
Parameter Identification for Fictitious
Play Algorithm in Repeated Games

Hongcheng Dong1,2 and Yifen Mu2(B)

1 School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing, China

donghongcheng@amss.ac.cn
2 Key Lab of Systems and Control, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

mu@amss.ac.cn

Abstract. In the previous works [1] and [2], we solved the optimal strat-
egy of the human player against a machine player who makes decisions
based on Fictitious Play in infinitely repeated 2 × 2 games, in which
the information is assumed to be complete and perfect. In this paper,
we consider the problem of identification when the human player does
not know the initial assessment of the machine player. In this scenario,
we propose an identification algorithm for the human player and prove
that the process of identification will end successfully in a finite time
if the machine’s payoff parameter is rational. When the machine’s pay-
off parameter is irrational, the identification process will not end, which
implies some advantage for the algorithm with irrational parameters.

Keywords: Repeated games · Algorithm identification · Fictitious
Play · Dynamical game systems

1 Introduction

In this paper, we will study the problem of parameter identification in repeated
games between a human player and a machine player which adopts some learn-
ing algorithms to take its action. To be specific, we will try to identify the initial
assessment of the Fictitious Play algorithm in repeated 2 × 2 games. This is a
simple and starting scenario for the problem of algorithm identification, which
constitutes a necessary part of the evolution and control for dynamical game sys-
tems. With the development of Artificial Intelligence (AI), such games involving
learning algorithms will become more and more common and important.

In the past decade, lots of algorithms have been developed to play games
with different features, from the complete information 0-sum game like Go to
the incomplete information 0-sum game like poker to the multi-player incomplete
information stochastic games like the electronic game StarCraft [3–8]. These AIs
are based on different learning algorithms to generate the near-optimal strategy
in specific games which can perform very well and even beat the top human
players.

These developments make AI algorithms more and more participating in peo-
ple’s life and work. Hence the game involving algorithms are becoming common
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and important, which are called algorithm games in the literature [9]. Early
there have been many works analyzing the repeated games between symmetric
algorithms. Researchers try to investigate whether the equilibrium (Nash Equi-
librium, correlated equilibrium, etc) will arise as the long-run outcome when
the players adopt the same algorithm to update their actions in the game. This
topic has been studied extensively and still attracts attention of researchers in
game theory [10–15], control theory [16,17] and computer sciences [18,19]. In
fact, the convergence results provide theoretical basis for the training to optimal
strategies in the construction of game AI we stated at the beginning.

On the other hand, from the point of opponent exploitation, we can provide
a different perspective to understand the learning algorithms by considering
the asymmetric algorithm game, i.e. the game between an algorithm (called a
machine player) and a perfect opponent (called a human player). Such games also
happen in many different situations. For example, many people play chess game
or computer game with an AI for entertainment, the unmanned autonomous sys-
tems for different tasks would interact with each other or the human. Besides,
algorithms may be forced to play a game by being attacked or fooled, which may
cause surprising even serious consequences, see [20] and [21] in which scientists
find that some tiny perturbations may cause the algorithms to make mistakes in
classifying an image. This technical vulnerability may bring on attacks to medi-
cal learning systems, or the face recognition system designed for crime detection,
which further lead to uneconomical or even dangerous consequences for the soci-
ety [22–25].

Thus, in order to apply these algorithms in practice in a correct way, to
understand and handle the system involving algorithms, to design better algo-
rithms to play specific games, the analysis for the human-machine game system
is necessary and urgent. However, to the best of our knowledge, research on such
systems is not sufficient and related works are not much in the literature. Previ-
ously, [26,27] studies the optimal strategy against an opponent with finite mem-
ory and gives the theoretical results. Recently, [28,29] and [30] use myopic best
response or look-ahead strategy to fight against the opponent which is approxi-
mated by Recurrent Neural Network (RNN). Also, [31] presents safe strategy and
proposes an algorithm of exploiting sub-optimal opponents under the condition
of ensuring safety, and [32] presents an exact algorithm in imperfect information
games to exploit the opponent using the Dirichlet prior distribution.

In this paper we assume that the machine player uses the classical Fictitious
Play (FP) algorithm to update its actions. FP algorithm was the first learn-
ing algorithm to achieve Nash equilibrium [33]. When the players adopt FP
algorithm, convergence has been proved for repeated games with two players or
zero-sum payoffs [11,34,35]. However, even for simple 3 × 3 general-sum game,
the convergence does not hold [36]. This implies the complexity of the dynamical
game systems driven by learning algorithms. So far, Fictitious Play and many
variants have been studied, wherein stochastic FP [37] considers the perturbed
payoff in the game and the players choose a distribution on the best response
according to the private information about the perturbation, in weakened FP



272 H. Dong and Y. Mu

[38] and generalised weakened FP [39] players take the ε−best response as his
action. Recently, [40] proposes the Full-Width Extensive Form Fictitious Self-
Play (XSP) based on reinforcement learning and supervised learning for exten-
sive form games, and [41] further proposes Neural Fictitious Self Play (NFSP)
which uses neural networks to approximate the mapping of FP.

In [1] and [2], we have proved and solved the optimal strategy against the
machine adopting FP under the assumption of complete and perfect information.
In this paper, we will assume that some parameters in the algorithm is unknown
to the human player and consider the identification problem. Specifically, we
assume that the human player know that the machine adopts the FP algorithm
but does not know the initial assessment of the algorithm. In order to get the
near-optimal averaged utility over the infinite time, one natural idea for the
human player is to identify the unknown parameters of the machine. Since the
human can infer the inequality of the assessment parameters from the stage
action of the machine, this seems very possible given enough probes. In this
paper, we will give a simple and natural algorithm to identify the assessment-
parameter in the FP algorithm and prove that the identification process will
stop successfully in finite time if the machine’s payoff parameter is a rational
number. However, by an example, we will show that the identification process
can not stop if the machine’s payoff parameter is irrational. This finding implies
some advantage of the learning algorithms with irrational parameters and may
help design better algorithms.

The paper is organized as below: Sect. 2 gives the problem formulation; Sect. 3
gives the results when the machine’s payoff parameter is rational and illustrates
the case when the machine’s payoff parameter is irrational by giving an example;
Sect. 4 concludes the paper with some remarks and the future work.

2 Problem Formulation

Consider a 2×2 general-sum strategic-form game. Player 1 and Player 2 are called
the machine player and the human player. The machine has two actions, denoted
by A, B. The human has two actions, denoted by a, b. Thus there are 4 different
possible outcomes (equally, the action profile) of the game: Aa,Ab,Ba,Bb. Given
any outcome, the machine and the human have their individual utility qi, wi, i =
1, 2, 3, 4. We describe the game by the bi-matrix below.

Player 1 Player 2
a b

A q1,w1 q2,w2

B q3, w3 q4, w4

The mixed strategy of the player is a probability distribution over the pure
action set {A,B} or {a,b}.

Consider the repeated game. Denote the action of the machine and the human
at time t by α1

t , α
2
t . The machine player will choose its action α1

t according to
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the Fictitious Play (FP) algorithm, i.e.,

α1
t = BR((

κt(a)
κt(a) + κt(b)

,
κt(b)

κt(a) + κt(b)
)) (1)

where the BR function denotes the best response of the machine player against
his assessment κt(a), κt(b) to the human’s behavior and κt(a), κt(b) are non-
negative real numbers which are updated by

κt(i) = κt−1(i) +
{

1, if α2
t−1 = i;

0, if α2
t−1 �= i.

(2)

where i = a, b. Here we let Player 1 choose A when both actions A, B are the
best response of the machine player.

Obviously, once the initial assessments κ0(a), κ0(b) are fixed, the updating
rule of the machine is totally determined. Then how the system evolve will
be determined by the human’s action sequence. If the human takes his action
sequence to be {α2

t }, t = 1, 2, . . . , then at each time t, the human will get an
instantaneous utility ut = ut(α1

t , α
2
t ) ∈ {w1, w2, w3, w4}.

Define the averaged utility of the human over the infinite time to be

U∞ = lim sup
T→∞

∑T
t=1 ut(α1

t , α
2
t )

T
, (3)

which always exists.
In [1] and [2], by assuming the complete and perfect information, we have

solved the optimal strategy of the human player to get the optimal U∞. Now
we assume that the human does not know the initial assessment (κ0(a), κ0(b)),
then how should the human do in order to get a bigger U∞?

One natural idea for the human is to identify the initial parameter
(κ0(a), κ0(b). This seems possible since the human can get more information
with the system running.

Before stating the related results, like we have done in the previous works,
we rewrite the bi-matrix into a new one:

Player 1 Player 2
a b

A q3 + Δ1,w1 q2,w2

B q3, w3 q2 + Δ2, w4

where Δ1 > 0,Δ2 > 0.
Then strategy updating rule of the machine is rewritten to be

α1
t =

{
A, if Δ1 · κt(a) ≥ Δ2 · κt(b);
B, otherwise.
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3 The Identification for Parameters in the FP Algorithm

In [1] and [2], we have investigated the dynamical game systems in which the
machine uses the FP algorithm to update its actions. We showed that the
human’s optimal strategy depends on the ratio Δ2

Δ1
and the long-run behavior of

the system depends on Δ2
Δ1

being rational or irrational too.
By the explicit form of the human’s optimal strategy [1,2], it is independent

of the specific values of κ0(a) and κ0(b) but is solely dependent on the parameter

Kt = Δ1 · κt(a) − Δ2 · κt(b)

which can be computed by the initial assessment (κ0(a), κ0(b)) and the realized
actions α1

t , α
2
t . For example, if w2 > w3 > max{w1, w4}, the optimal strategy of

the human is just the naive/myopic best response of the machine’s action which
can correctly predicted by the human. Denote the prediction of the human for
the machine’s action to be α̃1

t .
Now, assume that the machine’s initial assessment (κ0(a), κ0(b)) is unknown

to the human. Then for the human it is enough to identify the initial assessment
parameter

K = Δ1 · κ0(a) − Δ2 · κ0(b)

in order to get his optimal strategy. This offers great convenience to the human
compared to determining the precise values of κ0(a) and κ0(b).

On the other hand, according to Eq. (6), the machine takes actions according
to an inequality of (κ0(a)+Xt(a), κ0(b)+Xt(b)), where Xt(a) and Xt(b) are the
numbers of times at which the human player takes action a and action b up to
time t (not included). Thus it is possible for the human to infer the feasible set
of K from the machine’s action.

Next we will give an algorithm to identify K. Since the system behavior is
very different for rational and irrational Δ2

Δ1
, we will also study the identification

for rational and irrational Δ2
Δ1

respectively.

3.1 The Identification Algorithm for Assessment Parameter K

Now the goal of the human is to determine the value of the parameter K =
Δ1 · κ0(a) − Δ2 · κ0(b). We will take the game with the relationship w2 > w3 >
max{w1, w4} as a typical case to state the identification results. However, it is
easy to see that the other cases share the same idea.

Denote the estimation of K by K̃. In the following, the estimation at each
time in the identification process is denoted by K̃t, and the subscript t is omitted
when it does not lead to misunderstanding.

We give an identification algorithm as below:
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Algorithm 1. Identify initial assessment parameter K

1: function f(κ0(a), κ0(b), M) � Identify the initial evaluation under the game
matrix M

2: K ← Δ1 · κ0(a) − Δ2 · κ0(b)
3: initial K̃
4: for t do
5: α̃1(t) = BS(K̃, M, t, h) � BS is the optimal strategy in [1] and [2]
6: α1(t) = BS(K, M, t, h)
7: if α̃1(t) �= α1(t) then � wrong forecast
8: Update K̃ � Update to a value that ensures the correct action before
9: end if

10: Update h � Update history action sequence
11: end for
12: return K̃ � Output the final identification result
13: end function

By the identification algorithm, the estimation K̃ is updated as follows:

K̃t+1 =
{

ε − Δ1 · Xt(a) + Δ2 · Xt(b), if α1
t = A, α̃1

t = B,
−ε − Δ1 · Xt(a) + Δ2 · Xt(b), if α1

t = B, α̃1
t = A.

where ε > 0 is small enough.
Then we have

Theorem 1. Assume that Δ2
Δ1

is a rational number and the human player adopts
the identification Algorithm 1 above. Then, for any initial identification value
K̃0, there exists a finite time tf such that for all t ≥ tf , α̃1

t ≡ α1
t , i.e., the

human player can predict the machine’s action correctly after tf .

Proof. When the human adopts the identification Algorithm 1, the evolution
path of the system is definite, that is, the sequence {α1

t }, {α̃1
t }, {α2

t }, Xt(a),
Xt(b) are determined. Denote η1 = min

t
{K +ft : K +ft ≥ 0}, η2 = max

t
{K +ft :

K + ft < 0}, where ft = Δ1 · Xt(a) − Δ2 · Xt(b)).
We will prove this theorem in three steps.

Step 1: First, we prove that when K̃ ∈ [K −η1,K +η2), the human’s prediction
of the machine’s action α̃t

1 can always be consistent with player 1’s action αt
1,

i.e.,, α̃1
t ≡ α1

t .
In this case, if K + ft ≥ 0, then K̃ + ft ≥ K − η1 + ft = K + ft − η1, then

from the definition of η1 K̃ + ft ≥ 0.
If K + ft < 0, then K̃ + ft < K + η2 + ft = K + ft − η2, then from the

definition of η2, K̃ + ft < 0.

Step 2: Next, we prove that for any initial K̃0, K̃t will enter [K − η1,K + η2),
and stop updating.

For the initial K̃0, if K̃0 ∈ [K − η1,K + η2), then from the previous step,
α̃1

t ≡ α1
t , ∀t ≥ 0. That is, the human will always predict correctly, so K̃t stops

updating.
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Suppose the human made a wrong prediction at time t0, i.e., α̃1
t0 �= α1

t0 .
Without loss of generality, we can set α1

t0 = B, α̃1
t0 = A, which corresponds to

K + Δ1 · Xt0(a) − Δ2 · Xt0(b)) < 0 and K̃t0 + Δ1 · Xt0(a) − Δ2 · Xt0(b)) ≥ 0.
Then according to the identification Algorithm 1,

K̃t0+1 = −ε − Δ1 · Xt0(a) + Δ2 · Xt0(b) = −ε − ft0 .

Then there are three situations to be discussed below.

(1) If α̃1
t ≡ α1

t ,∀t ≥ t0 + 1, i.e., the human has been predicting correctly after
t0, then the estimation stops updating.

(2) If the human still predicts wrongly after t0, then denote t1 = arg min
t≥t0+1

{α̃1
t �=

α1
t } to be the time of the next mistake. Then, in this case, at time t0+1, t0+

2, . . . , t1, the human will not update the estimation, i.e., K̃t0+1 = K̃t0+2 =
· · · = K̃t1 .

(2.1) If α1
t1 = B and α̃1

t1 = A, which means K + ft1 < 0 and K̃t1 + ft1 ≥ 0,
according to the identification Algorithm 1, K̃t1+1 = −ε − ft1 .

In this case, we first prove that ft1 > ft0 . If not, then

K̃t1 + ft1 = K̃t0+1 + ft1 ≤ K̃t0+1 + ft0 = −ε < 0,

contradicts with K̃t1 + ft1 ≥ 0. So it must hold ft1 > ft0 .
From ft1 > ft0 ,

K̃t1+1 = −ε − ft1 < −ε − ft0 = K̃t0+1.

And by calculation,

K̃t0+1 − K̃t1+1 = −ft0 + ft1 = −Δ1 · (Xt0(a) − Xt1(a)) + Δ2 · (Xt0(b) − Xt1(b)).

Define η = min
m,n∈N+

{|Δ1 · m − Δ2 · n| > 0}. By the rationality of Δ2
Δ1

, η

is a positive constant. So K̃t1+1 − K̃t0+1 ≤ −η. That is, when the estimation
K̃ is larger than K, the updated estimation will be smaller than the previous
estimation by at least a positive constant.

(2.2) Assume that α1
t1 = A and α̃1

t1 = B, that is, the prediction mistake at
time t1 is different from the prediction mistake at time t0 and assume that there
exists a future time tj , j ≥ 2 at which the prediction mistake is the same with
the time t0. Denote tj = arg min

t≥t0+1
{α1

t = B, α̃1
t = A}.

In this case, first of all, it holds that K + ftj−1 ≥ 0, i.e., K ≥ −ftj−1 .
According to the identification Algorithm 1, K̃tj−1+1 = ε − ftj−1 .

Meanwhile, at t0, α1
t0 = B, which requires K + ft0 < 0, so K < −ft0 . Thus

we get −ftj−1 < −ft0 , i.e.,, ftj−1 > ft0 . By the definition of η, it must hold
ftj−1 ≥ ft0 + η.

Since ε is small enough, ftj−1 > 2ε+ ft0 . Hence we have ε− ftj−1 < −ε− ft0 ,
that is, K̃tj−1+1 < K̃t0+1.
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On the other hand, at time tj , α1
t = B, α̃1

t = A, which requires K + ftj < 0,
K̃tj + ftj ≥ 0. According to the identification Algorithm 1, it holds K̃tj+1 =
−ε − ftj .

Now we aim to prove ftj > ft0 . If not, it holds ftj ≤ ft0 . Then according
to the inequality K̃tj−1+1 < K̃t0+1 we just proved and the updating formula of
K̃t0+1, we have

K̃tj + ftj = K̃tj−1+1 + ftj < K̃t0+1 + ft0 = −ε < 0,

which contradicts with K̃tj + ftj ≥ 0. So we prove that ftj > ft0 .
From ftj > ft0 , according to the updating formula of K̃tj+1,

K̃tj+1 = −ε − ftj < −ε − ft0 = K̃t0+1,

i.e., it holds K̃tj+1 < K̃t0+1.
Then by the same way with in (2.1), we get K̃t0+1 −K̃tj+1 ≥ η, which means

that if the estimation value of the human is larger than K for more than once,
i.e., the human will make the same prediction mistake at least twice, then there
is a good property between the adjacently updated estimates, i.e.,, the updated
estimation is smaller than the previous estimation by at least a positive constant.

(2.3) If α1
t1 = A and α̃1

t1 = B, and there is no time tp > t1 making α1
tp = B,

α̃1
tp = A, i.e., the human will never make the same mistake as at time t0 after time

t0, then it is only necessary to analyze the prediction mistakes corresponding to
α1

t = A and α̃1
t = B. And this analysis is symmetric with the above.

To sum up, if the estimation is not “sufficiently” correct, then the human
must make a mistake at some time, so the updated value of K̃t will move towards
the correct direction at a speed greater than a positive constant until the esti-
mation is “sufficiently” correct. And then the human will never make mistakes.
Obviously this process will end after only a finite time.

That proves the theorem. �

Remark 1: When t ≥ tf , although the human’s prediction is always correct,
K̃ and K can still be different. This is because that the FP algorithm only
requires the inequality of K holds.

Remark 2: Through the proof of Theorem 1, it can be computed that after
at most � K̃max−K̃min

η 	 + 2 updates, K̃t will be “sufficiently” correct. If the eval-
uation range [K̃min, K̃max] about K is given at the initial time, then the initial
estimation K̃0 can be set to be any number in the interval.

Below we will give an example to illustrate how the identification is carried
out.

Consider the following game:

Player 1 Player 2
a b

A 2, 2 1, 5
B 0, 4 4, 3
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where Δ1 = 2,Δ2 = 3.
Assuming the machine’s initial assessment of the human is κ0(a) = 5, κ0(b) =

4, then K = Δ1 · κ0(a) − Δ2 · κ0(b) = −2. Let the initial estimation be K̃0 = 1
and take ε = 0.1. Then under the identification Algorithm 1, the evolution of
the game system is as follows in Table 1, where the values in () represent the
values of K and K̃ respectively at the current moment.

Table 1. The evolution process of system parameters under the Algorithm 1

t K + Δ1Xt(a) − Δ2Xt(b) ˜Kt + Δ1Xt(a) − Δ2Xt( b) α1
t α̃1

t α2
t

0 (−2) + 0 (1) + 0 B A b

1 (−2) − 3 (−0.1) −3 B B a

2 (−2) − 1 (−0.1) − 1 B B a

3 (−2) + 1 (−0.1) + 1 B A b

4 (−2) − 2 (−1.1) −2 B B a

5 (−2) + 0 (−1.1) + 0 B B a

6 (−2) + 2 (−1.1) + 2 A A b

7 (−2) − 1 (−1.1) − 1 B B a

8 (−2) + 1 (−1.1) + 1 B B a

9 (−2) + 3 (−1.1) + 3 A A b

10 (−2) + 0 (−1.1) + 0 B B a

11 (−2) + 2 (−1.1) + 2 A A b

12 (−2) − 1 (−1.1) − 1 B B a

13 (−2) + 1 (−1.1) + 1 B B a

14 (−2) + 3 (−1.1) + 3 A A b

The results in Table 1 are represented by Figs. 1 and 2 as follows.

Fig. 1. The change of K̃ along time t
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Fig. 2. The human’s averaged utility along time t

As can be seen from the Table 1 and Figs. 1 and 2, if the prediction of the
machine’s action at time t is wrong, the estimation K̃ will be updated at time
t+1. In this example, after t ≥ 5, the predictions are accurate, implying that the
estimation is “sufficiently” accurate. By “sufficient” accuracy, we find that the
precise identification of K̃ is not necessary and it suffices for K̃ to approximate
the value of K “closely”.

Theorem 1 gives the result on identification for rational Δ2
Δ1

. When Δ2
Δ1

is
irrational, the situation will be different as shown in the next subsection.

3.2 The Identification for Irrational Δ2

Δ1

For the irrational Δ2
Δ1

, consider the following game matrix:

Player 1 Player 2
a b

A
√

2, 2 1, 5
B 0, 4 4, 3

where Δ1 =
√

2, Δ2 = 3.
Assume Player 1’s initial assessment of Player 2 is κ0(a) = 5, κ0(b) = 4, then

K = Δ1 · κ0(a) − Δ2 · κ0(b) = −2. Let the initial estimate be K̃0 = 1, take
ε = 10−9.

Then the estimation K̃t changes with time as shown in Fig. 3 below where the
vertical ordinate being 1 means that the estimation is updated at this moment.
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Fig. 3. Estimated value K̃t over time

From Fig. 3, we can see that for the irrational Δ2
Δ1

, the identification will not
end in any finite time. Along with time, the estimation error becomes more and
more smaller. However, since in the FP algorithm, the parameter K is irrational,
the inequality will never stop changing its signs. Thus for almost all the initial
estimation and games (with measure 1), the identification process will never stop
and the human will never get the total prediction of the machine. This might
help us to design better algorithms.

4 Conclusions and Future Work

In this paper, we considered the repeated human-machine games where the
machine uses the Fictitious Play algorithm to update its action at eat time.
In the previous works [1] and [2], we solved the optimal strategy of the human
player against the machine under assumption of complete and perfect informa-
tion. In this paper, we assume that the human player does not know the initial
assessment of the machine player and consider the identification problem of the
human. We propose an identification algorithm for the human player and prove
that the identification can end successfully in a finite time if the machine’s pay-
off parameter is rational. When the machine’s payoff parameter is irrational,
the identification process will not end, which implies some advantage for the
algorithm with irrational parameters. The results in this paper are rigorous and
might shed some light on general games and algorithms.

This paper can be regarded as the first step to solve the problem of algorithm
identification, which is a necessary part to exploit an algorithm in repeated games
in the future application of some AI. The algorithm can also be regarded as an
approximation of the real human behavior, thus the algorithm identification is
the necessary step to find the pattern of the opponent’s behavior. We will leave
these general problems as future work.
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