
Verifying Compiler Optimisations

(Invited Paper)

Ian J. Hayes(B), Mark Utting, and Brae J. Webb

The University of Queensland, Brisbane, Australia
{Ian.Hayes,M.Utting,B.Webb}@uq.edu.au

Abstract. Compilers are a vital tool but errors in a compiler can lead
to errors in the myriad of programs it compiles. Our research focuses on
verifying the optimisation phase because it is a common source of errors
within compilers. In programming language semantics, expressions (or
terms) are represented by abstract syntax trees, and their semantics is
expressed over their (recursive) structure. Optimisations can then be
represented by conditional term rewriting rules. The correctness of these
rules is verified in Isabelle/HOL. In the GraalVM compiler, the inter-
mediate representation is a sea-of-nodes graph structure that combines
data flow and control flow in the one graph. The data flow sub-graphs
correspond to term graphs, and the term rewriting rules apply equally
to this representation.

1 Introduction

This paper overviews our research on verifying expression optimisations used
in the GraalVM compiler developed by Oracle.1 The compiler supports multi-
ple source languages (Java, Scala, Kotlin, JavaScript, Python, Ruby, . . . ) and
multiple target architectures (AMD64 and ARM) and has variants for both
just-in-time and ahead-of-time compilation. It has front ends that generate an
intermediate representation (IR) of the program being compiled from the source
programming language. The compilation process includes multiple optimisation
phases that transform the IR representation of a method/program to a more effi-
cient version, also expressed in the IR. The final phase generates machine code
for the target architecture from the optimised IR representation of the program.

Why Verify Compilers? Compilers for programming languages are an indispens-
able part of the trusted base of a software development platform. Their correct-
ness is essential because an error in a compiler can lead to errors in any of the
myriad of programs it compiles.

Why Focus on the Optimiser? For a multi-lingual, multi-target compiler, the
machine-independent optimiser is common to all source programming languages
and all target machine architectures and hence correctness of the optimiser
affects all source languages and all target architectures.
1 https://github.com/oracle/graal.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 3–8, 2023.
https://doi.org/10.1007/978-981-99-7584-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_1&domain=pdf
https://github.com/oracle/graal
https://doi.org/10.1007/978-981-99-7584-6_1


4 I. J. Hayes et al.

The optimiser is a common source of errors within compilers. In a study of
C compilers, Yang et al. [7] found that for GCC, with optimisation turned off
only 4 bugs were found but with optimisation turned on 79 bugs were found,
and for Clang, with optimisation turned off only 19 bugs were found but with
optimisation turned on 202 bugs were found.

Errors in an optimiser are often due to subtle edge cases that may not be
covered by testing, whereas verification addresses all possible cases. For example,
a quirk of two’s complement arithmetic is that the most negative 32-bit signed
integer MinInt = −231, when negated gives back MinInt (because the largest
representable positive integer is 231 − 1 and hence −MinInt = 231 is not repre-
sentable as a 32-bit signed integer and the negation of MinInt “overflows” and
gives back MinInt). One consequence of this is that the absolute value func-
tion when applied to MinInt gives MinInt, a negative value! Hence a plausible
optimisation that replaces 0 ≤ abs(x) with true is invalid if x is MinInt.

Overview. The GraalVM IR for a method consists of a graph structure that
combines both control-flow and data-flow nodes [3]. In this paper we overview our
approach to verifying the optimisation of data-flow sub-graphs, which represent
expressions in the source language. We have developed a model of the IR in
Isabelle/HOL [1] and then given the IR a semantics [6] (see Sect. 2). Expression
optimisations are given as a set of conditional term rewriting rules (see Sect. 3).
Proving the rules correct then corresponds to showing that they preserve the
semantics (see Sect. 4). Generating efficient code for an optimiser from a set of
rewriting rules is overviewed in Sect. 5.

2 Data-Flow Sub-graphs

GraalVM IR data-flow sub-graphs are,

side-effect free – side effects are factored out into the control-flow part of
the graph,
well-defined in context – runtime exceptions such as divide by zero or
index out of range are guarded in the control flow graph, so that for example,
a divide node cannot be reached if its divisor is zero, and
share common sub-expressions – if the same sub-expression, e, is used in
multiple places in an expression f , a single sub-graph representing e is shared
by all references to e within f .

Sharing common sub-expressions is essential for generating efficient code but it
means that the representation of a term (i.e. a programming language expression)
is not a conventional abstract syntax tree but rather a directed acyclic graph
structure with a single root node, commonly known as a term graph [2]. Figure 1
gives an example of both a conventional tree and (maximal sharing) term-graph
representation of the term x ∗ x+ x ∗ x. Note that in the term-graph represen-
tation, the node representing x is shared in the sub-graph representing x∗x, and
the root node of x ∗ x is shared in the whole expression x ∗ x + x ∗ x. Also note



Verifying Compiler Optimisations 5

+

xx x x

* * *

x

+

Fig. 1. Abstract syntax tree and term-graph representations of x ∗ x + x ∗ x.

that the same sharing occurs if x is a single node or a term graph representing
a more complex shared sub-expression.

Each leaf node of a term represents either a constant, a parameter to the
method in which the expression occurs, or a control-flow node, such as a method
call node, where at runtime the value associated with that node will have already
been calculated by the control-flow execution, e.g. the result of a method call.

The semantics of expressions is defined over their abstract syntax tree (or
tree for short) form. Term-graphs are a (more efficient) representation of a tree
(i.e. a data refinement). For any term graph there is a unique corresponding
tree and hence the semantics of a term graph is defined as the semantics of
the corresponding tree. Our Isabelle/HOL semantics for an expression, e, is
parametrised with respect to a context consisting of a list, p, of parameters of the
method in which e occurs and a method state, m, consisting of a mapping from
control-flow node identifiers (e.g. for a method call node) to their (pre-computed)
values. The following relation represents evaluating term e in a context consisting
of method state m and parameters p to value v.

[m, p] � e �→ v (1)

In Isabelle/HOL this is a (deterministic) relation, rather than a function; if the
value of e in context [m, p] is not well defined, the relation does not hold.

Values may be integers, object/array references or the special undefined
value.2 The semantics needs to take into account the bit width of integer values
(e.g. 32 or 64) because unbounded integers do not have the same semantics. For
integers, their values are represented by a 64-bit value (using the HOL Word
library) plus a bit-width b, where 0 < b ≤ 64; only the low-order b bits of the
64-bit word are significant. In two’s complement arithmetic, for an expression
such as (x+ y)− y, the calculation of x+ y may overflow but subtracting y then
“underflows” the value back to x, allowing (x+ y) − y to be replaced by x, even
with the presence of overflow.

To validate our semantics we have developed a tool that translates GraalVM
test cases written in Java to their Isabelle/HOL representation. Each test case is
run in Java and its result compared with the value determined by our executable
Isabelle/HOL semantics (see [4] for more details).

2 GraalVM IR handles floating point numbers but we have not addressed those as yet.



6 I. J. Hayes et al.

3 Term Rewriting Rules

Expression optimisations are based on the algebraic properties of the expressions,
e.g. x ∗ 0 = 0, and can be expressed as conditional term rewriting rules [5],
for example, in the following rewriting rules x, y, t and f represent arbitrary
expressions, c represents an integer constant, and << is the left shift operator.
The compiler performs static analysis that tracks the lower and upper bounds
of a node, which are stored in the node’s stamp so that for Rule 6 if the upper
bound for x is less than the lower bound for y, x < y must be true in that
context. A division node within the graph can only be reached after a (control-
flow) check that the divisor is non-zero, otherwise an exception is raised.3 That
allows an optimisation like Rule 3 to be valid because the case when x is zero
cannot occur.

x ∗ 0 �−→ 0 (2)
x/x �−→ 1 (3)

(x + y) − y �−→ x (4)
x ∗ c �−→ x << log2 c when isPower2 c (5)
x < y �−→ true when upper(stamp(x)) < lower(stamp(y)) (6)

¬false �−→ true (7)
(true ? t : f) �−→ t (8)

The rewriting rules can be applied to any sub-term and in any order. In practice,
it is better to optimise all sub-terms of a term e before applying rules to optimise
e itself. An exception is when optimising a conditional (b ? t : f), in which case
it is better to first optimise b (e.g. using Rule 6 or Rule 7) because if Rule 8 can
then be applied then f is eliminated from the expression and then only t needs
to be optimised.

4 Verifying Term Rewriting Rules

This section briefly overviews the verification of rewriting rules (for more details
see [5]). We say term e1 is refined by term e2 if and only if for all contexts [m, p],
if e1 evaluates to a well-defined value v, so does e2.

e1 � e2 = (∀m p v . [m, p] � e1 �→ v =⇒ [m, p] � e2 �→ v) (9)

To show a rewriting rule, e1 �−→ e2 when cond, is correct, we show that if cond
holds e1 is refined by e2.

cond =⇒ (e1 � e2) (10)

For Rule 2, the right side (i.e. 0) is valid in all contexts but the left side (i.e.
x ∗ 0) is only well defined in contexts where x is well defined. For the division
3 Our treatment of the semantics assumes that all division nodes are so guarded.



Verifying Compiler Optimisations 7

node, the semantics defines 0/0 to be a special undefined value, and hence Rule
3 is valid because the values of the two sides of a rewriting rule only need to be
equal if the left side is well defined.

Verifying optimisations as term rewriting rules is much simpler on the tree
representation than on the term-graph representation because, in a term graph,
a replaced node may be referenced in multiple places in the graph. To show that
term-graph rewriting is correct, we make use of a theorem that shows that if
e1 � e2 and a term graph matching e1 is replaced by the corresponding term
graph for e2, then the semantics of the overall graph is preserved.

5 Generating Code for Optimisations

The approach described above represents optimisations as a set of rewriting rules.
One could naively translate each rule to code and apply them repeatedly until
no rule was applicable.4 We are currently developing an approach to generate
an efficient optimiser from sets of rewriting rules. In practice, there is often
overlap between rules in the matching process, for example, all rules with the
same node at the top-level of their pattern will perform the same initial match.
In practice there are many rewriting rules for each kind of top-level node and
hence in generating code we would like to factor out such matching so it is only
done once. The factoring can also be applied to sub-expressions of the pattern.

To handle code generation we need to introduce more basic matching primi-
tive, match e p, that matches term e with pattern p; it takes an initial substitution
s and if the match succeeds, returns s updated with instantiations for the free
variables within p. Matches can be composed using, m1

o
9 m2, to form a combined

match that takes a substitution, s, and returns s updated for both matches, if
they both succeed, but if either fails their combination fails. For a condition C,
testC, fails is C does not hold for its input substitution s, otherwise it passes
through s. Alternative rules can be combined using, r1 else r2, meaning take the
result of r1 if it succeeds, otherwise try r2. For example, (Rule 2 else Rule 5)
expands to,

(match e (x ∗ y) o
9 match y (con c) o

9 test(c = 0) o
9 apply 0) else

(match e (x ∗ y) o
9 match y (con c) o

9 test(isPower2 c) o
9 apply(x << eval(log2 c)))

which after factoring out the initial matches becomes the following.

match e (x ∗ y) o
9 match y (con c) o

9 ((test(c = 0) o
9 apply 0) else

(test(isPower2 c) o
9 apply(x << eval(log2 c))))

Generating efficient code in a programming language, such as Java, from rewrit-
ing rules expressed using these primitives is relatively straightforward.

For many rewriting rules (e.g. Rule 4), if all sub-expressions of the left side
(e.g. x and y) have already been optimised, then a successful application of the
rewriting rule results in a term that cannot be further optimised and hence the
optimisation of that term is complete.
4 Each set of rewriting rules is given a measure function to ensure rewriting terminates.



8 I. J. Hayes et al.

6 Conclusions

Conditional term rewriting rules allow one to succinctly formalise expression
optimisations. Each rule can be separately verified to show that it preserves the
semantics of an expression, whenever the rule is applicable. In the context of
the GraalVM compiler the rewriting rules can also be applied to its term-graph
representation of expressions. Given a set of valid conditional rewriting rules,
each representing individual optimisations, the challenge is then to combine them
to form an efficient optimiser by factoring out common matches and avoiding
applying rules in situations where they cannot possibly succeed.

Acknowledgements. Mark Utting’s position and Brae Webb’s PhD scholarship are
both funded in part by Oracle Labs. Our thanks go to Paddy Krishnan, Andrew Craik
and Gergö Barany from Oracle Labs Brisbane for their helpful feedback, and to the
Oracle GraalVM compiler team for answering questions. Thanks also to honours stu-
dents that have contributed to advancing the project.

References

1. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45949-9

2. Plump, D.: Essentials of term graph rewriting. Electron. Notes Theor. Comput. Sci.
51, 277–289 (2002). https://doi.org/10.1016/S1571-0661(04)80210-X

3. Stadler, L., Würthinger, T., Simon, D., Wimmer, C., Mössenböck, H.: Graal IR:
an extensible declarative intermediate representation. In: Proceedings of the Asia-
Pacific Programming Languages and Compilers Workshop. APPLC ’13, pp. 1–9,
February 2013

4. Utting, M., Webb, B.J., Hayes, I.J.: Differential testing of a verification framework
for compiler optimizations (case study). In: FormaliSE 2023. IEEE (2023)

5. Webb, B.J., Hayes, I.J., Utting, M.: Verifying term graph optimizations using
Isabelle/HOL. In: Proceedings of the 12th ACM SIGPLAN International Conference
on Certified Programs and Proofs. CPP 2023, pp. 320–333. Association for Com-
puting Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3573105.
3575673

6. Webb, B.J., Utting, M., Hayes, I.J.: A formal semantics of the GraalVM interme-
diate representation. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS, vol. 12971,
pp. 111–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88885-5 8

7. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI ’11, pp. 283–294. Association
for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/
1993498.1993532

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1016/S1571-0661(04)80210-X
https://doi.org/10.1145/3573105.3575673
https://doi.org/10.1145/3573105.3575673
https://doi.org/10.1007/978-3-030-88885-5_8
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532

	Verifying Compiler Optimisations
	1 Introduction
	2 Data-Flow Sub-graphs
	3 Term Rewriting Rules
	4 Verifying Term Rewriting Rules
	5 Generating Code for Optimisations
	6 Conclusions
	References


