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Abstract. Hospital inspection tasks include temperature measurement,
disinfection, emergency treatment, etc. Inspection robots can assist peo-
ple in carrying out autonomous inspections and reduce the pressure on
hospital staff. In this paper, we focus on the task assignment of hos-
pital inspection robots, i.e., assigning multiple tasks to different robots
to achieve the highest level of task completion. For the task assignment
model of the inspection robots, a multi-objective mathematical model
of task assignment is established, considering the benefit, cost, and exe-
cution time of task assignment. For the optimization scheme, a hybrid
algorithm of discrete differential evolution and particle swarm optimiza-
tion (D-DEPSO) algorithm is designed, applying differential mutation
operation to the population initialization process of the particle swarm
optimization (PSO) algorithm to expand the diversity of the population
and improve the optimization-seeking ability of the algorithm. For coor-
dination among objectives, the adjustment method of objective weights
is proposed so as to achieve balance among objectives. The experimen-
tal results show that the designed method can improve the utility of
task assignment in the hospital inspection process and thus efficiently
complete the hospital inspection tasks.

Keywords: Task allocation - Multi-objective - Hybrid D-DEPSO -
Hospital inspection

1 Introduction

During the hospital inspection process, the use of robotic inspection offers sig-
nificant advantages. In the complex scene of hospital inspection, tasks such as
temperature measurement, disinfection and emergency treatment need to be rea-
sonably assigned to the robots. The feasibility of applying intelligent robots in
hospitals is analyzed [1], G. Z. Yang et al. [2] introduce the development and
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application of intelligent robotic systems in hospitals and provides a reason-
able outlook on their future direction. The task allocation problem is a popular
research topic in the fields of artificial intelligence and robotics, and scholars
have conducted extensive research on the mathematical models and algorithms
for this problem. Literature [3] proposes a task scheduling algorithm that pro-
vides reasonable scheduling for tasks with request migration. The algorithm also
allocates a model and proposes a corresponding algorithm, which better guaran-
tees the task’s latency requirements. However, the model’s establishment does
not take into account the interrelationship between multiple tasks. The utility-
driven allocation model is proposed, which only takes into account the system’s
tasks and disregards their resource demands [4]. An adaptive heuristic resource
allocation algorithm [5] is presented to prioritize resources based on their utility
per unit of allocation, resulting in more efficient utilization of resources. Rajku-
mar et al. [6] proposed a task allocation model that maximizes the overall system
utility The model and the proposed algorithm lack consideration of contingen-
cies, which hinders their ability to guarantee real-time allocation. Literature [7]
investigates the optimal task allocation for a multi-UAS cooperative strategy,
optimizing four objectives in a real-world application scenario. The problem of
multi-intelligent task allocation and proposes corresponding algorithms [8,9] is
analyzed for distributed multi-objective optimization. Jeon et al. [10] propose a
fleet optimization method that assigns multiple tasks to a single robot and intro-
duce an algorithm aimed at reducing the computation required for finding paths.
Lee et al. [11] propose a resource allocation model based on discrete business
metrics and provide an optimal solution algorithm using dynamic programming
as well as an approximation algorithm utilizing local search. Literature [12] has
modelled resource allocation as a mixed integer programming problem, however,
the method requires linearizing the objective function during application, which
increases the algorithm’s complexity.

For above analyzation, existing models generally consider the system util-
ity as the optimization objective and establish a single-objective optimization
model. However, they overlook the cost of resource as well as the time required
for assignment, which results in a lack of comprehensive consideration for the
optimization objective. Additionally, the existing algorithms are not efficient in
handling task assignment. This paper analyzes the relationship between tasks by
studying the actual hospital inspection environment of robots. Multi-objective
task assignment mathematical model is established fully considers the con-
straints of tasks in time and space. A hybrid discrete optimization algorithm
has been designed to solve the task allocation problem. The adjustment method
of objective weights is presented to achieve the purpose of balancing between
multiple objectives for coordinating the task allocation problem.

The remainder of this paper is arranged as follows: In Sect.2, the multi-
objective task assignment problem is defined. In Sect.3, the procedure of
the hybrid discrete differential evolution and particle swarm optimization (D-
DEPSO) is sufficiently described. Section4 describes the adjustment method
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of objective weights. Section 5 shows a lot of experimental data and analysis.
Conclusions are discussed in Sect. 6.

2 Multi-objective Task Assignment in Hospital
Inspection

2.1 Task Allocation Revenue Function

When the robot A; fulfil the task T}, it generates the corresponding value. The
size of revenue value depends on the importance of the task 7} which the robot
A; fulfilled. By parity of reasoning, the total revenue function formula after all
tasks were allocated is as follows:

K

Re (A;,T)) Z HHp” Yij 1)

k= i=175=1

~_ J 1,robotA;executesthetaskT; @)
Yig = 0, others

In the formula (1), vx represents the corresponding value which the robot A;
finished the task T, p;; represents the probability of robot i fulfilling the task j
on time. y;; represents whether the task 7} is executed by the robot A;, given
by the formula (2).

2.2 Task Allocation Revenue Function

The respective execution of the hospital inspection tasks by robots will consume
the medical resources, energy and so on which the inspection tasks demand. The
total consumption is the costs of robots, closely linked to task paths of the robots
and the type of tasks. Define the costs of the robot A; executing the task T} as
the below formula (3):

Cost (A;,T;) = Resource;j + Path;; (3)

In this formula, Resource;; represents the medical resource consumption
after the robot A; fulfills the task T}, Path;; represents the path length after
the robot A; fulfills the task 77, and the value size is in direct proportion to the
energy consumption.

2.3 Task Allocation Executing Time Function

To the multi-objective task allocation problem, not only the revenue maximiza-
tion and the costs minimization, the most important thing is the time minimiza-
tion. Every shorten seconds mean a more patient out of danger. So, it’s needed
that ensure that the time of all robots fulfilling tasks is the shortest, which means



Hybrid D-DEPSO for Multi-objective Task Assignment 327

the minimum difference between the time that the robot A; start to execute the
task T and the time that the task T} is fulfilled. The formula is as follows:

Time (A;, Tj) = max {Tover;; — T'start;; } (4)

In this formula, T'over;; and T'start;; and represent respectively the time
that the robot A; start to execute the task 7} and the task 7} is fulfilled.

2.4 Task Allocation Distance Constrain

For a single robot, its voyage is limited. So, the range of motion is limited.
Define the state radius under the epidemic environment as R;, the constraint of
the distance is as follows:

Pathij * Lij § Rl (5)

x;; represents the matching matrix, where the elements are 1 (the robot A;
performs the task T}) or 0 (the robot A; does not perform the task 7).
Constraints ensure every robot can only execute one task, as follows:

A
Zyij(t):l,(i:1,27~-',A) (6)

Zy” ,G=12,---,T) (7)

2.5 Multi-objective Task Allocation Mathematical Model

Task assignment problem in hospital inspection is a multi-objective optimization
decision problem, which is translated into one-objective problem by combining
the above-mentioned function with constraints, which forms the multi-objective
task allocation mathematical model finally. This mathematical model and con-
straint condition is as follows:

wi - Re (A, T}) — wa - Cost (A;, Tj) - vij
max f (¥ z;z;( —ws - Time (A;,Tj) - yij ®)
i=1j

s.t.

A
Zyij(t):l,(izl,Q,ou,A) (9)

Zylj .]_17277T) (10)

Pathij + Lgj S Ri (11)
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w1 —|—w2+w3:1 (12)

A=T=N (13)

Equation (8) is the objective function and refers to the overall utility that
can be achieved in the task assignment process. The constraint (9) ensures that
every task can only be executed by a robot. The formula (10) states that every
robot can only fulfil one task. The constraint (11) stipulates the largest range
that robot motions can’t surpass. The formula (12) indicates that the sum of
the weight coefficient w;, wy and w3 is 1. The formula (13) shows the number
of machines and tasks is equal.

3 Hybrid D-DEPSO Algorithm

3.1 Discrete Difference Mutant Operator of de

The idea of the mutation operation of the classical DE is that the weighted
difference vectors of two vectors are added to the third vector [13,14], as shown
in Eq. (14).

Vig = Uro,g + (F * (Yr1,9 — Prag)) (14)
where, g represents the evolutionary generation; ry # 1o # r3 # j, j =
1,2,--- , NP, make sure the three variables are different variables, as is shown F

is the mutation rate. Under the standard DE framework, for initial individuals
encoded with positive integers, redefines addition, subtraction, and multiplica-
tion operations are redefined based on the replacement method.

The given n element displaces [n] = {1,2,--- ,n}, S (n) denotes the n element
displacing the group, ¢ (¢) = ¢(the position of the element ¢ in the displacement
Pis ).

Definition 1: 91,19 € S (n),then the discrete addition of the substitutions
and 1y is defined as:

1 D P2 = P1 * P2 (15)

That is, 11,12 € S (n),for all ¢ € [n], there exists (11 * 12) () = Y1 (Y2 ().
Definition 2: For setting 11,19 € S (n), the discrete subtraction of the sub-
stitutions 11 and 5 is defined as:

N (16)

In the formula (16), for all ¢, ¢ € [n], ¥ () = ¢, P~ (¢) = ¢ and the
formula (12) is satisfied.

U1 B (V2013) = b1 = (Y3 ' * ) (17)
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Set the value of mutation F € [0,1], the permutations ¢ € S(n), H €

1, H is defined as generators of the permutation group v, then the discrete
multiplication of F' with the permutation v is defined as:

Fip=Fxtp=Fx%(hyxhyx---xhy)=hy *xhgx---%hp, (18)

In the formula (18), ¢ = hy % ho -+ % hy, (h1,ha, -+ ,hy € H), L = [F * A],
means that the result should not exceed its smallest integer value. F % is
defined as the truncation operation of the substitution, F' = 0.5. We redefine
the difference-variation operator in discrete DE as follows:

Vig =r1,g ® (F @ (Yr2,00%r3,9)) = p1,g * (F (5, % Prag)) (19)

A demonstration of a mutation operation strategy is shown as Table 1.

Table 1. A demonstration of a mutation operation strategy

variables |integer values for variables
Pr1 1/3]5/4
P2 214(3|5
P,3 5/3/1/4
S by |5 4(2]1
Fx® 2/1(4]3
14 311415

3.2 Discrete D-DEPSO Algorithm

In this paper, D-DEPSO algorithm was presented to solve the above multi-
objective task assignment problem in hospital inspection. Differential evolution
mutation operations are used for mutating personal optimal position, and partial
swarm optimization (PSO) [15,16] is mainly used to record personal optimal
positions and update speed values. The formula for updating velocity is presented
in the following equation:

v (t + 1) = (t) + 1 (pbest - l‘) + C2 (gbest - 'T) (20)

v is velocity vector and z is position vector, ¢; and co are the coefficients.
Poset 1s individual optimal value, and gpse: is the global optimal value . As it is
based on a binary system, a binary-based discrete PSO is proposed [17], which
follows the elementary PSO. The update formula of v in the continuous particle
swarm remains unchanged. Its position update formula is as follows:

1

()= T oxp (—o))

(21)
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0, otherwise

x:{ 1,7 < s(v) (22)

The value of r is derived from the u(0,1) random number generated by
the distribution. The D-DEPSO algorithm flow is as follows. Stepl: Initializa-
tion involves setting up the position matrix z, vanity matrix v, and algorithm
parameters: NP, F, ¢y, co. Additionally, the individual optimal value ppeg; is ini-
tialized.

Step2: calculate the global optimal value gpes: and the objective function, If
the condition is satisfied, the optimal solution will be output. Otherwise, go to
the next step.

Step3: Discrete differential mutation is applied to the individual position
matrix x.

Step4: Update the individual optimal value ppest, and the global optimal
value gpest, and record both the global optimal individual and its corresponding
optimal value.

Step5: Update the velocity matrix v and position matrix x, and discretize
them.

Step6: Record the velocity matrix v and position matrix x after discretizing.

Step7: Proceed to the next iteration and return to Step2.

4 The Adjustment Method of Objective Weights

To balance the objective weights w1, we and ws, each w; (¢ = 1,2, 3) consists of the
attribute weight w;’ and w;"”. The attribute weight vector w;’ is calculated by the
subjective assignment method AHP the attribute weight vector w;” is calculated
by the objective entropy value method [18]. Denote «, /3 for the coefficients of w,’
and w;"” respectively, and combine the subjective weight vector and the objective
weight vector such that:

! "
w; = aw;’ + Bw;

3
i=1
The evaluation objective value of each alternative is obtained as:
3 n
gk = 22 afw; = 3 af (aW' + W)
i=1 ' (24)

5o
st.q ¢ o =1
o, >0
a¥ is the expert score for the kth alternative solution of w;. A linear weighted

method single-objective optimization model with equal weights can be con-
structed as follows:
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MazZ = z Ge= 3 3 ak (W' + BW)
Of ‘1|’152 =1 (25)
s.t. { a,B>0

where, p is the number of alternative solutions of w;. The model can be solved
by constructing the Lagrange function:

L= ZZ(L (aW' + W) + (a +3%-1) (26)

k=11i=1

w is the La%ranglan multiplier, find the partial derivatives of 9, and make
aL/a =09 /55 = 0, obtain the value of the optimal solution of the optimiza-
tion model 9, 3:

Z 121 la/b_]W,
V(e ?lai%wtz)zﬂ o B e 2 (27)
/8: k=1 i=1"ij
V(Sh_, Sy abw )+ (S0, Sy abywi)’

o=

Normalize 0, (:

&= o
G 8 (28)
{5 = ot
Equation (28) is substituted into Eq. (23) and the optimized weight can be

obtained. An example of optimized weights is shown as Table2. After 10 iter-

ations of adjustment, the optimization weights tend to be stable, as shown in
Table 3.

Table 2. An example of optimized weights

Indicator | AHP | entropy weight | Optimization(w)
w1 0.1 0.1 0.1

w2 1.35 | 1.35 1.35

w3 50 50 50




332 C. M. Zhang et al.

Table 3. Iterative weight adjustment values

Iteration | w1 wo w3

0.509 | 0.317|0.173
0.502 | 0.331 | 0.166
0.597 1 0.342 | 0.161
0.493 1 0.352 | 0.154
0.491 | 0.360 | 0.148
0.4840.363 | 0.153
0.467 | 0.365 | 0.168
0.4890.348 | 0.163
0.494 1 0.325 | 0.181
0.503 | 0.351 | 0.146

O |00 ||| T | W N+

[
o

5 Experiments and Analysis

5.1 Comparative Experiments

The performance of D-DEPSO for the multi-objective assignment in hospital
inspection is examined using comparative experiments. We compare the D-
DEPSO with improved discrete DE (IDE) [19], improved discrete PSO (IPSO)
[20].

Based on simulated data using stochastic functions, simulation results for
three sets of 10-dimensional trials with various populations are obtained. Accord-
ing to 10-dimensional simulation trials, ten robots must be linked with ten task
requirements. The jobs in this example include 1 remote body temperature mon-
itoring task, 4 periodic disinfection tasks, 3 medication dispensing tasks, 2 med-
ical material handling tasks, and 3 drug dispensing tasks. Any of these jobs can
be accomplished by any of the general-purpose robots. Based on the various ben-
efits that different robots receive from completing each task, the various medical
resources used, the various amounts of energy needed, and the various amounts
of time needed to complete the tasks, or the various benefits obtained in the
final aggregate, the distribution scheme with the highest benefit is determined.

The Fig. 1 compares the experimental simulation results of IDE, IPSO, and
D-DEPSO in 10 dimensions for 50, 100, and 200 populations, respectively. Com-
paring D-DEPSO to the other two algorithms, it is evident that it not only
achieves the best result when the population size is high, but also does so when
the population size is low. Moreover, the final optimal solution of D-DEPSO has
a clear advantage of the population number setting. The analysis indicates that
D-DEPSO outperforms IPSO in achieving the optimal solution for the multi-
objective task assignment problem particularly in the 10-dimensional scenario.

The simulation experiments conducted in 20 dimensions are presented in
Fig. 2. Notably, these results exhibit distinct trends from those obtained in the
10-dimensional experiments. Specifically, when the population number is set to
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50, D-DEPSO outperforms the others by identifying a solution with a larger
gain value. As the population size increases to 100 and 200, IPSO exhibits a
significantly faster convergence rate in comparison to the other two algorithms.
From the standpoint of optimal solutions, the D-DEPSO algorithm consistently
identifies the optimal solution assignment scheme that maximizes the gain.

Coming to the multi-objective task assignment problem in a 50-dimensional
epidemic environment, the simulation of fifty tasks assigned to fifty robots is
performed in this part. The complexity of this problem increases significantly
due to the increase in the number of tasks, which makes the algorithm require
a larger population size. Thus, the population size is set to 100, 200, and 300
for the three simulation experiments. The simulation results are shown in Fig. 3.
The comparison shows that when NP is 100, the convergence trends of the three
algorithms are not much different, the final optimal solutions D-DEPSO and
IPSO are also much better than IDE, but the optimal solution of D-DEPSO
is still slightly better than IPSO. When NP is 200, the D-DEPSO convergence
rate clearly catches up with IPSO’s convergence rate, and at the same time, it
is guaranteed to obtain the assignment scheme with greater gains.

As NP increases to 300, the advantages of the D-DEPSO algorithm in deal-
ing with the 20-dimensional mufti-objective task assignment problem are fully
demonstrated, both in terms of convergence speed and optimal solution.

Since the mufti-objective task assignment problem in a 100-dimensional epi-
demic environment has a more complex computation, the population number
NP is also increased to 100, 200, and 300. Comparative plots of simulation sim-
ulations are shown in Fig.4. It can be intuitively seen that D-DEPSO has an
absolute advantage in searching for the global optimal solution of the task assign-
ment with the maximum gain for dealing with the mufti-objective task assign-
ment problem in a high-dimensional environment. When the population size is
100, D-DEPSO has a better optimal solution compared with other algorithms,
and the convergence speed is only less obvious at this point. However, when the
population size is set to 200 and 300, D-DEPSO has faster convergence speed
and more profitable assignment solution.

According to the comparison of 10, 20, 50 and 100 dimensions in Figs. 1,
Figs. 2, Figs.3 and Figs.4, we can learn that when the population size of the
three algorithms is set relatively small, the convergence speed does not differ
much in the early stage of the algorithm operation, and D-DEPSO can generally
find the optimal solution at this time. For low-dimensional simulations, IPSO
can have good convergence speed, but its disadvantage is that it is optimum
situation.

Correspondingly, D-DEPSO is much more effective than IDE and TIPSO in
searching for global optimal solutions. For a high-dimensional simulation exper-
iment, as long as the population size is set enough, then D-DEPSO will out-
perform the other two discrete algorithms in terms of convergence speed and
optimal solutions across the board.
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5.2 Analysis of Experimental Statistical Data

The simulation statistics of IDE, IPSO and D-DEPSO in dealing with multi-
objective task assignment problems in hospital inspection are summarized in
Tab. 4. The following conditions need to be stated in advance. The parameter
setting of NP is set to 200 for 10- dimensional and 20-dimensional experiments.
NP is set to 300 for 50-dimensional and 100-dimensional experiments. For the
experimental data of each dimension, the mean, standard deviation and mean
time are obtained from 100 sets of data statistics. The maximum gain (Max),
mean value, standard deviatio (Mean+Std), and average time (Timeavg) cor-
responding to each algorithm, respectively. And 1k means the equivalent of a
thousand RMB gain. The unit of average time is second (s). The bolded font is
the optimal parameter for each dimension of the simulation experiment.

The IDE algorithm has the fastest running speed for both 10-dimensional
and 20-dimensional experimental data. However, D-DEPSO has the largest gain
value and mean value, and the smallest variance. D-DEPSO has smaller standard
deviation, which means the results of D-DEPSO algorithm are less volatile and
more stable than IDE and IPSO algorithms. Analysis of the 50-dimensional and
100-dimensional simulation experimental data shows that D-DEPSO obtains
excellent results in all aspects, including maximum gain value, mean value,
standard deviation, and running time. So, D-DEPSO can generate the optimal
assignment scheme for the multi-objective task assignment problem.

Table 4. Iterative weight adjustment values

Algorithm | Dim 10 20 50 100
IDE Max (k) 146.64 520.65 1506.03 6296.18
Mean + Std (k) | 142.76 £ 0.83 | 506.65 +3.52 | 1458.51 £5.05 | 6185.52 + 5.62
Timeavg (8) 0.75 1.75 4.46 14.56
IPSO Max (k) 154.64 531.45 1768.13 6684.15
Mean + Std (k) | 151.67 £0.82 | 520.52 £4.21 | 1685.22 +£6.25 | 6547.548 +£6.14
Timeavg (8) 0.89 1.81 4.15 15.36
D-DEPSO | Max (k) 160.26 564.60 1806.17 7150.02
Mean + Std (k) | 158.12 + 0.63 | 556.06 + 3.38 | 1729.26 + 4.13 | 6989.01 + 4.56
Timeang (s) 1.78 1.89 3.88 13.12

6 Conclusion

This paper discusses the problem of multi-objective task assignment for hospital
inspection by assigning multiple tasks to different robots to achieve the high-
est level of task completion. The multi-objective model is built by considering
revenue as well as the cost of resource and time. Hybrid D-DEPSO algorithm is
presented to solve the task assignment problem. Moreover, in order to balance the
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objectives, an adjustment method of objective weights is proposed. The exper-
imental results show that the proposed method can achieve more satisfactory
solution.
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