
Design and Implementation of ANFIS
on FPGA and Verification with Class

Classification Problem

Moegi Utami1(B), Yukinobu Hoshino1, and Namal Rathnayake2

1 Kochi University of Technology, 185 Miyanokuchi, Tosayamada-cho,
Kami-shi Kochi 782-8502, Japan

275047e@gs.kochi-tech.ac.jp, hoshino.yukinobu@kochi-tech.ac.jp
2 University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo 113-8655, Japan

Abstract. In this research, we implemented ANFIS (Adaptive-
Network-Based Fuzzy Inference System) on an FPGA(Field Pro-
grammable Gate Array) as a System-on-Chip (SoC) system and eval-
uated its performance using iris flower classification. Additionally, we
developed and tested an IEEE 754 16-bit floating-point format tailored
for ANFIS operations. The evaluation focused on computational accu-
racy and speed. The results demonstrate that this FPGA-based ANFIS
implementation, coupled with the 16-bit floating-point format, yields
high efficiency and superior computational performance.

Keywords: FPGA · ANFIS

1 Introduction

In recent years, there has been a notable paradigm shift in the domain of Inter-
net of Things (IoT) technology, with increasing emphasis on a distributed archi-
tecture termed“edge computing”. Diverging from the conventional approach,
which predominantly centers on centralizing data processing within the cloud,
edge computing leverages edge devices or servers embedded in IoT devices to
conduct localized data processing. Consequently, only essential data is transmit-
ted and shared with the cloud. This novel approach significantly enhances the
real-time responsiveness of information processing while concurrently alleviating
the cloud’s computational burden by reducing data transmission and process-
ing demands. An area of particular significance where edge devices demonstrate
considerable promise is disaster prediction. Through strategic deployment of
sensors near water bodies, accurate forecasts of water levels can be attained,
enabling the proactive identification of floods and other potential hazards well in
advance. This proactive strategy is pivotal in mitigating the impact of disasters,
safeguarding communities, and preserving critical infrastructure from potential
harm. However, because real-time performance is required, they must operate at

Supported by organization x.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
B. Xin et al. (Eds.): IWACIII 2023, CCIS 1931, pp. 241–252, 2024.
https://doi.org/10.1007/978-981-99-7590-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7590-7_20&domain=pdf
https://doi.org/10.1007/978-981-99-7590-7_20


242 M. Utami et al.

high speeds. Additionally, in the event of a disaster, they must be able to oper-
ate on standby power when the primary power supply is unavailable. Therefore,
FPGAs are utilized in control units for designing edge devices in embedded sys-
tems due to their ability to operate with low power consumption, minimize heat
generation during operation, and reduce the overall device footprint. Gomez-
Pulid et al. conducted a performance comparison between FPGAs, CPUs, and
GPUs, with their experimental results demonstrating that FPGAs outperform
CPUs and GPUs in terms of speed and power efficiency when operated continu-
ously for 24 h at an equivalent cost when clustered [1]. FPGAs offer the advantage
of being suitable for outdoor installation due to their low heat generation, and
their low power consumption contributes to reduced long-term operating costs.
Moreover, FPGAs have a compact footprint when integrated into embedded sys-
tems, enabling installation in more locations compared to CPUs. Thus, FPGAs
surpass CPUs as superior edge device controllers, capable of prolonged operation
while occupying minimal space. In this study, we developed and implemented a
program based on the learned ANFIS in both FPGA and CPU environments.
Our primary focus was on designing the hardware logic circuit for ANFIS in
FPGA, emphasizing power consumption and processing speed. Furthermore, we
conducted a thorough verification process, comparing the results with CPU pro-
cessing, to ensure the accuracy of our FPGA-based implementation falls within
an acceptable range.

2 Applying AFIS to the Iris Classification

In this paper, we apply a 4-input, 3-MF (membership function) Adaptive-
Network-Based Fuzzy Inference System [2,3] to create a program for AI in edge
devices. The objective of this program is to identify three types of iris based on
four characteristics. The dataset used for machine learning and iris identification
is the iris-dataset. It consists of 150 data items, including measurements of petal
and sepal length (cm) and width (cm) for three species of iris (setosa, versicolor,
and virginica), with 50 data items per variety. These four data items are input
into the ANFIS, and the processing results determine the classification of each
data set. By assigning a unique value to each iris variety, the ANFIS classifica-
tion calculation produces the output based on those distinct values. ANFIS for
iris identification in this study was designed by using “Neuro-FuzzyDesigner”
in MATLAB R2017a and loading the teacher data into the ANFIS automatic
design function. The dataset prepared for machine learning is a modified version
of iris-dataset. The input data was prepared as the teacher data, which con-
sisted of a total of 150 rows of five items, four of which were the length (cm)
and width (cm) of the petals and sepals of the iris, and the eigenvalues of each
cultivar were recorded. The eigenvalues for each variety were set as follows. In
this study, ANFIS for iris identification was designed using the “Neuro-Fuzzy
Designer” in MATLAB R2017a. The teacher data was loaded into the ANFIS
automatic design function. For machine learning, a modified version of the iris-
dataset was prepared. The input data was arranged as teacher data, comprising



Design and Implementation of ANFIS on FPGA and Verification 243

a total of 150 rows, with five items each. Among these, four items represented
the length (cm) and width (cm) of the petals and sepals of the iris, while the
remaining item recorded the eigenvalues for each cultivar (Fig. 1).

The eigenvalues for each variety were set as follows:
setosa : 100
versicolor : 200
virginica : 300

Fig. 1. irisdataset

During machine learning, the MFs are set and learnt for the previous case
section. The error values of each MF are shown in Table 1 after learning until
the error value of each MF is minimised. The function with the smallest error
value that could be designed using only four arithmetic operations was pimf, so
the ANFIS was designed with pimf (Pi-shaped membership function) as the MF
for the precondition. The function of pimf is as in Eq. (1).

f(x, a, b, c, d) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (x ≤ a)
2(x−a

b−a )2 (a ≤ x ≤ a+b
2 )

1 − 2(x−b
b−a )2 (a+b

2 ≤ x ≤ b)
1 (b ≤ x ≤ c)
1 − 2(x−c

d−c )
2 (c ≤ x ≤ c+d

2 )
2(x−d

d−c )2 ( c+d
2 ≤ x ≤ d)

0 (d ≤ x)

(1)

x:input value
a,b,c,d: constant parameter



244 M. Utami et al.

Table 1. Minimal error value due to the MF of the previous case.

MF error value

trimf 1.0951

trapmf 3.7536

gbellmf 0.021761

gaussmf 0.15818

gauss2mf 0.13541

pimf 0.66251

dsigmf 0.026067

psigmf 0.026067

Figure 2 shows the classification results after educating the iris dataset with
pimf in MATLAB R2017a and Fig. 3 shows the pimf graph for the petal lengths
created.

Fig. 2. Post-training classification results for iris-dataset by MATLAb 2017a

ANFIS is structured as a hierarchical network with an input layer and five
processing layers. As illustrated in Fig. 4, which represents a 2-input, 2-MF
ANFIS, the processing at each layer is summarized as follows. In the input
layer, two data items are input to each neuron. Operations are then conducted
in the processing layers, spanning from layer 1 to layer 5, following a series of
steps.



Design and Implementation of ANFIS on FPGA and Verification 245

Fig. 3. Graph of pimf for petal length created in MATLAB R2019a.

Fig. 4. ANFIS structure with 2 inputs and 2 MFs

1. In the first layer, the values of each neuron input from the input layer are
processed by three neurons that store the membership functions (MFs) to
compute the degree of truth for each classification.

2. In the second layer, the results of processing by the MF of each neuron in the
first layer are combined and multiplied by one from each classification.

3. In the third layer, the result obtained in the second layer is divided by the
sum of all neurons in the second layer, and the normalized result is output
to each neuron in the next layer.



246 M. Utami et al.

4. In the fourth layer, the normalized values input from the third layer, the
constants set for each neuron, and the values of the four items input in the
first layer are processed by linear functions and output.

5. The fifth layer outputs the sum of all processing results from the fourth layer.

The linear function of the fourth layer is as follows, as shown in Eq. (2).
The constant k is defined as one more than the number of elements to be input,
which is five for four inputs.

wi × (ki1 × (input1) + ki2 × (input2) + ki3) (2)

i:Number of neurons in layers 3 and 4
k1, k2, k3:Constants in the posterior function in the “i” neuron
input1,input2: values of the input layer
As the ANFIS created in this paper has 4 inputs and 3 MFs, the ANFIS

created in MATLAB has the structure shown in the Fig. 5. There are four inputs,
layer 1 has 12 neurons as each input has 3 MFs, and layers 2 to 4 have 81 neurons
in the fourth power of 3.

Fig. 5. Post-training classification results for iris-dataset by MATLAb 2017a

3 Hardware Program Design for 16bit ANFIS

The logic circuit was designed using VerilogHDL as the hardware description lan-
guage and Quartus II 13.1 for development. When designing a hardware logic cir-
cuit for ANFIS to identify iris, it is essential to convert floating-point values into
a format that can be processed in VerilogHDL. In this paper, the floating-point
data handled in the logic circuit is converted into a 16-bit binary single-precision



Design and Implementation of ANFIS on FPGA and Verification 247

floating-point data type (IEEE754) for arithmetic operations. The decision to
choose fp16, which offers lower precision compared to fp32 in processing results,
was driven by the emphasis on cost and processing speed in the hardware logic
circuit’s design. Although fp16 may yield lower accuracy compared to CPU’s
32-bit floating-point operations, its implementation is expected to provide suffi-
cient accuracy for class classification. Additionally, fp16 requires fewer resources
in terms of memory usage, making it more efficient for the overall logic circuit.
Achieving accurate class classification allows for increased processing speed and
reduced power consumption despite the slight reduction in processing precision
compared to the CPU’s fp32 operations (Fig. 6).

Fig. 6. IEEE 754 16bit floating point

Hardware-software co-design was employed to input the four items of the
dataset into the hardware logic circuit. After converting the decimal point values
to fp16, the four items are fed into the hardware logic circuit by outputting them
to the physical addresses of the pins on the FPGA board. Subsequently, the
processing results are retrieved from the pin’s virtual address by the software
program, converted back to 32-bit floating point, and verified.

The operations executed in layers 1 through 5 of ANFIS were designed by
incorporating the logic circuits for the four arithmetic operations and comparison
operations of fp16. The logic circuits for the four arithmetic operations of fp16
were designed with reference to Reference [4]. The structure of the ANFIS logic
circuitry for layers 1 through 5 is illustrated in Fig. 7. The four pin-input items
are labeled as x1 to x4, and the ANFIS processing results are output to the pins
labeled as output.The FPGA is always running, but a reset signal is generated
when the input x1 x4 is changed. The software programme then retrieves the
processing results from the virtual address of the pin, converts them to 32-bit
floating point and outputs the processing results for each individual Iris in a csv
file. Each layer processing is handled by a pipelined data-flow type calculation
[5].



248 M. Utami et al.

Fig. 7. Structure of the ANFIS logic circuit with 4 inputs and 3 MFs.

The number of pins and logic elements used are shown in Table (2).

Table 2. Hardware Logic Circuit Functions

clock frequency 50 MHz

logic utilization 9,038/32,070 ( 28% )

Total number of registers 13245

Total number of pins 368/457 ( 81% )

Total number of block memory bits 103,262/4,065,280 ( 3% )

DSP block total 16/87 ( 18% )

Table 3 provides a summary of the processing times for each layer circuit
and the entire logic circuit. The simulation results clearly demonstrate that
the processing speed approximately doubles when the frequency of the FPGA-
implemented logic circuit is doubled. The busy signals of each layer of ANFIS
are as shown in Fig. 8, the processing time of each layer is the time from the
rise to fall of the busy signal, and the operating end time of the logic circuit is
simultaneous with the fall of the busy signals of ly345.



Design and Implementation of ANFIS on FPGA and Verification 249

Fig. 8. Busy signals at each layer of ANFIS

Table 3. ANFIS layers of hardware logic circuits and overall processing time [us]

frequency layer1 layer2 layer3,4,5 entire circuit

50[MHz] 7.717 27.588 59.630 87.218

100[MHz] 3.863 13.789 25.950 43.602

In order to compare the results of hardware AFIS, we designed an AFIS
software program for iris identification using C language. This software program
was implemented on two different devices: a PC equipped with a high-speed
CPU mounted on an SoC FPGA and an ARM processor. The purpose of this
comparison is to evaluate the processing performance and computational speed
of the 16-bit AFIS designed for FPGAs. Additionally, we developed a software
program to read four data items from the iris dataset and perform iris identifi-
cation. The hardware logic was implemented on the two different devices with
varying frequencies and numbers of CPU chips. The average processing time for
150 data points from the 1st to the 5th layers is presented in Table 4.

Table 4. Processing speed by implementation on CPU

CPU frequency Number of cores processing time

ARM R©CortexA9 925[MHz] 2 160.431[us]

Intel Core i7 2.8[GHz] 8 12.738[us]

4 Results and Comparison

Based on the data presented in Tables 3 and 4, we observe that Intel Core i7,
Model-sim, Cyclone V SEA5 SoC, and ARM CortexA9, in that order, exhibit



250 M. Utami et al.

faster processing speeds. Comparing the Cyclone V SEA5 SoC with the ARM
CortexA9, despite operating at about 1/18.5 of the frequency of the ARM Cor-
texA9, the Cyclone V SEA5 SoC achieves a processing speed approximately 1.84
times faster. Additionally, Model-sim’s processing speed is around 0.292 times
that of an Intel Core i7, even though it operates at 1/28th of the frequency.
Interestingly, an FPGA with an operating frequency of 400 [MHz] theoretically
matches the processing time of an Intel Core i7. These comparisons demonstrate
that FPGAs possess one core but boast faster processing speeds in ANFIS logic
circuits, allowing them to handle data operations within the data input wait time
required for an edge device. Furthermore, the FPGA cluster incurs lower costs
for cluster design and electricity consumption when operating 24 h a day. Conse-
quently, the FPGA cluster designed in this study, implementing the ANFIS hard-
ware logic circuitry, exhibits sufficient processing speed for edge device control
and proves to be a more cost-effective alternative compared to the CPU cluster.
We conducted a comparison of software programs and hardware logic circuits for
iris identification using ANFIS. Table 5 presents a comparison of correlation coef-
ficients and accuracy between the software program executed on a Dual ARM
CortexA9 (CPU) and the hardware logic circuit executed on a Cyclone V SEA5
SoC (FPGA) with the results processed by ANFIS using eigenvalues for each
iris variety. The correlation coefficients demonstrate that the CPU identification
results exhibit a very strong correlation with each eigenvalue, and similarly, the
FPGA identification results also show a strong correlation with each eigenvalue.
However, it is worth noting that the mean relative error between the identifi-
cation results and the eigenvalues is approximately 3.4 times higher for FPGA
than for CPU. Additionally, the standard deviation is approximately 3 times
higher for FPGA than for CPU.

Table 5. CPU Execution Result

Control devices correlation
coefficient

Average of
relative error

standard
deviation

CPU 1.0000 0.12[%] 0.21

FPGA 0.9998 0.41[%] 0.61

5 Conclusions and Future Work

In this study, we designed and implemented an ANFIS system for iris identi-
fication to compare FPGAs and CPUs as edge device controllers. The results
demonstrate that FPGAs can achieve faster processing speeds than CPUs, even
at lower operating frequencies suitable for edge device control. Moreover, the
FPGA implementation of ANFIS for iris recognition outperforms CPUs with
multiple cores and similar frequencies, all at a lower cost. For future work, we



Design and Implementation of ANFIS on FPGA and Verification 251

aim to design a logic circuit with higher precision using 16-bit arithmetic and
implement it in a robot. While our current hardware logic circuit utilizes 16fp,
research by Henry et al. indicates that a design employing bfloat16 (bf16) can
attain accuracy and speed equivalent to fp32 in deep learning [6]. By modify-
ing the logic circuits for quadrature and comparison operations, which currently
operate with fp16, to work with bf16, we aspire to implement a hardware logic
circuit that matches the precision and speed of a 32-bit floating-point CPU.
Additionally, we operated FPGA ANFIS by reading a dataset from a SoC-FPGA,
but this does not allow us to verify real-time performance. As a future step, we
plan to validate the FPGA’s performance as a controller by implementing the
hardware logic circuit on a smaller FPGA board and executing robot control.
This will enable us to assess the FPGA’s capabilities for real-time applications
effectively.

Furthermore, while ANFIS for iris identification was implemented in FPGAs
in this paper, previous work has included a photovoltaic panel emulator [7], a
heater plate Algorithm for adjusting the pulse-width modulation (PWM) duty
cycle [8], bilateral teleoperation system [9]. We believe that it is possible to apply
ANFIS to classification and learning problems as there have been successful sim-
ulations using ANFIS implemented on FPGAs, and we intend to develop a new
ANFIS for the future. We plan to verify whether the logic circuit created in this
paper can be applied to ANFIS with other data sets. Integrating these tech-
nologies into IoT devices for disaster monitoring holds vast potential. AI camera
devices can create an efficient disaster monitoring network, enabling real-time
data and early detection. The AI accelerator designed for disaster prediction can
revolutionize management practices, improving accuracy and response strategies.
Our commitment to pushing technological boundaries for disaster management
stems from the desire to safeguard lives and communities globally. With IoT
devices and AI accelerators, we envision swift and effective disaster responses,
minimizing casualties and environmental impact. We’re dedicated to making the
world more resilient and will persist in advancing science and technology toward
this goal.

Acknowledgment. This work was supported by JSPS KAKENHI Fostering Joint
International Research(B) 22KK0160.

References

1. Gomez-Pulido, J.A., Vega-Rodriguez, M.A., Sanchez-Perez, J.M., et al.: Accelerat-
ing floating-point fitness functions in evolutionary algorithms: a FPGA-CPU-GPU
performance comparison. Genet. Program Evolvable Mach. 12, 403–427 (2011)

2. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to mod-
eling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116–132 (1985)

3. Jang, J.S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans.
Syst. Man Cybern. 23(3), 665–685 (1993)

4. Shirazi, N., Walters, A., Athanas, P.: Quantitative analysis of floating point arith-
metic on FPGA based custom computing machines. In: Proceedings IEEE Sympo-
sium on FPGAs for Custom Computing Machines, pp. 155–162. IEEE (1995)



252 M. Utami et al.

5. Kim, H., Choi, K.I.: A pipelined non-deterministic finite automaton-based string
matching scheme using merged state transitions in an FPGA. PloS one 11(10),
e0163535 (2016)

6. Henry, G., Tang, P.T.P., Heinecke, A.: Leveraging the bfloat16 artificial intelligence
datatype for higher-precision computations. In: 2019 IEEE 26th Symposium on
Computer Arithmetic (ARITH), pp. 69–76 (2019)

7. Gómez-Castañeda, F., Tornez-Xavier, G.M., Flores-Nava, L.M., Arellano-Cárdenas,
O., Moreno-Cadenas, J.A.: Photovoltaic panel emulator in FPGA technology using
ANFIS approach. In: 2014 11th International Conference on Electrical Engineering,
Computing Science and Automatic Control (CCE), Ciudad del Carmen, Mexico,
pp. 1–6 (2014). https://doi.org/10.1109/ICEEE.2014.6978289

8. Huang, C.W., Pan, S.T., Zhou, J.T., Chang, C.Y.: Enhanced temperature control
method using ANFIS with FPGA. Sci. World J. 2014, 8 (2014). Article ID 239261.
https://doi.org/10.1155/2014/239261

9. Khati, H., et al.: Neuro-fuzzy control of bilateral teleoperation system using FPGA.
Iran. J. Fuzzy Syst. 16(6), 17–32 (2019)

https://doi.org/10.1109/ICEEE.2014.6978289
https://doi.org/10.1155/2014/239261

	Design and Implementation of ANFIS on FPGA and Verification with Class Classification Problem
	1 Introduction
	2 Applying AFIS to the Iris Classification
	3 Hardware Program Design for 16bit ANFIS
	4 Results and Comparison
	5 Conclusions and Future Work
	References


