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Abstract. Starting in late March 2021, several countries have been mas-
sively promoting vaccination, sparking a global debate on whether con-
tainment or suppression strategies response to COVID-19 remain nec-
essary. To evaluate the potential impact of SARS-CoV-2 vaccines and
control strategies, a data-driven, discrete-time compartmental model is
developed, incorporating the unparalleled characteristics of the epidemic.
This model is then calibrated to country-level reported active cases, accu-
mulative recovered and deceased cases, as well as daily new cases. Indeed,
this paper applies the calibrated model to reconstruct the transmission
dynamics of the outbreak over time, especially after the emergence of
various vaccines. The results, combined, demonstrate that the current
vaccines appear to be insufficient to eliminate this disease, despite the
increasing number of vaccinations, highlighting that such control strate-
gies or restrictions are not supposed to be completely lifted across the
world. Finally, there is no denying that the proposed model and frame-
work can be readily extended to other countries, states, regions, or orga-
nizations.

Keywords: COVID-19 · Data-driven approach · Epidemiological
model · Decision-making

1 Introduction

The ongoing COVID-19 epidemic, an international public health emergency
caused by the novel coronavirus [18], has been posing unprecedented challenges
to social economics, humanitarian rights, and healthcare systems around the
world [4]. COVID-19 was officially declared a global pandemic by the World
Health Organization on 11 March 2020 [21]. This epidemic, as of late October
2021, has spread rapidly to over 220 countries, causing more than 240 million
accumulative confirmed cases and 4.9 million deaths, which thus be regarded
as a more terrible pandemic compared to the Spanish flu. Among these coun-
tries, the most representative examples, affected by the epidemic, include such as
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America with over 46 million cases and 763 thousand deaths, India with over 34
million cases and 450 thousand deaths, Brazil with over 21 million cases and 600
thousand deaths, England with over 8.9 million cases and 140 thousand deaths,
as well as Russia with over 8.3 million cases and 235 thousand deaths, etc.

China is the first batch of countries to experience the challenge associ-
ated with the COVID-19 epidemic. From 23 January to 8 April 2020, the
Chines authority, by imposing a series of stringent lockdown measures or non-
pharmaceutical interventions, successfully contained the large-scale outbreak of
COVID-19 in Wuhan, the capital of Hubei province [15]. This control strategy, to
date, results in less than 100 thousand confirmed cases and 4.7 thousand deaths
for mainland China. Since then, these strategies such as enhanced testing, con-
tact tracing, household quarantine, mask-wearing, and social distancing, etc.,
were successively followed by South Korea, Australia, Singapore, Denmark, and
other countries [13]. Despite such rigorous requirements, those countries have
successfully given evidence to the possibility of the aforementioned interventions
for alleviating the spread of the outbreak. Such extreme strategies, nevertheless,
may be able to interrupt temporarily the disease transmission, yet come at the
price of tremendous economic losses or social destruction. In the countries that
have curbed the initial outbreak of COVID-19, there is still a continued contro-
versy over when to relax, where to be implemented, and how to reopen economic
and social activities [6].

To help policy-makers to formulate optimal policies for restarting economic
activity and normal social functioning, while avoiding a future resurgence of the
outbreak, mathematical models are proved as a unique, yet efficient tool for this
aim. Specifically, mathematical models can contribute profound insight for them
into the potential impact of existing control strategies, as well as into the eval-
uation of possible governmental policies [1]. A typical example of the latter, for
instance, is that some countries have experienced a thorough shift in defending
the so-called “herd immunity” policies even without any interventions. This, to a
large degree, can be contributed to the model developed by the Imperial College
London that predicts extensive death tolls before achieving this intention. More
incisive insights into the transmission dynamics of such large-scale pandemics
can be benefited by using SIR- or SEIR-type compartmental models [22]. For
the COVID-19 epidemic, several compartmental models have been flourished,
considering the unparalleled characteristics of this epidemic such as asymp-
tomatic infection, longer incubation period, and super-spreader event [10],?, etc.,
even incorporating post-epidemic interventions (e.g., distancing-like measures or
quarantine scenarios) [11]. Those compartmental models have indicated that the
disease transmission, through rapidly testing, quarantining and contact tracing,
can be significantly interrupted [2]. Alternatively, most of them were established
with incomplete data, affecting the confidence in produced results for driving
public health policy [5]. Validating COVID-19 modelling predictions is thus of
great importance.

So far, for public health policies imposed in severely affected countries, it has
been characterized by insufficient adherence to social distancing, logistic chal-
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lenges for implementing large-scale contact-tracing, along with deficient detect-
ing kits and relevant supplies [9]. Recent researches reveal that increased detect-
ing and contact-tracing efficiency may contribute to reducing the significantly
increasing number of accumulative confirmed cases and deaths in America, Eng-
land, Italy, and other countries [20]. Several modelling researches have looked
at the spatial dynamics of the outbreak and its evolution in the region at the
state level [17] but, to our knowledge, limited work has focused on the func-
tions of diverse containment and suppression strategies [19]. Comprehending the
degree to which these strategies, such as enhanced detecting, contact tracing and
quarantining, local lockdown, as well as social distancing, etc., influence locally
the disease transmission is fundamental for predicting and preventing second or
even multiple resurgences of the epidemic [8]. This, in return, will promote the
optimization of these strategies to alleviate the harmful economic burden caused
by COVID-19, while developing energetically effective vaccines and associated
therapeutics. Most modelling researches, however, were gained under a common
assumption, that is, without an effective vaccine. Among those researches, few
took into account the impact of vaccines and their relevant vaccination infor-
mation. This has inevitably sparked a debate for us on whether such control
strategies are necessary, and on how to release them while escaping from future
outbreaks, after the emergency of various vaccines.

In this work, our primary purpose is to further explore the evolution of the
COVID-19 epidemic over time in each stage but, more importantly, after the
emergency of various vaccines. Specifically, a data-driven, discrete-time com-
partmental model, named SEIAISRD, is developed, incorporating the aforemen-
tioned characteristics of COVID-19, even combining the effectiveness of vari-
ous vaccines and relevant vaccination information. The model parameters, using
the extended Kalman filter algorithm, are practically calibrated to country-level
reported active cases, accumulative recovered and deceased cases, as well as daily
new cases from 24 January 2020 to 22 October 2021. Additionally, this calibrated
model is then applied to evaluate the potential impact of current SARS-CoV-2
vaccines and control strategies implemented in each country, presenting a data-
fitting comparison between the estimated and reported cases. Finally, this model,
by just recalibrating and recalculating the assumed values for model parameter-
ization, can be extended or readily applicable to reevaluate the current situation
responding to the epidemic for those representative countries, such as America,
India, England, China, and Brazil, etc.

2 Methods

2.1 The SEIAISRD Model

This paper has modified the generalized SIR or SEIR model to capture the
evolution of COVID-19 over time in each stage, especially after the emergence
of various vaccines. The SEIAISRD model, combining the unprecedented charac-
teristics of this epidemic, assumes that susceptible individuals (S), to a certain
potential, can become exposed individuals (E), through any contact with the
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SARS-COV-2 virus. After passing for an incubation period, E, who is in latent
yet non-infectious stage, can either be transmitted to asymptomatic infected (IA)
or symptomatic infected (IS). Finally, the infected individuals will be transmit-
ted to the removed compartments, identifying recovered (R) or deceased (D)
individuals. Note that, IA will be recovered following hospitalization, whereas
IS , especially those with severe symptoms, are faced with the risk of death in
the initial outbreak. The flow diagram of this model is schematically described
in Fig. 1. To balance fidelity and identifiability of the calibrated model, it is rea-
sonable for us to assume that all infected cases are effectively tested or isolated,
and thus unavailable for transmitting the virus.

The proposed model, describing, respectively, the dynamics of the following
six compartments (e.g., S, E, IA, IS , R and D), is given by:

dS

dt
= − (1 − α)βS(IA + IS)

N
, (1)

dE

dt
=

(1 − α)βS(IA + IS)
N

− εE, (2)

dIA

dt
= ρ1εE − γ1IA, (3)

dIS

dt
= ρ2εE − (γ2 + μ)IS , (4)

dR

dt
= γ1IA + γ2IS , (5)

dD

dt
= μIS , (6)

where β and γ denote, respectively, the infection rate and the recovery rate.
Among which, γ1 is the recovery rate of asymptomatic infected individuals (IA),
yet γ2 is that of symptomatic infected individuals (IS). α ∈ [0, 1]is a parameter
modelling the effectiveness of SARS-COV-2 vaccines. The remaining parameters
include such as the mean exposed period ε (day−1), the case fatality rate mu, as
well as the proportion of exposed individuals (E) proceeding to asymptomatic (or
symptomatic) infections ρ1 (or ρ2), obviously, ρ1+ρ2 = 1. Remark that since this
epidemic is transmitted by a person-to-person pattern, and no evidence showing
that parasite vector or environmental parameters have immensely influenced its
infection rate, it thus is assumed that β is the same for all countries. Besides,
the actual population of the country N can be divided into the aforementioned
six compartments and satisfies

N = S + E + IA + IS + R + D. (7)

Of note, the actual epidemic data of COVID-19 for each country [12], col-
lected by the Johns Hopkins CSSE Repository, includes the following reported
cases, such as the active cases, accumulative recovered and deceased cases, as
well as daily new confirmed cases. To fit accurately the proposed model to these
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data, a discrete-time augmented SEIAISRD model, by augmenting the infection
rate β and daily new confirmed individuals (C) as additional state variables, can
be obtained as follows:

S(k + 1) = S(k) − (1 − α)β(k)S(k)(IA(k) + IS(k))Δt

N
+ ω1(k), (8)

E(k + 1) = E(k) +
(1 − α)β(k)S(k)(IA(k) + IS(k))Δt

N
− εE(k)Δt + ω2(k), (9)

IA(k + 1) = IA(k) + ρ1εE(k)Δt − γ1IA(k)Δt + ω3(k), (10)

IS(k + 1) = IS(k) + ρ2εE(k)Δt − (γ2 + μ)IS(k)Δt + ω4(k), (11)

R(k + 1) = R(k) + γ1IA(k)Δt + γ2IS(k)Δt + ω5(k), (12)

D(k + 1) = D(k) + μIS(k)Δt + ω6(k), (13)

C(k + 1) = C(k) + (γ1 + γ2 + μ)(IA(k) + IS(k))Δt − C(k)Δt + ω7(k), (14)

β(k + 1) = β(k) + ω8(k), (15)

where Δt is the simulation time step (this paper sets Δt = [0.1, 0.001]). The
White Gaussian noise ω(k) = [ω1(k) ω2(k) · · · ω8(k)]T is utilized to express
model uncertainty and is assumed to be uncorrelated. Extending a parameter to
a new state variable, note that, is an ordinary measure when estimating model
parameters using the extended Kalman filter (EKF) (more details are illustrated
on page 422 of [16]).

2.2 Estimating the Effective Reproduction Number

The effective reproduction number, Rt, is defined by the average number of
second-generation infected cases (e.g., asymptomatic or symptomatic infected
cases) transmitted from a single infected individual at a certain time t [14]. It is
still unclear whether the individuals recovered from the COVID-19 epidemic will
be re-infected, whereas initial evidence reveals that this is little possibility [23].
This paper thus assumes that only a single infected case relevant to this epidemic
may occur to any single individual. As reminded above, Rt, as a qualitative index,
is often used to capture the transmission dynamics of the epidemic. For example,
as Rt > 1, the epidemic will spread rapidly among the population, whereas
the epidemic will gradually disappear for Rt < 1. Accordingly, it presents a
quantitative tool of whether further control efforts or interventions are necessary
to curtail the spread of COVID-19. Based on the series of daily new confirmed
cases, Rt is considered here to be the source of the general update equation
during a birth process, and defined as

Rt =
S(t)
N

β(1 − α)
(

ρ1
γ1

+
ρ2

γ2 + μ

)
, (16)

where the term S(t)/N is utilized to compensate the reduction in susceptible
individuals, and then, multiplies by the infected risk of each contact for infected
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individuals and their untraced contacts, β(1 − α) , and their mean infection
period,

(
ρ1
γ1

+ ρ2
γ2+μ

)
. This may be, respectively, explained by the contribution

of asymptomatic infected (IA), S(t)
N β(1 − α)ρ1

γ1
, and symptomatic infected (IS),

S(t)
N β(1 − α) ρ2

γ2+μ .
In this section, the extended Kalman filter (EKF) is adopted by us to esti-

mate dynamically the effective reproduction number. For brevity of the reading
pubic, an augmented state vector is defined as x(k + 1) = [S(k + 1) E(k +
1) Ia(k + 1) Is(k + 1) R(k + 1) D(k + 1) C(k + 1) β(k + 1)]T , such
that the discrete-time augmented SEIAISRD model (8)-(15) can be modified as
x(k +1) = f(x(k))+ω(k). Since then, let us regard x̂(k) as the estimated vector
of x(k) from the EKF. f(x(k)) = f(x̂(k)) + Jf (x̂(k))(x(k) − x̂(k)) is obtained
by applying first-order Taylor series expansion to f at x̂(k), among which, the
Jacobian matrix is Jf (x̂(k)) described by

Jf (x̂(k)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J11 0 J13 J14 0 0 0 J18

J21 J22 J23 J24 0 0 0 J28

0 ρ1εΔt 1 − γ1Δt 0 0 0 0 0
0 ρ2εΔt 0 J44 0 0 0 0
0 0 γ1Δt γ2Δt 1 0 0 0
0 0 0 μΔt 0 1 0 0
0 0 J73 J74 0 0 1 − Δt 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

where

J11(x̂(k)) = 1 − (1 − α)β(k)(IA(k) + IS(k))Δt

N
, (18)

J13(x̂(k)) = J14(x̂(k)) = − (1 − α)β(k)S(k)Δt

N
, (19)

J18(x̂(k)) = − (1 − α)S(k)(IA(k) + IS(k))Δt

N
, (20)

J21(x̂(k)) =
(1 − α)β(k)(IA(k) + IS(k))Δt

N
, (21)

J22(x̂(k)) = 1 − εΔt, (22)

J23(x̂(k)) = J24(x̂(k)) =
(1 − α)β(k)S(k)Δt

N
, (23)

J28(x̂(k)) =
(1 − α)S(k)(IA(k) + IS(k))Δt

N
, (24)

J44(x̂(k)) = 1 − (γ2 + μ)Δt, (25)

J73(x̂(k)) = J74(x̂(k)) = (γ1 + γ2 + μ)Δt. (26)

Further details of the extended Kalman filter applied to the SIR or SEIR-type
model are illustrated in [16].
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2.3 Data-Fitting and Sensitivity Analysis

Real-world reported cases, originating from 24 January 2020 to 22 October 2021,
have been used to fit the SEIAISRD model. All data-fitting analyses have been
performed with a MATLAB optimization toolbox using the extended Kalman
filter. This optimization algorithm, given all inputs that vary within the ranges
found from several researches, is verified as the optimal solution. Infected initial
inputs have been determined from reported active cases, accumulative recovered,
and deceased cases, whereas the remaining initial inputs could vary during the
optimization process. To describe the inherent uncertainty of COVID-19, conse-
quently to demonstrate the impact of combined control strategies and vaccines,
the aforementioned results are the average outputs by running over 50 inde-
pendent repetitive simulations. Specifically, the model parameters α, β, ε, γ1,
γ2, μ together with the initial inputs have been chosen, incorporating a ±20%
maximum variation from their normal values. It is suggested that the proposed
model and algorithm are robust to several parameter variations, demonstrat-
ing the feasibility to curtail this epidemic and expandability to be extended to
other countries across the world. Estimated 95% confidence intervals have taken
the 1% perturbations of uniform distribution into account, to assess the cor-
responding confidence in the results, and finally to compare the fitting results
with actual reported cases, such as active cases, accumulative recovered and
deceased cases, as well as daily new confirmed cases. COVID-19 active cases,
accumulative recovered and deceased cases, daily new confirmed cases, as well
as vaccination information for mainland China, are obtained by the National
Health Commission of the People’s Republic of China [7] and are available at
http://www.nhc.gov.cn/. Whereas for the representative countries (e.g., Amer-
ica, India, Brazil, Russia, France, Turkey, England, Argentina, Italy, and Colom-
bia), collected by Johns Hopkins CSSE Repository, can be available at https://
github.com/CSSEGISandData/COVID-19.

3 Results

3.1 Model Formulation and Validation

To capture the evolution of the ongoing COVID-19 epidemic over time in each
stage, especially after the emergence of various vaccines, a data-driven, discrete-
time compartmental SEIAISRD model is performed to evaluate the impact of
current SARS-CoV-2 vaccines and control strategies for several representative
countries (such as China, America, India, Brazil, Russia, France, Turkey, Eng-
land, Argentina, Italy, and Colombia). The SEIAISRD model, combining the
unprecedented characteristics of COVID-19, main includes the following com-
partments: susceptible, S; exposed, E; asymptomatic infected, IA; symptomatic
infected, IS ; recovered, R; and deceased, D; described schematically in Fig. 1.
This is an epidemiological modelling tool that can reconstruct the transmission
dynamics of COVID-19 within a population. As shown in Fig. 1, this model
assumes that susceptible individuals (S) become exposed individuals (E), to a

http://www.nhc.gov.cn/.
https://github.com/CSSEGISandData/COVID-19.
https://github.com/CSSEGISandData/COVID-19.
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certain probability, through contact with any of the infected compartments (e.g.,
asymptomatic infected (IA) or symptomatic infected (IS), which means that the
exposed individuals (E) are in latent, yet non-infectious stage. After passing for
a mean exposed period, the exposed individuals (E) are then transitioning to
asymptomatic infected (IA) or symptomatic infected (IS). Finally, the infected
individuals will be transitioning to the removed compartments, identifying recov-
ered (R) or deceased (D) individuals.

Table 1. Calibrated model parameters for the SEIAISRD model.

Parameter Definition

N Population size of the corresponding country

α The effectiveness of SARS-COV-2 vaccine

β Transmission rate

ε Mean exposed period

ρ1 Proportion of exposed transitioning to asymptomatic infected (IA)

ρ2 Proportion of exposed transitioning to symptomatic infected (IS)

γ1 Recovery rate of asymptomatic infected (IA)

γ2 Recovery rate of symptomatic infected (IS)

μ The case fatality rate

Fig. 1. Schematic diagram of the SEIAISRD model structure. The SEIAISRD, a date-
driven, discrete-time compartmental model, is presented to reconstruct the transmis-
sion dynamics of the ongoing COVID-19 epidemic after the emergency of various vac-
cines. This model, combining the unprecedented characteristics of COVID-19, includes
mainly six compartments, such as susceptible (S), exposed (E), asymptomatic infected
(IA), symptomatic infected (IS), recovered (R), and deceased (D).

As regards validation, the model parameters, using the extended Kalman
filter algorithm, are calibrated to country-level reported active cases, recov-
ered cases, deceased cases, and daily new cases from 24 January 2020 to 22
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October 2021. Estimating all the parameters regarding each country allows us
to not only precisely fit the reported COVID-19 cases, but also to describe
the diverse country situations and the disparate impacts of government policies
aiming to contain this epidemic spread for those selected countries right now.
Calibrated model parameters are highlighted in Table 1. A detailed description
of the SEIAISRD model consideration, parameterization, and sensitivity analy-
sis are further explained in Methods. Besides, further details on the real-world
reported cases and vaccination information for each country can be found at
https://github.com/CSSEGISandData/COVID-19, as collected by Johns Hop-
kins CSSE Repository [12].

Fig. 2. Real-time modelling and fitting results of COVID-19 for mainland China: (a)
Active cases; (b) Estimation error of active cases; (c) Accumulative recovered cases;
(d) Estimation error of accumulative recovered cases; (e) Accumulative deceased cases;
(f) Estimation error of accumulative deceased cases; (g) Daily new confirmed cases; (h)
Estimation error of Daily new confirmed cases. (i) Effective reproduction number Rt.

https://github.com/CSSEGISandData/COVID-19,
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3.2 Case Studies for the Representative Countries

As all we know, China is the first batch of the countries to experience the chal-
lenge caused by COVID-19, a case study on transmission dynamics of the epi-
demic for mainland China is thus investigated. Unlike most previous researches,
this paper underscores the evolution of this epidemic over time in each stage,
especially after the emergence of various vaccines. To this aim, the model param-
eters are calibrated to match the crucial characteristics of the reported COVID-
19 cases. The results, as described in Fig. 2, show numerical simulations of real-
time modelling and data fitting of COVID-19 for mainland China, including a
comparative analysis of the relative Root Mean Square Errors (for brevity, it
is next referred to as estimation errors) between the corresponding estimated
and real-world reported cases. Among which, Fig. 2a, c, e, and g show, respec-
tively, the evolution of the estimated active cases, accumulative recovered and
deceased cases, as well as daily new confirmed cases. Figure 2b, d, f, and h rep-
resent, respectively, the estimation errors between the corresponding estimated
and reported cases (e.g., active cases, accumulative recovered cases and deceased
cases, as well as daily new confirmed cases), hinting at this observation is in a
great agreement with recent reports of COVID-19 for mainland China. It is worth
stressing that, the fluctuations in the estimation errors of active cases and daily
new confirmed cases (e.g., Fig. 2b and Fig. 2h), to a large extent, are related to
the abroad inputs of asymptomatic infected cases. In doing so, it is confirmed
that the SEIAISRD model has correctly predicted the active cases, daily new
confirmed cases, as well as accumulative recovered and deceased cases.

Fig. 3. Real-time fitting results of COVID-19 for several representative countries: (a)
Active cases; (b) Accumulative recovered cases; (c) Accumulative deceased cases; (d)
Daily new confirmed cases. Those selected countries are chosen from the top ten coun-
tries regarding accumulative confirmed cases, such as America, India, Brazil, Russia,
France, Turkey, England, Argentina, Italy, and Colombia in order. The shaded error
bands denote, respectively, 95% confidence intervals of the corresponding mean by
running over 50 independent repetitive experiments. For easy comparison, raw data,
represented by this plot, are selected from 1 March 2020 to 22 October 2021.
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Furthermore, the time-varying effective reproduction number for mainland
China, presented in Fig. 2i, is estimated by using the SEIAISRD model together
with the extended Kalman filter, indicating that this epidemic keeps to a typ-
ical trajectory. It is well known that the effective reproduction number, Rt, is
the average number of second-generation infected cases (e.g., asymptomatic or
symptomatic infected cases) transmitted from a single infected individual at
a certain time t [14]. Generally speaking, Rt, as a qualitative index, is often
used to describe the real-time transmission dynamics of epidemic disease. For
example, as Rt > 1, the epidemic will spread rapidly among the population,
whereas the epidemic will gradually disappear for Rt < 1. It is worth stressing
that the SEIAISRD model would be readily extended to other regions, states
or countries. To this end, the representative examples of the countries, which
belong to the top ten countries regarding accumulative confirmed cases (e.g.,
America, India, Brazil, Russia, France, Turkey, England, Argentina, Italy, and
Colombia), are chosen to demonstrate the applicability of the proposed model.
After which, most model parameters remain constant except for the effectiveness
of the SARS-COV-2 vaccine α. The results, as shown in Figs. 3, 4, display the
evolution of COVID-19 after the emergence of various vaccines for those selected
countries, incorporating a comparative analysis of the estimation errors between
the corresponding estimated and real-world reported cases.

Figure 3 implies the real-time data-fitting results of several representative
countries, such as America, India, Brazil, Russia, France, Turkey, England,
Argentina, Italy, and Colombia. Of which, Fig. 3a, b, c, and d demonstrate
that the proposed model can predict, respectively, the estimated active cases,
accumulative recovered cases, accumulative deceased cases, and daily new con-
firmed cases for those selected countries, with real-world reported cases falling
within its 95% confidence intervals. The results expose that, under current non-
pharmaceutical interventions and SARS-COV-2 vaccines, this disease can not be
thoroughly eliminated. Even though the increasing contact tracing and social dis-
tancing, they are still experiencing an increase in reported active, accumulative
deceased, and daily new confirmed cases. France, Italy, and Brazil, for instance,
may experience a continued increase in active cases within the following periods
(Fig. 3a). America, Brazil, and India, on average, result in a sustained increase in
accumulative deceased cases since the outbreak of this epidemic, whereas India,
especially, has experienced an exponential increase since 1 April 2021 (Fig. 3c).

Bringing down and keeping up Rt < 1 is essential to mitigate the spread of the
ongoing COVID-19 epidemic. The results, obtained systematically from Fig. 4,
evaluate the potential of preserving Rt < 1 for those representative countries
under current non-pharmaceutical interventions and SARS-COV-2 vaccines. It is
therefore predicted that for the remaining countries (e.g., America, India, Brazil,
Russia, France, Turkey, England, and Colombia) except Italy and Argentina,
under the existing interventions and vaccinations coverage rate, curbing this
epidemic appears to be impossible without additional control efforts, as the
effective reproduction numbers are still insufficient to reduce and preserve Rt <
1. The Indian authority, for example, has ignored the warnings of scientists and
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relaxed a series of quarantine measures starting in middle March 2021, causing
people not strictly comply with quarantine rules, such as mask-wearing and
social distancing [3]. This, on average, results in the peaks of 3,737,715 active
cases (95% CI: 3,735,337-3,740,093), 453,704 accumulative deceased cases (95%
CI: 453,641-453,767), and 406441 daily new confirmed cases (95% CI: 405,405–
407,477) as of 22 October 2021. The aforementioned results, additionally, should
not be regarded as the optimized interventions combining all possible model
parameters, but rather as a distinct assessment of current situations for curtailing
this epidemic around the world.

Fig. 4. Time-varying effective reproduction number Rt for several representative coun-
tries: (a) Brazil; (b) Russia; (c) France; (d) Turkey; (e) England; (f) Argentina; (g)
Italy; (h) Colombia; (i) America; (j) India. Those selected countries are chosen from
the top ten countries regarding accumulative confirmed cases, such as America, India,
Brazil, Russia, France, Turkey, England, Argentina, Italy, and Colombia in order. The
green rectangular region indicates Rt < 1. The shaded error bands denote, respectively,
95% confidence intervals of the corresponding mean by running over 50 independent
repetitive experiments. For easy comparison, raw data, represented by this plot, are
selected from 1 March 2020 to 22 October 2021. (Color figure online)
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4 Conclusion

This paper has reconstructed the transmission dynamics of COVID-19 over time
in each stage for mainland China. The mathematical model, SEIAISRD, has been
calibrated to real-world epidemic reported cases, accounting for non-detected
infections, symptomatic-asymptomatic infections distinction, variant-dependent
transmission rates, the effectiveness of various vaccines, as well as the remaining
epidemiological parameters. A considerable calibration result is the proportion
of asymptomatic infections found to be 1.2% of that of the reported infected
cases, yet its recovery rate found to be twice as high among symptomatic infec-
tions. Alternatively, in countries faced with advanced over-dispersion and super-
spreader characteristics during the ongoing COVID-19 outbreak, the effective
reproduction number, to a large degree, will be experiencing fluctuations as the
asymptomatic/symptomatic infected cases decreases. This is more possible to
help explain the case for countries with lower posterior values related to disper-
sion parameters, such as Brazil, Russia, France, England, America, Italy, as well
as India, etc. It should, however, be worth stressing that the estimation errors
for India continue to be fluctuating, compared to the remaining nine countries.
It is well known that India is a developing country with a large population, and
its healthcare resources, including the number of vaccinations, all fall behind
those of developed countries. This phenomenon is thus extremely unreasonable.
To sum up, it is imperative for us to conclude that there are some uncertainties
in the actual epidemic data released by India. Future researches tend to address
further aspects as, yet may not be limited to, exploring how the heterogeneity of
the social contact network can affect the transmission dynamics of the outbreak,
as well as declining uncertainty around the modelling approaches in different
countries, regions, or crowds.
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