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Abstract. Neuro-symbolic AI attempts to integrate neural and symbolic archi-
tectures in a manner that addresses strengths and weaknesses of each, in a com-
plementary fashion, in order to support robust strong AI capable of reasoning,
learning, and cognitive modeling. In this paper we consider the intensional First
Order Logic (IFOL) [1] as a symbolic architecture of modern robots, able to use
natural languages to communicate with humans and to reason about their own
knowledge with self-reference and abstraction language property.

We intend to obtain the grounding of robot’s language by experience of how
it uses its neuronal architectures and hence by associating this experience with
the mining (sense) of non-defined language concepts (particulars/individuals and
universals) in PRP (Properties/Relations/Propositions) theory of IFOL.

We consider the robot’s four-levels knowledge structure: The syntax level of
particular natural language (Italian, French, etc.), two universal language levels:
its semantic logic structure (based on virtual predicates of FOL and logic connec-
tives), and its corresponding conceptual PRP structure level which universally
represents the composite mining of FOL formulae grounded on the last robot’s
neuro-system level.

Finally, we provide the general method how to implement in IFOL (by using
the abstracted terms) different kinds of modal logic operators and their deductive
axioms: we present a particular example of robots autoepistemic deduction capa-
bilities by introduction of the special temporal Konow predicate and deductive
axioms for it: reflexive, positive introspection and distributive axiom.

1 Introduction

The central hypothesis of cognitive science is that thinking can best be understood
in terms of representational structures in the mind and computational procedures that
operate on those structures. Most work in cognitive science assumes that the mind has
mental representations analogous to computer data structures, and computational pro-
cedures similar to computational algorithms.

Main stream machine learning research on deep artificial neural networks may even
be characterized as being behavioristic. In contrast, various sources of evidence from
cognitive science suggest that human brains engage in the active development of com-
positional generative predictive models from their self-generated sensorimotor expe-
riences. Guided by evolutionarily-shaped inductive learning and information process-
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ing biases, they exhibit the tendency to organize the gathered experiences into event-
predictive encodings. Meanwhile, they infer and optimize behavior and attention by
means of both epistemic- and homeostasis-oriented drives.

Knowledge representation, strongly connected to the problem if knowledge process-
ing, reasoning and “drawing inferences”, is one of the main topics in AI. By reviewing
the knowledge representation techniques that have been used by humans we will be
aware of the importance of language. The predominant part of IT industry and user’s
applications is based on some sublanguage of the standard (extensional) FOL (First
Order Logic) with Tarski’s semantics based (only) on the truth; my effort is to pass to a
more powerful evolution of the FOL able to support the meaning of knowledge as well,
by replacing the standard FOL and its DB theory and practice in IT business. All this
work is summarized and extended also to AI applications of many-valued logics in my
recent book [1].

Last 15 years of my work in AI was mainly dedicated to development of a new
intensional FOL, by integrating Montague’s and algebraic Bealer’s [2] approaches, with
a conservative Tarski’s semantics of the standard FOL. Basic result was the publication
of the conservative extension of Tarski’s semantics to intensional FOL [3], and two-step
intensional semantics [4], which guaranteed a conservative extension of current RDB,
but more than 50-years old technology, toward new IRDB (Intensional RDB). Indeed,
in my next Manifesto of IRDB [5], I hoped also to find interested research groups and
funds to begin the realization of IRDB as a new platform (compatible with all previously
developed RDB application), able also to support NewSQL for Big Data, and ready for
other AI improvements.

This paper is an extension (by Section 4) of the paper [6]. It is dedicated to show
how this defined IFOL in [1] can be used for a new generation of intelligent robots,
able to communicate with humans with this intensional FOL supporting the meaning
of the words and their language compositions. As in [7] we can consider three natural
language levels: The syntax of a particular natural language (French, English, etc.) its
semantic logic structure (transformation of parts of the language sentences into the
logic predicates and definition of corresponding FOL formulae) and its corresponding
conceptual structure, which differently from the semantic layer that represents only
the logic’s semantics, represents the composed meaning of FOL formulae based on the
grounding of intensional PRP concepts.

Thus, intensional mapping from the free FOL syntax algebra into the algebra of
intensional PRP concepts,

I : AFOL → Aint

provided by IFOL theory, is a part of the semantics-conceptual mapping of natural
languages. Note that differently from the particularity of any given natural language of
humans, the underlying logical semantics and conceptual levels have universal human
knowledge structure, provided by innate human brain structure able to rapidly acquire
the ability to use any natural language.

Parsing, tokenizing, spelling correction, part-of-speech tagging, noun and verb
phrase chunking are all aspects of natural language processing long handled by sym-
bolic AI, and has to be improved by deep learning approaches. In symbolic AI, dis-
course representation theory and first-order logic have been used to represent sentence
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meanings. We consider that the natural language (first level) can be parsed into a logical
FOL formula with a numbers of virtual predicates and logic connectives of the FOL. By
such a parsing we obtain the second, semantic logic, structure corresponding to some
FOL formula. However, natural language is grounded in experience. Humans do not
always define all words in terms of other words, humans understand many basic words
in terms of associations with sensory-motor experiences for example. People must inter-
act physically with their world to grasp the essence of words like “blue”, “could”, and
“left”. Abstract words are acquired only in relation to more concretely grounded terms.

Theoretical neuroscience is the attempt to develop mathematical and computational
theories and models of the structures and processes of the brains of humans and other
animals. If progress in theoretical neuroscience continues, it should become possible to
tie psychological to neurological explanations by showing how mental representations
such as concepts are constituted by activities in neural populations, and how computa-
tional procedures such as spreading activation among concepts are carried out by neural
processes. Concepts, which partly correspond to the words in spoken and written lan-
guage, are an important kind of mental representation.

Alan Turing developed the Turing Test in 1950 in his paper, “Computing Machin-
ery and Intelligence”. Originally known as the Imitation Game, the test evaluates if
a machine’s behavior can be distinguished from a human. In this test, there is a per-
son known as the “interrogator” who seeks to identify a difference between computer-
generated output and human-generated ones through a series of questions. If the inter-
rogator cannot reliably discern the machines from human subjects, the machine passes
the test. However, if the evaluator can identify the human responses correctly, then this
eliminates the machine from being categorized as intelligent.

Differently from the simulation of AI by such Turing tests and the Loebner Prize1

and in accordance with Marvin Minsky2, in this paper I argue that a real AI for robots
can be obtained by using formal Intensional FOL (with defined intensional algebra of
intensions of language constructions) for the robots as their symbolic AI component,
by defining the sense to ground terms (the words) in an analog way, associating to these
words the software processes developed for the robots when they recognize by these

1 The Loebner Prize was an annual competition in artificial intelligence that awards prizes to the
computer programs considered by the judges to be the most human-like. The prize is reported
as defunct since 2020 [1]. The format of the competition was that of a standard Turing test.
In each round, a human judge simultaneously holds textual conversations with a computer
program and a human being via computer. Based upon the responses, the judge must decide
which is which.

2 In the early 1970s, at the MIT Artificial Intelligence Lab, Minsky and Papert started develop-
ing what came to be known as the Society of Mind theory. The theory attempts to explain how
what we call intelligence could be a product of the interaction of non-intelligent parts. Minsky
says that the biggest source of ideas about the theory came from his work in trying to create
a machine that uses a robotic arm, a video camera, and a computer to build with children’s
blocks. In 1986, Minsky published The Society of Mind, a comprehensive book on the theory
which, unlike most of his previously published work, was written for the general public.
In November 2006, Minsky published The Emotion Machine, a book that critiques many popu-
lar theories of how human minds work and suggests alternative theories, often replacing simple
ideas with more complex ones.
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algorithms (neural architectures) the color “blue” of visual objects, the position “left”
etc.. In this way we would obtain a neuro-symbolic AI which attempts to integrate neural
and symbolic architectures in a manner that addresses strengths and weaknesses of each,
in a complementary fashion, in order to support robust AI capable of reasoning, learn-
ing, and cognitive modeling. To build a robust, knowledge-driven approach to AI we
must have the machinery of symbol-manipulation as, in this case, an IFOL. Too much
of useful knowledge is abstract to make do without tools that represent and manipulate
abstraction, and to date, the only machinery that we know of that can manipulate such
abstract knowledge reliably is the apparatus of symbol-manipulation. The IFOL defined
in [1] is provided by abstraction operators as well.

Daniel Kahneman [8] describes human thinking as having two components, Sys-
tem 1 and System 2. System 1 is fast, automatic, intuitive and unconscious. System 2
is slower, step-by-step, and explicit. System 1 is the kind used for pattern recognition
while System 2, in uor case based on IFOL, is far better suited for planning, deduc-
tion, and deliberative thinking. In this view, deep learning best models the first kind of
thinking while symbolic reasoning best models the second kind and both are needed.

So, for the words (ground linguistic terms), which can not be “defined by other
words”, the robots would have some own internal experience of the concrete sense of
them. Thus, by using intensional FOL the robots can formalize also the natural lan-
guage expressions “I see the blue color” by a predicate “see(I, blue color)” where the
sense of the ground term “I” (Self )3 for a robot is the name of the main working coor-
dination program which activate all other algorithms (neuro-symbolic AI subprograms)
like visual recognition of color of the object in focus. But also the auto-conscience sen-
tence like “I know that I see the blue color” by using abstracting operators “� �” of
intensional FOL, expressed by the predicate “know(I, � see(I, blue color)�)”, etc..

Consequently, we argue that by using this intensional FOL, the robots can develop
their own knowledge about their experiences and communicate by a natural language
with humans. So, we would be able to develop the interactive robots which learn and
understand spoken language via multisensory grounding and internal robotic embodi-
ment.

The grounding of the intensional concepts i PRP theory of intensional logic was not
considered in my recent book [1] from the fact that this book was only restricted on
the symbolic AI aspects (IFOL); so by this paper we extend the logic theory developed
in [1] with concrete grounding of its intensional concepts in order to obtain a strong
AI for robots. So, in next Section we will provide a short introduction to IFOL and its
intensional/extensional semantics [1].

2 Algebra for Composition of Meanings in IFOL

Contemporary use of the term “intension” derives from the traditional logical doctrine
that an idea has both an extension and an intension. Although there is divergence in
formulation, it is accepted that the extension of an idea consists of the subjects to which

3 Self in a sense which implies that all our activities are controlled by powerful creatures inside
ourselves, who do our thinking and feeling for us.
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the idea applies, and the intension consists of the attributes implied by the idea. In con-
temporary philosophy, it is linguistic expressions (here it is a logic formula), rather than
concepts, that are said to have intensions and extensions. The intension is the concept
expressed by an expression of intensional algebra Aint, and the extension is the set
of items to which the expression applies. This usage resembles use of Frege’s use of
“Bedeutung” and “Sinn” [9].

Intensional entities (or concepts) are such things as Propositions, Relations and
Properties (PRP). What make them “intensional” is that they violate the principle of
extensionality; the principle that extensional equivalence implies identity. All (or most)
of these intensional entities have been classified at one time or another as kinds of Uni-
versals [10].

In a predicate logics, (virtual) predicates expresses classes (properties and relations),
and sentences express propositions. Note that classes (intensional entities) are reified,
i.e., they belong to the same domain as individual objects (particulars). This endows
the intensional logics with a great deal of uniformity, making it possible to manipulate
classes and individual objects in the same language. In particular, when viewed as an
individual object, a class can be a member of another class.

Definition 1. VIRTUAL PREDICATES: Virtual predicate obtained from an open formula
φ ∈ L is denoted by φ(x1, ..., xm) where (x1, ..., xm) is a particular fixed sequence of
the set of all free variables in φ. This definition contains the precise method of estab-
lishing the ordering of variables in this tuple: such an method that will be adopted here
is the ordering of appearance, from left to right, of free variables in φ. This method of
composing the tuple of free variables is unique and canonical way of definition of the
virtual predicate from a given open formula.

The virtual predicates are useful also to replace the general FOL quantifier on
variables (∃x) by specific quantifiers ∃i of the FOL syntax algebra AFOL, where i ≥ 1
is the position of variable x inside a virtual predicate. For example, the standard FOL
formula (∃xk)φ(xi, xj , xk, xl, xm) will be mapped into intensional concept ∃3φ(x) ∈
AFOL where x is the list(tuple) of variables (xi, xj , xk, xl, xm).

Virtual predicates are atoms used to build the semantic logic structures of logic-
semantics level of any given natural language.

Let us define the FOL syntax algebra AFOL.
For example, the FOL formula φ(xi, xj , xk, xl, xm)∧ψ(xl, yi, xj , yj) will be replaced
by a specific virtual predicate φ(xi, xj , xk, xl, xm) ∧S ψ (xl, yi, xj , yj), with the set
of joined variables (their positions in the first and second virtual predicate, respec-
tively) S = {(4, 1), (2, 3)}, so that its extension is expressed by an algebraic expression
R1 ��S R2, where R1, R2 are the extensions for a given Tarski’s interpretation IT of
the virtual predicate φ, ψ relatively, and the binary operator ��S is the natural join
of these two relations. In this example the resulting relation will have the following
ordering of attributes: (xi, xj , xk, xl, xm, yi, yj). In the case when S is empty (i.e. its
cardinality |S| = 0) then the resulting relation is the Cartesian product of R1 and R2.
For the existential quantification, the FOL formula (∃xk)φ(xi, xj , xk, xl, xm) will be
replaced in AFOL by a specific virtual predicate (∃3)φ(xi, xj , xk, xl, xm). For logic
negation operator we will use the standard symbol ¬.
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Based on the new set of logical connectives introduced above, where the standard
FOL operators ∧ and ∃ are substituted by a set of specialized operators {∧S}S∈P(N2)

and {∃n}n∈N as explained above, we can define the following free syntax algebra for
the FOL:

Definition 2. FOL SINTAX ALGEBRA:
Let AFOL = (L,

.=,�, {∧S}S∈P(N2),¬, {∃n}n∈N) be an extended free syntax algebra
for the First-order logic with identity

.=, with the set L of first-order logic formulae
with the set of variables in V , with � denoting the tautology formula (the contradiction
formula is denoted by ⊥ ≡ ¬�).

We begin with the informal theory that universals (properties (unary relations), rela-
tions, and propositions in PRP theory [11]) are genuine entities that bear fundamental
logical relations to one another. To study properties, relations and propositions, one
defines a family of set-theoretical structures, one define the intensional algebra, a fam-
ily of set-theoretical structures most of which are built up from arbitrary objects and
fundamental logical operations (conjunction, negation, existential generalization,etc.)
on them.

Definition 3. INTENSIONAL LOGIC PRP DOMAIN D:
In intensionl logic the concepts (properties, relations and propositions) are denotations
for open and closed logic sentences, thus elements of the structured domain D =
D−1 + DI , (here + is a disjoint union) where

– A subdomain D−1 is made of particulars (individuals).
– The rest DI = D0 +D1...+Dn... is made of universals (concepts)4: D0 for propo-
sitions with a distinct concept Truth ∈ D0, D1 for properties (unary concepts) and
Dn, n ≥ 2, for n-ary concept.

The concepts in DI are denoted by u, v, ..., while the values (individuals) in D−1

by a, b, ... The empty tuple <> of the nullary relation r∅ (i.e. the unique tuple of
0-ary relation) is an individual in D−1, with D0 =def {<>}. Thus, we have that
{f, t} = P(D0) ⊆ P(D−1), where by f and t we denote the empty set ∅ and set
{<>} respectively.

The intensional interpretation is a mapping between the set L of formulae of the
FOL and intensional entities in D, I : L → D, is a kind of “conceptualization”,
such that an open-sentence (virtual predicate) φ(x1, ..., xk) with a tuple of all free
variables (x1, ..., xk) is mapped into a k-ary concept, that is, an intensional entity
u = I(φ(x1, ..., xk)) ∈ Dk, and (closed) sentence ψ into a proposition (i.e., logic
concept) v = I(ψ) ∈ D0 with I(�) = Truth ∈ D0 for the FOL tautology � ∈ L
(the falsity in the FOL is a logic formula ¬� ∈ L). A language constant c is mapped
into a particular a ∈ D−1 (intension of c) if it is a proper name, otherwise in a corre-
spondent concept u in DI . Thus, in any application of intensional FOL, this intensional
interpretation that determines the meaning (sense) of the knowledge expressed by logic

4 In what follows we will define also a language of concepts with intensional connectives defined
as operators of the intensional algebra Aint in Definition 6, so that DI is the set of terms of
this intensional algebra.
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formulae is uniquely determined (prefixed) (for example, by a grounding on robot’s
neuro system processes, explained in next section).

However, the extensions of the concepts (with this prefixed meaning) vary from a
context (possible world, expressed by an extensionalization function) to another context
in a similar way as for different Tarski’s interpretations of the FOL:

Definition 4. EXTENSIONS AND EXTENSIONALIZATION FUNCTIONS:
Let R =

⋃
k∈N

P(Dk) =
∑

k∈N
P(Dk) be the set of all k-ary relations, where k ∈

N = {0, 1, 2, ...}. Notice that {f, t} = P(D0) ⊆ R, that is, f, t ∈ R and hence the
truth values are extensions in R.

We define the function f<> : R → R, such that for any R ∈ R,

f<>(R) =def {<>} if R �= ∅; ∅ otherwise (1)

The extensions of the intensional entities (concepts) are given by the set E of extension-
alization functions h : D → D−1 + R, such that

h = h−1 + h0 +
∑

i≥1

hi :
∑

i≥−1

Di −→ D−1 + {f, t} +
∑

i≥1

P(Di) (2)

where h−1 : D−1 → D−1 for the particulars, while h0 : D0 → {f, t} = P(D0)
assigns the truth values in {f, t} to all propositions with the constant assignment
h0(Truth) = t = {<>}, and for each i ≥ 1, hi : Di → P(Di) assigns a rela-
tion to each concept.

Consequently, intensions can be seen as names (labels) of atomic or composite
concepts, while the extensions correspond to various rules that these concepts play in
different worlds.

The intensional entities for the same logic formula, for example x2 + 3 = x2
1 − 4,

which can be denoted by φ(x2, x1) or φ(x1, x2), from above we need to differentiate
their concepts by I(φ(x2, x1)) �= I(φ(x1, x2)) because otherwise we would obtain
erroneously that h(I(φ(x2, x1))) = h(I(φ(x1, x2))). Thus, in intensional logic the
ordering in the tuple of variables x in a given open formula φ is very important, and
explains why we introduced in FOL the virtual predicates in Definition 1.

Definition 5. Let us define the extensional relational algebra for the FOL by,

AR = (R, R=, {<>}, {��S}S∈P(N2),∼, {π−n}n∈N),

where {<>} ∈ R is the algebraic value correspondent to the logic truth, R= is the
binary relation for extensionally equal elements, with the following operators:

1. Binary operator ��S : R×R → R, such that for any two relationsR1, R2 ∈ R , the
R1 ��S R2 is equal to the relation obtained by natural join of these two relations
if S is a non empty set of pairs of joined columns of respective relations (where the
first argument is the column index of the relation R1 while the second argument is
the column index of the joined column of the relation R2); otherwise it is equal
to the cartesian product R1 × R2.
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2. Unary operator ∼: R → R, such that for any k-ary (with k ≥ 1) relation R ∈
P(Dk) ⊂ R we have that ∼ (R) = Dk\R ∈ P(Dk), where ‘\’ is the substraction
of relations. For u ∈ {f, t} = P(D0) ⊆ R, ∼ (u) = D0\u.

3. Unary operator π−n : R → R, such that for any k-ary (with k ≥ 1) relation R ∈
P(Dk) ⊂ R we have that π−n(R) is equal to the relation obtained by elimination
of the n-th column of the relation R if 1 ≤ n ≤ k and k ≥ 2; equal to, from (1),
f<>(R) if n = k = 1; otherwise it is equal to R.

We will use the symbol ‘=’ for the extensional identity for relations in R.

The intensional semantics of the logic language with the set of formulae L can be
represented by the mapping

L −→I D =⇒h∈E R,

where −→I is a fixed intensional interpretation I : L → D with image im(I) ⊂ D,
and =⇒h∈E is the set of all extensionalization functions h : im(I) → D−1 +R in E .

So, we can define only the minimal intensional algebra (with minimal number of
operators) Aint of concepts, able to support the homomorphic extension

h : Aint → AR

of the extensionalization function h : D → D−1 + R.

Definition 6. BASIC INTENSIONAL FOL ALGEBRA:
Intensional FOL algebra is a structure

Aint = (D, Id, T ruth, {conjS}S∈P(N2), neg, {existsn}n∈N),

with binary operations conjS : DI × DI → DI , unary operation neg : DI → DI ,
and unary operations existsn : DI → DI , such that for any extensionalization
function h ∈ E , and u ∈ Dk, v ∈ Dj , k, j ≥ 0,

1. h(Id) = R= and h(Truth) = {<>}, for Id = I( .= (x, y)) and Truth = I(�).
2. h(conjS(u, v)) = h(u) ��S h(v), where ��S is the natural join operation and

conjS(u, v) ∈ Dm where m = k + j −|S| if for every pair (i1, i2) ∈ S it holds that
1 ≤ i1 ≤ k, 1 ≤ i2 ≤ j (otherwise conjS(u, v) ∈ Dk+j).

3. h(neg(u)) = ∼ (h(u)) = Dk\(h(u)) (the complement of k-ary relation h(u) in
Dk), if k ≥ 1, where neg(u) ∈ Dk. For u0 ∈ D0, h(neg(u0)) = ∼ (h(u0)) =
D0\(h(u0)).

4. h(existsn(u)) = π−n(h(u)), where π−n is the projection operation which elimi-
nates n-th column of a relation and existsn(u) ∈ Dk−1 if 1 ≤ n ≤ k (otherwise
existsn is the identity function).

Notice that for u, v ∈ D0, so that h(u), h(v) ∈ {f, t},

h(neg(u)) = D0\(h(u)) = {<>}\(h(u)) ∈ {f, t}, and
h(conj∅(u, v)) = h(u) ��∅ h(v) ∈ {f, t}.
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We define a derived operation union : (P(Di)\∅) → Di, i ≥ 0, such that, for any
B = {u1, ..., un} ∈ P(Di) and S = {(l, l) | 1 ≤ l ≤ i} we have that

union({u1, ..., un}) =
{

u1, if n = 1
neg(conjS(neg(u1), conjS(neg(u2), ..., neg(un))...), otherwise

(3)
Than we obtain that for n ≥ 2:

h(union(B)) = h(neg(conjS(neg(u1), conjS(neg(u2), ..., neg(un))...)
= Di\((Di\h(u1)) ��S ... ��S (Di\h(un)))= Di\((Di\h(u1))

⋂
...

⋂

(Di\h(un)))
=

⋃
{h(uj) | 1 ≤ j ≤ n}, that is,

h(union(B)) =
⋃

{h(u) | u ∈ B} (4)

Note that it is valid also for the propositions in u1, u2 ∈ D0, so that h(union(u1, u2))
= h(u1)

⋃
h(n2) ∈ {f, t} where f is empty set ∅ while t is a singleton set {<>} with

empty tuple <>, and hence the join {<>} �� ∅ = ∅ and {<>} �� {<>} = {<>}.
Thus, we define the following homomorphic extension

I : AFOL → Aint

of the intensional interpretation I : L → D for the formulae in syntax algebra AFOL

from Definition 2:

1. The logic formula φ(xi, xj , xk, xl, xm) ∧S ψ(xl, yi, xj , yj) will be intension-
ally interpreted by the concept u1 ∈ D7, obtained by the algebraic expression
conjS(u, v) where u = I(φ(xi, xj , xk, xl, xm)) ∈ D5, v = I(ψ(xl, yi, xj , yj)) ∈
D4 are the concepts of the virtual predicates φ, ψ, relatively, and S =
{(4, 1), (2, 3)}. Consequently, we have that for any two formulae φ, ψ ∈ L and
a particular operator conjS uniquely determined by tuples of free variables in these
two formulae, I(φ ∧S ψ) = conjS(I(φ), I(ψ)).

2. The logic formula ¬φ(xi, xj , xk, xl, xm) will be intensionally interpreted by the
concept u1 ∈ D5, obtained by the algebraic expression neg(u) where u is the con-
cept of the virtual predicate φ, u = I(φ(xi, xj , xk, xl, xm)) ∈ D5. Consequently,
we have that for any formula φ ∈ L, I(¬φ) = neg(I(φ)).

3. The logic formula (∃3)φ(xi, xj , xk, xl, xm) will be intensionally interpreted by
the concept u1 ∈ D4, obtained by the algebraic expression exists3(u) where
u = I(φ(xi, xj , xk, xl, xm)) ∈ D5 is the concept of the virtual predicate φ. Con-
sequently, we have that for any formula φ ∈ L and a particular operator existsn

uniquely determined by the position of the existentially quantified variable in the
tuple of free variables in φ (otherwise n = 0 if this quantified variable is not a free
variable in φ), I((∃n)φ) = existsn(I(φ)).
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So, we obtain the following two-steps interpretation of FOL based on two homomor-
phisms, intensional I , and extensional h:

Aint (concepts/meaning)

intensional interpret. I Frege/Russell

semantics
h (extensionalization)

AFOL (syntax) AR (denotation)
(5)

We can enrich the expressivity of such a minimal FOL intensionality by new modal
operators, or in different way provided in what follows. As, for example, in Bealer’s
intensional FOL, where he introduced the intensional abstraction operator, which will
be considered in rest of this section, as a significant enrichment of the intensional FOL
considered above.

In reflective languages, reification data is causally connected to the related reified
aspect such that a modification to one of them affects the other. Therefore, the reification
data is always a faithful representation of the related reified aspect. Reification data is
often said to be made a first class object. In programming language design, a first-class
citizen (also type, object, entity, or value) in a given programming language is an entity
which supports all the operations generally available to other entities. These operations
typically include being passed as an argument, returned from a function, modified, and
assigned to a variable. The concept of first and second-class objects was introduced by
Christopher Strachey in the 1960s when he contrasted real numbers (first-class) and
procedures (second-class) in ALGOL.

In FOL we have the variables as arguments inside the predicates, and terms
which can be assigned to variables are first-class objects while the predicates are the
second-class objects. When we transform a virtual predicate into a term, by using
intensional abstraction operator, we transform a logic formula into the first class
object to be used inside another predicates as first-class objects. Thus, abstracted
terms in the intensional FOL are just such abstracted terms as reification of logic
formulae. For example, the sentence “Marco thinks that Zoran runs”, expressed by
thinks(Marco, �runs(Zoran)�) by using binary predicate thinks and unary predi-
cate runs where the ground atom runs(Zoran) is reified into the predicate thinks.

If φ(x) is a formula (virtual predicate) with a list (a tuple) of free variables in
x = (x1, ..., xn) (with ordering from-left-to-right of their appearance in φ), and α is
its subset of distinct variables, then �φ(x)�β

α is a term, where β is the remaining set of
free variables in x. The externally quantifiable variables are the free variables not in α.
When n = 0, � φ� is a term which denotes a proposition, for n ≥ 1 it denotes a n-ary
concept.

Definition 7. INTENSIONAL ABSTRACTION CONVENTION:
From the fact that we can use any permutation of the variables in a given virtual

predicate, we introduce the convention that

� φ(x) �
β
α is a term obtained from virtual predicate φ(x) (6)
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if α is not empty such that α
⋃

β is the set of all variables in the list (tuple of variables)
x = (x1, ..., xn) of the virtual predicate (an open logic formula) φ, and α

⋂
β = ∅, so

that |α| + |β| = |x| = n. Only the variables in β (which are the only free variables of
this term), can be quantified. If β is empty then �φ(x)�α is a ground term. If φ is a
sentence and hence both α and β are empty, we write simply �φ� for this ground term.

More about this general definition of abstract terms can be find in [1]. In this paper we
will use the most simple cases of ground terms �φ�, where φ is a sentence.

3 Four-Levels Robot’s Brain Structure

Let us consider a model of robot for understanding language about space and move-
ment in realistic situations [12,13], as finding video clips that match a spatial language
description such as “People walking through the kitchen and then going to the dining
room” and following natural language commands such as “Go down the hall towards
the fireplace in the living room”.

Video retrieval is a compelling application: in the United States alone, there are an
estimated 35 million surveillance cameras installed, which record four billion hours of
video per week. Analyzing and understanding the content of video data remains a chal-
lenging problem. A spatial language interface to video data can help people naturally
and flexibly find what they are looking for in video collections. Studying language used
to give directions could enable a robot to understand natural language directions. Peo-
ple talk to robots even if they do not have microphones installed, and it makes sense to
build systems that understand what they say. A robot that understands natural language
is easy for anyone to use without special training. By using the deductive properties of
the IFOL, the robot can make logic deductions as well about the facts that it visually rec-
ognized and also to obtain its own autoepistemic deductions about obtained knowledge,
as shortly explained in introduction, by using intensional abstractions in Definition 7.

Consequently, I will focus on a narrow subset of a natural language, grounding that
language in data collected from a real world. This strategy has two benefits. First, it
decreases the scope of the language understanding problem, making it more tractable.
Second, by choosing a semantically deep core domain, it offers an opportunity to
explore the connection between linguistic and non-linguistic concepts.

The linguistic structure extracted from spatial language expressions and many of
the features in the model for spatial relations are based on the theories of Jackendoff
[7], Landau and Jackendoff [14] and Talmy [15]. For example, the implementation of
the mining of “across” in [15] is obtained by an algorithm (of robot’s AI neuro-system)
for computing the axes a figure imposes on a ground, and set of features which quantify
“roughly perpendicular”, using a machine learning algorithm to fine-tune the distinc-
tions by training on labeled data. Regier [16] built a system that assigns labels such as
“through” to move showing a figure relative to a ground object. Bailey [17] developed a
model for learning the meanings of verbs of manipulation such as “push” and “shove”.
Kelleher and Costello [18] built models for the meanings of static spatial prepositions
such as “in front of” and “above”. Siskind [19] created a system for defining meanings
for words such as “up” and “down”. The framework reasons about formal temporal rela-
tions between primitive force-dynamic properties such as “supports” and “touches” and
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uses changes in these properties to define meanings for verbs. His framework focuses
on word-level event recognition and features, etc.

Reasoning about movement and space is a fundamental competence of humans and
many animals. Humans use spatial language to tell stories and give directions, abstract-
ing away the details of a complex event into a few words such as “across the kitchen”.
A system that understands spatial language could be directly useful to people by finding
video that matches spatial language descriptions, or giving natural language directions.
We will consider a robot which retrieves video clips that match a natural language
description using a probabilistic graphical model that maps between natural language
and paths in the environment [12].

In this particular environment, spatial relations are modeled as probabilistic distri-
butions for recognizing words paired with scenes. The distributions are trained from
labeled examples using a set of geometric features that capture the semantics of spatial
prepositions. The distribution modeled is the probability of a particular spatial relation
given a trajectory and an object in the environment. This distribution corresponds to the
probability that a spatial relation such as “across” or “to” describes a particular trajec-
tory and landmark. The input to the model is the geometry of the path and landmark
object; the output is a probability that the spatial relation can be used to describe this
scene. These distributions are trained using labeled path examples, and in robot’s brain
correspond to its AI neuro-system. The system learns distributions for spatial relations,
for example, by using a naive Bayes probabilistic model.

So, now we can focus to the integration of such robot’s AI neuro-system with its
AI symbolic system based on three natural language cognitive levels: The syntax of a
particular natural language (French, English, etc.) its semantic logic structure (trans-
formation of parts of the language sentences into the logic predicates and definition of
corresponding FOL formulae) and its corresponding conceptual structure, which dif-
ferently from the semantic layer that represents only the logic’s semantics, represents
the composed meaning of FOL formulae.

In this example, we focus on spatial language search of people’s motion trajectories
which are automatically extracted from video recorded by stationary overhead cameras.
The system takes as input a natural language query, a database of surveillance video
from a particular environment and the locations of non-moving objects in the environ-
ment. When the robot performs video retrieval by its AI neuro system, clips are returned
in order according to the joint probability of the query and the clip. Thus, for each
video clip in given database, this robot’s neuro system computes the probability that
considered clip satisfies a natural language query, parsed into logic FOL formula (sec-
ond natural language semantic level) and consequently into intensional algebra Aint

term with intensional concepts which labels are grounded by robot’s neuro system pro-
cesses (algorithms). Let NL be a given natural language. If we denote the set of finite
nonempty lists of a given natural language words by NLlist, then this parsing can be
represented by a partial mapping

pars : NLlist → L (7)

where L is the set of logic formulae of intensional FOL.
We suppose that the concepts in the conceptual structure expressed by the inten-

sional algebra Aint of atomic concepts u ∈ D, and their corresponding logic atoms
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expressed by virtual predicates φ(x) ∈ L of FOL are the part of innate robot’s knowl-
edge, such that for robot’s innate and unique intensional interpretation I : L → D,
u = I(φ(x)). Moreover, we suppose that robot has a parser capability to transform the
sentences of particular natural language into the formulae of FOL with innate set of the
atoms expressed by virtual predicates.

In this example we consider the predicates of IFOL as the verbs (V) of natural
language, as follows

Find(x1, x2, x3, x4)

where the time-variable x1 (with values “in past”, “in present”, “in future”) indicates
the time of execution of this recognition-action, the variable x2 is used for the subject
who executes this action (robot in this case), the variable x3 is used for the object given
to be eventually recognized (in this case a video clip) and x4 for the statement (users
query) that has to be satisfied by this object, and virtual predicate

Walk(x1, x2, x3, x4, x5)

where the time-variable x1 (with values “in past”, “in present”, “in future”) indicates
the time of execution of this action, variable x2 for the figure (F) that moves (“person”,
“cat”, etc.), x3 for the initial position of walking figure (defined by the spatial relation
(SR) “from”, for example “from the table”), x4 for the intermediate positions during
movement of the figure (defined by (SR) “through”, for example “through the corri-
dor”), and x5 for the final position of figure (defined by (SR) “to”, for example “to the
door”).

The robot takes as input a natural language query, a database of surveillance video
from a particular environment and the locations of non-moving objects in the environ-
ment. It parses the query into a semantic structure called a spatial description clause
(SDC) [13]. An SDC consists of a figure (F), a verb (V), a spatial relation (SR), and
a landmark (L). The system extracts SDCs automatically using a conditional random
field chunker. Let us consider the example illustrated in Figure 3 in [13] of a natural
language query nq ∈ NLlist, defined by a sentence:

“The person walked from the couches in the room to the dining room table”

which is composed by two SDC with the first one

1. (F) = “the person”
2. (V) = “walked”
3. (SR) = “from”
4. (L) = “the couches in the room”

and the second SDC,

1. (SR) = “to”
2. (L) = “the dining room table”

Remark: Note that all SDC components different from (V), are particulars in D−1

in PRP domain D, provided by Definition 3. The sense (mining) of the components
(F) and (L) are grounded by the machine-learning video-recognition processes of the
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robot, that is by its neuro systems. The sense of the (SR) components is grounded by
the meaning of the spatial relations, provided by different authors methods, mentioned
previously, and implemented by particular robots processes.

What we need in next is to extend this grounding also to the virtual predicates of
the FOL open formulae in L. �

Consequently, from these Spatial Description clauses, for the (V) of the past-time
verb (V) “to walk”, the semantic logic structure recognized by robot is the sentence
φ = pars(nq) ∈ L, obtained from (7) so that, based on the virtual predicate toWalk,
the sentence φ is

Walk(in past, person, from the couches in the room, NULL, to the dining room table)
(8)

Note that the inverse parsing of such logic sentence φ to natural language sentence is
directly obtained, so that the robot can translate its semantic logic structures into natural
language to communicate by voice to the people.

We consider that each grammatically plural word name “videoclips”, robot can
define by generalization by creating the virtual unary predicate videoclips(y), such that
its intensional concept u2 = I(videoclips(y)) ∈ D1 in PRP domain, whose meaning
is grounded by robots patern-recognition process fixed by a machine learning method.
In a similar way, each unary concept of visual objects can be created by robot by a
machine learning method for enough big set of this type of objects.

So, each grammatically singular word name, like “John’s videoclip” is a particular
(element of D−1) in PRP domain, whose meaning is grounded by the internal robot’s
image of this particular videoclip, recognized as such by robots patern-recognition pro-
cess. Thus, for a given extensionalization function h in (2), and fixed robot’s intensional
mapping I , from the diagram (5), we obtain that the set C, of video clips in a given
database of videoclips presented to this robot, is equal to

C = h(I(videoclips(y))) (9)

Consequently, the human command in natural language nc ∈ NLlist to this robot,

“Find videoclip such that φ in the given set of videoclips”

(where φ has to be substituted by the sentence above) is parsed by robot into its sec-
ond level (semantic logic structure) by virtual predicate Find of the verb “to find” (in
present) and a variable y of type “videoclip” (objects of research) and substituting “that
φ” by abstracted term �φ�, and by substituting “in the given set of” with the logic
conjunction connective ∧S of the IFOL expressed, from (7), by the following formula
ψ(y) = pars(nc)

Find(inpresent,me, y, �φ�) ∧S videoclips(y) (10)

where S = (2, 1) for joined variables in two virtual predicates.
The meaning of the unary concept u1 = I(Find(in present,me, y, �φ�)), cor-

responding to the natural language subexpression “Find (me), videoclip such that φ”
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of the command above, is represented by its AI neuro system process of probabilistic
recognition of video clips [13] satisfying the natural language query φ (In fact, u2 is
just equal to the name of this process of probabilistic recognition).

However, during execution of this process, the robot is able also to deduce the truth
of the autoepistemic sentence, for a given assignment of variables g : V → D, with
g(x1) = in present and g(x2) = me,

Know(x1, x2, �Find(inpresent,me, y, �φ�)�y)/g (11)

of the virtual predicate Know(x1, x2, x3), where the time-variable x1 (with values “in
past”, “in present”, “in future”) indicates the time of execution of this action, the vari-
able x2 is used for the subject of this knowledge and x3 is used for an abstracted term
expression this particular knowledge). Thus, by using deductive properties of the true
sentences of FOL, this autoepistemic sentence about its state of selfknowledge, the
robot would be able to comunicate to humans this sentence, traduces in natural lan-
guage as

“I (me) know that I am (me) finding videoclip such that φ”

From the fact that robot defined the type of the variable y to be “videoclip”, by traduc-
tion of the FOL deduced formula above into the natural language, this variable will be
traduced in natural language by “videoclip”. In the same way, during the execution of
the human command above, expressed by the FOL formula ψ(y) in (10), with com-
posed concept u3 = I(ψ(y)) ∈ D1, that is, by using the homomorphic property of
intensional interpretation I ,

u3 = u1 ��S u2 (12)

the robot can deduce also the true epistemic sentence, for a given assignment of vari-
ables g : V → D, with g(x1) = in present and g(x2) = me,

Know(x1, x2, �Find(in present,me, y, �φ�) ∧S videoclips(y)�y)/g (13)

and hence the robot would be able to communicate to humans this sentence, traduces in
natural language as

“I (me) know that I am (me) finding videoclip such that φ in the set of videoclips”

Note that the subset of videoclips extracted by robot from a given set of videoclips
C = h(u2) in (9), defines the current extensionalization function h, in the way that this
subset is

E = h(u3) = h(u1) ��S h(u2) = h(u1) ��S C = h(u1) ⊆ C (14)

Thus, for the grounding of spatial language for video search, the robot’s internal knowl-
edge structure is divided into four levels, in ordering: natural language, semantic logic
structure, conceptual structure and neuro structure, as represented by the following
diagram (only two continuous arrows (intensional mapping I : L → DI where
DI = D0 + D1 + ... are the universals in PRP domain theory) represent the total
mappings, while other (dots) are partial mappings)
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NLlist
......................................
particulars

D−1 ..................................
grounding

PR processes
..............

pars +

L sentences

I
D0 .....................................

grounding
SDC parser

I
open formulae

+

D1 +D2 + ... ........................
grounding

ML processes

(1) (2) (3) (4)

Nat.Lang. Log.semantic sys. Conceptual sys. Neuro sys. (15)

It is easy to see that the conceptual system, based on PRP domain D composed by
particulars in D−1 and universals (concepts) in DI = D0 + D1 + D2 + ... of the
IFOL, is the level of grounding of the natural language of the robot to its neuro system
composed by the following processes:

1. PR (Pattern Recognition) processes of recognition of the particulars. For example,
for SDC components (F) “the person”, (L) “the couches in the room” and “the dining
room table”, etc.

2. SDC (Spatial Description Clauses) parser used for the sentences, for example, for
a natural language query nq ∈ NLlist that is, logical proposition (sentece) φ =
pars(nq) ∈ L in (8), which is labeled by its intensional proposition label I(φ) ∈
D0. Thus, the grounding of nq is obtained by linking its intensional proposition
I(pars(nq)) in PRP to the SDC parser process (part of robot’s neuro system).

3. ML (Machine Learning) processes, like that used for the recognition of different
types of classes (like the set of videoclips). For example, for the language plural
world “videoclips” in NLlist, such that pars(“videoclips′′) = videoclips(y) ∈ L
with its intensional unary concept u2 = I(videoclips(y)) ∈ D1 which is grounded
to robot’s ML process for the “videoclips”.

Note that, while the top line in the diagram (15) is the ordinary component of the natu-
aral language grounding developed by robot’s neuro system, the two lines bellow is the
new robots knowledge structure of the added symbolic AI system based on the Inten-
sional First Order Logic and its grounding to robot’s processes (its neuro AI system),
by which the robot is able to provide logic deductive operations and autoepistemic self-
reasoning about its current knowledge states and communicate it to humans by using
natural languages.



Strong-AI Autoepistemic Robots 49

4 A Short Introduction to Robots Autoepistemic Deduction

In my recent book it has been demonstrated that the Intensional FOL [1] has a conser-
vative Tarski’s semantics, shown also in this paper (only partially) by Definition 6, with
interpretations (see the diagram in (5))

I∗
T = h ◦ I : AFOL → AR

as the ordinary (extensional) FOL with well known its deductive properties.
By introduction of the abstraction operators with autoepistemic capacities,

expressed by the Know predicate in previous section, we do not use more a pure logi-
cal deduction of the standard FOL, but a kind of autoepistemic deduction [20,21] with
a proper set of new axioms. However, the autoepistemic logic is introduced as a propo-
sitional logic [22] with added universal modal operator, usually written K, and the
axioms:

1. Reflexive axiom T: Kφ ⇒ φ
2. Positive introspection axiom 4: Kφ ⇒ KKφ
3. Distributive axiom K: (Kφ ∧ K(φ ⇒ ψ)) ⇒ Kψ

for any proposition formulae φ and ψ, while Know in IFOL is a predicate and not
modal (Kripke-like) operator K.

It has been demonstrated that intensional enrichment of the standard (extensional)
FOL, provided by Definition 14 in [1], is a kind of modal predicate logic FOLK(Γ),
where the set of explicit possible world We is equal to the set IT (Γ)} of Tarski’s inter-
pretations I∗

T = h ◦ I (this composition is provided by diagram in (5)) of the standard
FOL with a given set of assumptions Γ, that is, for a prefixed intensional interpretation
of robot, this set of possible worlds is equal to the set of the extensionalization func-
tions h ∈ E of robot’s IFOL. It has been demonstrated that in such a minimal intensional
enrichment of standard (extensional) FOL, we obtain exactly the Montague’s definition
of the intension (see Proposition 5 in [1]).

We recall that each robot’s extensionalitation function h ∈ E in (2) is indexed
by the time-instance. The actual robot’s world extensionalization function (in the cur-
rent instance of time) is denoted by �, and determines the current robot’s knowledge.
Clearly, the robots knowledge changes in time and hence determines the extensionaliza-
tion function h ∈ E in any given instance of time, based on robots experiences. Thus,
as for humans, also the robot’s knowledge and logic is a kind of temporal logic, and
evolves with time.

Note that the explicit (conscious) robot’s knowledge in actual world � (current time-
instance) here is represented by the ground atoms of the Know predicate, for a given
assignments g : V → D, that is, g ∈ DV ,

Know(y1, y2, �ψ(x)�β
α)/g = Know(g∗(y1), g∗(y2), g∗(�ψ(x)�β

α)) (16)

with {y1, y2}
⋃

β
⋃

α ⊆ V , such that g∗(y1) = in present and g∗(y2) = me (the
robot itself), for the extended assignments g∗ : T → D, where the set of terms T of
IFOL is composed by the set V of all variables used in the defined set of predicates of
robot/s IFOL, by the set of FOL constants and by the set of abstracted terms in (6),
such that (from Definition 17 in [1]):
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1. g∗(t) = g(x) ∈ D if the term t is a variable x ∈ V .
2. g∗(t) ∈ D is the Tarski’s interpretation of the FOL constant (nullary function) if the

term t is a constant c.
3. If t is an abstracted term obtained for a formula φ, �φ(x)�β

α, then

g∗(�φ(x)�β
α) =def

{
I(φ(x)) ∈ D|α|, if β is empty
I(φ[β/g(β)]) ∈ D|α|, otherwise

(17)

where g(β) = g({y1, .., ym}) = {g(y1), ..., g(ym)} and [β/g(β)] is a uniform
replacement of each i-th variable in the set β with the i-th constant in the set g(β).
Notice that α is the set of all free variables in the formula φ[β/g(β)].

so that in the actual world �, the known fact (16) for robot becomes the ground atom

Know(y1, y2, �ψ(x)�β
α)/g = Know(in present,me, I(ψ[β/g(β)])) (18)

which is true in actual word, that is, from proposition (intensional concept)
u = I(Know(in present,me, I(ψ[β/g(β)]))) ∈ D0, we obtain
�(u) = �(I(Know(in present,me, I(ψ[β/g(β)])))) = t.

Remark: Note that for the assignments g : V → D, such that g(y1) = in future and
g(y2) we consider robot’s hypothetical knowledge in future, while in the cases when
g(y1) = in past we consider what was robot’s knowledge in the past. Consequently,
generally the predicates of IFOL for robots, based on the dynamic changes of its knowl-
edge has to be indexed by the time-instances (which are possible worlds of IFOL), for
example by using an additional predicate’s variable for them. In the examples in next,
we will consider only the case of robot’s current knowledge (in the actual world with
extensional function �) when g(y1) = in present, so we avoid the introduction of the
time-instance variable for the predicates; only at the remark at the end of this section
we will show how to use time-variable τ . �

From the fact that we do not use the modal Kripke universal modal operator K, the prin-
ciple of necessitation rule N for modal logics, which for a given proposition (sentence)
φ derives the knowledge fact Kφ, here in predicate based IFOL, the robots current
knowledge (ground atoms of predicate Know) is directly derived from its experiences
(based on its neuro-system processes that robot is using in this actual world), in an
analog way as human brain does:

– As an activation (under robot’s attention) of its neuro-system process, as a conse-
quence of some human command to execute some particular job.

– As an activation of some process under current attention of robot, which is part of
some complex plan of robot’s activities connected with its general objectives and
services.

In both cases, for a given assignment g : V → D of virtual predicate φ(x)[β/g(β)] with
the set of variables x = β

⋃
α, which concept I(φ(x)[β/g(β)]) ∈ D|α| is grounded by

this particular process, is transformed into abstracted term and hence robot’s knowledge
system generates the new ground knowledge atom Know(y1, y2, �φ(x)�β

α)/g with
g(y1) = in presence and g(y2) = me, in robot’s temporary memory.
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Remark: We consider that only robot’s experiences (under robot’s attention) are trans-
formed into the ground atoms of the Know predicate, and the required (by robot)
deductions from them (by using general FOL deduction extended by the three epis-
temic axioms) are transformed into ground atoms of Know predicate, and hence are
saved in robot’s temporary memory as a part of robot’s conscience.

Some background process (unconscious for the robot) would successively transform
these temporary memory knowledge into permanent robot’s knowledge in an analog
way as it happen for humans. �

Thus, the three epistemic axioms of epistemic modal logic with modal operator K, used
to obtain deductive knowledge, can be traduced in IFOL by the following axioms for the
predicate Know, which in fact define the semantics of this particular Know predicate,
as follows:

1. The modal axiom T, in IFOL is represented by the axiom, for each abstracted term
�ψ(x)�β

α and assignment g : {y1, y2}
⋃

β → D,
(a) If α is empty

Know(y1, y2, �ψ(x)�β)/g ⇒ ψ[β/g(β)] (19)

(b) If |α| ≥ 1 and for the intensional concept u1 = I(ψ[β/g(β)]) ∈ D|α|,
�(u1) = {gi(y) | gi ∈ Dα, 1 ≤ i ≤ n, and �(I(ψ[α/gi(α)][β/g(β)])) = t}
with gi �= gj if i �= j and the tuple of hidden variables y in the virtual predicate
ψ[β/g(β)],

Know(y1, y2, �ψ(x)�β
α)/g ⇒ Know(y1, y2, �ψ[α/g1(α)]∧...∧ψ[α/gn(α)]�

β)/g
(20)

This axiom shows how the robot’s experience of execution of the process
(described by abstracted term �ψ(x)[β/g(β)]�α), to which the intensional con-
cept u1 is grounded, transforms the true facts obtained by robot’s neuro-system
(of this process, which results are still the parts of robots unconscious knowl-
edge) into the symbolic-AI FOL formula

(ψ[α/g1(α)] ∧ ... ∧ ψ[α/gn(α)])[β/g(β)]

So by using axiom (19), and FOL deduction, these deductive properties of the
robot can deduce any true single fact (logical sentence) ψ[α/gi(α)][β/g(β)]
derived by its neuro-system process, and to render it to robot’s consciousness as
a single known fact Know(y1, y2, �ψ[α/gi(α)]�β)/g.

In the case (a), when α is empty, from (17) with

u1 = g∗(�ψ(x)�β) = I(ψ[β/g(β)]) ∈ D0 (21)

such that �(u1) = �(I(ψ[β/g(β)])) = t, that is, the sentence ψ[β/g(β)] is true, so
from the fact that the left side ground atom of axiom’s implication in (19) is equal
to Know(g(y1), g(y2), u1), this T axiom (19) becomes

Know(g(y1), g(y2), u1) ⇒ ψ[β/g(β)] (22)
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Note that the meaning of the intensional concept u1 of the robot is grounded
on robot’s neuro-system process, which is just robot’s current internal expe-
rience of what is he doing, and just because of that the robot’s knowledge
Know(g(y1), g(y2), u1) is true for him. So, this is really an reflexive axiom.
Consequently, the application of the T axiom (a), allows the extraction from robot’s
conscious knowledge the logical sentences which, successively, can be elaborated
by robot’s implemented deductive property of FOL in two ways:
a.1. To respond to some human natural language questions (parsed into a logical
formula) and to verify if the response is “yes” or “no”, or “I do not know” (if robot’s
conscious knowledge is incomplete for such a question);
a.2. To deduce another sentences which then can be inserted in robot’s conscious
knowledge as ground atoms of the predicate Know (where this deduced sentence
is represented as an abstracted term). This process (in background, or when robot
is free of other concrete activities) can be considered as a kind of consolidation and
completion of robot’s knowledge based on previous experiences, in an analog way
as it is done by human mind when we sleep.

2. The positive introspection axiom 4:

Know(y1, y2, �ψ(x)�β
α)/g ⇒ Know(g(y1), g(y2), �Know(y1, y2, �ψ(x)�β

α)/g)
(23)

that is.

Know(g(y1), g(y2), g∗(�ψ[β/g(β)]�α)) ⇒
Know(g(y1), g(y2), �Know(g(y1), g(y2), g∗(�ψ[β/g(β)]�α))) (24)

which, in the case when g(y1) = in present and g(y2) = me, is traduced in natural
language by robot as:
“I know that ψ[β/g(β)]” implies “I know that I know that ψ[β/g(β)]”
where in the logic virtual predicate ψ[β/g(β)] there are the hidden variables in
α, with extension �(u) of its intensional concept u = g∗(�ψ[β/g(β)]�α) =
I(ψ[β/g(β)]) ∈ D|α|.

3. The distributive axiom K (“modal Modus Ponens”):

(Know(y1, y2, �ψ(x)�β
α)/g ∧ Know(y1, y2, �ψ(x) ⇒ φ(z)�β

⋃
β1

α
⋃

α1
)/g)

⇒ Know(y1, y2, �φ(z)�β1
α1

)/g (25)

with the sets of variables α
⋃

β = x and α1

⋃
β1 = z. Or, equivalently,

(Know(g(y1), g(y2), g∗(�ψ[β/g(β)]�α)) ∧
Know(g(y1), g(y2), g∗(�ψ[β/g(β)] ⇒ φ[β1/g(β1)]�α

⋃
α1)))

⇒ Know(g(y1), g(y2), g∗(�φ[β1/g(β1)]�α1)) (26)

Note that this axiom, when α and α1 are empty, is a way how the robot provides
the conscious implications ψ[β/g(β)] ⇒ φ[β1/g(β1)], which can be interpreted
just as a rule “if ψ[β/g(β)] then φ[β1/g(β1)”, independently if they are its innate
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implemented rules (introduced in robot’s knowledge when it is created) or if they are
learned by robot’s own experience. In fact, this implication can be used only when
it is true that some actual robot’s experience which produced in its consciousness
the knowledge (Know(y1, y2, �ψ(x)�β

α)/g so that, from T axiom (a), the sentence
ψ[β/g(β)] is true, as it is necessary for execution of the rule “if ψ[β/g(β)] then
φ[β1/g(β1)”, and hence to derive the true fact φ[β1/g(β1).

Despite the best efforts over the last years, deep learning is still easily fooled [23], that
is, it remains very hard to make any guarantees about how the system will behave given
data that departs from the training set statistics. Moreover, because deep learning does
not learn causality, or generative models of hidden causes, it remains reactive, bound
by the data it was given to explore [24].

In contrast, brains act proactively and are partially driven by endogenous curiosity,
that is, an internal, epistemic, consistency, and knowledge-gain-oriented drive. We learn
from our actively gathered sensorimotor experiences and form conceptual, loosely hier-
archically structured, compositional generative predictive models. By proposed four-
level cognitive robot’s structure (15), IFOL allow robots to reflect on, reason about,
anticipate, or simply imagine scenes, situations, and developments within in a highly
flexible, compositional, that is, semantically meaningful manner. As a result, IFOL
enables the robots to actively infer highly flexible and adaptive goal-directed behav-
ior under varying circumstances [25].

We are able to incorporate the emotional structure to robots as well, by a number of
fuzzy-emotional partial mappings

Ei : D → [0, 1] (27)

of robots PRP intensional concepts, for each kind of emotions i ≥ 1: love, beauty,
fear, etc. It was demonstrated [1] that IFOL is able to include any kind of many-valued,
probabilistic and fuzzy logics as well.

Example: Let us consider the example provided in previous Sect. 3 and how robot,
which is conscious of the fact that works to respond to user question φ in (8), and hence
this robot knows that he initiated the process of recognition expressed by knowledge
fact (13), for the assignment of variables g : {x1, x2} → D with g(x1) = in present
and g(x2) = me,

Know(x1, x2, �ψ(y)�y)/g (28)

where the logic formula ψ(y) with a free variable y is given by (10), i.e., is equal to
conjunction Find(in present,me, y, �φ�) ∧S videoclips(y), so that (28) is equal to

Know(in present,me, �ψ(y)�y) (29)

How the robot becomes conscious of which video clips it recognized from a given set
of videoclips (represented by the extension C = h(I(videoclips(y))) = h(u2) of the
predicate videoclips(y)) we will show in next. In order to obtain this knowledge from
the known fact (28), the robot’s “mind” can activate the internal neuro-process of the
FOL-deduction, and hence to take the output of these deducted facts from (28) as new
conscious knowledge (new generated ground atoms of its Know predicate), as follows:
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1. From (12), we have that unary PRP concept u3 = I(ψ(y)) ∈ D1 has the extension
E = h(u3) given by (14), composed by n = |E| ≥ 1 elements, and hence from the
T axiom (b) with α = {y}, we obtain that

�(u3) = {gi(y) | gi ∈ Dα, 1 ≤ i ≤ n, and �(I(ψ[α/gi(α)])) = t} (30)

and hence this T axiom (20), from (29), reduces to the logic implication

Know(in present,me, �ψ(y)�y) ⇒
Know(in present,me, �ψ[y/g1(y)] ∧ ... ∧ ψ[y/gn(y)]�) (31)

2. So, from the true atom (29) and implication (31) by Modus Ponens rule of FOL we
deduce the formula (right side of implication (31)),

Know(in present,me, �ψ[y/g1(y)] ∧ ... ∧ ψ[y/gn(y)]�) (32)

3. Now the deductive process can use the T axiom (a), where β is empty, and from it
and (32), by Modus Ponens, deduce the conjunctive formula

ψ[y/g1(y)] ∧ ... ∧ ψ[y/gn(y)] (33)

and hence, from this conjunctive formula by using FOL-deduction, to deduce that
each ground atom ψ[y/gi(y)], for 1 ≤ i ≤ n, from (10) is equal to true fact

Find(in present,me, gi(y), �φ�) ∧ videoclips(gi(y)) (34)

that is, to the true fact that this robot verified that the video clip gi(y) satisfies the
users requirement φ.

4. The last step of this deduction process is to render these outputs of deduction con-
scious to this robot, that is, to transform the set of outputs in (34) into the set of
known facts, for 1 ≤ i ≤ n,

Know(in present, me, �Find(in present, me, gi(y), �φ�) ∧ videoclips(gi(y)�)
(35)

Remark: Note that the obtained robot’s knowledge of the set in (35), from the known
fact (29), at the end of deduction is in robot’s temporary memory. In order to render it
permanent (by cyclic process of transformation of the temporary into permanent robot’s
memory), we need to add to any predicate of the robot’s FOL syntax, also the time-
variable as, for example, the first variable of each predicate (different from Know),
instantiated in the known facts by the tamestamp value τ (date/time) when this knowl-
edge of robot is transferred into permanent memory, so that the known facts (35) in
permanent memory would become

Know(in present,me, �Find(τ, in past,me, gi(y), �φ�) ∧ videoclips(gi(y))�)
(36)

where the second value of the predicate Find, from in present is modified into the value
in past, and hence the FOL predicate Find would be translated into natural language
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by the past time “have found” of this verb. So, the logic atom (36) can be translated by
robot into the following natural language autoepistemic sentence:

“I know that I have found at τ the videoclip gi(y) which satisfied user require-
ment φ.”
Note that, by using the T axiom (a), the robot can deduce, from permanent memory fact
(36), the logic atom

Find(τ, in past,me, gi(y), �φ�) ∧ videoclips(gi(y))

as an answer to user question and to respond in natural language simply by the sentence:
“I have found at τ the videoclip gi(y) which satisfied user requirement φ.” �

This temporization of all predicates used in robot’s knowledge is useful for robot to
search all known facts in its permanent memory that are inside some time-interval as
well.

It can be used not only to answer directly to some human questions about robot’s
knowledge, but also to extract only a part of robot’s knowledge from its permanent
memory in order to be used for robot’s deduction, and hence to answer to human more
complex questions that require deduction of new facts not already deposited in explicit
robot’s known facts.

Remark: We recall that this method of application of autoepistemic deduction (for
concepts such as knowledge) can be applied to all other modal logic operators (for
concepts such as belief, obligation, causation, hopes, desires, etc., for example by
using deontic modal logic that same statement have to represent a moral obligation
for robots), by introducing special predicates for them with the proper set of axioms for
their active semantics (fixing their meaning and deductive usage).

By such fixing by humans of robot’s unconciseness part with active semantics
(which can not be modified by robots and their live experience) of all significant for
human robot’s concepts and their properties, we will obtain ethically confident and
socially safe and non danger robots (controlled by public human ethical security orga-
nizations for the production of robots with general strong-AI capabilities). �

5 Conclusions and Future Work

Computation is defined purely formally or syntactically, whereas minds have actual
mental or semantic contents, and we cannot get from syntactical to the semantic just
by having the syntactical operations and nothing else. . . Machine learning is a sub-field
of artificial intelligence. Classical (non-deep) machine learning models require more
human intervention to segment data into categories (i.e. through feature learning). Deep
learning is also a sub-field of machine learning, which attempts to imitate the intercon-
nectedness of the human brain using neural networks. Its artificial neural networks are
made up layers of models, which identify patterns within a given dataset. Deep learning
can handle complex problems well, like speech recognition, pattern recognition, image
recognition, contextual recommendations, fact checking, etc.

However, with this integrated four-level robot’s knowledge system presented in dia-
gram (15), where the last level represents the robot’s neuro system containing the deep
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learning as well, we obtain that also the semantic theory of robot’s intensional FOL is a
procedural one, according to which sense is an abstract, pre-linguistic procedure detail-
ing what operations to apply to what procedural constituents to arrive at the product (if
any) of the procedure.

Weak AI, also known as narrow AI, focuses on performing a specific task, such as
answering questions based on user input or playing chess. It can perform one type of
task, but not both, whereas Strong AI can perform a variety of functions, eventually
teaching itself to solve for new problems. Weak AI relies on human interference to
define the parameters of its learning algorithms and to provide the relevant training data
to ensure accuracy.

Strong AI (also known as full general AI) aims to create intelligent robots that are
quasi indistinguishable from the human mind. But just like a child, the AI machine
would have to learn through input and experiences, constantly progressing and advanc-
ing its abilities over time. If researchers are able to develop Strong AI, the robot would
require an intelligence more close to human’s intelligence; it would have a self-aware
consciousness that has the ability to solve problems, learn, and plan for the future.

However, since humans cannot even properly define what intelligence is, it is very
difficult to give a clear criterion as to what would count as a success in the development
of strong artificial intelligence. Thus, we argue that this example, used for the spatial
natural sublanguage, can be extended in a similar way to cover more completely the
rest of human natural language, and hence the method provided by this paper is a main
theoretical and philosophical contribution to resolve the open problem of how we can
implement the deductive power based on IFOL for new models of robots heaving strong
AI capacities. Intensional FOL is able to represent the Intentional States (mental states
such as beliefs, hopes, and desires), typical for human minds:

“Intentionality5 is the fascinating property certain cognitive states and events have
in virtue of being directed, or about, something. When ever we think, we think about

5 A German philosopher and psychologist Franz Brentano (1838–1917) is best known for his
reintroduction of the concept of intentionality, a concept derived from scholastic philosophy,
to contemporary philosophy in his lectures and in his work Psychologie vom empirischen
Standpunkt [26] (Psychology from an Empirical Standpoint). Brentano used the expression
“intentional inexistence” to indicate the status of the objects of thought in the mind. Inten-
tionality, based on the work of Austrian philosopher Alexius Meinong (1853–1920) a pupil of
Franz Brentano, a realist known for his unique ontology, is the power of minds to be about
something: to represent or to stand for things, properties and states of affairs. Intentionality
is primarily ascribed to mental states, like perceptions, beliefs or desires, which is why it has
been regarded as the characteristic mark of the mental by many philosophers. A central issue
for theories of intentionality has been the problem of intentional inexistence: to determine the
ontological status of the entities which are the objects of intentional states.

Meinong adopted the threefold phenomenological analysis of mental states that includes
a mental act, its content and object of intention. Meinong wrote two early essays on David
Hume, the first dealing with his theory of abstraction, the second with his theory of relations,
and was relatively strongly influenced by British empiricism. He is most noted, however, for
his edited book Theory of Objects (full title: Investigations in Theory of Objects and Psychol-
ogy [27]), which grew out of his work on intentionality and his belief in the possibility of
intending nonexistent objects. Whatever can be the target of a mental act, Meinong calls an
“object.”.
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something; whenever we believe, there is something we believe; whenever we dream,
there is something we dream about. This is true of every episode of such diverse psy-
chological phenomena as learning, imagining, desiring, admiring, searching for, dis-
covering, and remembering..

Sometimes, they are directed towards logically more complex objects, for instance,
when we entertain a proposition, or fear a certain state of affairs, or contemplate a cer-
tain depressing situation. But all of these phenomena are to be contrasted with physical
sensations, undirected feelings of joy, sadness, depression, or anxiety, and with episodes
of pain and discomfort.” pp. 10, [28]

So, we are able to support such robot’s physical sensations by using, for example,
the manyvalued fuzzy logic values assigned to robot’s PRP intensional “emotional”
concepts, by mappings (27), representing the feelings of joy, sadness, depression, or
anxiety, etc. as well. Hence, by using manyvalued logics embedded into IFOL, as
explained in [1], and autoepistemic deductive capacities provided in previous Section,
the robots would be able to reason about their own sensations and to communicate with
humans.

Moreover, I argue that AI research should set a stronger focus on learning composi-
tional generative predictive models (CGPMs), from robot’s self-generated sensorimotor
experiences, of the hidden causes that lead to the registered observations. So, guided by
evolutionarily-shaped inductive learning and information processing biases, the robots
will be able to exhibit the tendency to organize the gathered experiences into event-
predictive encodings.

Consequently, endowed with suitable IFOL information-processing biases, the
robot’s AI may develop that will be able to explain the reality it is confronted with,
reason about it, and find adaptive solutions, making it Strong AI.
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6. Majkić, Z.: Intensional first order logic for strong-AI generation of robots. J. Adv. Mach.

Learn. Artif. Intell. 4(1), 23–31 (2023)
7. Jackendoff, R.: Semantics and Cognition. The MIT Press, Cambridge (1983)
8. Kahneman, D.: Thinking Fast and Slow. Farrar, Straus and Giroux (2011). ISBN 978-

0374275631
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