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Abstract. In this paper, we consider an end-to-end semantic communi-
cation system for compressed image wireless transmission. To economize
the communication bandwidth, and enhance the communication reliabil-
ity as well as the intelligence of the receiver, two networks are designed
for image transmission and intelligent tasks. In particular, two simple
linear layers are used to extract the feature of the image and recover
the image, taking into account the sparsity of the image in a specific
linear space. The trained encoder is deployed at the transmitter, while
the trained decoder and the classifier are deployed at the receiver. To
adapt to new communication data, the proposed networks are trained in
a meta-learning framework. A few samples of new data are fed into the
trained network to calculate new model parameters, which are fed back
to the transmitter for updating the network of the encoder. Experimen-
tal results show that the proposed system has superior performance in
terms of image compression transmission over fading channels compared
with the existing semantic communication systems.

Keywords: Semantic communication · image transmission ·
Meta-learning

1 Introduction

With the development of communication techniques and the applications of
Metaverse and virtual reality, communication systems are gradually shifting from
traditional bit information transmission to systems with more powerful seman-
tic understanding [1–3]. The semantic communication systems are not only able
to convey information to the recipient but also to make deep understanding of
the information, enabling a wider range of applications [4], such as autonomous
vehicles. By using the deep learning techniques to design the transmitter and
the receiver, the semantic communication system can compress the source infor-
mation for effective transmission. Meanwhile, the receiver design based on deep
learning can improve the intelligence of communication.
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Traditional compression methods, such as JPEG2000 [5] and H.264 [6], are
commonly used for image and video compression. Especially, JPEG2000 uses Dis-
crete Cosine Transform (DCT) to transform the image in the frequency domain,
and then uses quantization and entropy coding to achieve data compression.
H.264 is a widely used standard for video compression, which uses motion esti-
mation, transform coding and entropy coding to improve the efficiency of video
compression. These traditional compression methods can reduce the size of data
effectively, but they may have some limitations for wireless communication. For
example, compressed information is difficult to decode correctly due to channel
fading and noise. Channel coding should be considered to protect the compressed
information. Compared with traditional compression schemes, semantic commu-
nication encodes information in a structured, simplified and flexible way, and
provides a new perspective for joint source and channel coding [7]. However,
the accuracy and robustness of semantic understanding remains a critical issue.
Since the communication data includes structured data and unstructured data,
such as text, picture, and video, it is difficult to use a scope-limited knowledge
base. In addition, data scarcity is a problem that cannot be ignored in cur-
rent semantic systems. Semantic understanding of specific tasks usually requires
large amounts of annotated data to train models. However in real scenarios, it is
very difficult and expensive to obtain large-scale annotated data [8–10]. Existing
semantic communication methods face the challenge of efficiency and scalabil-
ity when dealing with large and diverse data. Besides, the effective knowledge
transfer and representation is also an urgent problem.

Recently, Huiqiang Xie et al. [11] proposed that a deep neural network
enabled semantic communication system, named MU-DeepSC, to execute the
visual question answering (VQA) task. Through joint design and optimization
of transceivers, the most relevant data features are extracted to achieve task-
oriented transmission. However, deep learning-based semantic communication
systems may suffer from problems such as data scarcity and labeling difficul-
ties during the learning process. In order to solve the problem that the actual
observation data at the transmitter may have inconsistent distribution with the
empirical data in the shared background knowledge base, Hongwei Zhang et
al. [12] proposed a new semantic communication system for image transmission
based on neural network. By using the domain adaptation technique of trans-
fer learning, the data adaptation network is designed to learn how to transform
observed data into similar forms of empirical data that semantic coding networks
can process without retraining. However, under the influence of low compression
rate and fading channel, this training method based on transfer learning is not
ideal. In addition, Chanhong Liu et al. [4] proposed a compression ratio and
resource allocation (CRRA) algorithm to support multi-users to perform tasks
at low compression rate and occupy fewer resources. However, CRRA is difficult
to apply because of its high complexity.

To overcome the limitations of current research, we propose an end-to-
end semantic communication system based on meta-learning. In particular, the
encoder and the decoder are designed based on linear layers, because the image
information can be sparse by linear transformation and be compressed by a sens-
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Fig. 1. Illustration of end-to-end semantic communication system.

ing matrix. A classifier is also designed to perform specific tasks. The proposed
network is training based on the Model-agnostic meta-learning (MAML) algo-
rithm [9]. Then the trained encoder is deployed at the sending end. The trained
decoder and classifier are deployed at the receiving end. To accommodate the new
data, a few samples of new data with labels are calculated with the trained model,
and some parameters are fed back from the receiver to the transmitter for model
update. The experimental results indicate that under low compression ratios
(CR) and in the presence of fading channels, the reconstructed images transmit-
ted through semantic encoding can be visually discernible to the human eye. Fur-
thermore, the reconstructed images can still perform specific classification tasks.

2 System Model

Consider an end-to-end semantic communication system, where both of trans-
mitter and receiver have single-antenna. As shown in Fig. 1, the input image
signal is first encoded by a joint source and channel coder (JSCC) at the trans-
mitter for compression wireless transmission. Meanwhile, a receiver designed by
a deep neural network is used to reconstruct the image data as well as the intelli-
gent recognition task. Especially, the input image data x ∈ R

N×N×L is encoded
by a feature vector s̃ ∈ R

K(K � N2) containing the semantic information of
the input image, i.e.,

s̃ = fen,θ(x), (1)

where fen,θ(·) represents the encoder with parameter θ, N is the size of the
image and L is the numbers of channels of the image. Further, the vector s is
normalized as s = ηs̃. where η = 1

‖s̃‖2
2

is the normalized coefficient.

At the receiver, the received signal vector y ∈ C
K is formulated as

y = hs̃ + z, (2)

where h ∈ C is a block fading channel coefficient, and z ∼ CN (0, σ2IK) repre-
sents the symmetric complex additive Gaussian noise with mean zero and vari-
ance σ2. The semantic decoder deployed at the receiving end will reconstruct
the original image from y, which is given by
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Fig. 2. The proposed JSCC encoder and decoder networks.

x̂ = fde,ϕ(y), (3)

where fde,ϕ(·) represents the decoder with parameter ϕ. The recovery image x̂
is further used to perform the recognition task, i.e.,

r̂ = Fφ (x̂) , (4)

where Fφ(·) is the classifier with parameter φ and r̂ is the prediction result.
Note that fen,θ, fde,θ and Fφ of semantic communication are designed by the

deep neural networks and trained with the empirical data. The trained fen,θ is
deployed at the transmitter for compressed code transmission. The trained fde,θ

and Fφ are deployed at the receiver side for image recovery and the classifica-
tion task. Thus the semantic communication can reduce the bandwidth require-
ment while ensuring the communication quality, and improve the intelligent com-
mitment of the receiver. However, the performance of semantic communication
degrades seriously when the communication data is dynamically transformed or
a new communication data appears. To this end, a semantic communication net-
work is designed to adapt to the new communication data quickly. Different from
the data adaptation network in [12], where a GAN is used to generate the target
data, the networks of semantic communication are trained with Meta-learning
framework in this paper.

3 Proposed Semantic Communication Networks

In this section, we first introduce deep neural network architectures that satisfy
requirements of coder and decoder for semantic communication, including the
joint source and channel encoder, decoder for image recovery, and classifier for
performing intelligent tasks. Then, the data adaptive semantic communication
network is obtained by introducing the MAML algorithm. When new commu-
nication data needs to be transmitted, the semantic communication model is
updated through a few of feedbacks and adapted to the reliable transmission of
new data.
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3.1 Network Structures of Encoder and Decoder

On the one hand, the encoder of semantic communication needs to extract the
features of image data well, reduce the amount of transmitted data as much as
possible and reduce the communication bandwidth overhead while ensuring the
transmission quality. On the other hand, the decoder needs to guarantee the qual-
ity of recovered image. It is important to point out that the proposed semantic
communication system requires less cycles of model feedback updates. In addi-
tion, lightweight networks of JSCC coder and encoder should be designed. To this
end, we propose two simple networks for the encoder and the decoder of semantic
communication, which mainly consists of two linear layers, as shown in Fig. 2.

In the end-to-end semantic communication system, the encoder and decoder
are deployed at the transmitter and receiver, respectively. The output of encoder
is transmitted through the wireless channel. Therefore, the encoder need to
compress source information and resist wireless channel fading. Meanwhile, the
decoder has to generate the image based on the compressed feature of original
image with noise. Note that the image can be sparsely represented as

D = ΨXΨT , (5)

where Ψ ∈ R
N×N is a wavelet basis matrix. The wavelet coefficient matrix D is

parse in (5), which can be further expressed as

vec(D) = (Ψ ⊗ Ψ)vec(X), (6)

where vec(·) denotes the vectorization of a matrix, and ⊗ denotes the Kronecker
product. Then the sparse vector vec(D) ∈ R

NN×1 can be compressed by a
dictionary matrix of compressed sensing, results in

s̄ = Avec(D) = A(Ψ ⊗ Ψ )vec(X), (7)

where A ∈ R
M×N is a dictionary matrix of compressed sensing, and s̄ ∈ R

M×1 is
the obtained compressed vector. In fact, the compressed vector s̄ is equivalent to
the feature vector s̃ in(1) if the number of rows of dictionary matrix is designed
as K, i.e., K = M . However, the design of dictionary matrix A is based on
the sparsity of vec(D), and the quality of image recovery decreases without
Restricted Isometry Property (RIP)-like conditions. To this end, a network of
encoder with one linear layer can be used to implement the compression of image
in (7). The encoder is

fen,θ � A(Ψ ⊗ Ψ) � Λ ∈ R
K×N . (8)

Note that the input of decoder based on (2) can be expressed as

ỹ = s + z̃, (9)

where ỹ = y/h and z̃ = z/h. Then the recovery image is given by

x̂ = fde,ϕ(s + z̃). (10)
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Fig. 3. The proposed network of classifier for semantic communication.

Based on the encoder presented in (8), the input of decoder can be re-written
as

ỹ = Λvec(X) + z̃, (11)

which is a linear expression of original image. Applying the linear MMSE, we
have

vec(X̂) =
(

ΛT Λ +
σ2

|h|2 IK

)−1

ΛT ỹ � Ωỹ. (12)

It is important to point out that the linear transformation matrixes Λ and
Ω are unknown and difficult to design. Thus, we use the linear layer to achieve
image recovery in our proposed networks.

3.2 Network Structures of Classifier

The purpose of deploying classifier at the receiving end of semantic communi-
cation is to quickly and intelligently recognize the meaning of the transmitted
information. In fact, it requires the receiver equipped with a classifier to classify
the received information. To this end, we proposed a classifier network, which
consists of 4 convolution blocks, Lambda layer, Flatten layer and fully connected
layer, as shown in Fig. 3. Each convolution block consists of several key compo-
nents, including a 3×3 convolution with stride 1 and padding 1, a regularization
layer, a Relu activation function, and a maximum pooling layer. The function of
these convolutional blocks is to better extract the features of the input image.
Through the extraction layer by layer, different information in the image can be
captured. After four convolution blocks are processed, the information enters the
Lambda layer. The Lambda layer is used for mean pooling of features to calculate
the mean value of each channel. This action helps to further reduce the dimension
of the feature while effectively preserving important information. After process-
ing by the Flatten layer, the features are flattened into one-dimensional vectors
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for easy feeding into the fully connected layer. The function of the Flatten layer
is to convert the features extracted from the convolution layer into a suitable
form for processing by the fully connected layer such that the classification task
can be better performed. Finally, the feature is passed to the fully connected
layer, which classifies and maps the input features to each class’s probability
distribution. By training the fully connected layer’s parameters, the classifier
accurately determines the image’s category based on the input features.

3.3 Model Training

For the model training, we use meta-learning framework to train the transmission
network and the classifier network. In particular, the meta-learning of semantic
communication system is divided into the meta-training stage and the meta-
adaptation stage.

1) Meta-training stage: The training can be divided into inner-loop stage
and outer-loop stage. The inner-loop stage is the semantic codec performing
gradient descent for the loss of a specific task. And the outer-loop is updating
the randomly initialized model parameters by calculating the gradient relative to
the optimal parameters in each new task. It is assumed that there are I tasks. The
task Ti, i = 1, 2, · · · , I, has a training set Dtr

i and a validation set Dval
i . For the

inner-loop phase, task Ti updates its model parameters by randomly sampling K
samples (K is a small integer) according to its own specific task. Specifically, the
encoder generates few low-dimensional feature vectors s̃i,j , j = 1, 2, · · · ,K, from
the input of training set Dtr

i in task Ti, and then gets yi,j after normalization
through fading channels. The decoder reconstructs an image similar to the input
image through the decoder network. Then the loss of the original image and the
generated image is

Ltr
i = DMSE(Xtr

i , X̂tr
i ), (13)

where Xtr
i and X̂tr

i are the image of the i-th task and the reconstructed image,
respectively. In addition, D denotes the mean square error (MSE) of Xtr

i and
X̂tr

r . Then, task Ti uses Ltr
i to perform gradient descent. The parameter update

of the i-th task can be expressed as

ψ′(θ′, ϕ′) ←
{

θ′
i ← θi − α arg min ∇θLtr

i ,

ϕ′
i ← ϕi − α arg min ∇ϕLtr

i ,
(14)

where α is the learning rate of the inner-loop. Furthermore, task Ti uses the
updated model parameters ψ′(θ′, ϕ′) to find the loss between the reconstructed
image and the original image on validation set Dval

i , which is given by

Lval
i = DMSE(Xval

i , X̂val
i ), (15)

where Xval
i and X̂val

i are the image of the i-th task and the reconstructed image,
respectively. After completing the above inner-loop, we get the loss Lval

i for
i = 1, 2, · · · I. For the outer-loop, the sum losses is
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Algorithm 1. Model training and data adaptation of semantic communication
Meta-training Stage: Train semantic encoders and decoders
Input: Training Ti, i = 1, 2...I, tasks, where the batch size is K
1: Initialize:randomly initialize ψ(θ, ϕ)
2: while not done do
3: for all Ti do
4: Sample K data xi,j ∈ Dtr

i (j = 1, 2, · · · , K) for train task Ti

5: Encoding: s̃i,j = fen,θ(xi,j)
6: Decoding: x̂i,j = fde,ϕ(yi,j)
7: Evaluate arg min ∇θLtr

i using Dtr
i

8: Compute train parameters ψ′(θ′, ϕ′) with gradient decent
9: Feed ψ′(θ′, ϕ′) back to the network for encoder and decoder

10: Get the loss Lval
i for task Ti with data Dval

i

11: end for
12: Update ψ(θ, ϕ) by equation (16) and feed it back to the encoder and decoder
13: end while
Meta-adaptation Stage: The trained encoder and decoder are deployed at the trans-

mitter and receiver, respectively
Input: a new task B, the adaptive number of iterations is U , few samples for update

the transmission model, the trained ψ(θ, ϕ) in Meta training stage
14: for u = 1, 2, · · · , U do
15: The transmitter encodes the new sample similar to line 5
16: The receiver decodes the information similar to line 6
17: The receiver evaluates arg min ∇θLtr similar to line 7 and computes ψ′(θ′, ϕ′)

similar to line 8
18: Parameter ψ′(θ′, ϕ′) is feed back to the transmitter from the receiver
19: Get the loss Lval similar to line 10
20: end for
21: Update ψ̂(θ̂, ϕ̂) and feed it back to the transmitter

ψ(θ, ϕ) ←
{

θ ← θ − β arg min ∇θ

∑I
i=1 Lval

i ,

ϕ ← ϕ − β arg min ∇ϕ

∑I
i=1 Lval

i ,
(16)

where β is the learning rate of the outer-loop.
2) Meta-adaptation stage: The meta-learning training method based on

parameter optimization aims to make the model have the ability to quickly
adapt to the new task B. When the meta training is over, we deploy the encoder
and decoder at the transmitter and receiver, respectively. Specifically, the data
of new task is also divided into training sets Dtr and validation sets Dval, which
enter the encoder for feature extraction through (1). The transmitter transmits
the obtained signal (2) through the fading channel to the receiver. Furtherly, the
loss (13) is obtained between the data reconstructed by decoding the decoder and
the original data in Dtr. The meta-learner which in receiver updates the param-
eters of the encoder and decoder according to the loss as shown in (14) and sends
them back to the encoder and decoder. The transmitter and the receiver use the
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data from the validation set Dval to obtain the loss shown in (15). The parame-
ters are then updated and transmitted back to the transmitter. The parameters
of the new task are updated by

ψ̂(θ̂, ϕ̂) ←
{

θ̂ ← θ̂ − β arg min ∇θ̂Lval,

ϕ̂ ← ϕ̂ − β arg min ∇ϕ̂Lval.
(17)

When the training converges, the encoder and decoder are able to compress and
recover the new data. An update that usually takes only a few times. Model
training and data adaptation of proposed semantic communication network is
shown in Algorithm 1. Since the training of the classifier model also uses MAML
algorithm, the training process of the classifier with cross entropy loss function
is not introduced here.

4 Experimental Results

In this section, we verify the reconstruction performance and classification accu-
racy of semantic communication systems under various data sets, including
MNIST, KMNIST, FasionMNIST, Omniglot, CIFAR-10 and STL-10. In addi-
tion, we evaluate the adaptive ability of the proposed networks, i.e., the model
reconstructs data that was not used during training.

Fig. 4. Reconstruction results of MNIST over fading channel, where SNR = 10 dB.

Fig. 5. Reconstruction performance of different single-channel data sets over fading
channels, where SNR = 10 dB.
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4.1 Image Recovery

To validate the experimental performance of the proposed network for image
restoration, we conducted tests using the MNIST dataset first, which comprises
a training set of 60000 handwritten numerical images and a test set of 10000
samples. Each sample in grayscale format is a 28 × 28 pixels image associated
with a label representing the correct identification of the handwritten number
shown. The MNIST data set has been pre-processed and normalized to ensure
that all images have a consistent size and orientation. The CR is defined as
the ratio of the length of the feature vector to the total number of pixels in
the original image. In semantic communication system, the feature vector passes
through the Rayleigh fading channel after compression, and finally, the signal is
transmitted to the decoder for reconstruction.

As shown in Fig. 4, the reconstruction results are presented for MNIST data
set with CR from 0.1 to 0.9, where SNR = 10 dB. We compare the image recovery
performance of different data sets in Fig. 5, including KMNIST, FasionMNIST
and Omniglot data set. The variation trend of PSNR with the compression ratio
is shown in Fig. 6. It can be observed that the PSNR increases with the increase
of CR. Because the pixels of the original image are different, the PSNRs of image
recovery are different at the same CR.

In Fig. 7, PSNR comparison of different methods are presented for MNIST
data set, including Autoencoder (AE) with only linear layers, AE with convolu-
tional layers, Variational Autoencoder (VAE), and GAN-Data Adaptation Net-
works [12]. It can be seen that the proposed network has better reconstruction
result than VAE and data transfer learning. Meanwhile, we can obtain similar
PSNRs between AE based on convolutional neural network and our network. But
the simpler network structure of our method results in lower network overhead
for model update feedback.

Fig. 6. PSNRs of different data sets over
fading channel, where SNR = 10 dB.

Fig. 7. Comparison of different methods
over fading channel, where SNR = 10 dB.
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Fig. 8. Reconstructions of CIFAR-10 and STL-10 over fading channels, where SNR =
10 dB.

4.2 Data Adaptation

In this subsection, the main focus is to validate the adaptive capability of the
semantic communication model. Specifically, we first train the model using the
CIFAR-10 dataset, which consists of 60000 color images in 3 × 32 × 32 format.
These images are divided into 10 different categories, including cats, dogs, air-
planes, trucks, and more, with each category containing 6000 images. Then, we
test the model using the STL-10 dataset, which has different distribution com-
pared to CIFAR-10. The images in these datasets are source from real-world
photos and aim to reflect the diversity and complexity of real-life scenes.

We use a 5-ways, 1-shot training setup, i.e., there are 5 categories in the
training set, and each category has only one sample. This means that the model
needs to learn from just one sample in each category and be able to correctly
reconstruct other untrained samples during the testing phase. In the training

Fig. 9. Classification accuracy.
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stage, we randomly divided CIFAR-10 into 32 subtasks, each of which contains
5 categories and only one sample for each category. The gradient update of
the model is carried out by MAML algorithm. During the test phase, we use
the model trained by CIFAR-10 to reconstruct STL-10 data. Figure 8 (a) shows
the reconstruction effect of the model on CIFAR-10. Figure 8 (b) shows the
adaptive effect of the model on STL-10 as new data. It can be seen that the
model can reconstruct relatively clear pictures for both CIFAT-10 and STL-10.
In particular, STL-10 as new data without training can be reconstructed by the
proposed networks.

4.3 Classification Task

It should be noted that the classifier used is a pre-trained model. In order to
make the classifier have strong generalization ability, the classifier training is
also trained by MAML algorithm. This allows the trained classifier to directly
classify images reconstructed by the transmit network. It verifies that the image
reconstructed can be used to perform a specific tasks (such as classification tasks)
in the semantic communication system. Figure 9 shows the accuracy of classi-
fication task over MNIST and CIFAR-10 data sets reconstructed by transmit
network. It can be seen that the classification accuracy of MNIST can reach
0.78, and the classification accuracy of CIFAR-10 can reach 0.51 for CR = 0.1
and SNR = 10 dB. When the CR is 0.5, the reconstructed image can achieve a
better classification accuracy, which indicates that the semantic communication
system can capture the semantic content of the image rather than completely
retain every detail of the original image.

5 Conclusion

We have considered an end-to-end semantic communication system in this paper.
A simple linear network was designed for encoder and decoder based on the spe-
cial sparse structure of image in a linear space. The proposed network extracted
the feature of image for wireless transmission, and the decoder recovered the
image based on the noise version of feature. In addition, a classifier was designed
for performing special intelligent tasks with the recovery image. To further adapt
new communication data, the proposed network was trained in Meta learning
framework with few feedback from receiver to transmitter. The obtained results
show that the proposed networks of semantic communication have a superior
performance of image compression transmission over fading channels compared
with the existing semantic communication systems.
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