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Abstract. This paper focuses on the problem of optimal policy selection
for sensors and attackers in cyber-physical system (CPS) with multiple
sensors under denial-of-service (DoS) attacks. DoS attacks have caused
tremendous disruption to the normal operation of CPS and it is nec-
essary to assess this damage. The state estimation can reflect the real-
time operation status of the CPS and provide effective prediction and
assessment in terms of the security of the CPS. For a multi-sensor CPS,
different that robust control method is utilized to depict the state of
the system against DoS attacks, the optimal policy selection of sensors
and attackers is positively analyzed by dynamic programming ideology.
To optimize the strategies of both sides, game theory is introduced to
study the interaction process between the sensors and the attackers. Dur-
ing the policy iterative optimization process, the sensors and attackers
dynamically learn and adjust strategies by incorporating reinforcement
learning. To explore more state information, the restriction of state set
is loosened, that is the transfer of states are not limited compulsorily.
Meanwhile, the complexity of the proposed algorithm is decreased by
introducing a penalty in the reward function. Finally, simulation results
of the CPS containing three sensors show that the proposed algorithm
can effectively optimize the policy selection of sensors and attackers in
CPS.
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1 Introduction

With the rapid development of information technology, the integration of cyber
system and physical system has become an inevitable trend in recent years, thus
the cyber-physical system (CPS) has emerged. With the characteristics of high
flexibility and easy scalability, CPS enables the aggregation of system informa-
tion and real-time data sharing [1]. Their deployment in critical infrastructures
has shown the potential to revolutionize the world, such as smart grids [2], digi-
tal manufacturing [3], healthcare [4] and so on. In most of these applications, the
information is delivered over a wireless channel. However, the attacks become
easier to implement in the process of transmitting information through the wire-
less channel [5,6].

There are many types of common cyber attacks in CPS, such as deception
attacks [7], replay attacks [8], denial-of-service (DoS) attacks [9–11] and so on.
Among them, DoS attacks are easier and less costly to execute. In order to ana-
lyze the damage caused by DoS attacks on CPS, many scholars employ state
estimation based on Kalman filter to evaluate the operation of CPS [12,13]. In
[12], distributed Kalman filter is designed to address event-triggered distributed
state estimation problems. In [13], two Kalman filter-based algorithms are pre-
sented for detection of attacked sensors. Thus, in this paper, the state estimation
algorithm based on Kalman filter is conceived to assess the state of CPS under
DoS attacks.

In CPS, the defender and the attacker can be considered as a two-player
game. The interactive decision process between a system with countermeasures
and an attacker is studied under the framework of game theory in [14,15]. In the
game, the Nash equilibrium is used to find the point of convergence so that an
optimal strategy can be determined. In [16], the Nash equilibrium algorithm is
investigated as a means to enable each player to dictate their individual strategies
and attain maximum benefit. Owing to the game theory is excellent at solving
complex problems, a system model under the DoS attacks is constructed based
on the game theory to solve for the optimal strategy.

Nowadays, reinforcement learning is rapidly spreading to a variety of
domains. The long-term vision of the reinforcement learning algorithm allows
it to be ideal for gaming between sensors and attackers in a CPS. For example,
the literature [17] from the perspective of two reinforcement learning algorithms
analyzes the security problem for the state estimation of CPS, both of which
obtain the corresponding optimal policies. In [18], the distributed reinforcement
learning algorithms for local information based sensors and attackers are pro-
posed to find their Nash equilibrium policy, respectively. In this paper, we intro-
duce reinforcement learning algorithms into the secure state estimation to solve
the game problem between sensors and attackers.

Based on the above discussion, this paper presents a novel state estima-
tion method based on reinforcement learning for a multi-sensor CPS under DoS
attacks. Different from other papers, the main contributions of the paper are as
follows: (i) The existing achievements of the single-sensor CPS are not guaran-
teed to meet with the needs in realistic scenarios, thus the CPS secure issue is
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extended to the multi-sensor CPS to explore the optimal policy selection prob-
lem of sensors and attackers under DoS attacks. (ii) Different from other works
that passively describe the state of a system after DoS attacks, we positively
analyze the optimal policy selection of sensors and attackers in a multi-sensor
CPS. (iii) To further release the restriction on the set of states, the state space
is unrestricted in order to comprehensively describe the state transition of the
constructed markov chain in this paper. Besides, the complexity of the algorithm
is decreased by introducing a penalty in the reward function.

The remainder of the paper is organized as follows. Section 2 portrays the
system model for multi-sensor CPS under DoS attacks as well as the state esti-
mation based on Kalman filter, and illustrates the state estimation processes. In
Sect. 3, the secure state estimation algorithm based on reinforcement learning for
multi-sensor CPS in confronting DoS attacks is proposed. The simulation results
for a 3-sensor CPS in Sect. 4 demonstrate the effectiveness of the algorithm, and
conclusions are drawn in Sect. 5.

2 Problem Formulation and Preliminaries

2.1 System Model

Fig. 1. The single-target multi-sensor system model under DoS attacks

Consider a CPS with n sensors and a remote estimator as shown in Fig. 1,
where different sensors work together to monitor a specified CPS. At time k, the
expression of sensor m under DoS attacks can be given by:{

x(k + 1) = Ax(k) + Bw(k)
ym(k) = Cx(k) + vm(k), (1)
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where k ∈ Z indicates the discrete time step. x(k) ∈ R
dx refers to the state

vector of the system and ym(k) ∈ R
dym is the sensor measurement vector by

sensor m at time k. w(k) ∈ R
dw and vm(k) ∈ R

dvm represent the process and
measurement noises with zero mean, and their covariance matrices are Q(k) and
Rm(k), respectively. A, B, and C are coefficient matrices with corresponding
dimensions.

As seen the system model in Fig. 1, data measured by n sensors is transmitted
to the remote estimator via a wireless channel. Each sensor m ∈ {1, 2, ..., n} has
the option of secure transmission pk = 1 or insecure transmission pk = 0 in
the channel. In the channel between the sensor and the remote estimator, the
attackers has two actions that can be chosen respectively denoted as qk = 1
and qk = 0. The former indicates that the attackers launch DoS attacks on the
communication channel, while the latter on the contrary. At time k, the state
estimation based on the packet from sensor m denoted by x̄(k). The symbol ηk

indicates whether the packet is successfully received by the remote estimator. We
denote ηk to indicate whether packet is lost at time k, which can be expressed
as

ηk =

⎧⎪⎪⎨
⎪⎪⎩

1, pk = 0, qk = 1
0, pk = 0, qk = 0
0, pk = 1, qk = 1
0, pk = 1, qk = 0.

(2)

2.2 State Estimation Based on Kalman Filter

State estimation is performed employing a local Kalman filter to recursively
update the system state. For each sensor m, the initial state x(0) is a zero-
mean Gaussian random vector with non-negative covariance. At each time k,
the Kalman filter is run to obtain the minimum mean-squared error (MMSE)
x̂(k) of the state vector x(k) based on the measured data. The MMSE estimate
of sensor m is denoted by:

x̂m(k) = E [x(k) | ym(1), . . . , ym(k)] , (3)

with its corresponding estimation error covariance

Pm(k) = E
[
(x(k) − x̂m(k)) (x(k) − x̂m(k))T | ym(1), . . . , ym(k)

]
. (4)

According to the Kalman filter equations, x̂m(k) and Pm(k) are updated recur-
sively. For simplicity, the Lyapunov and Riccati operators h and g̃m are defined
as

h(X) � AXAT + Q

g̃m(X) � X − XCT
[
CXCT + Rm

]−1
CX.

(5)
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Then the recursive updating equation of Kalman filter can be expressed as fol-
lows:

x̂m(k | k − 1) = Ax̂m(k − 1)
Pm(k | k − 1) = h (Pm(k − 1))
Km(k) = Pm(k | k − 1)CT

[
CPm(k | k − 1)CT + Rm

]−1

x̂m(k) = x̂m(k | k − 1) + Km(k) (ym(k) − Cx̂m(k | k − 1))
Pm(k) = g̃m (Pm(k | k − 1)) .

(6)

2.3 State Estimation Process

The remote estimator performs state estimation based on the packet from the
sensor m. In this paper, we define x̄(k) and P (k) to denote the state estimation
of remote estimator and the corresponding error covariance respectively. To sim-
plify the game as well as the reinforcement learning algorithm, we assume that
the error covariance matrix has converged to the steady state, i.e., P (k) = P̄m.

The estimation process can be formulated as follows: if the local estimation
arrives, the estimator synchronizes its own estimate with it; otherwise, the esti-
mator predicts x̄(k) according to the optimal estimate from the previous time
step, i.e.,

x̄(k) =
{

Ax̄(k − 1), ηk = 1
x̂m(k), ηk = 0,

(7)

with the corresponding estimation error covariance

P (k) =
{

h(P (k − 1)), ηk = 1
P̄m, ηk = 0.

(8)

In order to elaborate the changing process of the error covariance P (k), an
interval is defined as τk � k − max0≤l≤k {l : ηl = 1}, which is obtained by the
time interval between the current time k and the time l when the packet is last
received. When no packet loss occurs, τk recursively increases by 1, otherwise τk

is updated to 0, that is,

τk =
{

0, ηk = 1
τk−1 + 1, ηk = 0.

(9)

The estimation error covariance based on the time interval τk can be derived
from (8) and (9) as

P (k) = hτk(P̄m). (10)

Here, we assume that the packet successfully arrives at the remote estimator
at the beginning of transmission, so τ0 = 0. Therefore, the initial value of the
estimation error covariance is P (0) = P̄m.

In this paper, a Markov chain is introduced to represent the stochastic pro-
cess of transition among states. On the basis of Markov property, the probability
distribution of the next state can only be determined by the current state, inde-
pendent of the state of the previous time series. Figure 2 represents the Markov
chain of state transition with two sensors as an example.
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Fig. 2. The transition of Markov chain P(k)

3 Secure State Estimation Based on Reinforcement
Learning

Reinforcement learning is an important research branch of machine learning
algorithms, which focuses on learning through the interaction process between
agents and their environment to achieve their own goals. As a value-based algo-
rithm in reinforcement learning methods, the Q-learning algorithm constructs a
Q-table of states and actions to store the expectation of gain as Q-value at each
time. The Q-value is continuously updated during the learning process, and the
action that obtains the greatest gain is selected based on the Q-table.

The goal of reinforcement learning is to find the optimal policy for a given
Markov decision process (MDP). The MDP considers agents interacting with the
environment by actions to obtain rewards. To more briefly describe the interac-
tion, the MDP can be represented by a five-tuple: MDP ::= 〈S,A,Psa, γ,R〉
[19], where S and A refer to the finite set of states and actions, respectively.
Psa denotes the set of state transition probabilities, indicating the probability of
taking a certain action at a state and transferring to the next state. γ represents
a discount factor for the decision process and R refers to the reward obtained
at that moment given the current state and action. In this paper, an MDP is
established to describe the interaction decision-making of the system defender
and attacker, as depicted in detail below.

a) State: In a CPS, there are n sensors, corresponding to n initial states. When-
ever a packet is lost, a new state is generated.

b) Action: The action combinations are defined as ak = (nk, pk, qk), where nk

represents the selected sensor serial number, pk represents whether to spend
cost to transmit, and qk represents whether the attacker initiates DoS attacks.

c) State transition: Consider the state of system as sk = P (k). Since packet loss
may or may not occur, a corresponding transition will take place between the
states, which is detailed described in the Sect. 2.3.
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d) Discount factor: In order to achieve better algorithmic performance, a dis-
count factor γ is introduced in the calculation of the cumulative reward,
which locates in the interval of [0, 1].

e) Reward function: The costs and actions are taken into account in the reward
function, as the cost settings of both attacker and defender and the actions of
them affect the gains of both players. In addition, a penalty is added to the
reward function to avoid infinite traversal of states. Thus, the reward function
at time k can be obtained as

rk = Tr (sk) + cmpk − caqk + heaviside(sk − hi(P )) ∗ t, (11)

where t is the added penalty, and i is set as the number of packet loss occurrences
as the condition for adding the penalty.

Remark 1. The system defender and the attacker have opposite objectives of
minimizing the reward and maximizing the reward, respectively. For the attacker,
it theoretically contributes to its reward maximization objective and makes it
easier to launch DoS attacks. However, this is not the case in the actual operation
of the algorithm. This is because the inhibitory effect of the cost of spending on
the attacks partially offsets the promotional effect of a larger reward on the
attacks, and in general the attacks are not facilitated.

For an MDP involving system defender and attacker, a Q-learning based
algorithm is proposed to solve the optimal decision-making problem for the two
players. The steps of the algorithm are as follows.

a) Initialization
Based on the input set of steady-state error covariance matrix and the number
of sensors n, a set of states S = {P̄1, P̄2, · · · , P̄n} can be obtained.

Lemma 1. For a system with finite actions and finite states, reinforcement
learning uses the optimal action-value function to guide the agent to make deci-
sions. Suppose the state of the system is sk and action ak is taken, the optimal
action-value function can be expressed as

Q� (sk, ak) = max
π

Qπ (sk, ak) , ∀sk ∈ S, ak ∈ A.

According to Lemma 1, the size of the Q-value table is determined by the
number of states and actions, so a Q-value table with n rows and 4n columns is
initialized, where the initial value of the table is set to u.

b) Sensor and action selection
At each moment, the system randomly selects actions with the probability of
ε or selects the optimal action with the probability of 1 − ε according to the
minimum-maximum principle.
c) Observation of rewards and states
After the actions of the sensor and the attacker are determined, the reward
obtained at the current moment is also available. The reward is observed at
each moment according to (11).
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d) Updating the Q-value table
Before updating the Q-value table at each moment, we determine whether
there is a corresponding row in the Q-value table of the next state. Then, the
corresponding value in the Q-value table is updated according to the following
formula.

Q̃k+1(s, n, p, q) = (1 − αk) Q̃k(s, n, p, q)

+ αk

(
rk + ρmax

qk+1
min
pk+1

Q̃k(s, n, p, q)
)

.
(12)

e) Obtaining the Nash equilibrium strategy
When the loop satisfies the termination condition, it means that the Q-
value table has reached convergence. That is, the optimum Q-value table
Q̃�(s, n, p, q) can be obtained.

4 Simulations and Experiments

Consider a CPS with three sensors and a remote state estimator. The system
parameters are given as follows:

A =
[
1 0.5
0 1

]
,C =

[
1 0

]
,Q =

[
0.8 0
0 0.8

]
.

The three sensors have different measurement accuracy and their noise mea-
surement covariance matrices are respectively R1 = 0.08, R2 = 0.4 and R3 = 0.8.
Running the Kalman filter, the steady state error covariance matrices of the three
sensors are obtained as

P̄1 =
[
0.0758 0.0577
0.0577 2.1043

]
, P̄2 =

[
0.3314 0.2343
0.2343 2.2627

]
, P̄3 =

[
0.6 0.4
0.4 2.4

]
,

where traces Tr(P̄1), Tr(P̄2) and Tr(P̄3) respectively are 2.1801, 2.5941 and 3.
In the game between defender and attacker in a multi-sensor CPS, the

defender can choose whether to spend a certain cost on defense depending on
the situation. The defense cost of the three sensors decreases sequentially with
cost values of c1 = 10.7, c2 = 9.2 and c3 = 6.6. The cost for attackers to launch
DoS attacks in the system model is set to ca = 1.5.

In the MDP corresponding to this simulation experiment, there are three
initial states P̄1, P̄2 and P̄3. A new state is generated only when a new packet loss
condition occurs. According to the reward setting in (11), when two consecutive
packet losses occur, a penalty of t = 10 is added to the reward function. When
the number of sensors in a multi-sensor system is determined, the number of
action combinations ak = (nk, pk, qk) is also determined.

After the secure state estimation algorithm based on reinforcement learning is
executed for 5000 iterations, the converged system contains 11 states, which are
P̄1, P̄2, P̄3, h(P̄1), h(P̄2), h(P̄3), h2(P̄1), h2(P̄2), h2(P̄3), h3(P̄2), h3(P̄3). To facili-
tate the presentation, some of the states such as P̄1, P̄2, P̄3, h(P̄2), h(P̄3), h(P̄1)
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Table 1. ˜Q∗(s, n, p, q) matrix for convergence of multi-sensor system

Action

Q-value State
P̄1 P̄2 P̄3 h(P̄2) h(P̄3) h(P̄1)

(0,0,0) 8.143 8.166 8.038 20.708 9.270 6.091
(0,0,1) 9.764 41.345 27.854 44.299 22.923 16.101
(0,1,0) 18.749 18.749 18.738 28.044 20.616 18.901
(0,1,1) 17.475 17.343 17.238 26.512 100.000 33.670
(1,0,0) 19.494 20.830 19.494 75.335 21.497 19.495
(1,0,1) 9.731 37.776 27.854 44.073 29.249 23.095
(1,1,0) 28.574 16.082 14.694 27.916 23.537 14.779
(1,1,1) 13.195 13.209 13.194 33.639 13.281 13.253
(2,0,0) 19.962 19.958 19.900 40.464 19.936 100.000
(2,0,1) 11.374 28.684 27.854 50.952 22.986 15.790
(2,1,0) 11.500 11.500 11.500 12.860 12.394 11.500
(2,1,1) 10.000 10.002 10.000 33.877 100.000 10.372

are extracted as shown in Table 1. The action combination in the Table 1 is
a = (n, p, q), denotes serial number of the selected sensor, the sensor and attacker
action selection. Each value in Table 1 represents the convergent value of the cor-
responding state action pair Q̃(s, n, p, q).

Taking the initial state of the three sensors as an example, the learning
process of Q̃(s, n, p, q) is plotted in Fig. 3. According to the Fig. 3, it can be con-
cluded that with the continuous iterations of the reinforcement learning algo-
rithm, the attacker and defender gradually converge to the Nash equilibrium
solution Q̃∗(s, n, p, q) eventually. In the first 500 iterations, the algorithm fol-
lows the ε − greedy strategy in the trial-and-error exploration phase, and the
elements of the Q-table are monotonically non-increasing. Through iterations
learning of 500 − 5000, the elements of the Q-table can converge to a stable
value.

Table 2. Nash equilibrium strategy for multi-sensor systems (n, p) and q

State Nash equilibrium strategy

Defender strategy (n, p) Attacker strategy q

P̄1 (0,0) 1

h(P̄1) (2,1) 0

h2(P̄1) (0,0) 0

P̄2 (2,1) 0

h(P̄2) (2,1) 0

h2(P̄2) (2,0) 0

P̄3 (2,1) 0

h(P̄3) (0,0) 1

h2(P̄3) (0,0) 0



RL-Based Policy Selection of Multi-sensor CPS Under DoS Attacks 307

Fig. 3. Learning process ˜Q(s, n, p, q) for multi-sensor system

By solving the convergent values in the Q-value table adopting a linear pro-
gramming approach, the Nash equilibrium strategy of the game can be obtained,
as shown in Table 2. The defender’s strategy consists of choosing the serial num-
ber of the sensor and whether to defend, i.e., (n, p). The attacker’s strategy is
whether to launch DoS attacks, i.e., q. For example, in state s = h(P̄1), the
Nash equilibrium strategies of the defender and the attacker are (1, 0) and 1
respectively. This means that sensor 1 is chosen in this state and no defense is
taken, meanwhile the attacker chooses to launch DoS attacks in this case.
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5 Conclusion

This paper studies the optimal policy selection problem for sensors and attackers
in CPS with multiple sensors under DoS attacks. In order to solve the strategy
selection problem, we propose a state estimation method based on reinforce-
ment learning to evaluate the damage caused by DoS attacks. Initially, an MDP
is constructed for a CPS containing multiple sensors to describe the interac-
tion decision-making of the sensors and attackers. Then, a reinforcement learn-
ing algorithm is introduced to the proposed secure state estimation algorithm
to dynamically adjust the strategy since it has advantages in interacting with
unknown environments. In order to optimize the strategy, game theory is intro-
duced to discuss the interaction process between sensors and attackers. During
the interaction, there is no restriction imposed on the set of states in order to
fully explore the transfer of states. Besides, a penalty is introduced to the reward
function to ensure the algorithm’s feasibility. Finally, the simulation results of
the CPS containing three sensors show that the proposed algorithm can effec-
tively optimize the policy selection of sensors and attackers in the CPS. In the
future, the algorithm proposed in this paper is extended to deal with the case
of multi-channel multi-sensor CPS against DoS attacks to maximize resource
utilisation.
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