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Abstract. Training agents for autonomous driving using imitation learning
seems like a promising way since its only requirement is the demonstration
from expert drivers. However, causal confusion is a problem existing in imita-
tion learning, which is that with more features offered, an agent may perform
even worse. Here, we aim to augment agents’ imitation ability in driving scenar-
ios under sequential setting, by a novel method we proposed: Sequential Mask-
ing Imitation Learning(SEMI). First, we train a Vector Quantised-Variational
AutoEncoder(VQ-VAE) to encode a sequence of images into a latent represen-
tation with discrete codes. After that we deploy several masks on the encoded
images, the masks here will randomly hide some semantic objects in the encoded
images. Finally, we design the behavior clone network as a predictor of expert
action, using an encoded and masked image sequence as input, encouraging
the network to make expert-like predictions when some partition of information
about the environment is missing. The masking procedure in SEMI helps the
imitator identify the contribution of each encoded feature to the expert’s predic-
tion. We demonstrate that this method could alleviate causal confusion in driving
simulation by deploying it to the CARLA simulator, and compared it with other
methods. Experimental results show that SEMI can effectively reduce confusion
in autonomous driving. The agent trained with SEMI method reduces the colli-
sion rate by 45% compared to methods without masking procedure, and obtain
the highest average survival timesteps among competing methods.
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1 Introduction

Benefiting from the development of perception and computing capabilities, autonomous
driving nowadays is able to build a model that can deal with complex situations. Recent
research that can transform raw sensor data into a form that helps a model better under-
stand its surrounding, like [1] can translate images captured by a car’s front RGB
camera, into an overhead map or bird’s-eye view images. Combining those progress
together, models relying on pre-processed data can perform better than traditional end-
to-end models that use raw sensor images as input.
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Previous approaches in autonomous driving often took reinforcement learning(RL)
methods to train a policy model to get higher rewards. RL methods highly rely on the
reward function proposed by researchers, while designing a reward function to guide
our model to do what we really want could be difficult [2], especially when the intent of
the action is hard to express with mathematical expressions. RL methods also require
interacting with the environment while training, which is difficult and unsafe. In addi-
tion, RL methods often require a time-consuming reward maximization procedure to
have their agents performance guaranteed.

Traditional imitation learning(IL) methods can learn a strategy directly without
actual interaction with the environment, using only expert samples organized as state-
action sets. Using networks like deep convolutional neural network (CNN) model com-
bine with IL methods like Behavioral Cloning(BC) could produce seemingly well
results. However, IL often suffers from a problem for a long time: “causal confusion”
[3]. Due to the distribution differences between training and testing states, a imitator
may misidentify the real cause of an expert’s action and rely on suspicious correlates
to make decisions. Effects of the problem showed more obvious and severe when the
state information given by the environment is plentiful and the scenario is complex.
This confusion led to models learned by IL methods like behavioral cloning, performed
poorly when it meet new states different from training samples.

Considering these problems above, we aim to organize the vehicle’s surrounding
states into semantic bird-eye view images in sequence, design an imitation learning
method that encourages imitators to avoid causal confusion and make predictions based
on important features.

In this paper, we provide the following contributions.

• We combine semantic bird-eye view images [4], with Object-aware REgularizatiOn
(OREO) method from [5] in sequential setting, propose our Sequential Masking
Imitation Learning(SEMI) method which show as a robust method for addressing
causal confusion in a high-fidelity driving simulation.

• We implement SEMI and train an end-to-end model that can output direct contin-
uous control commands to a vehicle, lead it to follow a pre-set route, unlike many
models that rely on much hand-engineered involvement.

• Finally, we deploy our SEMI method on the CARLA simulator [6], test it with sev-
eral environments that it is unfamiliar with, compare its performance with other
methods, analyze its advantages, and demonstrate its consistent ability to perform
an expert-like strategy. Experimental results show that the agent trained with SEMI
method reduces the collision rate by 45% compare to methods without masking pro-
cedure, and obtain the highest average survival timesteps among competing meth-
ods.

The remainder of the paper is organized as follows. We review related work in
Sect. 2. Our proposed SEMI method and its theory description are presented in Sect. 3.
In Sect. 4, we describe the network structure for SEMI in the experiment and give a
brief introduction about the simulation setting and the process of collecting data. In
Sect. 5, we present the evaluation of our proposed method and compare it with several
competing methods. Finally, we conclude the paper in Sect. 6.
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2 Related Work

2.1 Pipelines of Autonomous Driving

Many autonomous-driving companies utilize a traditional engineer stack, where the
driving problem is divided into perception, prediction, model planning, and control [7].
Solving these sub-tasks requires much hand-engineered involvement, which could be
hard and lead to sub-optimal overall performance. Using discrete variables as the oper-
ation command is also a prevailing practice in the field of autonomous driving since
this can simplify the driving task into a classification problem. However, the prediction
of discrete variables that represent the high-level command still needs its downstream
module to execute the concrete action. Also, using a finite number of discrete values
as the direct control command may be harmful to a driving system’s flexibility since
operations like setting steering angle and acceleration often require precise control.

End-to-end driving, on the other side, known as mapping raw images to certain
control commend, seems like a more promising way to autonomous driving. However,
models rely on raw data require tons of samples that could cover a variety of situa-
tions like different weathers and different light intensities. Considering the weakness of
common end-to-end driving, researchers put much effort to process raw data to improve
models’ robustness.

Our approach belongs to the end-to-end side of the autonomous driving spectrum,
using pre-processed data to simulate the real driving task via imitation learning.

Follow what Chen et al. proposed in [4], we organize our input representation in the
form of semantic bird-eye view image by using LiDAR and RGB camera sensors and
built-in road maps, as shown in Fig. 1(a).

(a) Bird eye view image (b) RGB camera image

Fig. 1. (a): A sample of bird-eye view images. The red rectangle represents the vehicle controlled
by the model, and the green rectangles represents other vehicles. The road painted in blue repre-
sents the planned route. (b): The corresponding front camera image of (a). (Color figure online)

2.2 Confusion in Imitation

One branch of IL can be called “Inverse Reinforcement Learning(IRL)”. Ever since Ng
et al. [8] created the notion of IRL, there have been efforts to guide models in learning
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the intention behind an expert’s action. IRL methods [2,9,10] intend to infer a reward
function that can explain an expert’s trajectory. However, inferring a reward function
could be time-consuming when solving iteratively Markov decision processes(MDP)
[2,11], and training a policy network often require interaction with environment, which
could be dangerous when applying it to the real world.

Behavioral cloning is the other branch of IL, known as learning only through
expert’s demonstration [12]. We choose BC because it shows no requirement to interac-
tion with the environment. While learning through only datasets seems stunning fash-
ion, the causality problem in IL can not be ignored due to the distributional shift and
the complex state information. When de Haan et al. [3] summarized causal confusion
in imitation learning, they proposed to fix it with “Expert query" or “Policy execution",
but those seem unpractical when it comes to driving in the real world. Katz et al. [13]
use causal reasoning to construct an explanation for an expert’s action, and generate a
executing plan based on this explanation to carry out the expert’s goal. Although this
approach can explain an action from an expert properly, it requires the domain authors
to enumerate direct causal associations to infer indirect causal relation, which is hard
to implement when carrying out a complex job like driving. Hence, we consider meth-
ods that could address causal confusion indirectly, like randomly dropping/erasing units
from input features to regularize policy [14–16].

Inspired by previous works [3,5,17], we encode raw bird-eye view images into
discrete codes through a VQ-VAE [17], organize them in sequence as model input, train
the model by BC, and regularize them by randomly masking out semantically similar
objects.

Although Park et al. [5] did mention that masking semantic objects from a sequence
of observation can be effective in practice, their efforts mainly focused on simple envi-
ronments with clear goals like Atari games. Here we combine these methods and mod-
ify them to reduce the complexity of driving tasks, and address the causal confusion in
end-to-end driving simulation.

3 SEMI Methodology

3.1 Semantic Encoder

The semantic encoder is the first part of our SEMI network. By training a VQ-VAE
network, we make use of its encoder and vector quantizer to manage a bird-eye view
image x which represents a state st [17], into discrete latent representations that can be
seen as semantic representations.

VQ-VAE defines a latent embedding space e ∈ R
K×D, where K is the size of the

discrete latent space, and the D is the dimension of each latent embedding vector ei.
The encoder map x into its latent representation ze(x), where ze(x) is a set of latent
variables. Vector quantizer quantizes ze(x) to discrete representations zq(x). Decoder
is another part of VQ-VAE, aiming to reconstruct x from zq(x). Decoder and encoder
share the same cookbook C = {ek}Kk=1 of prototype vectors learned through train-
ing. Therefore, the objective of training a VQ-VAE can be formed as minimizing the
following term:

LV Q−V AE = log p(x|zq(x)) + ||sg[ze(x)] − e||22 + β||ze(x) − sg[e]||22, (1)
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Fig. 2. Overview of our SEMI model. Green arrow represents the process of training VQ-VAE
network. Red arrow represents the process of constructing n masks with the first image from
sequence. Blue arrow indicates the process of training policy network using masked variable
map as input. Notice that once the VQ-VAE trained, we do not need its decoder for imitation
learning. (Color figure online)

where sg is the abbreviation of stop gradient operator, and β here is a weight on a
commitment loss. We can divide Eq. (1) into three components: reconstruction loss,
quantizer loss, and commitment loss. The reconstruction loss optimizes the encoder and
decoder. The quantizer loss optimizes the vector quantizer so that it can bring codebook
representations closer to the encoder outputs ze(x). The commitment loss is weight by
β to make sure the encoder commits to an embedding and its output does not grow, as
described in [17], the resulting algorithm is quite robust to β, so we use β = 0.25 in
our experiments.

3.2 Masking Semantic Objects in Sequential Setting

After training a VQ-VAE network, we exact its encoder and vector quantizer for further
use. Here, we first reorganize all bird-eye view images from training dataset with a
total length nt, into nt sequences that each sequence contains ns images(ci represents
images from (i − ns + 1)th to ith, and xi

j represents the jth image of ci), and denote
those sequences as {ci}nt

i=1.
From then on, each time when we sample from dataset, we take batch B of

sequences as our SEMI model inputs. From our intuition, expert demonstrations orga-
nized in sequence can help better reveal an expert’s intention in a certain environment
and show relations between state and action. However, training a model using sam-
ples in the form of sequence, often meet the over-fitting problem. We aim to ease it by
randomly masking semantic objects.

Using the mask method from OREO [5], we can produce n masks for every
sequence c, where n is a hype parameter pre-defined. By setting the drop probabil-
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(a) Original images

(b) Masked images

Fig. 3. (a): A sequence of bird-eye view images. (b): A sequence of images reconstructed with the
masked latent representation of images from (a). The colored specks in reconstructed images are
produced by the decoder during the decode phase, since the masking operation may perturb the
latent representation and lead to unstable reconstruction of images. Recall that the red rectangle
represents the ego vehicle, and the blue line represents the guidance line. Although the images in
(b) are hard to interpret after the randomly masking operation and reconstruction, we can still see
that the operation randomly masks the road behind the ego vehicle in the latent representation,
while the ego vehicle and the guidance line remain. (Color figure online)

ity p, we sample K binary random variables bk ∈ 0, 1, k = 1, 2, ...,K from a Bernoulli
distribution with probability 1 − p. We encode the image sequence ci into the form of
latent variables ze(ci) using encoder, then construct n masks m = (b×zqk(x

i
0))

K
k=1 for

the sequence ci, based on the embedding vectors produced by vector quantizer using
the sequence’s first image xi

0. After constructing masks, we make tensor multiplication
between every ze(ci) and masks corresponding to ci, this will output n new sequences
corresponding to ci, containing n × ns masked sets of discrete latent variables.

Conclude the masking process described above: we randomly put several masks
to drop some semantic objects from sequential images’ discrete latent variables, and
produce n new sequences with those variable sets.

Figure 3 is a visualization of masking semantic objects in a sequence of images, we
can use it as an illustration of the masking idea. The colored specks in reconstructed
images are produced by the decoder during the decode phase, since the masking opera-
tion may perturb the latent representation and lead to unstable reconstruction of objects’
edges after decoding. As we can see in Fig. 3(b), a random mask is computed and
deployed for this particular sequence. Latent variables that correspond to the road tex-
ture behind the ego vehicle are masked while the ego vehicle and the guidance line
remain. So in the view of human drivers, the masked images can offer nearly the same
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information as the original images, since the texture of the passed road has little effect
on the current action.

By applying several random masks for each sequence, we can examine whether
the downstream policy network can still perform well when certain parts of semantic
objects as input are masked. With this masking process, the downstream policy net-
work is encouraged to make predictions without relying on features that may lead to
confusion, and focus on important features that affect drivers’ decisions.

We use several random masks to alleviate the causal confusion in the following
theory. If a policy network (the imitator), denote it as π̄, relies on a set of wrong fea-
tures(e.g., the road texture behind the ego vehicle, positions of vehicles behind ego
vehicle, or the positions of vehicles in the opposite lane) to make its prediction, then
when some of these features are masked, the optimizer of π̄ will update the weight of π̄
to guide it to make a prediction based on the rest features due to the vast loss computed
from the failed prediction.

It is worth noticing that, generally, the number of features that can cause causal
confusion and still help π̄ to achieve well performance in training is less than the number
of features that an expert takes into consideration for prediction. In other words, many
features in the environment affect the expert’s decision, while only a small amount of
other features are proxies of the expert’s action (features that induce causal confusion).
So if these proxy features have been randomly masked in some epoch during training,
their effects are diminished and the π̄ is forced to use other features to predict, therefore
these proxy features are no longer consistent shortcuts for π̄ to make predictions in
the training phase. Therefore, the masking process can guide the downstream policy
network to have a better understanding of the role of each feature in the prediction
tasks.

3.3 Behavior Cloning with Imbalanced Dataset

After masking semantic objects, we connect the n new variable sequences into n maps,
each map contains all variables sets of a sequence, and we denote those maps as
{tio}ns

o=1. We take {tio}ns
o=1 and their corresponding action ai as our SEMI policy net-

work’s input, notice that action ai is a single control command captured at the time of
ci ended.

With our experience from real-world driving and observation from the simulator,
one phenomenon can be learned is that the brake and steer are less triggered compared
to the throttle. This phenomenon leads to a situation that is similar to the class imbalance
in classification tasks, where the difference between classes in the dataset is imbalanced.
Models learned from imbalanced datasets directly, usually show limited performance in
generalization.

To improve the performance of our policy network in rare events where brake/steer
is required, we first use the undersampling technique in our dataset. By using all of the
rare events and reducing the number of abundant events, we keep the ratio of rare events
to abundant events at about 1:3 to amplify the importance of braking and steering.

The structure of our policy network can be divided into two parts: feature com-
pressor and action predictors. The compressor receives the map of variables sets and
integrates features for predictors. We deploy three action predictors for three parts of



SEMI for Handling Causal Confusion in Autonomous Driving 207

action prediction: throttle, brake, and steer, and these predictors will output three scalars
as their estimation of expert action, noted as ˆthrottle, ˆbrake, and ˆsteer. The feature
compressor and each action predictor are all Multi Layer Perceptrons(MLP).

The input features are first feed into the feature compressor and run through sev-
eral linear layers and activation layers, then we obtain the compressed features as the
output of the feature compressor. After that, the compressed features are passed into
each action predictor that outputs a scalar as its prediction. In the deployment stage, the
action will be the combination of the three scalars output from these predictors.

For each set of N samples, the policy network π can be optimized by computing
and minimizing the mean-squared error(MSE) between action [ ˆthrottle, ˆbrake, ˆsteer]
predicted by π, and the real expert action[throttle, brake, steer], following the term
below:

LBC =
1
N

∑ (
ˆthrottle − throttle

)2

+
1
N

∑ (
ˆbrake − brake

)2

+
1
N

∑ (
ˆsteer − steer

)2
.

(2)

Algorithm 1: Process of SEMI
Initialize encoder, vector quantizer, decoder, policy π randomly;
Define batch-size B, drop probability p, num-mask n, sequence length ns;
while not converged do

Sample batch of state images X ∼ demonstration;
foreach x in X do

Encode x into ze(x) using encoder;
Quantize ze(x) into zq(x) using quantizer;
Decode x from zq(x) with decoder;

Optimize parameters by minimizing LV Q−V AE from Eq.1;
end while
Delete decoder;
Organize demonstration images into sequences of images;
while not converged do

Sample batch of sequences of state images and corresponding actions (C, A) ∼
demonstration;
foreach (ci, ai) in (C, A) do

Encode image sequence ci into ze(ci) using encoder;
Quantize the encoder’s output of first image ze(x

i
0) into zq(x

i
0);

Construct masks {mi}(ns×n)
i=1 based on zq(x

i
0);

Mask ci to new maps {tio}ns
o=1;

Take {tio}ns
o=1 as input of π to predict action âi;

Optimize parameters by minimizing LBC from Eq.2;
end while
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Table 1. Hyper parameters of our model.

Hyper parameter Value

Learning rate: 1e-7

Embedding dimension: 16

Num_embeddings: 128

Num_masks: 4

Sequence_length: 4

Mask_prob: 0.6

Batch_size: 32

4 Experiment

4.1 Network Structure

As shown in Fig. 2, the whole SEMI model can be divided into two parts, the VQ-VAE
network and the policy network.

The encoder of VQ-VAE consists of several convolutional layers to amplify the
input’s channel from 3 to the dimension of embedding and compress information about
input. The vector quantizer calculates the discrete latent variable with respect to the
output of decoder by finding the nearest embedding vector, then outputs it’s index. The
decoder contains several transposed convolutional layers corresponding to the encoder.
The decoder takes the embedding vector produced by vector quantizer corresponding
to the index as input to produce the reconstructed image.

The feature compressor and the action predictors of our SEMI policy network are
both made up of MLPs. After flattening data that came from the encoder, we deploy
it to pass through linear layers and predict each part of action separately. The hyper
parameters we used in the experiment are shown in Table 1.

4.2 Simulation Environment and Data Collection

Based on the code from [4], we collect data and evaluate our proposed SEMI method
on the CARLA simulator, along with other methods that we compared.

In order to act as an expert agent driver, we first write code to add manual driving
support to the CARLA environment. We then implement an expert agent by having a
human driver control the vehicle using an Xbox One controller. The driver will drive
following a pre-set trajectory which will guide it to a random destination waypoint.
Driver here need to control the vehicle within the correct lane given by trajectory, and
avoid collision with other vehicles. We record bird-eye view images and the ego vehicle
state (current speed) and control commands for each frame. We run the simulation for
about 4 h and generated about 100k images and input commands. To be noticed, we
only deploy the agent on the third map of the CARLA simulator for collecting training
data, we do this to test the generalization ability of our SEMI method.
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For organizing images into sequences, we group ns successive frames’ images
and concatenate them together as a wide image to represent a sequence for our SEMI
model’s input.

4.3 Contrast Experiment

When it comes to comparison, we will not use models that output actions that require
lower modules to execute, since those modules are difficult to program for different
simulators or real world and our goal is to build an end-to-end model.

Here we train a CNN model to represent traditional BC methods [18]. We train
a model using OREO [5] method as well(i.e. compute mask and predict based on a
single image). We also train a sequential model without masking semantic objects in
the training phase.

5 Results

5.1 Evaluation Procedure

From the maps provided by the CARLA simulator, we select 5 representative maps
with different road styles for evaluation of model performance: the first, third, fourth,
fifth, and seventh maps were selected. We denote these maps as Town1, Town2, Town3,
Town4, and Town5. Each town has 10 different pre-computed routes. We compute each
model’s average result from these route as their result in a town. The simulation condi-
tions, such as vehicle to driving and weather, remain consistent with the conditions in
the recorded samples.

Towns: We will give a brief description of the towns we used for evaluation. Town1
and Town3 are both small simple towns with differences in road design. Town2 is the
most complex town in CARLA since it has roundabouts and large junctions. Town4 is
a squared-grid town with cross junctions and it has multiple lanes per direction. Town5
is a rural environment with narrow roads, corn, barns, and hardly any traffic lights.
However, since the routes in each town are pre-computed randomly, the experimental
results are affected by both the ability of the agent and the trait of the given route. Some
unique parts in each town are shown in Fig. 4.

Metrics: Similar to Anzalone et al. [19], we evaluate models using four metrics. Colli-
sion rate is the crash rate of a single frame. A collision is recorded when the collision
detector built into the ego vehicle reports a collision that happens with other vehicles or
other still objects in the environment like buildings or roadblocks. Similarity measures
the alignment between vehicle and planned road. Average speed is measured by com-
pute the average of every frame’s speed. Timesteps are the number of frames without
collision.

Process: For every route in a town, each model will run test once. A test will stop
when the vehicle runs safely for 2500 frames or collides with the environment or other
vehicles. A model’s metrics in a town will be computed by the results of 5 routes with
the weight of routes: model’s surviving frames in one route divided by surviving frames
in 5 routes. The total metrics are the sum of weighted metrics from all towns.
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(a) The river and the

bridge in Town1.

(b) The roundabout of

Town2.

(c) The underpass and

overpass in Town3.

(d) Multi-lane roads and

junctions in Town4.

(e) Simple junctions and

unmarked roads in Town5.

Fig. 4. We pick and show some unique parts in each town we used, such as the bridge in Town1,
the roundabout in Town2, the underpass in Town3, the multi-lane roads in Town4, and the
unmarked roads in Town5. Notice that these situations except the roundabout are all unfamil-
iar to the agents since we only collect samples in Town2.

5.2 Discussion

As we can see from Table 2, the SEMI method performs better than its competitors in
the metric of collision rate and average survival timesteps, while remains the ability to
follow pre-set route. The average speed of our SEMI model is not as fast as its com-
petitors, however, it could be proof that our model tends to brake aggressively to avoid
crashing. Our attempt to address causal confusion in imitation learning does improve
our model’s driving ability. These traits demonstrated that models trained with SEMI
method have the ability to perform expert-like strategy.

Models trained by OREO method and the method using sequential samples both
show well capabilities in driving following pre-set route. Their results indicate that
each part of our SEMI method helps the performance more or less. However, models
trained by these methods do not have our model’s ability to cope with other vehicles,
led to their slightly higher collision rate.

The CNN method without any masking operation does suffer from causal confu-
sion: though it gets low loss in the training phase, it runs terribly in testing scenes. In
observation, it’s the only model that cannot handle curves and braking well, leading to
the shortest survival timestep among the four models.

Of all four metrics we considered in this paper, the collision rate is the most impor-
tant metric we take into consideration about model performance. Because when it
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Table 2. Performance of methods: Object-aware REgularizatiOn(OREO), CNN, Sequential sam-
ples Without masking(SW), and our Sequential Masking Imitation Learning(SEMI). Best results
are highlighted in bold.

Metric/Method Town

Town1 Town2 Town3 Town4 Town5 Total

Collision Rate(‰) OREO [5] 0.32 0.74 1.19 0.60 0.59 0.64

CNN [18] 1.28 8.47 1.21 0.86 3.14 1.68

SW 0.92 0.77 0.54 0.23 0.87 0.59

SEMI(Ours) 0.19 0.52 0.46 0.19 0.44 0.33

Similarity(%) OREO [5] 92.3 84.6 91.0 94.2 74.4 88.07

CNN [18] 92.3 61.1 91.1 83.1 63.3 83.33

SW 91.6 88.7 89.9 95.8 75.6 89.21

SEMI(Ours) 84.8 87.6 94.5 93.3 81.4 88.41

Average Speed(km/h) OREO [5] 15.5 15.2 42.9 22.5 21.9 23.34

CNN [18] 15.5 7.68 26.7 26.2 21.7 23.58

SW 18.0 13.4 18.8 16.4 15.5 16.12

SEMI(Ours) 16.5 14.6 19.2 19.9 14 17.11

Average Timesteps OREO [5] 1216 534 840 1318 1010 984

CNN [18] 312 118 825 928 318 500

SW 431 1036 1324 1681 918 1078

SEMI(Ours) 2047 1148 1303 2009 1352 1572

comes to the deployment and use of autonomous driving, the safety issue is the most
cared part. So we can say that the SEMI method we proposed can maintain a safer
driving style have more advantages compared to their competitors.

We can also analyze the experiment results based on the traits of each town we
evaluated on. As we can see that SEMI model demonstrated its ability to cope with
other vehicles and different environments, even when situations of these environments
are complicated like Town2 and Town5. While complex traffic does affect the overall
performance of models trained from each method, we can still notice that the SEMI
model generally maintained a steady driving style, while other competing methods may
fail to cope with it, leading to unstable results of these methods in several towns with
different difficulties.

Overall, the result demonstrates that SEMI method does handle causal confusion
well. An autonomous driving model trained from the SEMI method can manage each
part of a direct control command and simulate an expert’s behavior well.

5.3 Analysis

Figure 5 is a visualization of the first layer’s weight of the trained policy network π
from SEMI, use Fig. 1(a) as an example. The elements that do not appear with gray are
the features π mainly used for prediction.
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Fig. 5. The image is reconstructed from the combination of the encoded latent representation
of Fig. 1(a) and the weight of the first layer in trained policy network π from SEMI, we make
several processing to make the decision basis of π more interpretable for readers. Recall that in
Fig. 1(a), red rectangle represents the ego vehicle, blue line represents the guidance line, and green
rectangles represent other vehicles. The conspicuous elements there are features that π mainly
takes into consideration for prediction, while other parts that are colored in gray are features that
have little effect on π. (Color figure online)

We can use Fig. 5 for analyzing the decision basis of policy network π that trained
with encoding and masking processes as proposed in SEMI. In a situation like Fig. 1(a),
π generally takes the important features including the guidance line, the ego vehicle,
the vehicles in the guided lane, and the boundary of the road into consideration. These
picked features are also often used by human drivers to decide their actions.

The phenomenon that the downstream imitator trained with the SEMI method tends
to perform imitation based on real important features can be an explanation for its good
scores in several crucial metrics, since it has been proposed in the causal literature that
imitators whose decisions rely on the same features that experts use, can eventually
obtain expert-like strategies.

6 Conclusion

In this paper, we proposed a method, Sequential Masking Imitation Learning(SEMI)
that can train an end-to-end driving model and handle causal confusion by randomly
masking semantic objects in a sequence of observation samples. We evaluated our SEMI
method on the CARLA simulator and found it outperforms several other behavior clone
methods in several metrics we think an expert-like agent should maintain. To be specific,
we found that the driving agent trained with our SEMI method showed a preference for
taking other vehicles’ information into consideration and its willing to brake to avoid
collision. These traits, along with the ability to drive following visual guidance, lead
our agent equipped with expert-like strategy.
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The major limitation of this work is the observation format: the bird-eye view image
is hard to obtain in the real world and it contains ground truth information which helps
model making decisions. Reducing reliance on such information will be the direction
of our future efforts. Another limitation is our model did collide with other vehicles and
the environment sometimes, due to the situation surrounding may be unfamiliar to our
model, especially when the expert’s demonstration had not covered those situations.

Although there are limitations exist, our SEMI method does show a promising way
for autonomous driving that requires no interaction with the actual environment and
handle the causal confusion in imitation learning.

In future work, we expect to further investigate the causation in autonomous driving,
and improve the ability of agent to interpret its surrounding environment. Tools such as
causal discovery and counterfactual representation can be used for this purpose.
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