledge is inefficient, though it can theoretically cover the
solution space and find the optimal solution with sufficient samplings.

5) It seems that the MMR strategy generally has dominant advantages in larger-scale
cases, which is supported by (a) the superiority of MMR-MP over RP-MP in Cases
6 to 10, (b) the superiority of RP-MP over MMR-MP in Cases 1 to 5, and (c) the
superiority of MMR-RS over RP-RS. The comparison implies that the permutation
of RT pairs will play a more important role in determining the quality SRAPTW
solutions as the scale of SRAPTW increases.

6) It seems that the MP strategy has advantages in smaller-scale cases, which is sup-
ported by (a) the superiority of MMR-MP over MMR-RS in Cases 7 to 10, (b) the
superiority of MMR-RS over MMR-MP in Cases 1, 2 and 5, and (c) the superiority
of RP-MP over RP-RS. Obviously, MP plays a crucial role in generating high-quality

Stochastic Resource Allocation with Time Windows 357

solutions for smaller-scale cases, and it is also a necessary strategy for guaranteeing
the performance of MMR-MP.

The average time cost of the four algorithms shown in Fig. 1 is consistent with the
analysis about computational complexity in Sect. 3. Obviously,MMR-MPhas the lowest
time cost in all cases. The time costs of RP-RS and RP-MP are very close, which implies
that the cost of obtaining the maximal probabilities (regulated by the parameter l) is
negligible as compared to that of determining the permutation of RT pairs (regulated by
the number of function evaluations N).

5 Conclusion

A mathematical programming model was built for the stochastic resource allocation
problem with time windows. A general encoding/decoding scheme was proposed for
representing SRAPTW solutions. Constructive heuristics and random search algorithms
were proposed to solve SRAPTW. Comparative experiments show that MMR-MP and
RP-MP have obvious advantages over MMR-RS and RP-RS in most cases. MMR-MP
and RP-MP share the similarity in the use of preset time under maximal probability
strategy, which implies the superiority and necessity of utilizing the problem-specific
knowledge embodied in Properties 3 and 4. In some instances, MMR-RS is the single
winner, which reflects that MMR is an effective strategy for determining the order of
resource-task pairs in allocation process. In contrast, RP-RS did not take the first place
in any instances, and also performs the worst in most cases. The failure of RP-RS as
compared with its competitors confirms that pure random search without utilization of
problem knowledge is not a satisfactory choice for algorithm design. Generally, misuse
of inaccurate knowledge in problems may cause the loss of optimality or lead to local
optima. On the other hand, no use of problem-specific knowledge usually results in slow
convergence of iterative search process. A delicate balance between the two aspects
may bring better strategies for solving complex SRAPTW. On the basis of the proposed
general solution representation scheme, how to design advanced neighborhood search
operator or meta-heuristics [20–22] also deserves further studies in the future.

Acknowledgement. We would like to thank the National Outstanding Youth Talents Support
Program (Grant 61822304), the Basic Science Center Programs of NSFC (Grant 62088101),
the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100), and the
Shanghai Municipal Commission of Science and Technology Project (19511132101).

References

1. Castanon, D.A., Wohletz, J.M.: Model predictive control for stochastic resource allocation.
IEEE Trans. Autom. Control 54(8), 1739–1750 (2009)

2. Fan, G.M., Huang, H.J.: Scenario-based stochastic resource allocation with uncertain
probability parameters. J. Syst. Sci. Complexity 30(2), 357–377 (2017)

3. Li, J., Xin, B., Pardalos, P.M., Chen, J.: Solving bi-objective uncertain stochastic resource
allocation problems by the s-based risk measure and decomposition-based multi-objective
evolutionary algorithms. Ann. Oper. Res. 296(1–2), 639–666 (2021)

358 Y. Li and B. Xin

4. Cassandras, C.G., Dai, L., Panayiotou, C.G.: Ordinal optimization for a class of deterministic
and stochastic discrete resource allocation problems. IEEE Trans. Autom. Control 43(7),
881–890 (1998)

5. Xin, B., Chen, J., Zhang, J., Dou, L.H., Peng, Z.H.: An efficient rule-based constructive
heuristic to solve dynamicweapon-target assignment problem. IEEETransactions on Systems
Man and Cybernetics Part A - Systems and Humans 41(3), 598–606 (2011)

6. Xin, B., Wang, Y.P., Chen, J.: An efficient marginal-return-based constructive heuristic to
solve the sensor-weapon-target assignment problem. IEEE Transations on Systems, Man
Cybernetics-Systems 49(12), 2536–2547 (2019)

7. Asadpour,A.,Wang,X., Zhang, J.:Online resource allocationwith limitedflexibility.Manage.
Sci. 66(2), 642–666 (2020)

8. Wang, Y.P., Xin, B., Chen, J.: An adaptive memetic algorithm for the joint allocation of
heterogeneous stochastic resources. IEEE Transactions on Cybernetics 52(11), 11526–11538
(2022)

9. Luan, D., Liu, A., Wang, X., Xie, Y., Wu, Z.: Robust two-stage location allocation for emer-
gency temporary blood supply in postdisaster. Discrete Dynamics in Nature and Society 2022,
Article ID 6184170

10. Bankov, D., Khorov, E., Lyakhov, A., Famaey, J.: Resource allocation for machine-type
communication of energy-harvesting devices in Wi-Fi HaLow networks. Sensors 20, 2449
(2020)

11. Jiang, B., Fan, Z.P.: Optimal allocation of shared parking slots considering parking unpunc-
tuality under a platform-based management approach. Transp. Res. Part E 142, 102062
(2020)

12. Puglia Pugliesea, L.D., Ferone, D., Macrinac, G., Festa, P., Guerriero, F.: The crowd-shipping
with penalty cost function and uncertain travel times. Omega 115, 102776 (2023)

13. Wang, Y., Wang, X., Guan, X., Li, Q., Fan, J., Wang, H.: A combined intelligent and game
theoretical methodology for collaborativemulticenter pickup and delivery problemswith time
window assignment. Appl. Soft Comput. 113, 107875 (2021)

14. Hoogeboom, M., Adulyasak, Y., Dullaert, W., Jaillet, P.: The robust vehicle routing problem
with time window assignments. Transp. Sci. 55(2), 395–413 (2021)

15. Almeida, R., Gaver, D.P., Jacobs, P.A.: Simple probability-models for assessing the value of
information in defense against missile attack. Nav. Res. Logist. 42(4), 535–547 (1995)

16. Meng, K., Chen, C., Xin, B.:MSSSA: amulti-strategy enhanced sparrow search algorithm for
global optimization. Frontiers of Information Technol. Electronic Eng. 23(12), 1828–1847
(2022)

17. Gao, G.Q., Mei, Y., Jia, Y.H., Browne, W.N., Xin, B.: Adaptive coordination ant colony
optimization for multipoint dynamic aggregation. IEEE Trans. Cybernetics 52(8), 7362–7376
(2022)

18. Guo, M., Xin, B., Chen, J., Wang, Y.P.: Multi-agent coalition formation by an efficient
genetic algorithm with heuristic initialization and repair strategy. Swarm and Evolutonary
Computation 55 (2020)

19. Gülpınar, N., Çanakoglu, E., Branke, J.: Heuristics for the stochastic dynamic task-resource
allocation problem with retry opportunities. Eur. J. Oper. Res. 266, 291–303 (2018)

20. Ding, Y.L., Xin, B., Zhang, H., Chen, J., Dou, L.H., Chen, B.M.: A memetic algorithm for
curvature-constrained path planning of messenger UAV in air-ground coordination. IEEE
Trans. Autom. Sci. Eng.Autom. Sci. Eng. 19(4), 3735–3749 (2022)

21. Qi, M.F., Dou, L.H., Xin, B.: 3D smooth trajectory planning for UAVs under navigation
relayed by multiple stations using Bezier curves. Electronics 12(11), 2358 (2023)

22. Jiao, K.M., Chen, J., Xin, B., Li, L., Zhao, Z.X., Zheng, Y.F.: A framework for co-evolutionary
algorithm using Q-learning with meme. Expert Systems With Applications 225 (2023)

	Stochastic Resource Allocation with Time Windows
	1 Introduction
	2 Problem Formulation
	2.1 Problem Description
	2.2 Optimization Model
	2.3 Problem Analysis

	3 Algorithm Design
	3.1 Solution Representation
	3.2 Constructive Heuristics
	3.3 Random Search

	4 Computational Experiments
	4.1 Experiments Configuration
	4.2 Performance Comparison

	5 Conclusion
	References

