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Abstract. The hypervolume indicator is commonly utilized in
indicator-based evolutionary algorithms due to its strict adherence to the
Pareto domination relationship. However, its high computational com-
plexity in high-dimensional objective spaces limits its widespread adop-
tion and application. In this paper, we propose a fast and efficient method
for approximating the overall hypervolume to overcome this challenge.
We then integrate this method into the basic evolutionary computation
framework, forming an algorithm for solving many-objective optimiza-
tion problems. To evaluate its performance, we compared our proposed
algorithm with six state-of-the-art algorithms on WFG and DTLZ test
problems with 3, 5, 10, and 15 objectives. The results demonstrate that
our proposed method is highly competitive in most cases.

Keywords: Evolutionary algorithms · Overall hypervolume
approximation · Many-objective optimization

1 Introduction

The purpose of optimization is to find the optimal value of a function. The prob-
lem becomes complicated when there are multiple objectives for optimization,
which are called multi-objective optimization problems (MOPs). For MOPs, the
ultimate goal is to solve the Pareto Front (PF) of the entire problem, and the
solutions in PF are mutually non-dominant. When there are more than three
optimization objectives in the problem, MOPs are generally called Many-object
problems (MaOPs) [8]. In solving MaOPs, evolutionary multi-objective opti-
mization algorithms (EMOAs) have achieved good results [12]. EMOAs can be
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divided into three categories according to their different mechanisms: 1) Pareto-
based, 2) Decomposition-based, and 3) Indicator-based.

Pareto-based EMOAs use the Pareto dominant relationship to calculate indi-
vidual fitness, so as to achieve the purpose of environmental selection. For exam-
ple, NSGA-II [5] uses the distance value of adjacent individuals in objective
space to calculate the crowding distance, and SPEA2 [21] calculates the K-order
nearest neighbor distance. Pareto-based EMOAs have been well applied in the
optimization of low-dimensional space due to their simple calculation method.
However, Paretobased EMOAs are not very effective in solving MaOP problems.
Because as the number of optimization objects increases, the proportion of non-
dominant individuals in the population also increases, resulting in Pareto-based
environmental selection becoming extremely inefficient.

Decomposition-based EMOAs use decomposition strategies to decompose a
MOPs into several scalar optimization subproblems, and optimize them simul-
taneously in a collaborative manner. For example, MOEA/D [19] uses weighted
sum, Chebyshev, and PBI to decompose MOPs. Finally, the convergence of the
population is judged by the scalar function criterion. However, the weight vector
has a strong influence on the decomposition-based EMOAs. When the Pareto
front has an irregular shape, running the algorithm with a fixed weight vec-
tor will cause the population to be unevenly distributed on the Pareto front
[11]. Therefore, for decomposition-based EMOAs, the weight vector adjustment
during algorithm operation is still the current research focus [1,15].

Indicator-based EMOAs use various indicators as the criteria for environ-
mental selection of populations, and reflect the diversity and convergence of
populations as the value of the indicators at the same time. For example, IGD
[4] evaluates the convergence performance and diversity performance of the algo-
rithm by calculating the sum of the minimum distances between each individual
on the real Pareto front surface and the collection of individuals obtained by the
algorithm. Hypervolume [22] evaluates the population quality by calculating the
Lebesgue measure of the area enclosed by the population individual and the ref-
erence point. Generally speaking, the setting of indicator parameters will affect
the size of the indicator to a large extent, such as the reference set in IGD and
the reference point of hypervolume. By setting the parameters reasonably, the
indicator-based EMOAs can achieve better performance.

Among the many population evaluation indicators, hypervolume is adopted
by most indicators-based EMOAs (for example, SMS-EMOA [3,7], MOPSOhv
[9] and HypE [2]) because it strictly follows the Pareto principle. The main idea of
hypervolume-based EMOAs is to transform MOPs into single-objective problem
by maximizing the hypervolume of population. However, for hypervolume-based
environmental selection, most algorithms use the following steps:

– First, the hypervolume contribution of each solution in the solution set is
computed.

– Then, the solution with the smallest hypervolume contribution is discarded.
– Finally, judge whether the size of the solution set meets the requirements, if

not, return to the first step.
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Fig. 1. Illustration of Basic Concepts

This method is called a greedy algorithm. For a solution set of size 2N,
if N solutions are retained through environmental selection, it is necessary to
calculate the hypervolume contribution of the solution set N times. Although
a variety of hypervolume approximation methods have been proposed (such as
IWFG [15], R2HCA [16], etc.), each environmental selection needs to run the
approximation algorithm multiple times, which causes the algorithm to be time-
consuming. To solve this problem, this paper designs an environment selection
mechanism to avoid multiple calculations by screening the overall hypervolume
of each solution, designs a new method to approximate the overall hypervolume
contribution, and finally integrates this method into an EMOA framework. In
the experimental part, we compared our method with two hypervolume-based
EMOAs and four advanced EMOAs, tested on the DTLZ and WFG test suits
of 3, 5, 8, 10, and 15 objectives.

The rest of this article is organized as follows. In Sect. 2, we briefly review
some basic concepts. The details of the proposed algorithm are described in
Sect. 3. In Sect. 4, the experiment content is introduced. In Sect. 5, the experi-
mental results are presented and analyzed. We conclude this paper in Sect. 6.

2 Preliminary Concepts

2.1 Hypervolume

Consider a non-dominated point set S in the target space. We assume that they
are all non-overlapping, then the hypervolume of this solution set is computed
as follows.

HV (S, r) = L(
⋃

s∈S

{b|s ≺ b ≺ r}), (1)

where L(. . . ) is the Lebesgue measure of a set. Another important concept is the
hypervolume contribution, which reflects how well each solution contributes to
the entire solution set. The hypervolume contribution of solution s in solution
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set S is expressed as

HV C(s, S, r) = HV (S, r) − HV (S/{a}, r), (2)

The last concept is the overall hypervolume contribution. Because the general
hypervolume contribution only considers the measure of the area dominated by
the current solution alone but ignores the area dominated by other solutions.
The overall hypervolume contribution considers this impact and is expressed as
follows.

Ih(s, S, r) =
|S|∑

i=1

∑

s∈A,|A|=i

1
i
HV C(worse(A), S/A, r). (3)

where worse(. . . ) represents the worst value in each dimension in objective
point set. For example, a minimization problem represents the maximum objec-
tive value in each dimension, while a maximization problem does the opposite.
Figure 1 shows the geometric interpretation of the three concepts respectively.

2.2 R2-Based Hypervolume Contribution Approximation

The basic idea of the R2-based hypervolume contribution approximation(RHCA
2 )

method is to use different line segments to estimate the hypervolume contribution
only in the exclusive dominanced area. This method can directly approximate
the hypervolume contribution and use all the direction vectors of the hypervol-
ume contribution area. Compared with the Monte Carlo sampling method, the
RHCA

2 further reduces the time complexity of the hypervolume calculation, and
has achieved a significant improvement in the estimation accuracy. The litera-
ture shows that the calculation time of the RHCA

2 only increases linearly with the
increase of the number of objectives, and when the number of direction vectors
does not change, as the number of objects increases, the accuracy of the hyper-
volume estimation decreases slowly. However, the current RHCA

2 only estimates
the exclusive hypervolume indicator value of each solution. This is feasible under
the (μ+1) strategy EMOAs, but applied to the (μ+μ′) strategy EMOAs It may
lead to eliminating individual sets of high-combination hypervolume indicators
in the environmental selection stage.

3 Proposed Method

3.1 General Framework

The general framework of proposed method is roughly same as HypE. Consid-
ering that only one offspring in each generation will have a higher probability of
premature convergence to the local optimum, we adopts the (μ + μ′) evolution-
ary strategy. Algorithm 1 gives the pseudo-code of the whole body framework
of the proposed method. In each algorithm generation, the same number of off-
spring as the parent is produced, then the parent and offspring are integrated
into a population. Finally, environmental selection reduces the entire population



An Improved Hypervolume-Based Evolutionary Algorithm 287

Algorithm 1. Proposed Method
Require:

Population Size, N ;
Direction Vector Number, VN ;
Maximum Function Evaluations Number, FEsmax;

Ensure:
Final Population, P ;

1: Initialize Population P , Direction Vector Set Λ, reference point r;
2: FEs ← N;
3: while FEs < FEsmax do
4: P ′ ← GenerateOffspring(P );
5: P ← P ∪ P ′;
6: P ← EnvironmentalSelection(P, N, Λ, r);
7: FEs ← FEs + N;
8: end while
9: return P ;

to a prescribed number. The specific steps of environment selection have been
explained in the previous section. For the generation of offspring, the proposed
method adopts a method that randomly selects two individuals, performs binary
simulation crossover and polynomial mutation, generates two offspring individ-
uals, and then repeats the above steps repeatedly until the number of offspring
individuals is increased to N.

3.2 Environmental Selection

The environmental selection mechanism in proposed method is different from
other hypervolume-based EMOAs. First, perform a non-dominated sort on the
solution set and determine the number of solutions that need to be removed
(lines 1-2). Then determine the rank number after non-dominated sorting. If it
exceeds 1, randomly select DelNum solutions of the last rank with probability
selratio and delete them (lines 4); otherwise, choose DelNum solutions of the
last rank with a minor overall hypervolume contribution and delete them (lines
6). Note that the smaller the selratio value, the faster the calculation speed of
the algorithm, but the more the convergence speed is weakened. In this article,
the value of selratio is set to 0.5.

3.3 Overall Hypervolume Contribution Approximation

R2 DataArray Computation. To calculate the overall hypervolume contri-
bution, we improved the hypervolume contribution estimation method proposed
in [16] so that all direction vectors can be used to estimate the exclusive area
and the common dominant area with other solutions.

The principle of the RHCA
2 is shown in Fig. 2a. In the initial stage, a randomly

generated set of uniformly distributed unit vectors is utilized. To evaluate the
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Algorithm 2. EnvironmentalSelection
Require:

Primitive Population, P ;
Population Size, N ;
Direction Vector Set, Λ;
Reference Point, r;

Ensure:
Updated Population, P ;

1: {F1, F2, ..., Fl} ← NondominatedSort(P, N);
2: DelNum ← |{F1, F2, ..., Fl}| − N ;
3: if l �= 1 and randnum < selratio then
4: Randomly delete DelNum solutions at the last rank;
5: else
6: Delete the DelNum solutions with the smallest overall hypervolume contribution

in the last rank;
7: end if
8: return P ;

Fig. 2. The geometric meaning of concepts in hypervolume contribution approximation

hypervolume contribution of each solution, the length of all line segments is
computed by considering the solution as the starting point and projecting into
the direction of every vector in the vector set. The line segment stops at the
dominant region of the nearest other solution where it intersects, serving as the
endpoint. The logarithmic average of the lengths of all line segments is computed
based on the objective space dimensionality, and this resulting value is utilized as
an estimated hypervolume contribution. Afterward, this estimated contribution
is applied to the calculations.

Due to the algorithmic mechanism, RHCA
2 can only estimate the exclusive

dominant area of each solution. However, based on the idea of using the mean
value of line segment distance to estimate hypervolume in RHCA

2 , we found that
if the directional vector in RHCA

2 continues to extend, it will intersect with the
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dominant regions of other solutions in turn. At each focal point intersection, the
number of shared solutions in the region will increase by one. By considering the
length of the line segments in each region, it is possible to estimate the hypervol-
ume of the co-dominant region with different numbers of solutions. The use of
overall hypervolume calculation for each solution is proposed and implemented
in HypE, and this technique has demonstrated an improvement in solution set
diversity. L(b, Λ1, a) is used to denote the length of the line segment that starts
from solution b, moves in the direction of Λ1, and ends at the intersection of the
dominant region of solution a.

The specific principle is shown in Fig. 2b. For solution b, the vector direc-
tion Λ1 first intersects the dominant region of the solution a, then intersects
the corresponding line segment of reference point r, and finally intersects the
dominant region of the solution c (not shown in the figure). In the line segment
marked along the Λ1 vector direction in the figure, the black part represents
the area dominated by solution b alone. After the first intersection, the red line
segment denotes the area dominated by two solutions simultaneously, and so on.
In Fig. 2b, the line segment in the direction of Λ2 is a special case. The first part
of the line segment represents the area dominated by solution b alone, while
the latter part represents the area dominated by all three solutions. However,
this situation can still be explained using the previous method. In the direction
of Λ2, the line segment passes through the intersection of the dominated region
of solutions a and c, i.e., L(b, Λ2, a) = L(b, Λ2, c), and the point on the line
segment is the coincidence of the two points. Therefore, after that point, the
number of points dominated by the line segment increases by 2. Therefore, In
order to estimate the common dominant area of multiple solutions, we need to
modify RHCA

2 using the following steps:

– Calculate the distances of all intersection points between the solution of the
hypervolume to be estimated and other solutions in the solution set for each
direction vector.

– Calculate the intersection distance between the solution of the hypervolume
to be estimated and the reference point r for each direction vector.

– Sort the intersection distance data of each direction vector in ascending order.

The method of calculating the distance between the intersection of the line
along the direction vector and the solution is consistent with the method of
calculating g∗2mth and gmtch. For any direction vector Λ = {λ1, λ2, ..., λm}, the
L(s, Λ, r) function is defined as:

L(s, Λ, r) = min
j∈{1,...,m}

{ |sj − rj |
λj

}
. (4)

The L(a, Λ, s) function is defined for minimization problems as

L(a, Λ, s) = max
j∈{1,...,m}

{
aj − sj

λj

}
. (5)
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Fig. 3. The modification of R2 DataArray

Fig. 4. The storage form of R2 DataArray

DataArray Modification. After the initialization of the R2 array is com-
pleted, there may still be invalid data in the array, as shown in Fig. 2b. An
obvious problem is the intersection of solution a along the Λ1 direction and
solution c, which exceeds the calculation area of the hypervolume contribution
indicator. This intersection point is invalid.

To determine whether an intersection point is invalid, we can compare the
length of the line segment formed by the intersection point and the solution
with the critical distance. For any point s along the direction vector Λ, the
critical distance is the intersection distance between s and the reference point r.
If the length of the line segment is greater than the critical distance, then the
intersection point is invalid.

In the context of the R2 indicator, we can discard any intersection points that
are deemed invalid and only consider the valid intersection points to avoid dis-
tortion of the hypervolume contribution estimate. The specific correction process
of the R2 array is illustrated in Fig. 3. For solution a, we start with the intersec-
tion point along the Λ3 direction and compare the distance of each subsequent
intersection point to the reference point in ascending order. We keep the first
intersection point whose distance is less than the critical distance and discard
all subsequent points.

The corrected R2 array is shown in Fig. 4. Note that this is an irregular array,
as some rows have more columns than others. If an irregular data structure is not
supported by a certain programming environment, we can replace the discarded
entries with INF.



An Improved Hypervolume-Based Evolutionary Algorithm 291

Numerical Approximation. Once the R2 data array is calculated, we can
estimate the hypervolume contribution value using the following formula:

HV C =
N∑

i=1

ai

|Λi|
VN∑

j=1

lMij (6)

Here, |Λi| is the total number of vectors in the area dominated by i solutions,
lij is the length of the line segment in the direction of the j-th vector in the
area commonly dominated by i solutions, ai is the hypervolume contribution
coefficient of the area dominated by isolutions (the same definition as HypE),
and M is the number of objectives.

3.4 Computational Complexity

The computational complexity of one generation of the proposed method is ana-
lyzed as follows. The initialization of the R2 data array and the process of esti-
mating hypervolume contribution through the R2 data array occupy most of the
algorithm time. In each generation, in the initialization phase of the R2 data
array, O(VNMN2) calculation is required; the sorting of each row of data in
the R2 array requires O(VNN3) calculation; in the environment selection phase,
non-dominated sorting adopts The T-ENS [20] algorithm has a computational
complexity of O(MNlogN/logM). So the computational complexity of environ-
ment selection is O(VNN3). In general, since m is generally much smaller than
N, the computational complexity of the entire the proposed method algorithm
is O(VNN3).

4 Experimental Design

4.1 Benchmark Problems

To evaluate the performance of the proposed method, we conducted experiments
on the DTLZ{1 − 7} [6] and WFG{1 − 9} [10] test sets. Both of these test sets
allow for arbitrary adjustment of the number of objectives and decision variables.

Following the suggestions in [6], we selected test problems with PFs of dif-
ferent shapes, including convex, concave, linear, continuous, non-convex, and
discontinuous. These different types of PFs can evaluate the performance of the
algorithm in all aspects. We set the number of objectives to m = {3, 5, 10, 15}.

For the number of decision variables in the DTLZ test set, DTLZ1 is m + 4,
DTLZ2-6 is m + 9, and DTLZ7 is m + 19. For the WFG test set, based on the
recommendation in [10], we set the number of decision variables to n = k + l,
where the position-related variable k = 2 ∗ (m − 1) and the distance-related
variable l = 20.
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4.2 Performance Metrics

In this paper, we used two evaluation indicators - hypervolume and inverted
generational distance - to evaluate the performance of the algorithm. Both of
these indicators can evaluate the convergence and diversity of the solution set.
The hypervolume indicator strictly follows the Pareto relationship, so it can
clearly distinguish the convergence and diversity of different solution sets.

For cases where m < 10, we used the WFG algorithm to accurately calculate
the value of hypervolume. However, when m > 10, the accurate calculation takes
too much time, so the Monte Carlo method was used to approximate the value
of hypervolume. The true ideal point r∗ and the true nadir point rnad were set
as (1, 1, ..., 1) and (0, 0, ..., 0) respectively, and each solution in the solution set
was normalized. The reference point used when calculating hypervolume was
r = (1, 1, ..., 1).

The Inverted Generational Distance (IGD) [10] is another widely used met-
ric in multi-objective scenarios, providing combined information on convergence
and diversity. However, unlike hypervolume, lower IGD values indicate better
solution quality. For the calculation of IGD, the selection of the reference set
is critical. In our study, we used the problem reference set that came with the
platEMO platform, which will be described in detail later.

Furthermore, we used the Wilcoxon rank sum test with a significance level of
0.05 to analyze the test data results of the algorithm, to determine whether one
algorithm is statistically significantly different from another, as denoted by “+”
(significantly better), “−” (significantly worse), or “≈” (statistically similar)
compared to the proposed method.

4.3 Algorithms for Comparison

In the experimental part, two sets of comparison algorithms are adopted. The
first group consists of two hypervolume-based EMOAs, namely SMS-EMOA and
HypE. The number of sampling points for HypE is set to 10000, which is the same
as the setting in [17]. The second group consists of four advanced EMOAs, namely:
AR-MOEA [17], SPEA2+SDE [13], GFM-MOEA [18] and BCE-IBEA [14].

5 Experimental Results and Discussions

5.1 Performance Comparisons on WFG Test Suite

Table 1 presents the results of the proposed method’s hypervolume indicator test
on WFG1-9 with five conditions for each problem: 3, 5, 10, and 15 objectives.
The proposed method achieved the optimal results in the vast majority of cases,
with 35 out of 45 problems solved most efficiently, demonstrating its superior
performance when compared to other state-of-the-art algorithms. HypE came in
second place, producing the best results in only seven problems. Interestingly,
HypE outperformed all other algorithms in the WFG3 problem, likely due to its
unique approach to individual fitness calculations.
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Table 1. Performance Compared on WFG Problems with Respect to the Average
Hypervolume Values. The Best Average Hypervolume Values Among the Algorithms
on Each Instance is Highlighted in Gray

Problem M ARMOEA BCEIBEA GFMMOEA SPEA2SDE HypE SMSEMOA Proposed Method

WFG1 3 6.9561e-1 (3.11e-2) − 7.8268e-1 (2.56e-2) + 7.7862e-1 (2.64e-2) + 7.7676e-1 (2.15e-2) + 5.5463e-1 (4.61e-2) − 7.1428e-1 (3.49e-2) − 7.3894e-1 (2.49e-2)

5 5.1420e-1 (3.10e-2) − 7.1812e-1 (3.18e-2) + 7.2865e-1 (4.02e-2) + 6.9899e-1 (3.31e-2) ≈ 6.1329e-1 (2.81e-2) − 5.5717e-1 (3.24e-2) − 6.9807e-1 (3.13e-2)

10 3.6810e-1 (2.35e-2) − 5.0075e-1 (3.46e-2) − 5.7230e-1 (4.47e-2) ≈ 4.5507e-1 (3.25e-2) − 6.1330e-1 (3.61e-2) + 4.5057e-1 (3.57e-2) − 5.7944e-1 (3.58e-2)

15 4.2115e-1 (3.32e-2) − 4.2760e-1 (3.67e-2) − 4.8053e-1 (3.66e-2) − 3.3572e-1 (2.91e-2) − 5.5238e-1 (4.49e-2) + 3.9492e-1 (2.68e-2) − 5.0442e-1 (3.97e-2)

WFG2 3 9.0833e-1 (4.76e-3) − 9.2201e-1 (6.58e-3) − 9.2393e-1 (5.93e-3) − 9.0877e-1 (2.56e-2) − 9.2398e-1 (4.91e-3) − 9.1195e-1 (3.50e-3) − 9.2669e-1 (8.71e-3)

5 9.3329e-1 (3.23e-2) − 9.5958e-1 (1.24e-2) − 9.6871e-1 (1.47e-2) − 9.4018e-1 (1.11e-2) − 9.7595e-1 (8.88e-3) ≈ 9.5940e-1 (7.08e-3) − 9.7605e-1 (3.99e-3)

10 8.9206e-1 (2.53e-2) − 9.4548e-1 (1.22e-2) − 9.2401e-1 (2.08e-2) − 9.2066e-1 (1.65e-2) − 9.6318e-1 (1.52e-2) ≈ 9.3567e-1 (1.98e-2) − 9.6732e-1 (1.12e-2)

15 8.5822e-1 (3.06e-2) − 9.1335e-1 (1.78e-2) − 8.6581e-1 (3.64e-2) − 8.9352e-1 (1.75e-2) − 9.3237e-1 (4.25e-2) − 8.6978e-1 (6.41e-2) − 9.5730e-1 (1.26e-2)

WFG3 3 3.4321e-1 (9.48e-3) − 3.7927e-1 (5.14e-3) − 3.6597e-1 (1.03e-2) − 3.8425e-1 (6.03e-3) ≈ 4.0287e-1 (4.31e-3) + 3.6995e-1 (6.99e-3) − 3.8787e-1 (8.83e-3)

5 1.0402e-2 (6.45e-3) − 1.2070e-1 (2.61e-2) − 5.1143e-2 (1.84e-2) − 3.9578e-2 (2.41e-2) − 2.5250e-1 (1.02e-2) + 2.0621e-1 (1.01e-2) + 1.4496e-1 (2.21e-2)

10 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 2.5434e-4 (1.39e-3) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)

15 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0)

WFG4 3 5.3151e-1 (3.12e-3) − 5.4744e-1 (2.17e-3) − 5.4318e-1 (2.12e-3) − 5.4209e-1 (2.58e-3) − 5.5213e-1 (1.84e-3) − 5.2047e-1 (2.97e-3) − 5.5622e-1 (1.64e-3)

5 6.9788e-1 (6.65e-3) − 7.2727e-1 (6.87e-3) − 7.1631e-1 (5.08e-3) − 7.1345e-1 (7.74e-3) − 7.2112e-1 (3.68e-2) − 7.4565e-1 (1.36e-2) − 7.7031e-1 (4.42e-3)

10 8.3503e-1 (1.35e-2) − 8.4362e-1 (1.35e-2) − 7.9979e-1 (3.59e-2) − 7.9249e-1 (1.14e-2) − 6.6518e-1 (4.92e-2) − 6.4899e-1 (7.07e-2) − 8.7701e-1 (4.22e-2)

15 6.2056e-1 (5.49e-2) − 8.6230e-1 (2.01e-2) ≈ 7.6205e-1 (7.69e-2) − 7.8991e-1 (1.81e-2) − 6.3624e-1 (6.44e-2) − 5.5092e-1 (6.74e-2) − 8.7193e-1 (4.55e-2)

WFG5 3 5.1271e-1 (1.26e-3) − 5.1623e-1 (2.07e-3) − 5.1447e-1 (2.43e-3) − 5.1459e-1 (1.98e-3) − 5.1697e-1 (8.66e-4) − 5.0479e-1 (2.55e-3) − 5.2417e-1 (6.46e-4)

5 6.8277e-1 (3.92e-3) − 7.0887e-1 (4.89e-3) − 6.9903e-1 (4.97e-3) − 6.8822e-1 (8.99e-3) − 7.3780e-1 (1.91e-3) ≈ 7.2132e-1 (3.55e-3) − 7.3819e-1 (2.55e-3)

10 8.0294e-1 (1.08e-2) − 8.2297e-1 (1.15e-2) − 7.6781e-1 (5.30e-2) − 7.4615e-1 (1.28e-2) − 7.5362e-1 (3.47e-2) − 5.4073e-1 (5.84e-2) − 8.6297e-1 (5.33e-3)

15 3.5966e-1 (1.21e-1) − 7.9917e-1 (1.27e-2) − 7.8540e-1 (8.21e-2) − 7.1445e-1 (2.65e-2) − 7.2676e-1 (2.15e-2) − 4.8707e-1 (1.28e-2) − 8.4970e-1 (2.83e-2)

WFG6 3 5.0145e-1 (4.81e-3) − 5.1742e-1 (6.74e-3) − 5.1650e-1 (4.98e-3) − 5.1245e-1 (5.82e-3) − 5.1833e-1 (4.65e-3) − 5.0123e-1 (5.10e-3) − 5.2480e-1 (5.92e-3)

5 6.7118e-1 (9.80e-3) − 7.0782e-1 (6.91e-3) − 7.0340e-1 (6.25e-3) − 6.8863e-1 (1.10e-2) − 7.4204e-1 (6.92e-3) ≈ 7.1978e-1 (6.89e-3) − 7.3846e-1 (8.57e-3)

10 8.4285e-1 (1.05e-2) − 8.4290e-1 (1.02e-2) − 7.6972e-1 (7.84e-2) − 7.7938e-1 (1.29e-2) − 7.3776e-1 (3.93e-2) − 7.2966e-1 (4.88e-2) − 8.7073e-1 (9.79e-3)

15 4.5323e-1 (1.04e-1) − 8.4975e-1 (1.34e-2) − 6.7729e-1 (1.19e-1) − 7.7917e-1 (2.19e-2) − 7.1818e-1 (3.87e-2) − 6.4681e-1 (5.61e-2) − 8.5911e-1 (3.69e-2)

WFG7 3 5.3382e-1 (3.00e-3) − 5.5548e-1 (9.37e-4) − 5.5374e-1 (1.17e-3) − 5.5256e-1 (1.54e-3) − 5.5291e-1 (1.20e-3) − 5.2926e-1 (2.45e-3) − 5.6297e-1 (8.74e-4)

5 6.8009e-1 (1.13e-2) − 7.6114e-1 (3.48e-3) − 7.4785e-1 (6.41e-3) − 7.3987e-1 (7.53e-3) − 7.8108e-1 (9.04e-3) − 7.5813e-1 (3.20e-3) − 7.8677e-1 (2.52e-3)

10 8.6394e-1 (1.42e-2) − 8.9187e-1 (8.95e-3) − 7.7581e-1 (1.00e-1) − 8.3265e-1 (1.60e-2) − 7.4631e-1 (4.37e-2) − 7.3517e-1 (5.83e-2) − 9.1962e-1 (3.28e-2)

15 5.1858e-1 (9.92e-2) − 8.9641e-1 (1.34e-2) − 7.2896e-1 (1.16e-1) − 8.1758e-1 (2.67e-2) − 7.2063e-1 (6.01e-2) − 6.2362e-1 (8.61e-2) − 9.1978e-1 (2.54e-2)

WFG8 3 4.8698e-1 (3.53e-3) − 4.9688e-1 (2.78e-3) − 4.9434e-1 (3.46e-3) − 4.9378e-1 (2.97e-3) − 4.9282e-1 (3.42e-3) − 4.7487e-1 (3.69e-3) − 5.0613e-1 (2.68e-3)

5 6.3797e-1 (8.91e-3) − 6.5797e-1 (6.75e-3) − 6.6050e-1 (8.06e-3) − 6.5405e-1 (7.82e-3) − 7.0263e-1 (4.83e-3) ≈ 6.7269e-1 (5.40e-3) − 7.0447e-1 (4.82e-3)

10 7.4352e-1 (1.48e-2) − 7.2863e-1 (1.92e-2) − 7.3632e-1 (5.39e-2) − 7.6013e-1 (1.38e-2) − 7.5125e-1 (3.54e-2) − 7.1770e-1 (5.06e-2) − 8.1987e-1 (1.78e-2)

15 4.9627e-1 (9.38e-2) − 7.6866e-1 (3.63e-2) − 4.2001e-1 (2.09e-1) − 7.7170e-1 (1.97e-2) − 7.3784e-1 (4.69e-2) − 6.8280e-1 (6.94e-2) − 8.3656e-1 (3.73e-2)

WFG9 3 4.8859e-1 (1.20e-2) − 5.2001e-1 (1.86e-2) − 5.2321e-1 (2.56e-3) − 5.0900e-1 (2.34e-2) − 5.1615e-1 (2.83e-2) − 5.0678e-1 (1.04e-2) − 5.3350e-1 (1.95e-2)

5 5.6037e-1 (2.63e-2) − 6.6733e-1 (1.78e-2) − 6.7400e-1 (1.99e-2) − 6.6136e-1 (1.98e-2) − 7.2809e-1 (2.63e-2) ≈ 7.2267e-1 (1.22e-2) − 7.3520e-1 (2.11e-2)

10 6.0098e-1 (4.09e-2) − 6.9933e-1 (3.15e-2) − 7.1076e-1 (5.73e-2) − 6.6974e-1 (3.57e-2) − 6.9209e-1 (4.75e-2) − 5.1399e-1 (6.47e-2) − 8.2913e-1 (1.29e-2)

15 2.6588e-1 (1.06e-1) − 6.3737e-1 (2.94e-2) − 6.5478e-1 (1.08e-1) − 6.1179e-1 (5.28e-2) − 7.0257e-1 (4.23e-2) − 4.6765e-1 (4.25e-2) − 8.4482e-1 (2.19e-2)

+/ − / ≈ 0/43/2 2/40/3 2/39/4 1/40/4 5/30/10 1/41/3

Table 2. Performance Compared on WFG Problems with Respect to the Average
IGD Values. The Best Average IGD Values Among the Algorithms on Each Instance
is Highlighted in Gray

Problem M ARMOEA BCEIBEA GFMMOEA SPEA2SDE SMSEMOA HypE Proposed Method

WFG1 3 5.3719e-1 (6.24e-2) − 3.5681e-1 (4.58e-2) + 3.8376e-1 (4.84e-2) + 3.9194e-1 (3.56e-2) + 5.2594e-1 (6.21e-2) − 1.0965e+0 (1.03e-1) − 4.5965e-1 (4.48e-2)

5 1.2978e+0 (8.67e-2) − 7.7550e-1 (6.35e-2) + 8.3465e-1 (1.42e-1) ≈ 8.2192e-1 (5.69e-2) ≈ 1.2593e+0 (7.79e-2) − 1.4736e+0 (8.43e-2) − 8.1699e-1 (6.14e-2)

10 2.2706e+0 (9.66e-2) − 1.9643e+0 (1.12e-1) − 1.8912e+0 (2.15e-1) − 2.0410e+0 (9.82e-2) − 2.2049e+0 (8.58e-2) − 2.0732e+0 (3.64e-2) − 1.6662e+0 (7.80e-2)

15 3.0686e+0 (1.18e-1) − 3.0664e+0 (1.69e-1) − 2.6651e+0 (1.91e-1) − 3.1860e+0 (1.34e-1) − 3.1343e+0 (1.05e-1) − 2.7212e+0 (5.69e-2) − 2.5349e+0 (1.24e-1)

WFG2 3 1.6860e-1 (3.27e-3) + 1.6465e-1 (4.34e-3) + 1.7132e-1 (5.74e-3) + 2.1897e-1 (5.56e-2) + 2.3445e-1 (2.18e-2) ≈ 3.0932e-1 (6.98e-3) − 2.3034e-1 (1.16e-2)

5 5.3063e-1 (1.48e-1) + 5.1605e-1 (2.92e-2) + 5.5920e-1 (6.31e-2) + 6.0462e-1 (2.70e-2) − 9.4449e-1 (7.98e-2) − 6.1442e-1 (3.68e-2) − 5.7777e-1 (2.77e-2)

10 1.3620e+0 (6.84e-2) − 1.2010e+0 (5.09e-2) + 1.3915e+0 (1.76e-1) − 1.3476e+0 (7.40e-2) − 2.6286e+0 (4.76e-1) − 1.3894e+0 (1.14e-1) − 1.3129e+0 (1.35e-1)

15 2.0679e+0 (6.64e-2) − 1.8341e+0 (9.60e-2) + 2.2291e+0 (7.56e-1) − 1.9743e+0 (7.23e-2) − 5.9360e+0 (1.33e+0) − 2.8447e+0 (1.03e+0) − 1.9049e+0 (9.01e-2)

WFG3 3 1.7638e-1 (1.85e-2) − 1.0002e-1 (7.45e-3) − 1.1324e-1 (1.70e-2) − 7.2815e-2 (7.66e-3) ≈ 1.2495e-1 (1.79e-2) − 4.7782e-2 (9.33e-3) + 7.6860e-2 (1.69e-2)

5 8.8387e-1 (5.36e-2) − 4.5835e-1 (5.23e-2) − 5.7204e-1 (7.99e-2) − 7.3881e-1 (2.46e-1) − 4.6214e-1 (2.88e-1) ≈ 9.1455e-2 (1.52e-2) + 3.1639e-1 (5.45e-2)

10 3.5900e+0 (1.60e-1) − 1.2725e+0 (1.52e-1) − 8.2582e-1 (3.64e-1) − 1.9769e+0 (5.88e-1) − 2.9874e+0 (2.12e+0) − 2.2119e-1 (4.72e-2) + 3.0357e-1 (1.14e-1)

15 6.0732e+0 (5.80e-1) − 2.2457e+0 (2.19e-1) − 8.4664e+0 (2.72e+0) − 4.3976e+0 (1.11e+0) − 6.0839e+0 (2.18e+0) − 4.0134e-1 (6.50e-2) + 7.3919e-1 (2.81e-1)

WFG4 3 2.2652e-1 (1.45e-3) + 2.1892e-1 (3.55e-3) + 2.1187e-1 (1.85e-3) + 3.2753e-1 (1.66e-2) − 3.0222e-1 (1.53e-2) − 3.3242e-1 (1.61e-2) − 2.9479e-1 (9.82e-3)

5 1.2202e+0 (2.24e-3) + 1.1926e+0 (1.02e-2) + 1.1498e+0 (7.99e-3) + 1.4013e+0 (2.65e-2) + 1.3748e+0 (5.10e-2) + 1.6297e+0 (1.41e-1) − 1.4434e+0 (3.19e-2)

10 6.0223e+0 (1.28e-1) − 5.1331e+0 (1.04e-1) + 4.9869e+0 (3.11e-1) + 5.4460e+0 (9.57e-2) + 9.7522e+0 (1.28e+0) − 9.5151e+0 (8.51e-1) − 5.7215e+0 (5.80e-1)

15 1.2006e+1 (5.74e-1) − 9.1424e+0 (2.40e-1) + 1.1907e+1 (1.31e+0) − 9.6832e+0 (4.03e-1) + 2.1029e+1 (1.40e+0) − 1.9593e+1 (1.44e+0) − 1.1009e+1 (1.57e+0)

WFG5 3 2.3247e-1 (9.04e-4) + 2.2904e-1 (2.96e-3) + 2.2042e-1 (1.88e-3) + 3.3206e-1 (1.17e-2) − 3.0876e-1 (1.68e-2) − 3.6713e-1 (1.51e-2) − 2.9944e-1 (1.23e-2)

5 1.2090e+0 (1.67e-3) + 1.2016e+0 (1.34e-2) + 1.1389e+0 (9.49e-3) + 1.4137e+0 (3.27e-2) + 1.3755e+0 (2.62e-2) + 1.5523e+0 (3.54e-2) − 1.4319e+0 (3.22e-2)

10 5.8700e+0 (6.43e-2) − 5.2306e+0 (4.96e-2) + 5.2326e+0 (7.60e-1) + 5.3938e+0 (9.12e-2) + 1.0700e+1 (1.14e+0) − 6.7119e+0 (6.22e-1) − 5.5183e+0 (7.26e-2)

15 1.1321e+1 (2.18e-1) − 9.2077e+0 (1.22e-1) + 9.9995e+0 (1.28e+0) ≈ 1.1002e+1 (5.55e-1) − 2.1535e+1 (6.58e-1) − 1.5402e+1 (9.10e-1) − 9.7555e+0 (6.07e-1)

WFG6 3 2.4443e-1 (3.63e-3) + 2.3958e-1 (6.32e-3) + 2.2236e-1 (4.26e-3) + 3.4183e-1 (1.51e-2) − 3.3395e-1 (1.68e-2) − 3.6634e-1 (1.65e-2) − 3.0322e-1 (8.53e-3)

5 1.2211e+0 (2.50e-3) + 1.2275e+0 (1.65e-2) + 1.1587e+0 (9.94e-3) + 1.4574e+0 (2.31e-2) ≈ 1.4193e+0 (3.79e-2) + 1.5525e+0 (3.34e-2) − 1.4553e+0 (3.28e-2)

10 6.1357e+0 (1.60e-1) − 5.3472e+0 (4.91e-2) + 5.3626e+0 (9.22e-1) + 5.4901e+0 (7.16e-2) + 7.8373e+0 (1.02e+0) − 7.5548e+0 (8.13e-1) − 5.5791e+0 (1.05e-1)

15 1.1596e+1 (3.60e-1) − 9.4203e+0 (1.84e-1) + 1.1848e+1 (1.23e+0) − 1.0039e+1 (4.65e-1) − 1.8531e+1 (1.56e+0) − 1.6686e+1 (1.38e+0) − 9.8506e+0 (6.52e-1)

WFG7 3 2.2865e-1 (2.30e-3) + 2.2602e-1 (4.84e-3) + 2.1084e-1 (2.00e-3) + 3.2641e-1 (1.16e-2) − 3.4703e-1 (2.06e-2) − 3.8270e-1 (1.97e-2) − 2.9397e-1 (8.92e-3)

5 1.2332e+0 (5.23e-3) + 1.2342e+0 (1.44e-2) + 1.1649e+0 (1.11e-2) + 1.4498e+0 (2.46e-2) ≈ 1.4482e+0 (3.12e-2) ≈ 1.5813e+0 (4.15e-2) − 1.4648e+0 (2.94e-2)

10 6.0392e+0 (1.39e-1) − 5.3823e+0 (1.47e-1) + 5.7873e+0 (1.15e+0) ≈ 5.4548e+0 (7.63e-2) + 8.3765e+0 (1.04e+0) − 8.1365e+0 (9.09e-1) − 5.6247e+0 (9.58e-2)

15 1.1587e+1 (3.38e-1) − 9.4543e+0 (2.30e-1) + 1.1867e+1 (1.30e+0) − 9.9106e+0 (3.59e-1) ≈ 1.9754e+1 (2.07e+0) − 1.7738e+1 (1.64e+0) − 1.0113e+1 (7.04e-1)

WFG8 3 2.5897e-1 (3.61e-3) + 2.6483e-1 (5.52e-3) + 2.4343e-1 (3.99e-3) + 3.4594e-1 (1.26e-2) − 3.6428e-1 (1.79e-2) − 3.7153e-1 (1.26e-2) − 2.9376e-1 (8.23e-3)

5 1.2212e+0 (2.86e-3) + 1.2382e+0 (1.25e-2) + 1.1560e+0 (5.59e-3) + 1.4203e+0 (2.51e-2) − 1.3874e+0 (3.29e-2) ≈ 1.5179e+0 (2.66e-2) − 1.3775e+0 (3.56e-2)

10 5.9610e+0 (9.23e-2) − 5.2628e+0 (5.82e-2) + 5.0271e+0 (3.12e-1) + 5.4175e+0 (6.60e-2) ≈ 8.2559e+0 (1.09e+0) − 7.5353e+0 (6.03e-1) − 5.4848e+0 (1.95e-1)

15 1.1779e+1 (4.39e-1) − 9.2034e+0 (1.65e-1) + 1.1182e+1 (1.30e+0) ≈ 9.5087e+0 (1.47e-1) + 1.7933e+1 (1.93e+0) − 1.6665e+1 (1.60e+0) − 1.1029e+1 (9.16e-1)

WFG9 3 2.4642e-1 (9.75e-3) + 2.2233e-1 (1.25e-2) + 2.0980e-1 (2.37e-3) + 3.1964e-1 (1.33e-2) − 3.0613e-1 (2.33e-2) − 3.5928e-1 (1.90e-2) − 2.8495e-1 (1.31e-2)

5 1.2426e+0 (1.54e-2) + 1.1662e+0 (1.38e-2) + 1.1276e+0 (9.13e-3) + 1.3624e+0 (4.03e-2) + 1.3728e+0 (2.91e-2) + 1.4890e+0 (6.88e-2) − 1.4137e+0 (9.01e-2)

10 5.6930e+0 (5.44e-2) − 4.8862e+0 (5.60e-2) + 4.9436e+0 (2.40e-1) + 5.3048e+0 (7.91e-2) + 1.1223e+1 (9.84e-1) − 7.6574e+0 (8.28e-1) − 5.4327e+0 (1.09e-1)

15 1.1282e+1 (2.23e-1) − 8.8267e+0 (9.18e-2) + 9.4930e+0 (1.29e+0) + 9.7044e+0 (6.23e-1) ≈ 2.1988e+1 (8.69e-1) − 1.6289e+1 (1.22e+0) − 9.8250e+0 (4.19e-1)

+/ − / ≈ 15/28/2 37/8/0 27/14/4 13/22/10 4/36/5 5/40/0
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Table 3. Performance Compared on DTLZ Problems with Respect to the Average
Hypervolume Values. The Best Average Hypervolume Values Among the Algorithms
on Each Instance is Highlighted in Gray

Problem M ARMOEA BCEIBEA GFMMOEA SPEA2SDE SMSEMOA HypE Proposed Method

DTLZ1 3 8.3288e-1 (5.89e-3) − 8.3670e-1 (3.42e-3) − 8.3908e-1 (3.58e-3) ≈ 8.2135e-1 (5.82e-2) − 7.9562e-1 (1.07e-1) − 6.3027e-1 (1.32e-1) − 8.4007e-1 (2.03e-3)

5 9.0779e-1 (2.02e-1) − 9.6392e-1 (3.64e-3) + 9.5493e-1 (3.79e-2) + 9.4748e-1 (7.63e-3) + 2.8770e-1 (3.66e-1) − 5.9893e-1 (1.10e-1) − 9.3750e-1 (1.26e-1)

10 7.3662e-1 (3.80e-1) − 1.6133e-1 (2.78e-1) − 7.0097e-1 (3.78e-1) − 9.7294e-1 (1.64e-2) − 9.5102e-3 (5.21e-2) − 5.3905e-1 (1.71e-1) − 9.9796e-1 (5.39e-4)

15 5.0204e-1 (3.69e-1) − 7.9106e-2 (1.73e-1) − 6.4453e-1 (3.69e-1) − 9.4359e-1 (6.45e-2) − 3.1215e-4 (1.71e-3) − 3.8578e-1 (2.70e-1) − 9.6779e-1 (1.67e-1)

DTLZ2 3 5.5893e-1 (1.39e-4) − 5.5908e-1 (9.26e-4) − 5.6049e-1 (8.03e-4) − 5.6083e-1 (1.21e-3) − 5.4818e-1 (1.79e-3) − 5.3506e-1 (3.11e-3) − 5.6696e-1 (5.55e-4)

5 7.7169e-1 (6.87e-4) − 7.7398e-1 (2.38e-3) − 7.7293e-1 (2.66e-3) − 7.8522e-1 (2.66e-3) − 7.7687e-1 (2.19e-3) − 7.0419e-1 (2.06e-2) − 7.9734e-1 (1.13e-3)

10 9.3661e-1 (1.43e-3) − 9.4005e-1 (2.96e-3) − 9.2293e-1 (4.88e-3) − 9.4623e-1 (2.16e-3) − 7.9334e-1 (4.49e-2) − 7.1329e-1 (3.89e-2) − 9.5368e-1 (9.86e-4)

15 7.0241e-1 (2.96e-2) − 9.7704e-1 (3.34e-3) + 9.4794e-1 (9.28e-3) − 9.8018e-1 (2.99e-3) ≈ 7.7071e-1 (5.68e-2) − 7.0187e-1 (3.96e-2) − 9.7079e-1 (2.85e-2)

DTLZ3 3 9.4786e-2 (1.64e-1) ≈ 1.3342e-1 (1.70e-1) + 1.1882e-1 (1.93e-1) + 1.6748e-1 (2.03e-1) + 4.5295e-2 (1.13e-1) ≈ 8.3893e-2 (1.35e-1) + 1.9512e-2 (7.14e-2)

5 0.0000e+0 (0.00e+0) ≈ 1.5722e-2 (6.06e-2) ≈ 5.1279e-3 (2.48e-2) ≈ 1.2496e-1 (2.28e-1) + 0.0000e+0 (0.00e+0) ≈ 3.5351e-2 (9.66e-2) ≈ 1.0537e-2 (5.77e-2)

10 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) − 3.1584e-1 (3.72e-1) + 0.0000e+0 (0.00e+0) − 6.0696e-4 (3.32e-3) ≈ 6.8358e-2 (2.03e-1)

15 1.6948e-2 (9.28e-2) ≈ 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) − 5.2957e-2 (1.75e-1) ≈ 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) − 1.1455e-2 (6.09e-2)

DTLZ4 3 3.9610e-1 (1.70e-1) − 5.5846e-1 (1.58e-3) ≈ 4.7422e-1 (1.25e-1) + 5.1828e-1 (8.70e-2) ≈ 4.4737e-1 (1.51e-1) − 3.9171e-1 (1.42e-1) − 4.6195e-1 (1.44e-1)

5 7.5189e-1 (5.00e-2) − 7.7252e-1 (5.41e-3) ≈ 7.3647e-1 (6.13e-2) − 7.6893e-1 (3.70e-2) + 7.0386e-1 (7.82e-2) − 5.3559e-1 (1.43e-1) − 7.6251e-1 (4.75e-2)

10 9.4061e-1 (8.33e-4) ≈ 9.4219e-1 (5.05e-3) ≈ 9.3409e-1 (6.01e-3) − 9.3670e-1 (1.87e-2) ≈ 8.2233e-1 (1.57e-1) − 7.5927e-1 (5.33e-2) − 9.3830e-1 (2.36e-2)

15 8.5968e-1 (1.15e-2) − 9.7866e-1 (2.88e-3) ≈ 8.6078e-1 (2.85e-1) − 9.7983e-1 (4.34e-3) + 5.5821e-1 (3.46e-1) − 7.5597e-1 (4.90e-2) − 9.6792e-1 (2.32e-2)

DTLZ5 3 1.9901e-1 (1.36e-4) − 1.9978e-1 (9.87e-5) − 1.9992e-1 (4.60e-5) − 1.9942e-1 (2.95e-4) − 1.9464e-1 (8.34e-4) − 1.9609e-1 (7.23e-4) − 1.9996e-1 (2.66e-4)

5 9.9098e-2 (6.33e-3) − 1.0241e-1 (1.61e-2) − 5.2714e-2 (3.36e-2) − 1.1125e-1 (2.67e-3) ≈ 1.1520e-1 (1.58e-3) + 1.2344e-1 (8.48e-4) + 1.1142e-1 (6.81e-3)

10 9.1436e-2 (9.77e-4) + 3.3298e-2 (3.94e-2) ≈ 4.2237e-2 (2.74e-2) ≈ 8.9513e-2 (1.33e-3) + 8.2300e-2 (6.42e-3) + 9.6844e-2 (7.23e-4) + 4.8259e-2 (1.87e-2)

15 9.1516e-2 (3.83e-4) + 3.7298e-2 (3.41e-2) ≈ 3.9130e-2 (3.18e-2) ≈ 8.9375e-2 (9.51e-4) + 7.4179e-2 (1.11e-2) + 9.2553e-2 (5.25e-4) + 3.1642e-2 (2.59e-2)

DTLZ6 3 1.9957e-1 (6.98e-5) + 2.0017e-1 (1.26e-4) + 2.0006e-1 (5.26e-5) + 1.9957e-1 (1.89e-4) + 1.9522e-1 (1.00e-3) + 1.1420e-1 (1.13e-2) + 7.4380e-2 (3.36e-2)

5 9.4310e-2 (2.62e-2) + 6.0641e-2 (3.78e-2) ≈ 3.4021e-2 (4.42e-2) − 1.0503e-1 (4.82e-3) + 1.9889e-2 (3.67e-2) − 1.0068e-1 (6.25e-3) + 7.4636e-2 (3.82e-2)

10 6.6939e-2 (4.11e-2) ≈ 5.7471e-2 (4.30e-2) ≈ 3.0861e-2 (3.60e-2) − 8.8499e-2 (8.26e-3) ≈ 0.0000e+0 (0.00e+0) − 9.1565e-2 (9.07e-4) + 6.2715e-2 (3.77e-2)

15 9.0977e-2 (3.00e-4) + 5.6713e-2 (4.41e-2) ≈ 3.2003e-2 (2.86e-2) ≈ 8.7117e-2 (1.68e-2) + 0.0000e+0 (0.00e+0) − 9.0975e-2 (2.83e-4) + 4.6320e-2 (4.45e-2)

DTLZ7 3 2.6537e-1 (1.39e-2) − 2.6417e-1 (2.08e-2) − 2.5779e-1 (2.78e-2) − 2.7757e-1 (6.58e-4) − 2.5979e-1 (1.84e-2) − 1.9517e-1 (1.22e-3) − 2.7995e-1 (7.90e-3)

5 2.0720e-1 (5.06e-3) − 2.5728e-1 (5.53e-3) − 2.3878e-1 (2.99e-2) − 2.3763e-1 (1.17e-2) − 2.0713e-1 (2.05e-2) − 1.7539e-1 (1.11e-2) − 2.6310e-1 (1.51e-2)

10 3.1632e-2 (2.75e-2) − 1.6146e-1 (2.01e-2) − 1.1515e-1 (3.19e-2) − 3.3809e-2 (1.85e-2) − 1.2509e-1 (7.12e-3) − 1.2298e-1 (4.02e-3) − 1.7746e-1 (7.42e-3)

15 2.4103e-4 (9.07e-4) − 1.1434e-1 (2.97e-2) − 7.0172e-2 (3.05e-2) − 1.7568e-3 (1.66e-3) − 5.2803e-2 (3.65e-2) − 1.0646e-1 (4.00e-3) − 1.4015e-1 (1.27e-2)

IDTLZ1 3 2.1353e-1 (4.70e-3) ≈ 2.1776e-1 (2.83e-3) + 2.2186e-1 (8.03e-4) + 2.1924e-1 (1.22e-3) + 1.8858e-1 (3.75e-2) − 1.1345e-1 (1.33e-2) − 2.0787e-1 (2.00e-2)

5 7.4289e-3 (9.15e-4) + 8.0141e-3 (1.22e-3) + 9.2017e-3 (3.95e-4) + 9.6742e-3 (3.14e-4) + 7.6095e-3 (1.53e-3) + 1.3037e-3 (4.30e-4) − 5.2507e-3 (1.30e-3)

10 5.1989e-8 (4.95e-8) + 1.1236e-7 (8.44e-8) + 1.2442e-7 (1.24e-7) + 1.0470e-7 (5.72e-8) + 1.9757e-7 (5.59e-8) + 1.1224e-8 (1.51e-8) − 3.0921e-8 (1.17e-7)

15 7.916e-14 (6.08e-14) + 2.984e-13 (3.53e-13) + 5.302e-13 (4.39e-13) + 4.708e-13 (2.81e-13) + 1.319e-12 (6.04e-13) + 3.237e-14 (7.24e-14) − 7.144e-14 (2.48e-13)

IDTLZ2 3 5.2376e-1 (3.10e-4) − 5.3607e-1 (1.12e-3) + 5.2521e-1 (7.28e-2) − 5.3106e-1 (2.64e-3) ≈ 5.2525e-1 (2.19e-3) − 5.1489e-1 (3.76e-3) − 5.3144e-1 (3.17e-3)

5 8.5271e-2 (2.42e-3) − 1.0998e-1 (2.51e-3) − 1.1231e-1 (2.75e-3) − 1.1722e-1 (1.43e-3) − 1.1009e-1 (1.61e-3) − 8.9511e-2 (3.26e-3) − 1.2281e-1 (1.01e-3)

10 1.8579e-4 (1.86e-5) − 2.1005e-4 (2.68e-5) − 2.1682e-4 (2.11e-5) − 3.1430e-4 (2.06e-5) − 2.4155e-4 (2.41e-5) − 1.1612e-4 (1.60e-5) − 4.2827e-4 (1.07e-5)

15 5.8427e-8 (4.38e-8) − 9.7276e-8 (2.63e-8) − 1.9399e-7 (3.07e-8) − 1.6329e-7 (2.09e-8) − 5.4151e-8 (2.89e-8) − 5.5574e-8 (6.11e-8) − 2.8548e-7 (3.33e-8)

+/ − / ≈ 10/28/7 10/23/12 9/29/7 18/19/8 9/34/2 10/33/2

It is worth noting that in WFG1 problem, the proposed method’s per-
formance was initially mediocre with only three objectives in comparison to
BCEIBEA, GFMMOEA, and SPEA2SDE. However, as the number of objectives
increased, starting from eight objectives, the performance of these Pareto-based
EMOAs began to weaken, and by the time the number of objectives reached
15, the proposed method had significantly surpassed them, demonstrating its
powerful ability to deal with higher-dimensional problems.

Overall, these results emphasize the superior performance of the proposed
method in solving complex optimization problems with a higher number of objec-
tives, further demonstrating its potential as a promising algorithm for solving
real-world problems.

Table 2 reports the IGD test results of the proposed method on WFG1-9. The
results demonstrated that, in most cases, BCEIBEA and GFMMOEA outper-
formed the proposed method and even surpassed all hypervolume-based EMOAs
under the IGD indicator. This finding aligns with our intuition since BCEIBEA
and GFMMOEA make environmental selection based on simulated PF and IGD,
while the proposed method selects based on hypervolume, causing the proposed
method’s performance under IGD indicator to be comparatively weak.

Moreover, when the hypervolume-based EMOAs encountered concave PF,
the solution set tended to concentrate in the center of the PF due to the hyper-
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volume operation mechanism, which also influenced the IGD indicator measure-
ment of the solution set generated by the hypervolume-based EMOAs to a certain
extent.

5.2 Performance Comparisons on DTLZ Test Suite

Table 3 presents the hypervolume indicator test results of the proposed method
on DTLZ{1-7} and IDTLZ{1-2}. The proposed method was the best at solving
18 out of 45 problems, while SPEA2SDE, BCEIBEA, HypE, and SMSEMOA
achieved the best results in 9, 7, 6, and 3 problems, respectively. These results
demonstrate the competitive performance of the proposed method compared to
other state-of-the-art algorithms in solving multi-objective optimization prob-
lems with different levels of difficulty.

Overall, the proposed method does not perform as well on the DTLZ test set
as it does on the WFG test set. This can be attributed to the fact that DTLZ
mainly evaluates an algorithm’s convergence, while the hypervolume metric mea-
sures both convergence and diversity but focuses more on diversity. This can be
observed in the DTLZ1, DTLZ2, and DTLZ7 problems, where the main emphasis
is on the diversity of EMOAs.

6 Conclusion

This paper proposes an algorithm for solving MaOPs. The algorithm extends
the direction vector of the original RHCA

2 indicator to determine the intersec-
tion with each remaining solution in the solution set, and calculates the length
of the line segment. This allows for the simultaneous calculation of the overall
hypervolume contribution of solutions. Moreover, a data array storing R2 infor-
mation is designed to simplify the computational complexity of the algorithm.
In the experimental study, we compared our algorithm with two hypervolume-
based EMOAs and four advanced EMOAs. We tested five cases - of WFG{1-9},
DTLZ{1-7}, and IDTLZ{1-2} - where the objective numbers were 3, 5, 10, and
15. The results show that our algorithm outperforms comparison algorithms.

In the future, we plan to integrate this algorithm into practical problems
for experimental testing, such as multi-robot system task planning and UAV
swarm decision-making. We also aim to expand the algorithm to computationally
expensive MOPs, large-scale MOPs, and multi-modal MOPs.
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