
Yi Li
Sofiène Tahar (Eds.)

LN
CS

 1
43

08

Formal Methods
and Software Engineering
24th International Conference
on Formal Engineering Methods, ICFEM 2023
Brisbane, QLD, Australia, November 21–24, 2023
Proceedings

Lecture Notes in Computer Science 14308
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Yi Li · Sofiène Tahar
Editors

Formal Methods
and Software Engineering
24th International Conference
on Formal Engineering Methods, ICFEM 2023
Brisbane, QLD, Australia, November 21–24, 2023
Proceedings

Editors
Yi Li
Nanyang Technological University
Singapore, Singapore

Sofiène Tahar
Concordia University
Montreal, QC, Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-99-7583-9 ISBN 978-981-99-7584-6 (eBook)
https://doi.org/10.1007/978-981-99-7584-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2023, corrected publication 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

https://orcid.org/0000-0003-4562-8208
https://orcid.org/0000-0002-5537-104X
https://doi.org/10.1007/978-981-99-7584-6

Preface

This volume contains the papers presented at ICFEM 2023: 24th International
Conference on Formal Engineering Methods, held on November 21–24, 2023 in
Brisbane, Australia.

The International Conference on Formal EngineeringMethods (ICFEM) is a premier
conference for research in all areas related to formal engineering methods. Since 1997,
ICFEM has been serving as an international forum for researchers and practitioners
who have been seriously applying formal methods to practical applications. Researchers
and practitioners, from industry, academia, and government, were encouraged to attend,
present their research, and help advance the state of the art. ICFEM is interested in work
that has been incorporated into real production systems, and in theoretical work that
promises to bring practical and tangible benefit. In recent years, ICFEM has taken place
in Madrid, Spain (2022), Singapore (2021, corresponding to ICFEM 2020, postponed
due to theCOVID-19 pandemic), Shenzhen, China (2019), GoldCoast, Australia (2018),
Xi’an, China (2017), Tokyo, Japan (2016), and Paris, France (2015).

There were 34 full research paper submissions to the main track of ICFEM 2023.
Each paper was reviewed by at least three Program Committee members. The commit-
tee decided to accept 13 papers. The program also included 3 keynotes and 5 invited
talks. The keynotes were given by Graeme Smith from the University of Queensland,
Australia, Yuxi Fu from Shanghai Jiao Tong University, China, and Yamine Ait Ameur
from the Toulouse National Polytechnique Institute, France. The main event was pre-
ceded by the 2nd International Workshop on Formal Analysis and Verification of Post-
Quantum Cryptographic Protocols (FAVPQC 2023). The program of ICFEM 2023 also
featured a Doctoral Symposium (chaired byYulei Sui, UNSWSydney, Australia), which
accepted eight doctoral research submissions, included as short papers in the ICFEM
2023 proceedings.

We would like to thank the numerous people who contributed to the success of
ICFEM 2023: the General Chairs, Guangdong Bai from the University of Queensland,
Australia, and Jin Song Dong from the National University of Singapore, the Steering
Committee members, the PC members, and the additional reviewers for their support in
selecting papers and composing the conference program. We are grateful to all authors
and invited speakers for their contributions without which, of course, these proceedings
would not exist.Wewould also like to thank Springer for their help during the production
of this proceedings volume and the EasyChair system for supporting the submission,
review, and volume preparation processes.

vi Preface

ICFEM 2023 was organized and supported by the University of Queensland,
Brisbane, Australia. We would like to thank the Local Organizing Committee for their
hard work in making ICFEM 2023 a successful and exciting event.

September 2023 Yi Li
Sofiène Tahar

Organization

General Co-chairs

Jin Song Dong National University of Singapore, Singapore
Guangdong Bai University of Queensland, Australia

Program Co-chairs

Yi Li Nanyang Technological University, Singapore
Sofiène Tahar Concordia University, Canada

Finance Chair

Zhe Hou Griffith University, Australia

Publicity Chairs

Cheng-Hao Cai Monash University at Suzhou, China
Neeraj Kumar Singh IRIT-ENSEEIHT, Toulouse, France

Journal First Co-chairs

Mark Utting University of Queensland, Australia
Guowei Yang University of Queensland, Australia

Doctoral Symposium Chair

Yulei Sui UNSW Sydney, Australia

viii Organization

Workshop Chair

Xiaofei Xie Singapore Management University, Singapore

Publication Chair

Xiaodong Qi Nanyang Technological University, Singapore

Sponsorship Chair

Kailong Wang Huazhong University of Science and Technology,
China

Local Co-chairs

Naipeng Dong University of Queensland, Australia
Guowei Yang University of Queensland, Australia

Web Chair

Hao Guan University of Queensland, Australia

Program Committee

Yamine Ait Ameur IRIT/INPT-ENSEEIHT, France
Behzad Akbarpour NVIDIA, USA
Étienne André Université de Lorraine, France
Cyrille Valentin Artho KTH Royal Institute of Technology, Sweden
Guangdong Bai University of Queensland, Australia
Christel Baier TU Dresden, Germany
Richard Banach University of Manchester, UK
Luís Soares Barbosa University of Minho, Portugal
Hadrien Bride Griffith University, Australia
Ana Cavalcanti University of York, UK
Dipankar Chaki University of New South Wales, Australia
Marsha Chechik University of Toronto, Canada

Organization ix

Yean-Ru Chen National Cheng Kung University, Taiwan
Yu-Fang Chen Academia Sinica, Taiwan
Yuting Chen Shanghai Jiao Tong University, China
Ranald Clouston Australian National University, Australia
Florin Craciun Babes-Bolyai University, Romania
Ana De Melo University of São Paulo, Brazil
Thi Thu Ha Doan Freiburg University, Germany
Naipeng Dong National University of Singapore, Singapore
Aaron Dutle NASA Langley Research Center, USA
Yassmeen Elderhalli Synopsys, Canada
Santiago Escobar Universitat Politècnica de València, Spain
Ruitao Feng Singapore Management University, Singapore
Flavio Ferrarotti Software Competence Centre Hagenberg, Austria
Marc Frappier Université de Sherbrooke, Canada
Lindsay Groves Victoria University of Wellington, New Zealand
Osman Hasan National University of Sciences & Technology,

Pakistan
Xudong He Florida International University, USA
Zhe Hou Griffith University, Australia
Fuyuki Ishikawa National Institute of Informatics, Japan
Eun-Young Kang University of Southern Denmark, Denmark
Tsutomu Kobayashi Japan Aerospace Exploration Agency, Japan
Mark Lawford McMaster University, Canada
Jiaying Li Microsoft, China
Yi Li (Chair) Nanyang Technological University, Singapore
Yuekang Li University of New South Wales, Australia
Shang-Wei Lin Nanyang Technological University, Singapore
Guanjun Liu Tongji University, China
Si Liu ETH Zurich, Switzerland
Zhiming Liu Southwest University, China
Brendan Mahony DSTO, Australia
Frederic Mallet Université Cote d’Azur, France
Panagiotis Manolios Northeastern University, USA
Heiko Mantel TU Darmstadt, Germany
Narciso Marti-Oliet Universidad Complutense de Madrid, Spain
Dominique Mery Université de Lorraine, France
Stephan Merz Inria Nancy, France
Stefan Mitsch Carnegie Mellon University, USA
Magnus Myreen Chalmers University, Sweden
Shin Nakajima National Institute of Informatics, Japan
Masaki Nakamura Toyama Prefectural University, Japan
Michael Norrish Australian National University, Australia

x Organization

Peter Ölveczky University of Oslo, Norway
Jun Pang University of Luxembourg, Luxembourg
Yu Pei Hong Kong Polytechnic University, China
Shengchao Qin Teesside University, UK
Silvio Ranise University of Trento and Fondazione Bruno

Kessler, Italy
Elvinia Riccobene University of Milan, Italy
Adrian Riesco Universidad Complutense de Madrid, Spain
Subhajit Roy Indian Institute of Technology Kanpur, India
Rubén Rubio Universidad Complutense de Madrid, Spain
David Sanan Singapore Institute of Technology, Singapore
Valdivino Santiago Instituto Nacional de Pesquisas Espaciais, Brazil
Yulei Sui University of New South Wales, Australia
Jing Sun University of Auckland, New Zealand
Meng Sun Peking University, China
Xiaoyu Sun Australian National University, Australia
Sofiène Tahar (Chair) Concordia University, Canada
Elena Troubitsyna KTH, Sweden
Ionut Tutu Simion Stoilow Institute of Mathematics of the

Romanian Academy, Romania
Mark Utting University of Queensland, Australia
Bow-Yaw Wang Academia Sinica, Taiwan
Hai H. Wang Aston University, UK
Hsu Myat Win RMIT University, Australia
Guowei Yang University of Queensland, Australia
Naijun Zhan Chinese Academy of Sciences, China
Min Zhang East China Normal University, China
Xiaoyi Zhang University of Science and Technology Beijing,

China
Yongwang Zhao Zhejiang University, China

Additional Reviewers

Bu, Hao
Eshghie, Mojtaba
Feng, Nick
Feng, Shenghua
Kalita, Pankaj Kumar
Kumar, Ankit
Lahiri, Sumit
Luan, Xiaokun
Proença, José

Walter, Andrew
Wen, Cheng
Yang, Jialin
Yang, Min

Abstracts of Invited Talks

Compositional Reasoning at The Software/Hardware
Interface

Graeme Smith

The University of Queensland, Australia
g.smith1@uq.edu.au

Abstract. Rely/guarantee reasoning provides a compositional approach
to reasoning about multi-threaded programs. It enables local reasoning
about a thread by abstracting the thread’s environment to a rely condition
on shared resources that is guaranteed by all other threads.

This approach is sound under the assumption that the individual
threads execute in a sequentially consistent manner. However, this is not
the case on modern multicore processors which routinely employ out-of-
order execution for efficiency gains. This loss of sequential consistency
has no effects on the functionality of high-level programs that are data-
race free, and for those programs rely/guarantee reasoning remains sound.
However, data races may be introduced by programmers inadvertently,
or for reasons of efficiency, as seen in non-blocking algorithms. These
algorithms appear regularly in the low-level code of operating system
routines and programming library data structures.

This presentation explores the effects of out-of-order execution on
such code and how soundness of rely/guarantee reasoning can be restored
by using additional checks over pairs of instructions. Such checks are pre-
sented for multicopy atomic processors, such as x86-TSO, ARMv8 and
RISC-V, where a thread’s writes become observable to all other threads
at the same time, and non-multicopy atomic processors, such as POWER
and older versions of ARM, where this is not necessarily the case. The
presentation also looks at how these checks apply to reasoning about
low-level security vulnerabilities, such as Spectre.

Separation of Concerns for Complexity Mitigation
in System and Domain Formal Modelling – A Dive

into Algebraic Event-B Theories

Yamine Ait Ameur

IRIT - National Polytechnique Institute - CNRS, France
yamine@enseeiht.fr

Abstract. Formal methods have shown their ability and efficiency in
the design, analysis and verification of safety critical complex software
systems. A crucial challenge for formal methods nowadays is to make
them reasonably accessible, as to foster a wider adoption across system
engineering, and make their implementation and deployment more oper-
ational for non-expert engineers and researchers alike. From our point of
view, promoting the reuse and sharing of explicitly formalised elements
such as models, theories, proofs, etc. contributes, undoubtedly, to the
dissemination of these methods. As a result, reuse mechanisms must be
defined and integrated into development processes such as refinement,
abstraction, composition/decomposition, etc.

In this talk, we will discuss state -based formal methods, namely the
Event-B method. We report on our findings about the definition of alge-
braic theories that are utilisedwithin Event-Bmodel refinement chains. In
our method, Event-B models borrow operators, axioms, theorems, proof
and rewrite rules from these theories. Relying on their well-definedness,
these operators, axioms, theorems and proof and rewrite rules are useful
to discharge the proof obligations generated for these models, and con-
tribute to reducing development efforts, as theorems of the theories are
proved once and for all. The approach is illustrated on the generation of
new proof obligations and on systemmodels conformance to engineering
standards.

This work has been partly supported by BMK, BMAW, and the State of Upper Austria in the frame
of the SCCH competence center INTEGRATE (FFG grant no. 892418) part of the FFG COMET
Competence Centers for Excellent Technologies Programme and by the EBRPRodinPlus French
ANR grant (ANR-19-CE25-0010).

A Foundation for Interaction

Yuxi Fu

Shanghai Jiao Tong University, China
fu-yx@cs.sjtu.edu.cn

Abstract. Concurrency theory has found applications in a wide range
scenarios. The foundations of the concurrency theory have been studied
in several frameworks. In this talk we present one such foundation, the
Theoryof Interaction.The theorybuilds upon four postulates, anddevelop
the equality theory and expressiveness theory in a model independent
manner. A thesis for interaction is proposed for interactability. The well-
known concurrency models are studied and compared in the Theory of
Interaction.

Practical Verified Concurrent Program Security

Toby Murray

University of Melbourne, Australia
toby.murray@unimelb.edu.au

Abstract. We entrust programs to keep our most precious secrets. The
quest to prove that they do so securely has been ongoing for at least
half a century. In that time, we have learned that doing so practically
involves overcoming an array of challenges. Firstly, secrets can uninten-
tionally leak via various mechanisms, many of which are below the level
of abstraction at which the software was designed. Side-channel leak-
age via microarchitectural mechanisms is a prime example. Therefore,
implementation-level reasoning is crucial tomeaningfully verify program
security. This kind of reasoning is necessarily challenging in the age of
shared-memory concurrent systems software, requiring reasoning about
low-level details including pointers and even compilation. Secondly, real
programs that manage real secrets often implement complex security
policies. Answers to questions such as “which data are secret?”, “under
which circumstances?”, and “at which times?” are not only intertwined
with each other but also with the application’s functionality. For a trivial
but illustrative example, in the popular game of Wordle the information
that is allowed to be revealed to a particular player about the ith character
of the secret word depends on the rules of the game and that player’s
guesses so far. Therefore, in general meaningful security cannot be ver-
ified in the absence of functional correctness. Moreover, it requires a
general-purpose verification approach able to encompass a wide range
of security policy specifications, applicable to a wide array of programs.
Finally, the verification approach should also aim to maximise usability
and the use of automation, while minimising the learning curve. This
is especially true when proving confidentiality properties which, being
hyperproperties, require reasoning about pairs of program executions.

In this talk I will describe the Covern project (https://covern.org),
which set out to overcome these challenges in 2015. Its efforts have
culminated in the creation of a highly practical method for verifying
the security of concurrent programs. This method is underpinned by the
carefully-designed security concurrent separation logic (SecCSL), plus
a specification and verificationmethodology that together address each of
the aforementioned challenges, proved sound in Isabelle/HOL. Our app-
roach supports implementation-level reasoning against complex security
policies while presenting a familiar Hoare-logic style user interface to

https://covern.org

xx T. Murray

the human verification engineer. It is embodied in a program verification
tool that implements the auto-active paradigm (as popularised by tools
like Dafny, VeriFast and Why3). I will illustrate its power and versatility
with the aid of a range of verified exemplar programs.

On Analysing Weak Memory Concurrency

Subodh Sharma

Indian Institute of Technology Delhi, India
svs@iitd.ac.in

Abstract.Over the past decade, the field of software engineering has seen
the advent of weak memory programming models, including C/C++11
and its derivatives such as RC11. Thesemodels have not only gained con-
siderable attention but have also been implemented in real-world appli-
cations, including but not limited to Bitcoin-core, TensorFlow, and web
browsers like Firefox and Chromium. Despite their widespread usage,
these programming models come with a set of complex (and sometimes
nonintuitive) semantics, complicating the development of correct and
reliable programs. The complexity inherent in these models makes both
program development and debugging highly challenging endeavors. In
this presentation, I will elucidate some of our recent efforts aimed at the
efficient analysis of programs using weak memory models, as well as the
automated program repair.

Certified Proof and Non-Provability

Dirk Pattinson

The Australian National University, Australia
dirk.pattinson@anu.edu.au

Abstract. A simple yes/no answer is often not a sufficient output of an
automated reasoning tool. We also demand verifiable evidence, either
of provability or refutability of a formula. A (formal) proof satisfies this
requirement for provability. Countermodels can evidence refutability, but
have drawbacks: there may not be an agreed upon notion of semantics,
and the mathematical details of countermodels vary widely depending
on the underlying logic. Proofs, on the other hand, have a very uniform
representation. We therefore complement the syntactic notion of proof
with a syntactic (coinductively defined) notion of refutation. Our main
theorem then states that “every statement either has a proof or a refutation”
(terms and conditions apply). We discuss both on the notion of refutation
in general, and highlight the challenges encountered in fully verifying
the above theorem.

Proofs are finite, often inductively defined, certificates that demon-
strate truth. This includes e.g. derivations as evidence that a string is in
the language of a grammar, the validity of a formula in a structure for
first order logic, or a formula being derivable in a system of proof rules.
Non-provability is therefore the complement of an inductively defined
type, and can therefore be captured as the greatest fixpoint of a monotone
operator. For an item to be non-derivable, each proof rule must have (at
least) one non-derivable premiss. As a greatest fixpoint, this can continue
ad infinitum. We conceptualise and generalise the inductive notion of
proof as a bipartite graph where one type of nodes (called sequents) are
the facts that we seek to establish, and the other type (called rules) are
the justifications. A sequent is linked to all rules that justify it, and a rule
connects to all its premisses. On top of this structure, we define mutu-
ally inductive types of witnessed provable sequents (there is a rule with
all provable premisses) and witnessed proving rules (all premisses are
provable). This allows us to define a dual, coinductive type of refutable
sequents and refutable rules. The formalised main theorem then states
that every sequent either has a proof, or a reputation.

Our work is an example of a mathematically trivial theorem that
requires very elaborate proof techniques in an interactive theorem prover.
We have implemented the proof in Coq, mainly because of the relatively

This work is done in collaboration with Cláudia Nalon (University of Brasilia, Brazil,
nalon@unb.br).

mailto:nalon@unb.br

xxiv D. Pattinson

mature support of coinductive types. The proof of themain theorem relies
on termination of fixpoint iterationwhich requires elaboratewellfounded-
ness proofs. Dually, syntactic guardedness requirements require intricate
formulation of auxiliary functions. The extraction of a decision proce-
dure from the proof of the main theorem requires to distinguish proof-
relevant from proof-irrelevant detail and hand-crafted code to guarantee
a modicum of efficiency.

Verifying Compiler Optimisations

Ian J. Hayes

The University of Queensland, Australia
Ian.Hayes@uq.edu.au

Abstract. Compilers are a vital tool but errors in a compiler can lead to
errors in the myriad of programs it compiles. Our research focuses on
verifying the optimisation phase because it is a common source of errors
within compilers. In programming language semantics, expressions (or
terms) are represented by abstract syntax trees, and their semantics is
expressed over their (recursive) structure. Optimisations can then be rep-
resented by conditional term rewriting rules. The correctness of these
rules is verified in Isabelle/HOL. In the GraalVM compiler, the inter-
mediate representation is a sea-of-nodes graph structure that combines
data flow and control flow in the one graph. The data flow sub-graphs
correspond to term graphs, and the term rewriting rules apply equally to
this representation.

Contents

Invited Paper

Verifying Compiler Optimisations (Invited Paper) . 3
Ian J. Hayes, Mark Utting, and Brae J. Webb

Regular Papers

An Idealist’s Approach for Smart Contract Correctness . 11
Tai D. Nguyen, Long H. Pham, Jun Sun, and Quang Loc Le

Active Inference of EFSMs Without Reset . 29
Michael Foster, Roland Groz, Catherine Oriat, Adenilso Simao,
Germán Vega, and Neil Walkinshaw

Learning Mealy Machines with Local Timers . 47
Paul Kogel, Verena Klös, and Sabine Glesner

Compositional Vulnerability Detection with Insecurity Separation Logic 65
Toby Murray, Pengbo Yan, and Gidon Ernst

Dynamic Extrapolation in Extended Timed Automata . 83
Nicolaj Ø. Jensen, Peter G. Jensen, and Kim G. Larsen

Formalizing Robustness Against Character-Level Perturbations for Neural
Network Language Models . 100

Zhongkui Ma, Xinguo Feng, Zihan Wang, Shuofeng Liu, Mengyao Ma,
Hao Guan, and Mark Huasong Meng

Trace Models of Concurrent Valuation Algebras . 118
Naso Evangelou-Oost, Larissa Meinicke, Callum Bannister,
and Ian J. Hayes

Branch and Bound for Sigmoid-Like Neural Network Verification 137
Xiaoyong Xue and Meng Sun

Certifying Sequential Consistency of Machine Learning Accelerators 156
Huan Wu, Fei Xie, and Zhenkun Yang

Guided Integration of Formal Verification in Assurance Cases 172
Irfan Sljivo, Ewen Denney, and Jonathan Menzies

xxviii Contents

Validation-Driven Development . 191
Sebastian Stock, Atif Mashkoor, and Alexander Egyed

Incremental Property Directed Reachability . 208
Max Blankestijn and Alfons Laarman

Proving Local Invariants in ASTDs . 228
Quelen Cartellier, Marc Frappier, and Amel Mammar

Doctoral Symposium Papers

Formal Verification of the Burn-to-Claim Blockchain Interoperable
Protocol . 249

Babu Pillai, Zhé Hóu, Kamanashis Biswas,
and Vallipuram Muthukkumarasamy

Early and Systematic Validation of Formal Models . 255
Sebastian Stock

Verifying Neural Networks by Approximating Convex Hulls 261
Zhongkui Ma

Eager to Stop: Efficient Falsification of Deep Neural Networks 267
Guanqin Zhang

A Runtime Verification Framework for Cyber-Physical Systems Based
on Data Analytics and LTL Formula Learning . 273

Ayodeji James Akande, Zhe Hou, Ernest Foo, and Qinyi Li

Unified Verification of Neural Networks’ Robustness and Privacy
in Computer Vision . 279

Feng Xu

IoT Software Vulnerability Detection Techniques through Large Language
Model . 285

Yilin Yang

Vulnerability Detection via Typestate-Guided Code Representation
Learning . 291

Xiao Cheng

Correction to: Learning Mealy Machines with Local Timers C1
Paul Kogel, Verena Klös, and Sabine Glesner

Author Index . 299

Invited Paper

Verifying Compiler Optimisations

(Invited Paper)

Ian J. Hayes(B), Mark Utting, and Brae J. Webb

The University of Queensland, Brisbane, Australia
{Ian.Hayes,M.Utting,B.Webb}@uq.edu.au

Abstract. Compilers are a vital tool but errors in a compiler can lead
to errors in the myriad of programs it compiles. Our research focuses on
verifying the optimisation phase because it is a common source of errors
within compilers. In programming language semantics, expressions (or
terms) are represented by abstract syntax trees, and their semantics is
expressed over their (recursive) structure. Optimisations can then be
represented by conditional term rewriting rules. The correctness of these
rules is verified in Isabelle/HOL. In the GraalVM compiler, the inter-
mediate representation is a sea-of-nodes graph structure that combines
data flow and control flow in the one graph. The data flow sub-graphs
correspond to term graphs, and the term rewriting rules apply equally
to this representation.

1 Introduction

This paper overviews our research on verifying expression optimisations used
in the GraalVM compiler developed by Oracle.1 The compiler supports multi-
ple source languages (Java, Scala, Kotlin, JavaScript, Python, Ruby, . . .) and
multiple target architectures (AMD64 and ARM) and has variants for both
just-in-time and ahead-of-time compilation. It has front ends that generate an
intermediate representation (IR) of the program being compiled from the source
programming language. The compilation process includes multiple optimisation
phases that transform the IR representation of a method/program to a more effi-
cient version, also expressed in the IR. The final phase generates machine code
for the target architecture from the optimised IR representation of the program.

Why Verify Compilers? Compilers for programming languages are an indispens-
able part of the trusted base of a software development platform. Their correct-
ness is essential because an error in a compiler can lead to errors in any of the
myriad of programs it compiles.

Why Focus on the Optimiser? For a multi-lingual, multi-target compiler, the
machine-independent optimiser is common to all source programming languages
and all target machine architectures and hence correctness of the optimiser
affects all source languages and all target architectures.
1 https://github.com/oracle/graal.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 3–8, 2023.
https://doi.org/10.1007/978-981-99-7584-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_1&domain=pdf
https://github.com/oracle/graal
https://doi.org/10.1007/978-981-99-7584-6_1

4 I. J. Hayes et al.

The optimiser is a common source of errors within compilers. In a study of
C compilers, Yang et al. [7] found that for GCC, with optimisation turned off
only 4 bugs were found but with optimisation turned on 79 bugs were found,
and for Clang, with optimisation turned off only 19 bugs were found but with
optimisation turned on 202 bugs were found.

Errors in an optimiser are often due to subtle edge cases that may not be
covered by testing, whereas verification addresses all possible cases. For example,
a quirk of two’s complement arithmetic is that the most negative 32-bit signed
integer MinInt = −231, when negated gives back MinInt (because the largest
representable positive integer is 231 − 1 and hence −MinInt = 231 is not repre-
sentable as a 32-bit signed integer and the negation of MinInt “overflows” and
gives back MinInt). One consequence of this is that the absolute value func-
tion when applied to MinInt gives MinInt, a negative value! Hence a plausible
optimisation that replaces 0 ≤ abs(x) with true is invalid if x is MinInt.

Overview. The GraalVM IR for a method consists of a graph structure that
combines both control-flow and data-flow nodes [3]. In this paper we overview our
approach to verifying the optimisation of data-flow sub-graphs, which represent
expressions in the source language. We have developed a model of the IR in
Isabelle/HOL [1] and then given the IR a semantics [6] (see Sect. 2). Expression
optimisations are given as a set of conditional term rewriting rules (see Sect. 3).
Proving the rules correct then corresponds to showing that they preserve the
semantics (see Sect. 4). Generating efficient code for an optimiser from a set of
rewriting rules is overviewed in Sect. 5.

2 Data-Flow Sub-graphs

GraalVM IR data-flow sub-graphs are,

side-effect free – side effects are factored out into the control-flow part of
the graph,
well-defined in context – runtime exceptions such as divide by zero or
index out of range are guarded in the control flow graph, so that for example,
a divide node cannot be reached if its divisor is zero, and
share common sub-expressions – if the same sub-expression, e, is used in
multiple places in an expression f , a single sub-graph representing e is shared
by all references to e within f .

Sharing common sub-expressions is essential for generating efficient code but it
means that the representation of a term (i.e. a programming language expression)
is not a conventional abstract syntax tree but rather a directed acyclic graph
structure with a single root node, commonly known as a term graph [2]. Figure 1
gives an example of both a conventional tree and (maximal sharing) term-graph
representation of the term x ∗ x+ x ∗ x. Note that in the term-graph represen-
tation, the node representing x is shared in the sub-graph representing x∗x, and
the root node of x ∗ x is shared in the whole expression x ∗ x + x ∗ x. Also note

Verifying Compiler Optimisations 5

+

xx x x

* * *

x

+

Fig. 1. Abstract syntax tree and term-graph representations of x ∗ x + x ∗ x.

that the same sharing occurs if x is a single node or a term graph representing
a more complex shared sub-expression.

Each leaf node of a term represents either a constant, a parameter to the
method in which the expression occurs, or a control-flow node, such as a method
call node, where at runtime the value associated with that node will have already
been calculated by the control-flow execution, e.g. the result of a method call.

The semantics of expressions is defined over their abstract syntax tree (or
tree for short) form. Term-graphs are a (more efficient) representation of a tree
(i.e. a data refinement). For any term graph there is a unique corresponding
tree and hence the semantics of a term graph is defined as the semantics of
the corresponding tree. Our Isabelle/HOL semantics for an expression, e, is
parametrised with respect to a context consisting of a list, p, of parameters of the
method in which e occurs and a method state, m, consisting of a mapping from
control-flow node identifiers (e.g. for a method call node) to their (pre-computed)
values. The following relation represents evaluating term e in a context consisting
of method state m and parameters p to value v.

[m, p] � e �→ v (1)

In Isabelle/HOL this is a (deterministic) relation, rather than a function; if the
value of e in context [m, p] is not well defined, the relation does not hold.

Values may be integers, object/array references or the special undefined
value.2 The semantics needs to take into account the bit width of integer values
(e.g. 32 or 64) because unbounded integers do not have the same semantics. For
integers, their values are represented by a 64-bit value (using the HOL Word
library) plus a bit-width b, where 0 < b ≤ 64; only the low-order b bits of the
64-bit word are significant. In two’s complement arithmetic, for an expression
such as (x+ y)− y, the calculation of x+ y may overflow but subtracting y then
“underflows” the value back to x, allowing (x+ y) − y to be replaced by x, even
with the presence of overflow.

To validate our semantics we have developed a tool that translates GraalVM
test cases written in Java to their Isabelle/HOL representation. Each test case is
run in Java and its result compared with the value determined by our executable
Isabelle/HOL semantics (see [4] for more details).

2 GraalVM IR handles floating point numbers but we have not addressed those as yet.

6 I. J. Hayes et al.

3 Term Rewriting Rules

Expression optimisations are based on the algebraic properties of the expressions,
e.g. x ∗ 0 = 0, and can be expressed as conditional term rewriting rules [5],
for example, in the following rewriting rules x, y, t and f represent arbitrary
expressions, c represents an integer constant, and << is the left shift operator.
The compiler performs static analysis that tracks the lower and upper bounds
of a node, which are stored in the node’s stamp so that for Rule 6 if the upper
bound for x is less than the lower bound for y, x < y must be true in that
context. A division node within the graph can only be reached after a (control-
flow) check that the divisor is non-zero, otherwise an exception is raised.3 That
allows an optimisation like Rule 3 to be valid because the case when x is zero
cannot occur.

x ∗ 0 �−→ 0 (2)
x/x �−→ 1 (3)

(x + y) − y �−→ x (4)
x ∗ c �−→ x << log2 c when isPower2 c (5)
x < y �−→ true when upper(stamp(x)) < lower(stamp(y)) (6)

¬false �−→ true (7)
(true ? t : f) �−→ t (8)

The rewriting rules can be applied to any sub-term and in any order. In practice,
it is better to optimise all sub-terms of a term e before applying rules to optimise
e itself. An exception is when optimising a conditional (b ? t : f), in which case
it is better to first optimise b (e.g. using Rule 6 or Rule 7) because if Rule 8 can
then be applied then f is eliminated from the expression and then only t needs
to be optimised.

4 Verifying Term Rewriting Rules

This section briefly overviews the verification of rewriting rules (for more details
see [5]). We say term e1 is refined by term e2 if and only if for all contexts [m, p],
if e1 evaluates to a well-defined value v, so does e2.

e1 � e2 = (∀m p v . [m, p] � e1 �→ v =⇒ [m, p] � e2 �→ v) (9)

To show a rewriting rule, e1 �−→ e2 when cond, is correct, we show that if cond
holds e1 is refined by e2.

cond =⇒ (e1 � e2) (10)

For Rule 2, the right side (i.e. 0) is valid in all contexts but the left side (i.e.
x ∗ 0) is only well defined in contexts where x is well defined. For the division
3 Our treatment of the semantics assumes that all division nodes are so guarded.

Verifying Compiler Optimisations 7

node, the semantics defines 0/0 to be a special undefined value, and hence Rule
3 is valid because the values of the two sides of a rewriting rule only need to be
equal if the left side is well defined.

Verifying optimisations as term rewriting rules is much simpler on the tree
representation than on the term-graph representation because, in a term graph,
a replaced node may be referenced in multiple places in the graph. To show that
term-graph rewriting is correct, we make use of a theorem that shows that if
e1 � e2 and a term graph matching e1 is replaced by the corresponding term
graph for e2, then the semantics of the overall graph is preserved.

5 Generating Code for Optimisations

The approach described above represents optimisations as a set of rewriting rules.
One could naively translate each rule to code and apply them repeatedly until
no rule was applicable.4 We are currently developing an approach to generate
an efficient optimiser from sets of rewriting rules. In practice, there is often
overlap between rules in the matching process, for example, all rules with the
same node at the top-level of their pattern will perform the same initial match.
In practice there are many rewriting rules for each kind of top-level node and
hence in generating code we would like to factor out such matching so it is only
done once. The factoring can also be applied to sub-expressions of the pattern.

To handle code generation we need to introduce more basic matching primi-
tive, match e p, that matches term e with pattern p; it takes an initial substitution
s and if the match succeeds, returns s updated with instantiations for the free
variables within p. Matches can be composed using, m1

o
9 m2, to form a combined

match that takes a substitution, s, and returns s updated for both matches, if
they both succeed, but if either fails their combination fails. For a condition C,
testC, fails is C does not hold for its input substitution s, otherwise it passes
through s. Alternative rules can be combined using, r1 else r2, meaning take the
result of r1 if it succeeds, otherwise try r2. For example, (Rule 2 else Rule 5)
expands to,

(match e (x ∗ y) o
9 match y (con c) o

9 test(c = 0) o
9 apply 0) else

(match e (x ∗ y) o
9 match y (con c) o

9 test(isPower2 c) o
9 apply(x << eval(log2 c)))

which after factoring out the initial matches becomes the following.

match e (x ∗ y) o
9 match y (con c) o

9 ((test(c = 0) o
9 apply 0) else

(test(isPower2 c) o
9 apply(x << eval(log2 c))))

Generating efficient code in a programming language, such as Java, from rewrit-
ing rules expressed using these primitives is relatively straightforward.

For many rewriting rules (e.g. Rule 4), if all sub-expressions of the left side
(e.g. x and y) have already been optimised, then a successful application of the
rewriting rule results in a term that cannot be further optimised and hence the
optimisation of that term is complete.
4 Each set of rewriting rules is given a measure function to ensure rewriting terminates.

8 I. J. Hayes et al.

6 Conclusions

Conditional term rewriting rules allow one to succinctly formalise expression
optimisations. Each rule can be separately verified to show that it preserves the
semantics of an expression, whenever the rule is applicable. In the context of
the GraalVM compiler the rewriting rules can also be applied to its term-graph
representation of expressions. Given a set of valid conditional rewriting rules,
each representing individual optimisations, the challenge is then to combine them
to form an efficient optimiser by factoring out common matches and avoiding
applying rules in situations where they cannot possibly succeed.

Acknowledgements. Mark Utting’s position and Brae Webb’s PhD scholarship are
both funded in part by Oracle Labs. Our thanks go to Paddy Krishnan, Andrew Craik
and Gergö Barany from Oracle Labs Brisbane for their helpful feedback, and to the
Oracle GraalVM compiler team for answering questions. Thanks also to honours stu-
dents that have contributed to advancing the project.

References

1. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45949-9

2. Plump, D.: Essentials of term graph rewriting. Electron. Notes Theor. Comput. Sci.
51, 277–289 (2002). https://doi.org/10.1016/S1571-0661(04)80210-X

3. Stadler, L., Würthinger, T., Simon, D., Wimmer, C., Mössenböck, H.: Graal IR:
an extensible declarative intermediate representation. In: Proceedings of the Asia-
Pacific Programming Languages and Compilers Workshop. APPLC ’13, pp. 1–9,
February 2013

4. Utting, M., Webb, B.J., Hayes, I.J.: Differential testing of a verification framework
for compiler optimizations (case study). In: FormaliSE 2023. IEEE (2023)

5. Webb, B.J., Hayes, I.J., Utting, M.: Verifying term graph optimizations using
Isabelle/HOL. In: Proceedings of the 12th ACM SIGPLAN International Conference
on Certified Programs and Proofs. CPP 2023, pp. 320–333. Association for Com-
puting Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3573105.
3575673

6. Webb, B.J., Utting, M., Hayes, I.J.: A formal semantics of the GraalVM interme-
diate representation. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS, vol. 12971,
pp. 111–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88885-5 8

7. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI ’11, pp. 283–294. Association
for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/
1993498.1993532

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1016/S1571-0661(04)80210-X
https://doi.org/10.1145/3573105.3575673
https://doi.org/10.1145/3573105.3575673
https://doi.org/10.1007/978-3-030-88885-5_8
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532

Regular Papers

An Idealist’s Approach for Smart Contract
Correctness

Tai D. Nguyen1(B), Long H. Pham1, Jun Sun1, and Quang Loc Le2

1 Singapore Management University, Singapore, Singapore
{dtnguyen.2019,hlpham,junsun}@smu.edu.sg

2 University College London, London, UK
loc.le@ucl.ac.uk

Abstract. In this work, we experiment an idealistic approach for smart
contract correctness verification and enforcement, based on the assump-
tion that developers are either desired or required to provide a correctness
specification due to the importance of smart contracts and the fact that
they are immutable after deployment. We design a static verification
system with a specification language which supports fully compositional
verification (with the help of function specifications, contract invariants,
loop invariants and call invariants). Our approach has been implemented
in a tool named iContract which automatically proves the correctness
of a smart contract statically or checks the unverified part of the specifica-
tion during runtime. Using iContract, we have verified 10 high-profile
smart contracts against manually developed detailed specifications, many
of which are beyond the capacity of existing verifiers. Specially, we have
uncovered two ERC20 violations in the BNB and QNT contracts.

1 Introduction

“After this decade, programming could be regarded as a public,
mathematics-based activity of restructuring specifications into programs.”

(Edsger W. Dijkstra, 1969)

And it didn’t happen. Worse yet, the idea of having a formal specification either
before or alongside with a program has become unimaginable for ordinary pro-
grammers nowadays.

We however may not have the luxury NOT to have a correctness specifi-
cation when it comes to smart contracts. Smart contracts are programs that
run on top of blockchain. They are often used to implement financial applica-
tions and increasingly other critical applications. A bug in a smart contract thus
could result in a massive loss of valuable digital assets, which has been demon-
strated time and time again [8,22]. More importantly, due to the immutability
of blockchain (which is one of its fundamental properties), a smart contract can-
not be patched once it is deployed. In other words, once deployed, a bug in the
smart contract would make it forever vulnerable. We thus must make sure a
smart contract is correct before it is deployed.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 11–28, 2023.
https://doi.org/10.1007/978-981-99-7584-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_2&domain=pdf
https://doi.org/10.1007/978-981-99-7584-6_2

12 T. D. Nguyen et al.

Existing approaches on tackling the correctness of smart contracts can be
roughly categorized into two groups, i.e., those approaches which target com-
mon vulnerabilities and those which support (manually specified) full correctness
specification. The former includes an extensive list of approaches and tools on
static analysis (such as Mythril [18], Oyente [16] and Securify [28]), fuzzing (such
as sFuzz [20], Echidna [13], and ConFuzzius [27]), as well as runtime monitoring
(such as sGuard [19], Solythesis [15], and Elysium [12]). While the approaches
are different, what is common across these approaches is that they all focus on
a collection of generic bugs (such as reentrancy, overflow or underflow, frontrun-
ning and frozen funds). While these approaches are undoubtedly useful, they are
incapable of identifying contract-specific bugs or showing their absence.

In this work, we propose iContract, a fully compositional verification
system for verifying and enforcing the correctness of smart contracts. iCon-
tract supports a rich specification language which allows developers to spec-
ify not only the traditional loop invariants and function specifications but also
contract invariants (for contract-level specification) and call invariants (for spec-
ification of external function calls). We remark that designing a specification
language that is relatively easy to use (which is essential in practice), expressive,
and makes verification easy is nontrivial. For instance, a smart contract often
interacts with other contracts via interfaces. Mishandling such interfaces (e.g.,
assuming that no contract states are modified by such interfaces or contracts
states can be modified arbitrarily) would hinder the verification of contracts. In
this work, we annotate external function calls with call invariants (so that we
can quantify the behavior of the external function call using a correctness logic
formula as well as an incorrectness logic formula). These call invariants can be
validated at the runtime and relied upon as assumptions when we verify the
calling function.

To evaluate the effectiveness and applicability of iContract in practice,
we apply iContract to verify 10 real-world high-profile contracts. For each
contract, a full specification of its correctness is first developed manually, with a
total of 1 PhD-month. iContract is then applied to verify each of the contracts.
The results show that iContract not only is scalable for verifying real-world
contracts but also uncovering contract-specific bugs. The results are encourag-
ing as it shows that developing a specification for critical but relatively simple
programs such as smart contracts is entirely feasible.

To sum up, our main contributions are as follows. First, we propose an app-
roach for the correctness specification of smart contracts which facilitate com-
pletely compositional verification, including revert specification (i.e., specifica-
tions that capture explicit reverts) as well as call invariants for frame conditions.
Second, we develop an implementation of the compositional verification app-
roach for real-world Solidity smart contracts. Lastly, we conduct an evaluation
using 10 real-world high-profile smart contracts (with a full specification of their
correctness).

An Idealist’s Approach for Smart Contract Correctness 13

2 Overview

2.1 Smart Contracts

The concept of smart contracts was first proposed by Nick Szabo in 1997 [26].
However, it only became a reality after the creation of Ethereum [30] in 2015.
An Ethereum smart contract implements a set of rules that aim to manage
digital assets in Ethereum accounts including externally owned accounts and
contract accounts. Despite a large variety of contract programming languages
(e.g., Solidity [5], Vyper [7], and Bamboo [1]), Solidity is the most dominant one
for implementing smart contracts. It is a Turing-complete, object-oriented, and
statically-typed programming language. A smart contract in Solidity is similar
to a class in object-oriented programming languages such as Java or C#. It con-
tains storage variables that stores persistent data and functions. While public
functions can be invoked from other accounts to modify storage variables, pri-
vate functions are internally invoked by other functions. An example of contract
written in Solidity is shown in Fig. 1.

2.2 Vulnerability and Correctness

Same as traditional programs, smart contracts can have bugs. For instance, a
long list of common bugs have been identified [6], some of which have been
exploited and huge financial losses have occurred [8]. Making sure that a smart
contract does not repeat the same mistakes merely constitutes the first step
towards contract correctness.

An ideal approach for smart contract correctness verification must satisfy the
following requirements. First, it must support a rich notion of correctness. This
is because each contract is designed for a unique purpose and thus is expected
to satisfy a contract-specific specification. Existing approaches that are designed
to verify smart contracts against common general vulnerabilities are thus insuf-
ficient. Second, it must be fully compositional, i.e., given a contract, we should
be able to establish its correctness without relying on external contracts. Fur-
thermore, each functional unit, such as a function or even a loop, should have its
own specification so that any kind of global reasoning (even at the contract level)
could be avoided. In so doing, the verification system could achieve scalability.
Third, it must be fully automatic once the specification is provided. Lastly, it
must guarantee that the smart contract satisfies its specification, either through
static verification (ideally) or runtime verification (if necessary).

We obviously must pay some price to achieve the above-mentioned goals. Our
approach is thus based on two assumptions. First, we make the strong assump-
tion that developers are either requested or required (by stakeholders or certifi-
cation boards) to provide a correctness specification. While it was sadly proven
too strong an assumption for ordinary programs, it may be justifiable for smart
contracts due to the reasons mentioned above. Second, we make the assumption
that developers are willing to pay some reasonable amount of additional fee (i.e.,
for runtime checking) in order to guarantee that the smart contract satisfies the
specification.

14 T. D. Nguyen et al.

2.3 An Illustrative Example

In the following, we illustrate how our goals are achieved by iContract through
an example. Figure 1 shows a token-issuing smart contract (written accord-
ing to the ERC20 standard [11]), which is a simplified version of a real-
world smart contract named HEALTH1. The contract includes global variables
burnFee, devFee, bFee, uniswapV 2, and balances. It supports (through a pub-
lic function) transfer of HEALTH tokens (hereafter h-tokens) from account from
(a.k.a. sender) to account to (a.k.a. receiver). Note that the sender is charged
with some fee for the transfer. Furthermore, in some cases, it burns (subtracts)
an amount (proportional to value) of the h-tokens hold by uniswapV 2, which is a
service that swaps h-tokens with BNB (i.e., a token which is often used for token
exchange services) or vice versa. Particularly, first, at lines 8–12 if the receiver
is uniswapV 2, the contract swaps numTokensSell h-tokens for BNB (line 9).
Second, at lines 13–19, if the sender is not uniswapV 2, the contract burns some
h-tokens from uniswapV 2 (line 15). Lastly, at lines 20–26, the contract charges
development fee (line 25), burns token (line 26), and transfers the remaining
(line 24) to receiver.

To verify the contract, we start with developing a correctness specification.
For instance, lines 3–4, 10–11 and 18 constitute the correctness specification of
the function _transfer. The specification relies on a set of pre-defined func-
tions, such as reverts_if(p), modifies(x), ensures(p, q), call_modifies(x) and
call_inv(p, q). Intuitively, reverts_if(p) says that the transaction reverts if p
is satisfied; modifies(x) (respectively call_modifies(x)) says that the function
(respectively the external call) only modifies those variables in x; ensures(p, q)
is equivalent to the Hoare triple {p}s{q} where s is the function body; and
call_inv(p, q) right after a function call is a call invariant, where p is a pre-
condition of the call and q is expected to be satisfied after the call. We remark
that modifies(x), call_modifies(x) can be regarded as syntactic sugars of certain
special cases of ensures(p, q) and call_inv(p, q).

In particular, the specification at line 4 demands that when value = 0, no
token should be burned. This is important as burning h-tokens reduces the total
supply and, thus, increases the price of h-tokens. If h-tokens can be burned
unintentionally (e.g., when value = 0), attackers could potentially use the func-
tion to manipulate the market price. According to the call_modifies(x) at line
11, only variables _balances[this] and _balances[uniswapV2] are modified. The
call invariants at lines 10–11 state that the function call at line 9 transfers
numTokensSell h-tokens from address this to address uniswapV 2. In particu-
lar, the balances[this] is reduced and balances[uniswapV2] is increased by the
same amount (i.e., numTokenSell). By default, all global variables could be
modified in the called function. Line 18 specifies that no variables are modified
by the external call.

Once the specification is given, iContract systematically verifies the con-
tract against the specification. It reports that the specification at line 4 is fal-
sified with a counterexample, i.e., if the sender is not uniswapV 2 and value is
1 deployed at BNB chain address 0x32b166e082993af6598a89397e82e123ca44e74e.

An Idealist’s Approach for Smart Contract Correctness 15

Fig. 1. A sample contract

0, h-tokens are burned from uniswapV 2 on line 15. In other words, this con-
tract could be exploited by abusing the function _transfer to burn h-tokens and
manipulate its price, i.e., an attacker first buys some h-tokens, repeatedly calls
_transfer as described above, and sells his h-tokens at a higher price.

With the verification result, we can prevent the manipulation by adding one
statement require(value > 0) at line 7. Afterwards, iContract reports that the
specification is successfully verified. This is because if value = 0, the function is
reverted. Furthremore, if the user wish to verify the revert, he could annotate
another specification as reverts_if(value=0) and invoke iContract to verify it.
Indeed, our system could verify the revert scenario successfully. Alternatively,
if the user chooses to conduct runtime verification, iContract automatically
translates the above-mentioned unverified specification into an assertion, which
is then validated every time the function is invoked. Note that in the latter case,
additional gas will be paid (for executing the assertion) for the correctness.

16 T. D. Nguyen et al.

3 Specification Language

3.1 High-Level Overview

In the following, we present our specification language which is designed to sup-
port fully compositional verification of smart contracts at the function level. At
a high-level, our specification is composed of function specifications, loop invari-
ants, (external) call invariants and contract invariants.

Function Specifications: Ideally, a user would be able to read the function spec-
ification and be fully aware of what the function does. Given a function f , a
function specification takes the form of multiple ensures(p, q) statements (at the
beginning of the function body), where p and q are predicates that we shall define
shortly. Each ensures(p, q) statement represents a Hoare triple {p}f(x){q}, i.e.,
any reachable state at the end of the function (i.e., without reverting) from a
state satisfying p must satisfy q. In other words, q is an over-approximation of
the states reachable from p.

Loop Invariants: It is well known that loops are difficult when they come to
program verification. While there are many existing approaches on synthesizing
loop invariants [10,17], for now, we make the assumption that loop invariants
are provided as a part of the specification. A loop invariant takes the form of
multiple loop_inv(q) statements at the beginning of the loop. Given a loop
while b do s, loop_inv(q) at the beginning of the loop represents a Hoare triple
{b ∧ q}s{¬b ∧ q}.

Call Invariants: Smart contracts often rely on other smart contracts through
external function calls. To avoid global analysis, we assume that each exter-
nal call is associated with a specification in the form of multiple call_inv(p, q)
statements and multiple achieves(p, q) statements. These help to ensure the
function call behaves expectedly, i.e., they serve as the minimal requirements
on the external contracts that are needed to guarantee the correctness of this
contract. Given a function call m(e), a statement call_inv(p, q) forms a triple
{p}m(e){q}. If p is satisfied before the call, q is always satisfied after the execu-
tion of the function call. Such statements can be used to prevent the well-known
reentrancy vulnerability. A statement achieves(p, q) forms a specification in the
incorrectness logic [21], which intuitively means that if p is satisfied, it is possible
to satisfy q by making the external call.

Contract Invariants: A contract invariant takes the form of multiple cinv(p)
statements at the top of the contract and is expected to be satisfied after exe-
cuting the constructor and every public function in the contract. Although tech-
nically it can be captured using function specifications (for both the constructor
and every public function), it is typically used to capture contract-level behav-
iors that are expected to hold always regardless of the functionalities provided

An Idealist’s Approach for Smart Contract Correctness 17

Table 1. Core features of Solidity

Func m m(v) = s

Stmt s sA | s; s | if e then s else s | while e do s | require(p) | assert(p) | skip
Atom sA v := e | v.m := e | v[e] := e

Expr e l | v | v.m | v[e] | e ⊕ e | �e | m(e)

in the contract.

In addition, iContract supports a number of syntactic sugars which ease the
writing of specification. For instance, for each function, loop, or external function
call, we assume that all global variables may be modified unless a modifies(x)
statement is put in place (e.g., function definitions, function calls), which spec-
ifies that all except those variables in x remain unchanged. Additionally, when
variable x is a mapping, we allow users to write modifies(x[a]) where a is con-
stant value to state that only the value at location a of x is modified, while the
values at other locations are not.

In terms of specifying the expected behaviors of smart contracts, our spec-
ification language has mulitple advantages over existing approaches [14,23,25].
First, our specification language is designed to avoid global reasoning with the
help of call invariants. Second, the reverts_if(p) statements allow us to easily
capture explicit reverts which are very common in smart contracts in the form
of require, revert() and so on. Note that this feature is missed from approaches
such as Solc-verify and as a result, those respective tools often generate false
alarms, i.e., reporting violation of postcondition on transactions that ought to be
reverted. Last, our specification is mostly based on well-known and well-founded
concepts which makes it easy to adopt.

3.2 Formalization

In the following, we provide the necessary formalization of our specification
language as well as smart contracts so that we can present precisely how our
approach works. Note that since all our verification effort (including static ver-
ification and runtime verification) takes place at the function-level, all we need
to formalize are smart contract functions and function-level specification.

Defining Smart Contracts: To ease the discussion hereafter, we model Solid-
ity’s core (function-level) features using the language presented in Table 1. A
function m includes parameters v, and a body statement s. A statement s is an
atomic statement sA, a conditional statement, a while loop, an assertion, revert
statement, and it also can be a sequence of statements (according to the defini-
tion shown in Table 1). An atomic statement sA is an assignment to a variable
(v := e), an assignment to member of a variable (v.m := e), or an assignment
to an array element (v[e] := e). An expression e is a literal l, a variable v, a

18 T. D. Nguyen et al.

member access v.m, an index access v[e], a binary expression e ⊕ e, a unary
expression � e, or a call v.m(e) of a local function (in the same contract) or an
external function (in a different contract). We use rev as a preserved variable for
revert condition: It is true if the contract has been reverted. Note that we can
simply transform other Solidity features into our core language features such as
the statement require(a) is equivalent to the statement i) assert(a ∧ ¬rev) in
verifying code against a function variant or ii) revert(¬a∧rev) in the verification
of reverts_if(...).

To define the semantics of smart contracts, we define a set V ar contains all
the variables in the contract, a set Mem contains all the members of the data
structures in the contract, a set of mapping for arrays A, and data structures
(where A ∩ V ar = ∅), a set Loc contains all the memory locations, a set V al
contains all non-memory values (i.e., V al = Int ∪ Float ∪ Bool ∪ Str, with Int,
Float, Bool, and Str are the sets containing integer, floating-point, boolean, and
string literals). We use two mapping functions S ∈ Stacks and H ∈ Heaps to
keep track of the execution environment. Consequently, a program state σc ∈
States is defined by a pair of stack and heap, as follows.

S ∈ Stacks =def V ar → (V al ∪ Loc)
H ∈ Heaps =def Loc → (Type → (Mem ∪ Int) → (V al ∪ Loc))
σc ∈ States =def Stacks × Heaps

where the set Type contains all the data structure types defined in the contract
as well as the array type.

We define a standard small-step operational semantics of smart contracts
(based on the semantics of Solidity). A configuration C is a pair (s, σc) where
s is a program and σc is a program state (i.e., the valuation of both S and H).
The semantics is given by a binary relation, �, on configurations. Its intended
interpretation is that (s, σc) � (s′, σ′

c) holds if the execution of the statement
in the configuration (s, σc) can result in the new program configuration (s′, σ′

c).
An execution (of s) is a possibly infinite sequence of configurations (Ci)i≥0 with
C0 = (s,_) such that Ci � Ci+1 for all i ≥ 0. We define �∗, the reflexive-
transitive closure of �, to capture finite executions (Ci)0≤i≤n. The details of
the small step semantics is present in Fig. 2.

Defining the Specification Language: Our specification language is consti-
tuted of predicates defined using the syntax below.

Φ, p, q := Ψ | Φ ∨ Φ Ψ := a ⊗ a | Ψ ∧ Ψ
a := e | a ⊕ a | � a e := l | v | v[a] | v.m | old(v) | g(v)

In general, a predicate Φ is a disjunction with one or multiple conjunctions Ψ .
Each conjunct in Ψ is a relational predicate with ⊗ is a relational operator
(i.e., >, ≥, =, =, <, ≤). The left-hand side and right-hand side of a relational
predicate are arithmetic expressions. An arithmetic expression may have one
atomic expression or multiple of them connected by binary operators ⊕ (i.e.,
+, −, ∗, /) or unary operators � (i.e., ¬, −). An atomic expressions includes

An Idealist’s Approach for Smart Contract Correctness 19

Fig. 2. Small-step operational semantics of the smart contract language, given by the
binary relation � over Stacks × Heaps

a literal l, a variable v, a member access v.m, and an index access v[a]. The
expression v.m accesses the value stored in the member m of a struct v, whereas
the expression v[a] accesses the value at key a of a mapping v. In addition, we
provide a function old(v) which returns the value of variable v at the beginning
of the function (for function specifications) or the loop (for loop invariant) or
before an external function call (for call invariants). Moreover, we support a
library of externally defined function g(v). One example is the sum function,
which, given a mapping v, computes the sum of all values stored in v.

20 T. D. Nguyen et al.

Fig. 3. Specification formula semantic where dom(f) returns the domain of function
f , size(v) the range of index of the array v.

The semantics is defined according to a satisfaction relation S,H |= Φ which
is defined in a common way, as shown in Fig. 3. Next, we define the correctness
in our specification language. First, regarding contract invariants, given a con-
tract c associated with multiple cinv(p) statements, the contract is correct if and
only if each ensures(p, p) is satisfied by all the public functions including the
constructor. Second, regarding function specifications, given a function m(v) = s
associated with multiple ensures(p, q) and reverts_if(p’) statements, the func-
tion is correct iff for each ensures(p, q) statement, the following is satisfied.

∀σc, σ
′
c. σc |= p ∧ (s, σc) �∗ (skip, σ′

c) =⇒ σ′
c |= q

Furthermore, for each reverts_if(p’) statement, the following is satisfied

∀σc, σ
′
c. σc |= p′ ∧ (s, σc) �∗ (require(b), σ′

c) =⇒ σ′
c |= ¬b

Third, regarding loop invariants, given a loop while b do s associated with an
loop_inv(q) statement at the beginning, the following must be satisfied where
L is a function that filters states satisfying b.

∀σc, σ
′
c. σc |= q ∧ (s, L(σc, b)) �∗ (skip, σ′

c) =⇒ σ′
c |= q

Fourth, for each achieves(p, q), the following must be satisfied.

∀σ′
c.∃σc. σ′

c |= q =⇒ σc |= p ∧ (s, σc) �∗ (skip, σ′
c)

Lastly, regarding call invariants, given an external function call m(e) associated
with multiple call_inv(p, q), for any implementation s of m(e), the following
must be satisfied: ∀σc, σ

′
c. σc |= p ∧ (s, σc) �∗ (skip, σ′

c) =⇒ σ′
c |= q.

4 Verification

We present our compositional verification algorithm by first defining an encoding
function post(σi, si) and illustrating how to utilize it to validate function speci-
fication ensures(p, q) and revert specification reverts_if(p). We remark that we

An Idealist’s Approach for Smart Contract Correctness 21

abuse the notation σi to represent a symbolic state where its syntax is simi-
lar to our specification language. Furthermore, we provide encoding rules that
substitute loops and function calls with their specifications.

4.1 Function Validation

We define an encoding function post(σi, si) that takes a pre-state σi and a state-
ment si as inputs, and procedure post-states σk as output. Given a function
m(v) = s which may contain loops as well as internal and external function calls,
our validations are defined as follows. A function specification ensures(p, q) with
implementation s is verified if post(p, s) returns σ such that σ ⇒ q. The execu-
tion post(p, s) indicates that the encoding process starts with pre-state p. After
processing the statement s, the validation formula σ ⇒ q means that if the func-
tion is not reverted then the encoding starts with p implies the post-condition
q. Similarly, a specification reverts_if(p) is verified if post(p, s) returns the post-
state σ ∧ rev at exits. Note that the procedure of verifying ensures(p, p) utilizes
the encoding rule Revert-1. On the other hand, other Revert rules, such as
Revert-2 and Revert-3, are employed for the verification of reverts_if(p).

4.2 Generating Proof Obligations

We define encoding function post(σi, si) using encoding rules, each of which
is of the following form.

premise0 ... premisei
σi, si � σk

This transition rule means given a pre-state σi, a statement si, it executes
premise0, ..., premisei to obtain the post-state σk. The encoding rules are
shown in Fig. 4. Note that the encoding transforms the code into the pred-
icates supported by off-the-shelf SMT solver Z3. While most of the syntax
is self-explanatory, we use the notation v[a → l] to represent an array with
v[a → l][a′] = v[a′] when a′ = a and v[a → l][a] = l.

The rules are divided into three groups, i.e., rules for local operations, rules
for external function calls, and rules for revert. Rules for local operations include
Seq, Assign-1, Assign-2, Assign-3, If and Loop. They are similar to the
traditional Hoare rules. In the Assign-2 and Assign-3, we substitute v before
the assignment with x, and set the current v as the result of update value e[x/v]
to the value located at index m[x/v] or property m. In the Assign-2, for each
write operation to v[m], we compute sum(v) by adding the current sum u to the
difference between the new value e and the old value v[m], i.e., u′ = u+e−v[m].
The Loop substitutes the loop with its invariant and exiting condition (i.e., ¬b).

Rules for revert include Revert-1 (the non-revert condition is part of the
pre-condition), Revert-2 (the revert condition met) and Revert-3 (the revert
condition is not met). The idea is that the function is reverted if any of the
condition leading to revert is satisfied. If the revert condition is satisfied, the

22 T. D. Nguyen et al.

Fig. 4. Encoding rules (where finv(p, q) is ensures(p, q) or call_inv(p, q)) (Color
figure online)

value of rev is set, and after that our system skips all the remaining statements
by using rule Rev-Prop.

Rules for external function calls include Call-spec, which replaces func-
tion calls using either function specifications (if it calls for a local function)
or call invariants (if it calls for an external function). This rule updates mod-
ified variables v through the substitutions σ[x/v]. Note that, to propagate the
reverts_if(p) back to the caller, via rule Revert-Inter, we simply convert it
to require(¬p) before the function call is encoded. Moreover, each ensures(p, q)
is lifted to the context of the current function by substituting free variables
appearing on parameters with their corresponding arguments.

Note that the correctness specification may be over-approximating and thus
our verification may lead to false alarms and spurious counterexamples. Instead
of running test cases with extra costs, the incorrectness specification associated
with external function calls is used to construct counterexamples. According to
the concrete values from counterexamples, we first determine an execution path
leading to the violation, and then use the achieves(p, q) statements associated
with the involved external function calls to check whether the counterexample is
real. We develop another predicate postU (p, s) to compute under-approximating
post-states for the implementation s, then our system confirms the bug described
in the spec if q ⇒ σ. In term of encoding for postU , dropping execution paths is

An Idealist’s Approach for Smart Contract Correctness 23

allowed in incorrectness logic. Therefore, the number of loop iterations can be
freely chosen. Only the true-branch or the false-branch is selected while encoding
an if-statement. If there is an execution path that satisfies the incorrectness spec-
ification then the counterexample is determined to be a real violation. Finally, to
handle function call m(e);modifies(v); achieves(p’, q’) at the calling states σ, it
first tests p′ ⇒ σ. If this test succeeds, it produces σ[x/v]∧ q′ as the post-states.
Otherwise, if v ∩ FreeVars(σ) = ∅, it checks Sat(p′ ∧ σ). If it is satisfied, it
produces σ[x/v]∧ q′ as the post-states. The soundness of the former comes from
Consequence rule and the later is from Constancy rule in incorrectness logic.

5 Implementation and Evaluation

5.1 Implementation

iContract is implemented with around 1K lines of Python code. It supports
most features of Solidity version 0.5.1 including inheritance and important built-
in functions (e.g., send, and call). iContract uses a locally installed Solidity
compiler to compile a user-provided Solidity file into a JSON file containing
the typed abstract syntax tree (AST). Then, iContract analyzes the AST to
encode contracts into predicates using the Z3 library. We leverage NatSpec [4]
format to define our own specifications.

The encoding is mostly straightforward except some relevant details that we
discuss below. We use SMT Integer to model int/unsigned and int/address and
so on2. To support contract inheritance, we implement a symbol table which
allows us to query global variables and functions of parent contracts using inher-
itance tree provided by the Solidity compiler. We also take into account function
overriding and variable hiding.

Our current implementation has several limitations. First, it does not sup-
port low-level API calls including inline assembly, Application Binary Inter-
face functions, and bitwise operations. Second, iContract does not compute
gas consumption to determine out-of-gas exceptions. Last, iContract analyzes
contracts without the presence of aliasing. Note that although Solidity allows
two variables reference to the same data location (i.e., aliasing), it is not very
common in Solidity and we leave it to future work.

5.2 Experimental Evaluation

In the following, we design and conduct multiple experiments to answer the
following research questions (RQ).

– RQ1: Can iContract verify real-world smart contracts?
– RQ2: How does iContract compare with Solc-verify [14], a state-of-the-art

tool for verifying function-level properties?

2 Note that runtime checking for arithmetic overflow has been introduced since Solidity
0.8 and thus no longer an issue.

24 T. D. Nguyen et al.

Table 2. Statistics on verified contracts

Project #Contracts #Functions #Ifs #Specifications LOC #Transactions (mil)

BAT 4 16 20 17 179 3.97
BNB 2 13 22 25 150 1.00
HT 4 13 4 2 127 0.67
HOT 3 22 29 28 279 0.95
IOTX 8 32 28 35 500 0.28
QNT 5 24 13 16 239 1.21
MANA 11 28 21 70 282 2.50
ZIL 9 35 42 70 353 0.44
NXM 3 37 36 40 448 0.12
SHIB 4 33 12 33 448 9.5

RQ1 aims to evaluate whether iContract is useful for some practical smart
contracts. RQ2 aims to evaluate whether iContract’s approach (in particular,
its specification language) can achieve its goals better than existing approaches.

In the following, we present the evaluation results and answer the questions.
All our experiments are conducted on a single processor running an Ubuntu
16.04.6 LTS machine with Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz and
64GB of memory. The timeout is set to be 5min for verifying the specification.
Our implementation and the verified contracts are available online [2].

RQ1: To answer this question, we identify a set of 10 high-profile projects from
EtherScan [3]. The relevant statistic of these contracts is shown in Table 2. The
table shows the name of each project. For each project, it shows the number of
contracts (#Contracts), the number of functions (#Functions), the number of
if-statements (#Ifs), the number of specification statements (#Specifications),
line of codes (LOC), and the number of transactions (#Transactions) in millions.
Most of them have over 200 lines of code and 20 functions. Each project is asso-
ciated with a Solidity file, which typically contains multiple contracts including a
main one as well as library or parent contracts. Since not all smart contracts are
written in the same Solidity versions, we have to convert them to a fixed version
(i.e., 0.5.1). This is necessary to ensure the consistency of our verification results.
All specifications are manually written by the authors and directly injected into
the Solidity files. The specifications are written in such a way that they describe
the logic of each function as precise as possible. There are 124 reverts_if(), 2
contract invariants, 4 call invariants, 206 function specifications.

The verification results for each project is shown in Table 3 under column
iContract. The column #V shows the number of specifications that were
successfully verified. The column #F shows the number of falsified specifica-
tions. The column Time shows the average verification time in seconds. Since we
group our specifications into a single specification to compare with Solc-verify,
the column #Sp is less than the one shown in Table 2. Most of the projects are

An Idealist’s Approach for Smart Contract Correctness 25

Fig. 5. An example illustrating the effectiveness of reverts_if() in identifying incorrect
require statements

verified within 5 s. Among 336 specification statements, 3 of them are falsified.
After manually investigating them, we confirm that iContract exposes con-
tract invariant violations in HOT, QNT and BNB. First, BNB stores the frozen
tokens in a mapping called freezeOf . When tokens are frozen, they are not sub-
tracted from totalSupply. As a result, sum(balances) = totalSupply . Second, the
totalSupply of QNT remains unchanged even when refresh QNT is created by
calling the function mint. Again, sum(balances) = totalSupply . Third, as shown
in Fig. 5, HOT has the following require statement at line 4 which is meant
to prevent overflow according to the documentation. However, it also prevents
non-overflow cases such as when _amount = 0 .

RQ2: To answer RQ2, we compare iContract against Solc-verify, a state-of-
the-art tool for verifying function-level properties of smart contracts [14]. Solc-
verify is selected as it shares much similarity with iContract, i.e., it supports
contract, function and loop invariants. Other verifiers either do not support user-
defined specification (such as Verismart [24]), or restrict their specification in spe-
cific forms (e.g., linear temporal logic such as in Verx [23] and SmartPulse [25]),
which are not expressive enough to capture the specification required to ver-
ify the correctness of the contracts used in our experiments. We first translate
all specifications written in our language to the ones supported by Solc-verify.
The translation is not straightforward due to the fact that Solc-verify does not
support reverts_if(p) and call invariants. We thus remove the call invariants,
reverts_if(p) and convert our ensures(p, q) statements into Solc-verify’s speci-
fications. The results are summarized in Table 3 under the column Solc-verify.
While Solc-verify does verify most of the contracts, results inconsistent with
ours are reported for 3 contracts, as shown in column #Consistent. All of them
are falsified by Solc but are verified by iContract. Our investigation shows
that the reason is the missing specifications for external function calls, i.e., the
call invariants. In the ZIL project, the external function call token.transfer
(owner, amount) transfers tokens to the owner. Solc-verify assumes that all
global variables are modified after the call and thus sum(balances) = totalSupply
is falsified. In contrast, our call invariants indicate that the variable balances is
unchanged and the specification sum(balances) = totalSupply is preserved. In
the BAT and BNB projects, well-known external functions call such as send()
and transfer() are not properly handled in Solc-verify. We remark that besides
supporting specification features such as reverts_if(p) and call invariants, iCon-
tract works on Solidity code directly without converting it to another language

26 T. D. Nguyen et al.

Table 3. Comparison against Solc-verify

Project # Sp iContract Solc-Verify
#V #F Time (s) #V #F Consistent Time (s)

BAT 13 13 0 4.93 12 1 × 4.51
BNB 15 14 1 7.20 13 2 × 4.00
HT 2 2 0 1.10 2 0 � 2.77
HOT 17 17 0 1.41 17 0 � 4.38
IOTX 23 23 0 2.09 23 0 � 4.26
QNT 11 10 1 1.33 10 1 � 4.69
MANA 42 42 0 3.94 42 0 � 6.63
ZIL 40 40 0 4.61 39 1 × 7.13
NXM 22 22 0 2.24 22 0 � 6.31
SHIB 23 23 0 1.76 23 0 � 5.95

for verification. This makes verification of the falsified specification statements
straightforward in iContract, i.e., by transforming the respective undefined
functions into assertions.

6 Related Work and Conclusion

The verification for smart contracts has been the interests of multiple researchers.
The systems that are closely related to ours are Solc-verify [14] and MVP [9].
Solc-verify translates Solidity contracts into the Boogie intermediate language,
and relies on the Boogie system for verification. It supports contract invariant,
loop invariant, and pre-/post conditions. In particular, Solc-verify assertion lan-
guage targets the safety of low-level properties (e.g., the absence of overflows)
and high-level contract invariants (e.g., the sum of user balances equates to
the total supply). Similarly, Dill et al. recently proposed MVP, a static verifier
based on the Boogie verifier, for smart contracts in the Move language [9]. MVP
supports both contract invariants and functional invariants via pre/post con-
ditions. It also generates global invariants for runtime checking. MVP enables
an alias-free memory model through reference elimination which relies on bor-
row semantics. MVP was deployed for continuous verification on Move code and
Diem blockchain. iContract supports all the features supported by Solc-verify
and MVP, and additionally supports features like revert and call invariants that
are designed to handle dynamic dispatching on unknown function calls.

There are several other verification systems for smart contracts developed in
the last few years, e.g., VeriSmart [24], SmartACE [29], and VerX [23]. VeriS-
mart [24] focuses on intra-procedural analysis for verifying arithmetic (over-
and under-flows) safety. The main contribution of their work is an algorithm
that could refine transaction invariants of arbitrary transactions. These invari-
ants boost the precision of such verification. However, VeriSmart lacks inter-

An Idealist’s Approach for Smart Contract Correctness 27

procedural reasoning. SmartACE [29] is a framework that can verify user-
annotated assertions by running multiple independent analysers. It models smart
contract library and transforms the verification problem into off-the-self anal-
ysers like constrained Horn clause solving (e.g., SeaHorn) for correctness ver-
ification. In contrast, iContract presents a built-in static analyser for a rich
specification. Finally, VerX [23] focuses on temporal properties of Ethereum con-
tracts. It reduces the temporal safety verification to reachability verification and
applies the state-of-the-art reachability checking technique. While temporal logic
based specification is useful for specifying global properties, we believe that our
specification language is better for supporting the motto of “specification is law”
and has its advantage on compositional verification.

To conclude, in this work, we design a static verification system with a spec-
ification language which supports fully compositional verification. Using iCon-
tract, we have verified 10 high-profile smart contracts against manually devel-
oped detailed specifications, many of which are beyond the capacity of existing
verifiers. In the future, we intend to improve the performance of iContract fur-
ther with optimization techniques.

References

1. Bamboo: a language for morphing smart contracts. https://github.com/pirapira/
bamboo

2. Dataset. https://anonymous.4open.science/r/zero1-0DEE/
3. Etherscan. https://etherscan.io/
4. Natspec format. https://docs.soliditylang.org/en/v0.8.17/natspec-format.html
5. Solidity - Solidity documentation. https://docs.soliditylang.org/en/stable/
6. swcregistry. https://swcregistry.io/
7. Vyper - Vyper documentation. https://docs.vyperlang.org/en/stable/
8. Daian, P.: DAO exploit. https://hackingdistributed.com/2016/06/18/analysis-of-

the-dao-exploit/
9. Dill, D., Grieskamp, W., Park, J., Qadeer, S., Xu, M., Zhong, E.: Fast and reliable

formal verification of smart contracts with the move prover. In: TACAS 2022.
LNCS, vol. 13243, pp. 183–200. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-99524-9_10

10. Ernst, M.D., et al.: The Daikon system for dynamic detection of likely invariants.
Sci. Comput. Program. 69(1–3), 35–45 (2007)

11. Fabian Vogelsteller, V.B.: EIP-20: token standard, November 2015. https://eips.
ethereum.org/EIPS/eip-20

12. Ferreira Torres, C., Jonker, H., State, R.: Elysium: context-aware bytecode-level
patching to automatically heal vulnerable smart contracts. In: Proceedings of the
25th International Symposium on Research in Attacks, Intrusions and Defenses,
pp. 115–128 (2022)

13. Grieco, G., Song, W., Cygan, A., Feist, J., Groce, A.: Echidna: effective, usable,
and fast fuzzing for smart contracts. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 557–560 (2020)

14. Hajdu, Á., Jovanović, D.: solc-verify: a modular verifier for solidity smart con-
tracts. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS, vol. 12031, pp.
161–179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41600-3_11

https://github.com/pirapira/bamboo
https://github.com/pirapira/bamboo
https://anonymous.4open.science/r/zero1-0DEE/
https://etherscan.io/
https://docs.soliditylang.org/en/v0.8.17/natspec-format.html
https://docs.soliditylang.org/en/stable/
https://swcregistry.io/
https://docs.vyperlang.org/en/stable/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://doi.org/10.1007/978-3-030-99524-9_10
https://doi.org/10.1007/978-3-030-99524-9_10
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://doi.org/10.1007/978-3-030-41600-3_11

28 T. D. Nguyen et al.

15. Li, A., Choi, J.A., Long, F.: Securing smart contract with runtime validation. In:
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 438–453 (2020)

16. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269 (2016)

17. Mariano, B., Chen, Y., Feng, Y., Lahiri, S.K., Dillig, I.: Demystifying loops in
smart contracts. In: 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 262–274 (2020)

18. Mueller, B.: Smashing ethereum smart contracts for fun and real profit. HITB
SECCONF Amsterdam 9, 54 (2018)

19. Nguyen, T.D., Pham, L.H., Sun, J.: SGUARD: towards fixing vulnerable smart
contracts automatically. In: 42nd IEEE Symposium on Security and Privacy, SP
2021, San Francisco, CA, USA, 24–27 May 2021, pp. 1215–1229. IEEE (2021).
https://doi.org/10.1109/SP40001.2021.00057

20. Nguyen, T.D., Pham, L.H., Sun, J., Lin, Y., Minh, Q.T.: sFuzz: an efficient adap-
tive fuzzer for solidity smart contracts. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, pp. 778–788 (2020)

21. O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang. 4(POPL) (2019).
https://doi.org/10.1145/3371078

22. Palladino, S.: The parity wallet hack explained, July 2017. https://blog.
openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/

23. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.: VerX:
safety verification of smart contracts. In: 2020 IEEE Symposium on Security and
Privacy (SP), pp. 1661–1677 (2020). https://doi.org/10.1109/SP40000.2020.00024

24. So, S., Lee, M., Park, J., Lee, H., Oh, H.: VERISMART: a highly precise safety
verifier for ethereum smart contracts. In: 2020 IEEE Symposium on Security and
Privacy (SP), pp. 1678–1694 (2020)

25. Stephens, J., Ferles, K., Mariano, B., Lahiri, S., Dillig, I.: SMARTPULSE: auto-
mated checking of temporal properties in smart contracts. In: 2021 IEEE Sympo-
sium on Security and Privacy (SP), pp. 555–571. IEEE (2021)

26. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
(1997)

27. Torres, C.F., Iannillo, A.K., Gervais, A., State, R.: ConFuzzius: a data dependency-
aware hybrid fuzzer for smart contracts. In: 2021 IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 103–119. IEEE (2021)

28. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: practical security analysis of smart contracts. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pp. 67–82
(2018)

29. Wesley, S., Christakis, M., Navas, J.A., Trefler, R., Wüstholz, V., Gurfinkel, A.:
Verifying Solidity smart contracts via communication abstraction in SmartACE.
In: Finkbeiner, B., Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 425–449.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94583-1_21

30. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Paper 151(2014), 1–32 (2014)

https://doi.org/10.1109/SP40001.2021.00057
https://doi.org/10.1145/3371078
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1007/978-3-030-94583-1_21

Active Inference of EFSMs Without Reset

Michael Foster1(B) , Roland Groz2(B) , Catherine Oriat2(B) ,
Adenilso Simao3(B) , Germán Vega2(B) , and Neil Walkinshaw1(B)

1 Department of Computer Science, The University of Sheffield, Sheffield, UK
{m.foster,n.walkinshaw}@sheffield.ac.uk

2 LIG, Université Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France
{roland.groz,catherine.oriat,german.vega}@univ-grenoble-alpes.fr

3 Universidade de São Paulo, ICMC, São Carlos, São Paulo, Brasil
adenilso@icmc.usp.br

Abstract. Extended finite state machines (EFSMs) model stateful sys-
tems with internal data variables, and have many software engineering
applications, including system analysis and test case generation. Where
such models are not available, it is desirable to reverse engineer them by
observing system behaviour, but existing approaches are either limited
to classical FSM models with no internal data state, or implicitly require
the ability to reset the system under inference, which may not always be
possible. In this paper, we present an extension to the hW-inference algo-
rithm that can infer EFSM models, complete with guards and internal
data update functions, from systems without a reliable reset, although
there are currently some restrictions on the type of system and model.

1 Introduction

Accurate models of software behaviour are useful for a wide range of soft-
ware engineering tasks, including checking system correctness [12], identifying
sequences of test inputs [7], and comparing differences in behaviour between soft-
ware versions [8]. Reactive systems—systems that respond to their environment,
their users, or other systems—are commonly modelled as (Extended) Finite
State Machines ((E)FSMs), and such models form the basis of many testing and
verification techniques [16].

Despite their value, models can be neglected during development, or may not
exist at all. In such situations, we need to reverse engineer them from existing
systems, and the task of inferring (E)FSM models has been the subject of a con-
siderable amount of research. A popular strategy here is the minimally adequate
teacher framework [3], in which a model is inferred by posing a series of queries
to the system under inference (aka SUL, System Under Learning). However,
existing inference techniques [11,14,15,23] tend to implicitly require the ability

The authors acknowledge the support of ANR project PHILAE (ANR-18-CE25-0013)
and ACHAR project from LIG. Michael Foster and Neil Walkinshaw are funded by the
EPSRC CITCoM project (EP/T030526/1). Adenilso Simao would like to thank the
CEPID-CeMEAI/ICMC-USP (FAPESP grant 2013/07375-0).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 29–46, 2023.
https://doi.org/10.1007/978-981-99-7584-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_3&domain=pdf
http://orcid.org/0000-0001-8233-9873
http://orcid.org/0000-0003-3730-8300
http://orcid.org/0000-0002-5674-0855
http://orcid.org/0000-0002-1454-2607
http://orcid.org/0000-0002-3652-8945
http://orcid.org/0000-0003-2134-6548
https://doi.org/10.1007/978-981-99-7584-6_3

30 M. Foster et al.

to return the system to some known “initial” state from which to execute a trace,
which is not always feasible. While inference approaches have been developed to
minimise resets [13,20], these do not give adequate consideration to how data
values affect the behaviour of the SUL.

In this paper, we present the ehW -inference algorithm (the e standing for
“extended”) to infer EFSM models of systems with internal, data-dependent
behaviour without the need for resets. Our main contributions are as follows:

– An extension to the hW -inference algorithm [13] called ehW -inference, which
incorporates the ability to infer internal registers and the constraints and
functions that determine how the data states within the system change in
response to inputs.

– A “proof of concept” demonstration of ehW -inference being applied to a small
example system.

The rest of the paper is structured as follows. Section 2 presents a motivat-
ing example and a brief overview of the relevant background upon which our
contribution is based. Section 3 presents our ehW -inference algorithm. Section 4
provides a walk-through of the algorithm, showing how it can be applied to
our motivating example from Sect. 2. Finally, Sect. 5 concludes the paper and
discusses potential future work.

2 Background and Related Work

We first introduce a running example to illustrate the type of model we use and
our inference method. We compare our model and approach with existing work.
We then formally define EFSMs and discuss the semantics of the model and the
operations that can be applied.

2.1 Running Example

To illustrate our approach, we use a vending machine, modelled on Fig. 1a. Start-
ing from state s0, a user can select a drink (e.g., tea or coffee), then insert a
coin. The price of a drink is 100 (there are coins of values 20, 50, 100, and 200).
The machine will reject any initial payment less than the value of the drink,
but a user may choose to enter more coins. Every time a coin is accepted, the
running total is displayed. After paying, the user can press a vend button to be
served the selected drink, and the balance in excess of the cost of a drink will be
reset. An example execution is shown in Fig. 1b. The formal semantics of this
are detailed in Sect. 2.3.

In Fig. 1a, inputs are separated from outputs by a “/” on the label of a
transition. As shown in Fig. 1a, our models can have parametric inputs, such as
select, which carries an enumerated type for the choice of drink, or coin, which
carries the integer value of the coin. Outputs can also bear parameters: this is
the case for all three outputs in our model (Reject, Display, and Serve, which
we subsequently abbreviate to R, D, and S). Our models are capable of storing

Active Inference of EFSMs Without Reset 31

Fig. 1. The vending machine EFSM and an example trace.

values in registers, which are typed variables. In our example, r1 will store the
total value of coins inserted and r2 will store the drink that was selected.

Although simple, this example illustrates the various inference challenges that
we are faced with. We are not able to observe the register state when interacting
with the machine. We do not know how many (if any) registers exist, or how
they affect the sequential behaviour and output parameters of the machine. The
only data visible to us are the input and output parameters. There is no “reset”
function. We do not presume the prior existence of some representative set of
example executions from which we can seek to derive the underlying model. The
only thing we know is the signature of the interface (inputs and outputs) so that
we are able to interact with the system.

2.2 Related Work

Although there are several existing EFSM inference approaches in the literature,
none of them has the capability of addressing this combined set of challenges. One
technique [10] allows users to provide data abstraction heuristics to facilitate the
introduction of registers during the inference process, but this requires the user
to have a prior understanding of the system, which means that this technique
cannot be applied to truly black-box inference scenarios.

Another technique, MINT [23], uses genetic programming (GP) to infer
update functions for variables. However, MINT cannot discover data depen-
dencies between different transitions, for example, between select and vend in
Fig. 1a, nor can it discover internal registers like r1 and r2 in Fig. 1a. Work pre-
sented in [9,11] overcomes this by allowing the GP to introduce latent registers
to output expressions and inferring update functions in a second pass of GP.

The above techniques are passive; they infer models from a predefined set of
traces. There are also many active inference techniques in the literature [2,5,22],
which infer models by querying the SUL, but these techniques only support
updates in the form of simple assignments, or they do not support updates at all

32 M. Foster et al.

[17]. Register updates in terms of anterior values, such as the coin transitions in
Fig. 1a, are beyond them. These techniques also implicitly require that the SUL
can be reset to a known state from which to execute the queries, which may not
always be viable.

Another group of approaches [4,21] phrase the EFSM inference problem as an
instance of SAT. The solution is then a set of boolean variables, which together
represent the automaton. Unfortunately, these approaches only consider boolean
data values and do not support internal variables, so have limited applicability.

2.3 Definitions

Extended Finite State Machines. State machine inference approaches such
as Angluin’s L∗ method [3] infer deterministic automata, which do not incorpo-
rate data. In this paper, we use EFSMs [6], which do.

Definition 1. An EFSM M is a tuple1 M = (S,R, I, O, PI , PO, T) where S is a
finite set of states, R is a cartesian product of domains, representing the type of
registers. A domain is a set of values, such as int, float or string. I is a finite
set of (abstract) inputs. O is a finite set of (abstract) outputs. PI is a mapping
from I to a product of domains which are the type of parameters of the inputs.
The type can be empty if the input has no parameter. PO is a mapping from O
to a product of domains, which are parameters of the outputs. Outputs may also
have no parameter. T is a finite set of transitions.

Each transition t ∈ T is a tuple (s, x, y,G, F, U, s′) where s, s′ ∈ S, x ∈ I,
y ∈ O, G : PI(x)×R → B is the transition guard, F : PI(x)×R → PO(y) is the
output function that gives the value of the output parameters, U : PI(x)×R → R
is the update function that gives the value of the registers after the transition.

Given an EFSM M as above, its control FSM is the FSM M ′ defined as
M ′ = (S, I,O, T ′) where T ′ = {(s, x, y, s′) | ∃t ∈ T, t = (s, x, y,G, F, U, s′)}.

An EFSM is deterministic iff for any state s and input x, any value of the reg-
isters (r0, ...rk), and any value of input parameters (p0, ...pj), there is at most one
transition t ∈ T such that G((p0, ...pj), (r0, ...rk))) holds. An EFSM is complete
iff under the same conditions there is at least one such transition.

Semantics. A trace is a sequence of events, as exemplified in Fig. 1b, where
an event is an instance of the observable part of a transition. As in Figure 1b
we denote this as i(v)/o(v′), for example the event coin(100)/Display(100). For
each event, we have i ∈ I, o ∈ O, v ∈ PI(i) and v′ ∈ PO(o). Further, we refer to
i(v) ∈ I, as a parametrized input (or concrete input) for (i, v) ∈ I × PI(i) and
I =

⋃
i∈I {i} × PI(i). Similarly, we call o(v′) ∈ O a parametrized output and

have (o, v′) ∈ O × PO(o) and O =
⋃

o∈O {o} × PO(o). We denote the absence of
an observable output by ε, which does not bear parameters.
1 Our definition is more detailed than Cheng and Krishnakumar’s [6] to enable internal

register variables and externally visible data parameters to be distinguished. We also
do not have an initial state as this does not make sense for no-reset inference.

Active Inference of EFSMs Without Reset 33

As an EFSM executes a trace, transitions update registers and move the
model between states. A configuration of an EFSM is a pair (s, r) of a state s
and an n-tuple of values r, representing the values of each register r1, . . . , rn. For
example, when executing the trace in Fig. 1b, after performing the select(tea)
event, we have the configuration (s1, (tea, 0)). An execution step of the EFSM

from (s, r), denoted as (s, r)
i(v)/o(v′)−−−−−−→ (s′, r′), is such that ∃(s, i, o,G, F, U, s′) ∈

T,G(v, r) ∧ v′ = F (v, r) ∧ r′ = U(v, r). An execution of the EFSM from (s, r) is
a sequence of execution steps such that the posterior configuration of each step
is the anterior configuration of the next step.

A configuration (s, r) is reachable from an arbitrary initial configuration
(s0, r0) if there exists an execution ending in (s, r). An EFSM is strongly con-
nected iff, given a reachable configuration (s, r) and a state s′, there exists an
execution from (s, r) ending in state s′.

Depending on the nature of the SUL, certain inputs may be invalid from
a given state (e.g., a button in a GUI might be rendered inactive). For such
systems, the underlying EFSM is inherently incomplete. To denote that input i is
not available from state s, we use a special output symbol Ω, and “complete” the
EFSM with transitions of the form (s, i, Ω,�, {}, {}, s), which leave the model
configuration unchanged.

Operations. Similar to FSM functions associated with transition triggers (state
and input), we define the output function λ and configuration update δ for an
EFSM as follows.

λ((s, r), (x, v)) =

{
(y, v′), if ∃(s, x, y,G, F, U, s′) ∈ T,G(v, r) ∧ v′ = F (v, r)
Ω, otherwise

δ((s, r), (x, v)) =

{
(s′, r′), if ∃(s, x, y,G, F, U, s′) ∈ T,G(v, r) ∧ r′ = U(v, r)
(s, r), otherwise

These will be lifted to sequences of parametrized inputs in the usual way, and
we also define δs((s, r), (x, v)) as the first element of δ((s, r), (x, v)).

We also define projections that abstract from output parameters. For (o, v) ∈
O × PO(o), π(o, v) = o. Projections are lifted to sequences of parametrized out-
puts. Moreover, we slightly abuse the notation and consider that, when applied
to a parametrized input, π(i, v) = (i, v). Thus, when applied to a trace in (IO)∗,
the projections will result in a trace in (IO)∗.

2.4 Inferring Functions with Genetic Programming

When inferring an EFSM, there are two dimensions to the inference challenge.
On the one hand, there is the challenge of inferring the potential sequential
behaviours of the model. On the other hand, there is the task of inferring the
“data-state” of the machine – of inferring the presence of registers, and of how
they and output parameters are updated during execution.

34 M. Foster et al.

One approach adopted in previous EFSM inference approaches [9,11,23] is
Genetic Programming (GP) [19]. Here, a GP engine is supplied with the elemen-
tary components of a function—operators and operands—as well as a sample of
input and corresponding output values. This takes the form of a table where
columns represent the different variables and rows represent different execu-
tion instances. Candidate functions are typically represented by their parse tree,
which is the representation we use for our technique in Sect. 3. The GP engine
then searches through different combinations of operators and operands with
the aim of finding one which is able to approximate the given set of data-points.
This search follows the principles of Genetic Algorithms; solutions are combined
and mutated iteratively, and the best solutions are chosen according to a fitness
function, in this case the error-margin between the observed outputs and the
outputs computed by the inferred functions.

3 The ehW -Inference Algorithm

Our goal is to infer EFSM models, complete with guards and data transfor-
mations, of black-box systems which we cannot arbitrarily reset. This section
presents our ehW -inference algorithm and the assumptions associated with it.

3.1 Assumptions

EFSMs introduce a particular inference challenge as the same set of behaviours
can be modelled in a variety of ways. For example, conditional behaviour can
either be encoded as guards on states, or can be directly encoded into separate
states. We subsequently assume that the SUL can be modelled by an EFSM that
has the required properties. This constrains the style of EFSM inferred and also
fundamentally assumes that there is a finite state “control” model.

For our investigation of the ehW -inference algorithm, we have started from
a relatively restrictive set of assumptions about the target model. These are col-
lectively intended to ensure that the SUL is controllable, and that its transitions
between different states are observable.

Connectivity. The control FSM of the EFSM is strongly connected. In a state
machine without a reset, we assume that the inference process is always able
to reach any state from any other state. Otherwise, we would only be able to
infer a strongly connected component.

Determinism. The EFSM is deterministic. This is a classical and essential
assumption in inference approaches from traces, to be able to recognize dif-
ferent configurations by the fact that they yield different observations.

Observability. An EFSM is observable iff any two distinct transitions t =
(s, x, y,G, F, U, s′) and t′ = (s, x, y′, G′, F ′, U ′, s′′) that share the same start-
ing state and (abstract) input have different (abstract) outputs, i.e. y �= y′.

We also introduce two assumptions which allow us to infer guard, output, and
update functions.

Active Inference of EFSMs Without Reset 35

Register domain observability. Values assigned to registers by update func-
tions should be visible at some point as an input or an output parameter.
This need not occur at the transition where the register assignment occurs.

Guard visibility. Guards can only use input parameters of the transition, and
not registers. In other words, registers can only contribute to the computation
of parameter outputs (e.g. to display the total value of coins inserted in our
example). They cannot, however, be used to condition state transitions.

Guard visibility is a limitation of our current ehW -inference algorithm.
Where a system produces outputs that depend on internal stored variables (such
as, counters), the EFSM our algorithm builds would have as many different states
as reachable values of the (vector of) variables. This means that, for the algo-
rithm to infer an EFSM for a system whose decisions are based on internal
variables, the system would need a finite control state space.

3.2 Homing and Characterizing

Since we do not presume the existence of a reset function, the ehW -inference
algorithm must compensate for this during the learning process. We achieve
this with the help of “homing” and “characterizing” sets. Intuitively, a homing
sequence is an input sequence whose tail state is uniquely determined by the
observed output sequence. A characterizing set is a set of input sequences that
provide a unique response for every state in the system, thus enabling each state
to be uniquely identified. Previous work [13] has shown how these notions can be
incorporated into a learning setting to enable the inference of conventional FSMs
without reset functions. To enable this here, we provide definitions of homing
sequences and characterizing sets that are specific to EFSMs.

A sequence h ∈ I∗ is homing iff ∀(s, s′, r, r′) ∈ S2 × R2, π(λ((s, r), h) =
π(λ((s′, r′), h) ⇒ δs((s, r), h) = δs((s′, r′), h). This means that the sequence of
(non-parametrized) outputs uniquely defines the state reached at the end of
the sequence. Thus, by applying h and observing the outputs, it is possible to
ascertain the state reached at the end of h. A set W ⊂ I∗ is characterizing iff
∀(s, s′) ∈ S2, s �= s′,∃w ∈ W,∀(r, r′) ∈ R2, π(λ((s, r), w)) �= π(λ((s′, r′), w)).
Thus, a state can identified by the (unique) response to every sequence in W .

3.3 Inputs and Data Structures

We assume we are given:

– An input set I with associated parameters PI .
– A SUL whose behaviour can be modelled by an EFSM with these inputs,

satisfying the assumptions in Sect. 3.1, to which we can apply sequences of
parametrized inputs and observe the corresponding parametrized outputs.

– A tentative homing sequence h ∈ I∗. This may be empty (ε).
– A tentative characterizing set W ⊂ I∗. This may be the empty set.

36 M. Foster et al.

– For each domain of input parameters, an ordered list of values. We further
require that those values must include all values appearing in h and W , and
that they should appear at the beginning of the lists of their domains. We
denote I1 a set of inputs parametrized with at least the first value in each
domain. And we denote Is the set of all (sampled) parametric inputs that
can be created using the provided list of values.

As we are in the active inference setting, we also require a means of interacting
with the SUL, commonly referred to as a driver [13] or a mapper [1,2]. This serves
as a bridge between the inference engine and the system, and can be used to
map low level inputs and outputs from the software to more abstract tokens
better suited to the inference process, for example to convert network packets
into a more abstract or readable format in line with the desired modelling style.
It is therefore critical for inference that any such abstractions applied by the
interface fulfil the assumptions set out in Sect. 3.1 as this is how the inference
engine will perceive the system. However, since this work is more concerned with
establishing the theoretical foundations of ehW -inference, we do not give this
further consideration here.

During learning, the trace observed at any given moment is represented by ω.
This is extended whenever we apply an input and observe the corresponding
output. The algorithm will record deduced information in the following sets:

– Q ⊂ 2W→O+
denote states, defined by their characterization. Each state is

named by traces recording its responses to the input sequences from W .
– Δ : Q×I → Q and Λ : Q×I → 2O record transitions. With guard visibility,

the abstract output sequence and state reached from a given state by applying
a parametrized input sequence is unique and does not depend on the value of
registers, so Δ(s, (x, v)) = s′ and (y, v′) ∈ Λ(s, (x, v)) iff ∃(s, x, y,G, F, U, s′) ∈
T,∃r ∈ R, G(v) ∧ v′ = F (v, r). Δ,Λ are lifted to sequences, and as usual, for
an empty input sequence ε, the output sequence is also ε and s′ = s.

3.4 ehW -Inference Backbone

The ehW -inference algorithm, detailed in Algorithm 1, has four core parts. The
first part, called the backbone, follows what is in-effect the basic hW -inference
backbone algorithm [13]. Our backbone infers an FSM transition structure using
only a single parameter value for each input, so we do not need registers or
transition guards. The second part of the algorithm, sampling, is responsible for
traversing the inferred structure using different parameter values for the inputs,
the aim being to gather data for part three of our algorithm, generalisation,
which infers the registers, output functions, and transition guards within an
EFSM. The final part, counterexample processing, again comes from [13] and
involves searching for inconsistencies between the conjecture model and the SUL.

Active Inference of EFSMs Without Reset 37

Backbone. It is the job of the backbone hW -inference algorithm (line 5) to
identify the basic control structure of the model. This is done in the same way as
in [13], but using only one input parameter for each abstract transition. The basic
idea is to learn states by first applying the homing sequence h to reach a known
location and then sequences in W to distinguish the destination state. Transi-
tions are learned by applying (parametrised) events in I and then sequences in
W to discover the destination.

The backbone runs until we end up with a graph structure that contains
a strongly connected component using a single input parameter value for each
transition. Then, we can run sampling, call the generalisation procedure, and ask
the oracle for a counterexample, as explained later. However, this is predicated
on the fact that the h and W sets provided are correct – i.e. that h is genuinely
a homing sequence, and that W is characterizing. If this is not the case, this will
manifest itself through various inconsistencies which, when detected, indicate
that the h or W sets need to be extended and the backbone restarted.

Sampling. The main purpose of sampling (lines 6–8) is to enrich the set of
values for each transition so as to be able to generalise concrete values into
symbolic output and update functions (Line 11). The basic idea is to fire every
transition learned by the backbone hW -inference algorithm with every input
parameter in its domain2 and observe the corresponding output. This then forms
the training set for GP. However, in doing this, we may observe inconsistencies
between (abstract) transitions.
2 Variable domains do not have to be finite, although we can obviously only execute

finite samples of infinite domains. Where counterexamples require a data value not
in the observed sample, the oracle (Sect. 3.6) is free to include these, and they are
added to the sampled domain as part of counterexample processing.

38 M. Foster et al.

For example, in learning the simple drinks machine, the backbone may use
50 as its input to the coin transitions. In this case, the algorithm can only
observe Reject(50) as an output, since the first coin to be input must be 100
or greater. During sampling, we then observe coin(100)/Display(100). This is
inconsistent with what we have observed so far as Reject and Display clearly
represent different output behaviour. Thus, we have discovered an inconsistency
and can return to backbone hW -inference inference with an updated h and W .

Inconsistencies. Inconsistencies (line 9) can be detected as soon as we apply
a sequence and observe differing output symbols from those expected from the
partial machine. These can manifest themselves in various ways.

If h is not homing, it is possible that the same response leads to two different
states, which would be considered by the algorithm as a single one. This can
give rise to apparent non-determinism, which we call h-ND inconsistency. h-ND
inconsistencies occur when we have observed previously h/a.β/v.x/y and then
apply h/a′.β/v′.x′/y′ s.t. π(a.v) = π(a′.v′) yet π(y′) �= π(y) and (x = x′ or
y = Ω or y′ = Ω).

Since we assume we are learning an observable EFSM satisfying guard visibil-
ity, the difference in outputs implies the control states s and s′ reached after h/a
and h/a′ are different. Thus, h is not homing, and extending it with the prefix
of β up to the first differing output symbol will distinguish two more states.

Similarly, if W is not characterizing, two different control states could be
confused as a single one; the algorithm would associate outgoing transitions and
sequences from those two states to the single reconstructed one.

A W -ND inconsistency occurs when we previously observed h/a.α/u.β/v.x/y
and then observe h/a′.α′/u′.β/v′.x′/y′ (where α, α′ ∈ I∗, β ∈ I∗ and x, x′ ∈ I)
s.t. π(a) �= π(a′) or α �= α′ but Δ(H(π(a)), α) = Δ(H(π(a′)), α′), π(v′) = π(v)
and π(x′) = π(x) yet π(y′) �= π(y) and (x = x′ or y = Ω or y′ = Ω). In this case,
Δ(H(π(a)), α) and Δ(H(π(a′)), α′) can in fact be distinguished by β.x′, so β.x′

can be added to W .
As in the case of the FSM hW -inference algorithm, we can remark that all

states traversed while applying β can be distinguished by some suffix of β. We can
extend W with any such suffix that is not yet in W . However, we would refrain
from adding all suffixes into W as the cardinal of W acts as a multiplicative
factor on the complexity of the learning [13].

Generalisation. The role of generalisation (Line 11) is to infer symbolic output
and update expressions which account for the concrete output and update values
observed during the backbone and sampling phases. In essence, we want to take
the collected values for each (i, o) pair of input and output types and infer a
general expression F for that pair. However, a complication is that the output
values may be influenced by the values of unobservable registers. We need our
technique to infer this, along with any updates U to the registers to ensure they
evaluate to the correct values. Additionally, where the model contains data-
dependent behaviour, we need to infer symbolic guards to distinguish this. This

Active Inference of EFSMs Without Reset 39

enables us to predict how the inferred model might behave when faced with
unseen inputs. To do this, we apply a technique based on GP, similar to in
[9,11]. We present the details of this in Sect. 3.5.

Counterexamples. Once we have found a strongly connected FSM and gener-
alised it to an EFSM, we look for a discrepancy between outputs from the EFSM
and the SUL. We first need to synchronise the EFSM with the SUL which can be
done by re-running the past trace on the EFSM model from the earliest occur-
rence of a homing sequence. The trace can be extended using one of the usual
strategies (such as random walk, bounded model checking) to look for discrep-
ancies. As soon as an output differs between EFSM and SUL, the extended trace
is returned as a counterexample.

3.5 Generalisation

We here lay out the details of our generalisation step described above. The goal
here is take the concrete data values observed in the backbone and sampling
phases and infer symbolic expressions which account for them, thereby enabling
the model to be used to predict the output from the system when executed
with unseen input parameters. We may also need to infer symbolic guards to
distinguish data-dependent behaviour.

To do this, we apply a technique based on GP, similar to in [9,11]. This is
shown in Algorithm 2, which defines the generalise function from Algorithm
1. There are five main steps. First, we convert the abstract data structures of
the backbone algorithm into an initial EFSM (line 2). Next, we group together
instances of transitions that we would like to generalise to the same F and U
(Line 3). For each group, we use GP to produce an output function which satisfies
the observed input/output pairs (line 5). This may introduce a new register to
the model for which we need to infer updates (lines 7–9) to ensure it holds the
correct value when evaluated. Finally, we drop literal input guards on transitions
(e.g., i0 = 50, line 13) and resolve any resulting nondeterminism (line 14).

40 M. Foster et al.

EFSM Construction. The first step of generalisation, EFSM (line 2), is to
convert the abstract data structures to a concrete EFSM model where transitions
guard for the observed input parameters and produce the observed concrete
outputs. This is a fairly trivial process, except that we must drop all events in ω
before the first occurrence of the current (lastly used) h as we do not know where
we are, meaning we cannot reliably group transitions from before this point.

Transition Grouping. We use the name groupTransitions (line 3) to be
consistent with [9,11], but what we are actually doing here is grouping events
in ω by their corresponding transition in Δ as this is known here. These groups
then form the training sets for GP. As in [9,11], though, there is the additional
need to split groups by their history (the preceding groups) to account for any
side effects of other transition groups on unobserved register values.

Output and Update Inference. Output functions are inferred using GP as
detailed in [9,11]. In short, GP uses a series of crossover and mutation opera-
tions to combine a predefined set of operators and operands into an expression
which maps the observed input parameters to the observed output parameters as
discussed in Sect. 2.4. This may introduce new registers to the model for which
update expressions must be inferred to ensure that they hold the correct values
when they are evaluated. Details of this process can be found in [9,11].

Standardisation. Where groups are split by their respective histories, the GP
may infer different output and update functions for the separate subgroups.

Active Inference of EFSMs Without Reset 41

Because we know these subgroups are in fact instances of the same transition,
we need to unify the output and update expressions of the various subgroups.
This is what standardisation does. Full details of this are published in [9,11].

Resolution of Nondeterminism. Having inferred symbolic output and
update expressions, we can now drop the guards (line 13) which prevent transi-
tions from responding to unobserved input parameters. As in [9,11], this leads
to nondeterminism which must be resolved. There are two potential sources of
this. The first is duplicated behaviour, which is introduced to the model when
we sample different data values for the same (abstract) transition. As in [9,11],
this can be trivially resolved by merging the offending (concrete) transitions,
which should be identical because of the standardisation step.

The other source of nondeterminism, which is not considered in [9,11], is data-
dependent behaviour. This cannot be resolved by merging as the behaviours are
different. Algorithm 3 shows how we resolve this by calling GP a third time
to infer guard functions that distinguish pairs of nondeterministic transitions.
For each nondeterministic pair of transitions (line 3), we walk the trace in the
model (lines 6–12) recording the input and register values when either transition
is taken (lines 8 and 10). We then call GP to find a boolean guard expression
which evaluates to true for one transition and false for the other.

3.6 Oracle Procedure

With nondeterminism resolved, we can then present the EFSM to the oracle,
which attempts to extend the trace to end with an output from the SUL which
differs from the conjecture EFSM. If the output type is different, then we have
observed an inconsistency as described above, and need to revise the structure of

42 M. Foster et al.

the control FSM. However, if the difference is only on the output parameter val-
ues, this means the functions computed by the generalisation were incorrect. We
call this a data counterexample. To resolve data counterexamples, we can simply
rerun our generalisation procedure with the new data. As in other approaches
that learn models from unbounded black box systems, only an approximate ora-
cle can be implemented. If the oracle cannot find a counterexample, the model
is assumed to be equivalent to the system.

Note that our EFSM may not be strongly connected if, during inference,
we get “trapped” in a state. In this case, the oracle may extend the set of
input parameter values (as well as output parameter values) make it possible
to reach states that are not reachable with the current set of values. The oracle
may also extend the sets of input and output parameter values to elicit data
counterexamples which could not be revealed otherwise.

4 Inferring a Vending Machine Controller

We now illustrate the execution of ehW -inference on our running example from
Sect. 2.1. We start with h = ε,W = {}, I1 = {coin(50), select(tea), vend}. As h
and W are empty, the backbone will just learn a “daisy” (single state) automaton
with each input X from I1.

(s0, 〈〉) ︸︷︷︸
h=ε

︸︷︷︸
w={}

coin(50)/Ω

−→ 1
︸ ︷︷ ︸
X=coin(50)

(s0, 〈〉) ︸︷︷︸
w={}

︸︷︷︸
h=ε

select(tea)/ε

−→ 2
︸ ︷︷ ︸
X=select(tea)

(s1, 〈tea, 0〉) ︸︷︷︸
w={}

︸︷︷︸
h=ε

vend/Ω

−→ 3
︸ ︷︷ ︸
X=vend

(s1, 〈tea, 0〉) ︸︷︷︸
w={}

coin(100)/D(100)

−→ 4
︸ ︷︷ ︸

sampling

(s2, 〈tea, 100〉)

We sample with Is = I1 ∪ {coin(100), select(coffee)}. As soon as we apply
coin(100), we spot nondeterminism, leading us to revise h = coin(100), W =
{coin(100)} and I1 = {coin(100), select(tea), vend}. We restart the backbone.

(s2, 〈tea, 100〉)
coin(100)/D(200)

−→ 5
︸ ︷︷ ︸

h

(s2, 〈tea, 200〉)
coin(100)/D(300)

−→ 6
︸ ︷︷ ︸

w

(s2, 〈tea, 300〉)

We now know that applying h with response D leads to q0, characterized by
coin(100) �→ D, but we have not yet learnt Δ for (q0, coin(100)), so we need to
home again before proceeding. This leaves us still in q0, so we can now learn a
transition from it, with α = ε (no transfer needed), and we use X = coin(100)
as it is used in h and W .

(s2, 〈tea, 300〉)
coin(100)/D(400)

−→ 7
︸ ︷︷ ︸

h

coin(100)/D(500)

−→ 8
︸ ︷︷ ︸

X

coin(100)/D(600)

−→ 9
︸ ︷︷ ︸

w

(s2, 〈tea, 600〉)

Active Inference of EFSMs Without Reset 43

We just learnt Δ(q0, coin(100)) = q0, so we know we remain in q0, and can
continue learning other inputs. Thus, we learn that the transition for select is an
Ω self-loop transition, and vend outputs Serve(tea) and goes to a state where
W gives Ω. Thus we learn a new state q1 = {coin(100) �→ Ω}. After further
steps to learn all transitions from state q1 and sampling with inputs from Is, we
reach step 25 where we have found a two state machine with q0 (a merged state
of s1 and s2 in the SUL) and q1 (corresponding to state (s0), and transitions on
all inputs from Is. This graph is strongly connected, so the backbone ends with
the model in Fig. 2a. The generalisation will infer a two state EFSM, shown in
Fig. 2b, and the algorithm will ask the oracle for a counterexample.

Fig. 2. Conjecture built from ω, h, Δ, Λ after 25 steps.

A simple counterexample is obtained by sending coin(50) to the SUL, which
at this point is in configuration (s2, 〈coffee, 100〉), so will respond with D(150)
whereas the conjecture would respond R(50). Since output types D and R differ,
this is not a data counterexample but W -ND, so we add coin(50) to W and
restart the backbone with h = coin(100) and W = {coin(100), coin(50)}.

44 M. Foster et al.

Fig. 3. Conjecture built from ω, h, Δ, Λ after 67 steps.

As h has not changed, we can implement a dictionary (as proposed in previous
learning methods [18]), viz. the outputs of any input sequence of the form hαXw
that was previously applied (at some point) on the SUL can be assumed to be
valid and can be reused to fill structures without reapplying the input sequence.
However, as W changed, we need to completely re-learn the set of states Q.

Since h is homing and W is now characterizing, this application of the back-
bone will discover all the states of the SUL in 17 extra steps (up to step 43),
and all transitions on inputs from I1 when we reach step 59. Sampling makes it
possible to learn the last transition, coin(50) from state s1 at step 67, leaving
the model shown in Fig. 3a.

coin(100)/D(200)

−→ 62
︸ ︷︷ ︸

h

coin(50)/D(250)

−→ 63
︸ ︷︷ ︸

s

vend/S(tea)

−→ 64
︸ ︷︷ ︸

α

select(coffee)/ε

−→ 65
︸ ︷︷ ︸

s

coin(50)/R(50)

−→ 66
︸ ︷︷ ︸

X

coin(50)/R(50)

−→ 67
︸ ︷︷ ︸

w2

As before, we can then apply the generalisation procedure to infer a full
EFSM model. This is shown in Fig. 3. As can be seen from the two q2

coin−−−→
transitions, the guard distinguishing them is rather simplistic. Because of this,
our oracle is able to return the counterexample coin(20)/R(20) (step 68). This
brings a new input parameter, 20, into play.

This counterexample differs only in terms of its data values, and there is
no h or W nondeterminism. Thus, it is a data counterexample, indicating we
need only rerun generalisation on the newly extended trace. This gives the same
model as in Fig. 3b, but with guards i0 ≤ 50 and i0 > 50 where we previously
had i0 = 50 and i0 �= 50, and the output R(i0) instead of R(50). Given the
input domain of coin, this is equivalent to Fig. 1a as there is no coin with a value
between 50 and 100. Thus, we learnt an accurate model of our vending EFSM by
executing just 68 events, although this is dependent on the stochastic outcome
of GP. Running the algorithm again using a different random seed for GP may
produce different generalisations to Figs. 2b and 3b, so may require additional
steps to infer the target model.

Active Inference of EFSMs Without Reset 45

5 Conclusions and Future Work

In this paper we have presented the ehW -inference algorithm. It is based on
the hW -inference algorithm by Groz et al. [13], which enables the inference
of conventional FSMs from systems without a reset functionality. However, we
incorporate into this the GP-driven capability to infer registers and functional
relationships between data-states, based on work by Foster et al. [11].

Our future work will go in two primary directions. Firstly, our approach cur-
rently operates under several relatively restrictive assumptions (Sect. 3.1). Some
of these assumptions may be relaxed, and our future work will set out to estab-
lish the extent to which this is the case. Secondly, we have so far only presented
a single running example, without delivering any insight into the scalability of
the approach. This will be investigated in a more comprehensive empirical study,
with models of varying size and complexity.

References

1. Aarts, F.: Tomte: bridging the gap between active learning and real-world systems.
Ph.D. thesis, Radboud University Nijmegen (2014)

2. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learn-
ing through counterexample guided abstraction refinement. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32759-9 4

3. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4) (1988)
4. Buzhinsky, I., Vyatkin, V.: Automatic inference of finite-state plant models from

traces and temporal properties. IEEE Trans. Ind. Inf. 13(4) (2017)
5. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning extended finite state

machines. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702,
pp. 250–264. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10431-
7 18

6. Cheng, K.-T., Krishnakumar, A.S.: Automatic functional test generation using
the extended finite state machine model. In: 30th ACM/IEEE Design Automation
Conference. IEEE (1993)

7. Choi, W., Necula, G., Sen, K.: Guided GUI testing of android apps with minimal
restart and approximate learning. ACM SIGPLAN Not. 48(10) (2013)

8. Damasceno, C.D.N., Mousavi, M.R., da Silva Simao, A.: Learning to reuse: adap-
tive model learning for evolving systems. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.)
IFM 2019. LNCS, vol. 11918, pp. 138–156. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-34968-4 8

9. Foster, M.: Reverse engineering systems to identify flaws and understand
behaviour. Ph.D. thesis, University of Sheffield, September 2020

10. Foster, M., Brucker, A.D., Taylor, R.G., North, S., Derrick, J.: Incorporating data
into EFSM inference. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 257–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30446-1 14

11. Foster, M., Derrick, J., Walkinshaw, N.: Reverse-engineering EFSMs with data
dependencies. In: Clark, D., Menendez, H., Cavalli, A.R. (eds.) IFIP International
Conference on Testing Software and Systems. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-04673-5 3

https://doi.org/10.1007/978-3-642-32759-9_4
https://doi.org/10.1007/978-3-319-10431-7_18
https://doi.org/10.1007/978-3-319-10431-7_18
https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1007/978-3-030-30446-1_14
https://doi.org/10.1007/978-3-030-30446-1_14
https://doi.org/10.1007/978-3-031-04673-5_3
https://doi.org/10.1007/978-3-031-04673-5_3

46 M. Foster et al.

12. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46002-0 25

13. Groz, R., Bremond, N., Simao, A., Oriat, C.: hW-inference: a heuristic approach
to retrieve models through black box testing. J. Syst. Softw. 159 (2020)

14. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register
automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol.
7148, pp. 251–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27940-9 17

15. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 96(1) (2014)

16. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proc. IEEE 84(8) (1996)

17. Lin, S.-W., André, É., Dong, J.S., Sun, J., Liu, Y.: An efficient algorithm for
learning event-recording automata. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011.
LNCS, vol. 6996, pp. 463–472. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24372-1 35

18. Niese, O.: An integrated approach to testing complex systems. Ph.D. thesis, Uni-
versity of Dortmund (2003)

19. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
lulu.com (2008)

20. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Com-
puting (1989)

21. Ulyantsev, V., Tsarev, F.: Extended finite-state machine induction using sat-solver.
In: 2011 10th International Conference on Machine Learning and Applications and
Workshops, vol. 2 (2011)

22. Vaandrager, F., Midya, A.: A Myhill-Nerode theorem for register automata and
symbolic trace languages. In: Pun, V.K.I., Stolz, V., Simao, A. (eds.) ICTAC 2020.
LNCS, vol. 12545, pp. 43–63. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-64276-1 3

23. Walkinshaw, N., Hall, M.: Inferring computational state machine models from pro-
gram executions. In: 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE (2016)

https://doi.org/10.1007/3-540-46002-0_25
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-24372-1_35
https://doi.org/10.1007/978-3-642-24372-1_35
https://doi.org/10.1007/978-3-030-64276-1_3
https://doi.org/10.1007/978-3-030-64276-1_3

Learning Mealy Machines with Local
Timers

Paul Kogel1(B), Verena Klös2, and Sabine Glesner1

1 Software and Embedded Systems Engineering, TU Berlin, Berlin, Germany
{p.kogel,sabine.glesner}@tu-berlin.de

2 Centre for Tactile Internet with Human-in-the-Loop (CeTI), TU Dresden, Dresden,
Germany

verena.kloes@tu-dresden.de

Abstract. Active automata learning (AAL) algorithms infer accurate
automata models of black box applications, letting developers verify
the behavior of increasingly complex real-time systems (RTS). However,
learning models of larger RTS often takes very long or is not feasible at
all. We introduce Mealy machines with local timers, a new class of Mealy
machines that permit multiple location-bound timers and that can be
learned efficiently. We design an efficient learning algorithm for them
and validate our method across diverse case studies ranging from auto-
motive systems to smart home appliances, where we drastically reduce
runtimes compared to the state-of-the-art approach, thus, making AAL
available for a wide range of RTS.

Keywords: active automata learning · real-time systems · timer-based
Mealy machines

1 Introduction

Understanding and verifying the behavior of complex real-time systems (RTS)
requires accurate and up-to date models. Such models, though, are often unavail-
able for legacy components, while increasingly rapid iterations prevent develop-
ers from maintaining them for new systems. Active automata learning (AAL)
methods could fill this gap. They infer accurate automata models of black box
systems by observing their output for well-chosen inputs, making them perfectly
suited for RTS, which are often deterministic, state-based, and event-driven.
AAL methods for RTS traditionally focused on learning timed automata with
clocks and guards. As RTS typically implement time-sensitive behavior with
timers, [12] recently proposed in a seminal work to learn deterministic Mealy
machines with a single timer (MM1Ts) instead. Although improving runtimes
significantly, this approach still takes very long for larger systems with multiple
time-triggered events, making it inapplicable to many RTS in practice.

We address this problem by introducing Mealy machines with local timers
(MMLTs), a new class of timer-based Mealy machines that allow multiple
location-bound timers and that can be learned efficiently. We also create a new
learning algorithm for them that we base on the efficient Rivest-Schapire [9]

The original version of this chapter was revised: in Section 4.1 and the Figure 4 has been
displayed incorrectly. This was corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-981-99-7584-6 23

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023, corrected publication 2024

Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 47–64, 2023.

https://doi.org/10.1007/978-981-99-7584-6 4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_4&domain=pdf
https://doi.org/10.1007/978-981-99-7584-6_23
https://doi.org/10.1007/978-981-99-7584-6_4

48 P. Kogel et al.

approach. Our method has two key advantages. First, it is efficient, as it dras-
tically reduces runtimes compared to the MM1T learner in practice. Second, it is
widely applicable, as MMLTs easily express typical behavior of RTS from dif-
ferent domains and our learner operates efficiently in realistic black box settings,
where only minimal information about the target system is available.

We implement our MMLT learner in LearnLib1 and show that it drastically
reduces runtimes compared to the state-of-the-art approach across diverse case
studies from the fields of automotive systems, network protocols, wireless sensor
networks, and smart home appliances.

The rest of this paper is structured as followed. First, we give an overview
of related work (Sect. 2). Then, we establish notation related to Mealy machines
and provide background on the RS -algorithm (Sect. 3). Afterwards, we introduce
MMLTs (Sect. 4) and describe our efficient MMLT learner (Sect. 5). We follow
with our practical evaluation (Sect. 6) and conclude with a summary and an
outlook (Sect. 7).

2 Related Work

Learning automata with real-time behavior has been attracting sustained inter-
est for many years. In the following, we only consider related methods that
actively interact with the target system and omit methods that learn models
from previously collected traces, as these are usually less accurate.

Real-time systems have been traditionally modelled with timed automata.
However, learning these efficiently is difficult. An et al. [3] simplify this problem
by learning timed automata with one clock only. Xu et al. [14] improve this
approach with a more efficient identification of timer resets. Moreover, they
adapt their method to learn Mealy machines with one clock, which is often more
efficient. Like [3], though, they rely on internal information about the target to
achieve reasonable runtimes. For instance, they assume to know which inputs are
available at which times during their evaluation. This dependence makes their
method inapplicable in many realistic scenarios. Grinchtein et al. [4] and Henry
et al. [5] learn different types of event recording automata, a different class of
timed automata. Like the previous learners, their approaches still require the
complex inference of guards. Aichernig et al. [1], finally, use a genetic algorithm
to learn timed automata with guards and multiple clocks. While their approach
is effective for smaller models, it does not guarantee to find an accurate model.

Instead of timed automata, Vaandrager et al. [12] learn Mealy machines with
a single timer (MM1Ts). This timer may be reset by almost any transition and
raises an event on expiration. The authors show that their method outperforms
the learners from [1,3] in realistic case studies. As MM1Ts only support a sin-
gle timer, though, they need many states to describe more complex real-time
behavior, increasing learning times. Moreover, identifying timer resets becomes
increasingly costly in systems with more states and larger input alphabets.

Hence, despite significant recent advances, none of the above approaches can
learn automata models of more complex RTS efficiently in practice.
1 https://learnlib.de.

https://learnlib.de

Learning MMLTs 49

3 Preliminaries

In this section, we establish notation related to Mealy machines and recap the
Rivest-Schapire algorithm on which our learner is based. We use ε as the empty
word, · as concatenation, and sn = s · s · . . . as n ∈ N

>0 repetitions of s.

3.1 Mealy Machines

Mealy machines are an essential concept in Computer Science. In this work, we
learn deterministic Mealy machines and extensions of these.

Definition 1. A deterministic Mealy machine is a tuple M = 〈Q, q0, I, O, δ, λ〉,
where Q is a finite set of states, q0 ∈ Q is the initial state, I is a finite set of
inputs, O is a finite set of outputs, δ : Q × I → Q is a transition function, and
λ : Q × I → O is an output function.

We add the automaton name M as subscript to Q, q0, I, O, δ and λ when
needed. As usual, we assume that we can detect silent outputs void ∈ O. More-
over, we extend the transition function δ and the output function λ to words
s.t. δ(q, w) gives the state that we reach when we trace the sequence w ∈ I∗

from q ∈ Q and λ(q, w) gives the concatenated outputs of this trace. We let a
trace begin in q0 when omitting q. Thus, δ(w) := δ(q0, w) and λ(w) := λ(q0, w).
We extend the first parameter of λ to words s.t. λ(w′, w) := λ(δ(w′), w), where
w′ ∈ I∗. We define equivalence between Mealy machines similarly to [13].

Definition 2. The Mealy machines M1,M2 with IM1 = IM2 = I are equiva-
lent, written M1 ≈ M2, iff ∀w ∈ I∗ : λM1(w) = λM2(w).

Intuitively, two Mealy machines with the same input alphabet are equivalent
if they produce the same outputs for any input sequence.

3.2 The Rivest-Schapire Algorithm

The Rivest-Schapire algorithm (RS) [9] is an efficient method for active automata
learning (AAL). We describe RS for Mealy machines in the following.

Like other AAL methods, RS uses a setup with a learner and a teacher.
The goal of the learner is to learn an unknown Mealy machine M that has the
known input alphabet I. We also call M system under learning (SUL). The
learner maintains a hypothesis H that only contains the initial state q0 at the
beginning. The learner may ask the teacher two types of questions to improve H.
An output query asks for the output of a word w ∈ I∗, while an equivalence query
checks M ≈ H. The latter is usually approximated with tests of semi-random
input sequences. When M �≈ H, the teacher returns a counterexample c ∈ I∗

s.t. λM(c) �= λH(c). Thus, c is an input sequence that yields different output in
H and M. The learner uses c to further refine H. Once done, it submits a new
equivalence query. Learning concludes when M ≈ H.

50 P. Kogel et al.

�0 �1

�2

sby/−

exc/g

exa/gt,
send/−

exb/p,
sp/−

h
t/−

e
x
d
/
g

(a) MMLT with θ(a) = θ(b) = θ(d) =
2, θ(c) = 3, ρ(�0, send) = ρ(�1, sp) =
�

(�0, 0)

(�0, 1)

(�1, 0)

(�1, 1)

(�1, 2)
(�2, 0)

(�2, 1)

τ/(
1,

−)

to
/(
1,

gt)
, τ

/(
1,

gt)
,

se
nd/(

0,
−)

sby/(0, −)

s
b
y

/
(0

, −
)

to/(1, g)

τ/(1, g)

sp/(0, −)

to/(2, p)
τ/(1

,−)

sp/(0
,−)

to/(1, p), τ/(1, p)

ht/(0,−)

to/(2, g)

to/(1, g), τ/(1, g)

τ
/
(1

, −
)

to/(2, gt)

(b) Expanded form and reduced expanded
form (black subgraph)

Fig. 1. Sensor data collector (parallel transitions separated by comma)

RS identifies states with a set of stored prefixes S ⊂ I∗. A prefix s ∈ S of
a state q ∈ QH is a word that always leads to q. Thus, δH(s) = q. The prefix
function
q� defined by [7] gives the stored prefix of q. Its extension
w�, w ∈ I∗

gives the prefix of the state δH(w). When learning begins, H only contains the
initial state q0 with
q0� = ε.

A key component of RS is its advanced counterexample analysis. A coun-
terexample signals that H misses at least one state to match the behavior of
M. RS identifies such a missing state by decomposing the counterexample c to
c = u ·s ·v s.t. λM(
u� ·s, v) �= λM(
u ·s�, v), where u, v ∈ I∗, s ∈ I. A decompo-
sition intuitively shows that the successor of a state δH(u) for the input s in H
is incorrect because it deviates from the respective successor in M in the input
v. Consequently, RS refines H by adding the missing state.

Having described the key steps of RS, we introduce our new MMLT model
next before presenting our efficient RS -based learner for them afterwards.

4 Mealy Machines with Local Timers

In the following, we introduce Mealy machines with local timers (MMLTs), a new
model for real-time systems that is optimized for efficient learning. We motivate
its key ideas, define it formally, and introduce two expanded forms that let us
compare the output behavior of MMLTs during learning.

We base our MMLT design on two main observations. First, time-sensitive
behavior in RTS is typically implemented with multiple timers. These timers
raise an event when reaching a specific time. Second, deterministic Mealy
machines with a single timer (MM1Ts) can be learned much more efficiently
than timed automata [12]. Exploiting these observations, our MMLTs extend
deterministic Mealy machines with multiple timers and constrain their use to
common RTS behavior, e.g., by limiting the scope of a timer to a single loca-
tion.2 Using multiple timers lets us express complex real-time behavior with
2 As in timed automata, locations in MMLTs can represent multiple system states.

Learning MMLTs 51

small models, making it easy to learn. Our carefully chosen constraints make
the learning of MMLTs highly efficient without sacrificing their practical appli-
cability.

We further introduce MMLTs with an example. Consider the MMLT model
of a sensor data collector in Fig. 1a. For readability, we write − for silent outputs
and omit most silent self-loops in this and all following figures. After startup, our
collector samples a sensor (output gt) every two time units. When receiving send,
it transmits the collected data and restarts the collection, whereas the input ht
halts the collection and starts it again after two time units, producing g. sby
enters standby (location �1), where the system prepares to wake up two time
units later, outputting p, and restarts the collection one time unit afterwards,
resulting in the output g. Receiving sp during standby restarts this process.

We model this behavior with the timers a, b, c, and d. Each timer in an MMLT
has an internal timeout symbol that is triggered when this timer expires. This
expiration time is defined by θ. For example, a expires when it reaches θ(a) = 2,
which triggers exa. Timers in MMLTs are local, i.e., they can only expire in
one location and can only be reset at transitions that target this location. We
implicitly reset all local timers when entering a location from a different location.
For instance, entering �0 at startup or from �1 or �2 resets a. Local timers and
implicit resets are a key feature of MMLTs. They make efficient learning of Mealy
machines with multiple timers feasible, while improving runtimes compared to
MM1Ts even when just learning models with a single timer per location.

As in most RTS, timers in MMLTs may either be periodic or expire once (one-
shot). Each location can have an arbitrary but limited number of periodic timers
and up to one one-shot timer. The timers a and b in our example are periodic, as
their timeout-transitions loop. Thus, exa implicitly resets a s.t. it expires every
two time units. c and d are one-shot timers, as their timeout-transitions do not
loop. One-shot timers in MMLTs must always trigger a change to a different
location, resembling the classic timeout behavior found for example in network
protocols.

We only let non-timeout inputs reset timers explicitly. We also let them only
reset all timers at once. For instance, sp resets the timers b and c in �1 in our
example. This is indicated by the value � of the local reset function ρ.

Allowing multiple timers and constraining MMLTs with local timers, implicit
resets, one-shot and periodic timers, and local resets let us learn them drastically
faster than MM1Ts, as we demonstrate in our evaluation. Moreover, MMLTs
still easily express the real-time behavior of diverse applications ranging from
automotive systems to smart home appliances. In the next section, we formally
define the syntax and semantics of MMLTs.

4.1 Syntax and Semantics

MMLTs extend deterministic Mealy machines. We define them as follows.

Definition 3. An MMLT is a tuple M = 〈L, �0, I, IT , O, δ, λ, T, T̄ , γ, θ, ρ〉,
where L is a finite set of locations, �0 ∈ L is the initial location, I is a finite set

52 P. Kogel et al.

of non-timeout inputs, IT is a finite set of internal timeout symbols, O is a finite
set of outputs, δ : L× (I ∪IT) → L is a transition function, λ : L× (I ∪IT) → O
is an output function, T is a finite set of timers, T̄ ⊆ T is a set of periodic
timers, γ : L → T ∗ is a local timer function, η : T → IT is a timeout-symbol
function, θ : T → N

>0 is a timeout function, and ρ : L × I ⇀ {�,⊥} is a local
reset function.

Our local timer function γ assigns each location a finite set of local timers
that may be empty. These assignments constitute a disjoint partition of TM.
Our timeout function θ assigns each timer an expiration time. These expiration
times must be chosen s.t. a periodic and a one-shot timer never expire simulta-
neously and thus, the successor location at a timeout is never ambiguous. Our
learner ensures this side condition when assigning timers to locations during
timer queries and timed counterexample analysis. The timeout-symbol function
η gives each timer a unique timeout symbol. Each timeout symbol must trigger
exactly one transition. We require that IT ∩ I = ∅ to identify these timeout-
transitions unambiguously. Timeout transitions only have an effect if their time-
out symbol belongs to a local timer of their source location. Otherwise, they
form silent self-loops. As in MM1Ts, timeouts in MMLTs must be observable,
thus, timeout-transitions must not be silent. Our local reset function ρ returns �
for transitions that reset all timers. It is only defined for non-timeout inputs that
cause a self-loop. We constrain MMLTs s.t. the behavior of two locations must
not only differ in their local resets. This lets us use the reduced form defined
below. Also, if a sequence of locations in an MMLT visited during subsequent
timeouts cannot be expressed with a single location (ignoring incoming external
transitions), this must also not be possible when replacing their non-timeout
transitions that target locations of this sequence with self-loops and ignore ρ.

We define the semantics of an MMLT M with an infinite transition system
that defines the transitions between all configurations of M. A configuration
is a tuple (�, t) that identifies a current state of M, where � ∈ L is the current
location and t ∈ N

≥0 the elapsed time in �. We call (�, 0) the initial configuration
of �. We transition between the configurations of M with non-timeout inputs
and discrete time steps of size one. We define these transitions with the following
rules. We represent a time step with the input symbol τ . For all i ∈ (I ∪ IT), o ∈
O, t ∈ N

≥0, �, �′, �′′ ∈ L with � �= �′,

�
i/o−−→ �, i ∈ I, ρ(�, i) = ⊥

(�, t)
i/o−−→ (�, t)

(1) �
i/o−−→ �, i ∈ I, ρ(�, i) = �

(�, t)
i/o−−→ (�, 0)

(2) �
i/o−−→ �′, i ∈ I

(�, t)
i/o−−→ (�′, 0)

(3)

∃e ∈ (γ(�) ∩ T̄) : mod(t + 1, θ(e)) = 0

(�, t)
τ/λ′(�,t+1)−−−−−−−→ (�, t + 1)

(4)
∀e ∈ γ(�) : mod(t + 1, θ(e)) �= 0

(�, t)
τ/void−−−−→ (�, t + 1)

(5)

�
i/o−−→ �′′, i ∈ IT , ∃e ∈ (γM(�) \ T̄) : θ(e) = t + 1 ∧ η(e) = i

(�, t)
τ/o−−→ (�′′, 0)

(6)

Learning MMLTs 53

Listing 1. Pseudocode for λ′

def λ′(� ∈ L, t ∈ N
≥0) :

t imers = [e for e in γ(�) i f mod(t, θ(e)) = 0]
outputs = s o r t a l p h a b e t i c a l l y ([λ(�, η(e)) for e in t imers])
return outputs . concat with (’ · ’)

A loop at a non-timeout input does not advance time (1), while a local reset
sets t to zero (2). A location-change at a non-timeout input resets all timers of the
target location (3). Rule (4) describes a time step that triggers at least one peri-
odic timer. Periodic timers always expire when the current location time reaches
a multiple of their expiration time, as they reset on expiration. This is expressed
by the modulo operator mod. We allow multiple periodic timers to expire simul-
taneously. λ′(�, t+1), as defined in Listing 1, returns their alphabetically-sorted
and concatenated output. Hence, the resulting output is deterministic. Time
steps that cause no timer expiration advance the current location time (5). This
also applies to locations without timers. Finally, (6) describes a time step that
triggers a one-shot timer. This must cause an output, a change to a different
location, and a reset of all local timers of the entered location. We temporarily
allow � = �′′ during learning when M is a hypothesis automaton and we have
not discovered the correct successor location yet. Still, we reset all timers in � in
this case.

The above syntax and semantics precisely describe our new MMLTs. In the
next section, we introduce two additional representations of MMLT behavior
and define equivalence of MMLTs.

4.2 Expanded Forms and Equivalence

During learning, we need to compare the output behavior of two MMLTs
independently from their internal timeout symbols. We achieve this with two
expanded forms that we define in the following.

Definition 4. The expanded form M+ of an MMLT M is a finite and deter-
ministic Mealy machine M+ = 〈Q, q0, I, O, δ, λ〉, where the states in Q represent
configurations of M, q0 represents the initial configuration of M, I is a finite
set of inputs, O is a finite set of outputs, δ : Q× I → Q is a transition function,
and λ : Q × I → O is an output function. I consists of the non-timeout symbols
of M and {to, τ}. The state labels are the represented configurations of M. The
input symbol τ models a single time step and to represents a delay until the next
timeout. Transition outputs o ∈ O are tuples (t, o′), where t ∈ N

≥0 is the time
at which the transition is taken and o′ ∈ OM is sent. Hence, the output of all
τ -transitions is sent at t = 1.

As in Sect. 3.1, we extend δ and λ to words and use subscripts to distinguish
elements from different expanded forms when needed. We construct M+ by

54 P. Kogel et al.

exploring the transition system of M successively. Although this system may
be infinite, we can group the configurations of an MMLT into a finite set of
equivalence classes, making it only necessary to explore these.

Definition 5. Two configurations of an MMLT are equivalent w.r.t. their out-
put behavior iff they yield the same outputs for any input sequence w ∈ (I ∪IT)∗.

Theorem 1. The number of equivalence classes of output-equivalent configura-
tions of an MMLT is finite.

This is backed by the following lemma.

Lemma 1. Any configuration (�, t) of a location � with γ(�) = ∅ and t ∈ N
≥0 is

equivalent to (�, 0). Moreover, any configuration (�′, t′) of a location �′ that has
only periodic timers is equivalent to (�′,mod(t′, κ)), where t′ ∈ N

≥0 and κ is the
least common multiple of the initial expiration times of the timers in γ(�′).

Exploiting the above theorem and lemma, we devise a straightforward explo-
ration algorithm to construct the expanded form of an MMLT that operates as
follows. First, we create the initial state q0 of M+ that represents (�, 0), add it
to a list of known configurations, and mark it for exploration. Then, we identify
all direct successor configurations of (�, 0) in our transition system. If an iden-
tified successor is not equivalent to any known configuration, we create a new
state for it in M+ and mark it for exploration. Otherwise, we add a transition
to the known state representing the identified successor. In both cases, we copy
the original transition input, which is either τ or a non-timeout symbol, and
wrap the original output in a tuple, as defined above. We subsequently continue
with the next unexplored configuration until there is no further configuration to
explore. This process eventually terminates, as the number of classes of config-
urations with different output behavior in an MMLT is finite (see Theorem 1).
Finally, we add an outgoing to-transition to each created state, which provides
us a shortcut to the next timeout during learning. We never observe timeouts in
states that represent locations without timers. Hence, we let their to-transitions
self-loop and output (∞, void).3

Figure 1b (page 4) shows the expanded form of our sensor data collector.
Here, (�0, 0), (�0, 2), (�0, 4) etc. are reduced to (�0, 0). Moreover, there is a to-
transition in (�1, 0), for example, that triggers a delay until the next timeout,
leading to (�1, 2). As shown, our expanded form does not contain the original
internal timeout symbols of M. Hence, it describes the output behavior of an
MMLT abstracted from these. Thus, two MMLTs have the same abstracted out-
put behavior if their expanded forms behave equivalently.

Definition 6. The MMLTs M1,M2 with the non-timeout inputs IM1 = IM2

are equivalent w.r.t. their abstracted output behavior iff M+
1 ≈ M+

2 .

3 We usually abort an observation after some maximum waiting time Δ during learn-
ing, thus, giving these transitions the output (Δ, void) in practice.

Learning MMLTs 55

Fig. 2. MMLT learning process

We can also describe all MMLT behavior except for some local resets using a
smaller model.

Definition 7. The reduced expanded form of an MMLT M is a finite and deter-
ministic Mealy machine M� constructed from M+ by first omitting all transi-
tions triggered by τ and then removing all now unreachable states.

Again, we extend δ and λ of M� to words. The black subgraph in Fig. 1b is the
reduced expanded form of our sensor data collector. As shown, it is significantly
smaller than M+, while capturing all of its behavior except for the local reset
at send in �0. We exploit this smaller size during learning by using M� instead
of M+ for counterexample search, reducing the search space considerably. We
identify the local resets not captured by M� with a new completion step to ensure
that our learned model fully describes M+. We present our new algorithm for
learning MMLTs in the following sections.

5 Learning MMLTs Efficiently

After introducing Mealy machines with local timers, we now describe our method
for learning them efficiently. We give an overview, describe its main components,
and conclude by analyzing its output query complexity.

Our goal is to learn an unknown MMLT M with a known set of non-timeout
inputs efficiently. We assume that our SUL is a black box that hides internal
timeout symbols, to make our approach applicable in many different scenarios.
Hence, our SUL behaves like M+ and we must find an MMLT with the same
abstracted output behavior as M. We achieve this goal with a new efficient
learner that is based on the RS -algorithm. We choose RS as foundation due to
its efficiency [13] and mature support in the established framework LearnLib.

Figure 2 gives an overview of the operation of our new MMLT learner. At the
beginning, we initialize our hypothesis MMLT H by adding the initial location
�0. Then, we create its outgoing transitions and use our new timer query to
identify its local timers. Once done, we construct H� and ask an equivalence
query H� ≈ M�. We use the reduced expanded forms of H and M instead of
asking H+ ≈ M+ to reduce the search space for counterexamples, as H� and M�

are usually much smaller than H+ and M+. This step lets our learner perform
well even in more complex systems. We access M� by omitting τ in queries to
M+. Assume that we receive a counterexample. We analyze counterexamples

56 P. Kogel et al.

with our new timed counterexample analysis. Besides missing locations, this also
gives us incorrectly assigned local timers and some missing local resets. We fix
these inaccuracies by refining H. We do not always receive counterexamples for
all missing local resets. We identify the remaining ones during a new completion
step at the end of learning. Afterwards, learning concludes.

We describe timer queries, timed counterexample analysis, hypothesis refine-
ment, and completion in detail in the following.

5.1 Timer Queries

We use timer queries to assign periodic and one-shot timers to locations. We
describe our implementation of these queries in the following.

As we assume a black box setting, we must assign timers based on observed
outputs. A periodic timer and successively expiring one-shot timers, though, may
produce identical outputs. This fact makes it often impossible to infer a timer
type based on observations. We overcome this challenge with an opportunistic
approach. Our key idea is to associate timeouts with periodic timers as long as
possible w.r.t. the observed outputs. This strategy avoids redundant one-shot
timers, and thus, changes to redundant locations. We apply it as follows. We
set the SUL to the prefix of the queried location, repeatedly proceed a single
time step, and associate all observed timeouts with periodic timers until we
either reach some maximum waiting time Δ or miss a timeout from a supposed
periodic timer. In the latter case, we change the last-added periodic timer to a
one-shot timer. We pick an earlier timer if the new one-shot timer expires at the
same time as another timer, to keep our hypothesis deterministic. Note that we
may name timers that we add to our hypothesis MMLT arbitrarily, as long as
there are not two timers with the same name s.t. we satisfy Definition 3.

The above opportunistic approach leads to small hypotheses and thus, small
runtimes in practice, as we show in our evaluation. However, it only detects
periodic timers that need to be one-shot timers up to Δ. We detect the remaining
ones with counterexamples, as we discuss next.

5.2 Timed Counterexample Analysis

Missing one-shot timers, missing locations, and some missing local resets in
the hypothesis H cause output deviations between H� and M�, resulting in
counterexamples. We describe our approach for identifying these deviations and
their causing inaccuracies in H in the following sections. We use u, v ∈ I∗

M and
s ∈ IM as the components of a counterexample c = u · s · v and the prefix
function from Sect. 3.2 to retrieve stored prefixes for states in H�. We also refer
to a configuration where we mean the state representing it in H�.

Identifying Missing Locations. Missing locations cause incorrect successors
in H�. We identify these by counterexample decomposition, similarly to how RS

Learning MMLTs 57

(�0, 0)

(�1, 0) (�1, 2)

(�2, 0)

to/(2, gt)

to/(2, g)

ht/(0,−)

s
b
y
/
(0

,−
)

to/(1, g)

sp/(0,−)

to/(2, p)

sp/(0,−)

(a) Missing local reset in �1

(�2, 0)(�0, 0)

(�1, 0)

(�1, 2) (�1, 3)

(�1, 4)

to/(2, g)

to/(2, g)

ht/(0,−)to/(2, gt)

sby/(0,−)
to/(2

, g
· p),

sp/(0
,−)

to
/
(1

,
g
)

sp/(0
,−)

to/(2
, p)

to/(1, g)

to
/
(1

,
p
)

sp/(0,−)

(b) Missing one-shot timers in �1 and �2

Fig. 3. Reduced expanded forms of inaccurate hypotheses of the sensor data collector
(inaccuracies in red, expected behavior dashed) (Color figure online)

identifies missing states. Different to RS, we also find decompositions in coun-
terexamples that result from missing one-shot timers and missing local resets.
We ensure that a decomposition corresponds to a missing location as follows.
Let δH�(u) = (�, t), where t ∈ N

≥0 and � ∈ LH. We infer a missing location at
δH�(u, s) iff λM�(
(�, 0)� · s, v) �= λM�(
(�, 0) · s�, v) due to the following. Both
correct and incorrect location changes must occur in all configurations of �. Due
to potentially missing one-shot timers, we do not know for sure that all configu-
rations that are currently associated with � in H� actually belong to it. We only
know that (�, 0) belongs to � because this configuration is always entered during
a location change due to our transition rules. Therefore, we test for an incorrect
successor in (�, 0).

Identifying Missing Local Resets. Some missing local resets also lead to
incorrect successors in H�. Again, we identify these incorrect successors with
counterexample decomposition. Consider the hypothesis of our sensor data col-
lector (cf. Fig. 1a) with a missing local reset in Fig. 3a and the counterexample
c = sby · to · sp · to. We can decompose c to u = sby · to, s = sp, and v = to. This
means that the state δH�(u) = (�1, 2) has an incorrect successor at sp. Indeed, sp
should be a local reset in �1 and cause a transition to (�1, 0) instead of (�1, 2). An
incorrect successor may also result from a missing location or a missing one-shot
timer. Neither of these cases applies iff we do not detect a missing location at
δH(�1, sp) (cf. previous section), sp triggers a self-loop in H that does not already
cause a reset, and sp behaves like a reset. We test the latter similarly to [12] by
verifying that λM+(
�1�, to) = λM+(
�1� · τ · sp, to). Thus, the additional time
step must not reduce the offset to the first timeout in �1 when sp causes a reset.
We also require that s from the decomposition is a non-timeout input and that
the elapsed time in δH�(u) is greater than zero, as timeouts cannot cause resets
and resets have no effect in initial location configurations, eliminating them as
cause for an incorrect successor.

We detect all missing local resets that yield counterexamples with the above
approach. Some local resets, though, are not captured by our reduced expanded
form and thus, give no counterexample. We identify these missing resets during

58 P. Kogel et al.

completion by testing the reset behavior of self-loop transitions with a non-
timeout input at the end of learning. We cover this step later in detail.

Identifying Missing One-Shot Timers. We miss a one-shot timer when our
timer query assigns a periodic timer that should actually cause a change to a
different location. Note that the converse case, where our timer query would
assign a one-shot timer that should be periodic, does not occur because we
initially consider all timers to be periodic. Figure 3b shows a hypothesis of our
sensor data collector (cf. Fig. 1a) that misses one-shot timers in �1 and �2. Here,
H� transitions from (�1, 2) to (�1, 3) at to, while the SUL moves to (�0, 0) instead.
Moreover, H� stays in (�2, 0) at to instead of entering (�0, 0).

We can detect the missing one-shot timer in �2 with decomposition directly.
Consider the counterexample c1 = ht · to2 that decomposes to u = ht, s = to,
and v = to. Here, M� transitions from δM�(
u�) = (�2, 0) to (�0, 0) at to, while
H� remains in δH�(u) = δH�(u, s) = (�2, 0). Such an incorrect successor at a to-
transition may also result from a missing location. Then, the to-transition in H
models a timeout of a one-shot timer that causes an incorrect location-change.
to in (�2, 0), though, belongs to a periodic timer in H. Therefore, our output
deviation must result from a missing one-shot timer triggered at to or earlier.
Hence, we infer such a missing timer in �2 expiring at two time units or earlier.

In contrast to that, we cannot identify the missing one-shot timer in �1 with
decomposition directly. Take the counterexample c2 = sby ·to3. We would expect
to decompose c2 to u = sby · to, s = to, and v = to, as to leads to the incorrect
successor (�1, 3) in δH�(u) = (�1, 2). However, this incorrect transition is part of
the prefix of (�1, 3) in H�. Hence,
u� · s =
u · s� and thus, the decomposition
condition λM�(
u� · s, v) �= λM�(
u · s�, v) is not satisfied. Despite that, we
can still infer that �1 misses a one-shot timer from c2. Observe that λM�(
sby ·
to2�, to) �= λH�(sby · to2, to). Thus, the outgoing to-transition in δH�(sby · to2) =
(�1, 3) appears to have an incorrect output. We identify such incorrect transition
outputs with our method from [8]. First, we cut c2 after the first output deviation.
Then, we check for an output deviation at the last input of the cut c2. In our
example, we find a deviation for to in (�1, 3). Hence, we miss a one-shot timer
in �1 that expires at three time units or earlier.

Consider a different counterexample c3 = sby · to2 ·sp · to. In this example, we
cannot detect the missing one-shot timer in �1 with the previous method because

sby ·to2 ·sp� = sby and λM�(sby, to) = λH�(sby, to). Still, we can infer a missing
one-shot timer from c3 through decomposition. c3 decomposes to u = sby · to2,
s = sp, and v = to, as H� transitions from δH�(u) = (�1, 3) to (�1, 0) at sp,
while M� remains in δM�(u) = δM�(u, s) = (�0, 0). Such an incorrect successor
at a non-timeout transition may also result from a missing location or a missing
local reset. However, their respective preconditions (cf. previous sections) do
not hold in our example. Thus, we infer a missing one-shot timer in �1. Due to
δH�(u) = (�1, 3), this timer must expire at three time units or earlier.

The three methods described above detect locations with missing one-shot
timers and the maximum time up to which these timers must expire across

Learning MMLTs 59

�0

�1

�2

exa/x exc/y, z/Z

exa/x

exb/y

Fig. 4. MMLT hypothesis with θ(a) = 2, θ(b) = 3, θ(c) = 1 (inaccuracies in red,
expected behavior dashed) (Color figure online)

differently structured counterexamples. However, we must still choose periodic
timers that should become one-shot timers. As in Sect. 5.1, we choose the timers
with the highest expiration time possible, to keep H small.

Algorithm. We combine the approaches from the previous sections in our new
algorithm for timed counterexample analysis. We design the following analysis
process for a hypothesis H, a target M, and a counterexample c ∈ I∗

M� :

1. Cut c after the first output deviation between H� and M� and only keep the
first part as new c.

2. Set c = u · s, (�, t) ← δH�(u), where s ∈ IM� , u ∈ I∗
M� , t ∈ N

≥0, � ∈ LH. Iff
λM�(
u�, s) �= λH�(u, s): identify missing one-shot timer in � and terminate.

3. Decompose c to c = u · s · v s.t. λM�(
u� · s, v) �= λM�(
u · s�, v), where
s ∈ IM� , u, v ∈ I∗

M� . Then, set (�, t) ← δH�(u), where t ∈ N
≥0 and � ∈ LH.

– Iff s = to: iff s models the timeout of a one-shot timer in (�, t), stop and
signal missing location. Iff s models the timeout of one or more periodic
timers in (�, t), stop and identify missing one-shot timer in �.

– Iff λM�(
(�, 0)�·s, v) �= λM�(
(�, 0)·s�, v): stop and signal missing location
at δH(�, s).

– Iff t > 0, δH(�, s) = �, ρH(�, s) = ⊥, and λM+(
��, to) = λM+(
��·τ ·s, to):
stop and signal missing local reset at s in �.

– Identify missing one-shot timer in �.

Like RS, we use binary search to decompose counterexamples efficiently. Coun-
terexamples often result from multiple inaccuracies in H. Therefore, we analyze
the same counterexample repeatedly after refining H until it causes no more out-
put deviations. This saves expensive equivalence queries and makes our method
even more efficient. We describe the refinement of H in the following section.

5.3 Hypothesis Refinement

We refine our hypothesis H after counterexample analysis to fix the identified
inaccuracies. We describe this process in the following.

We add missing locations and set transitions that miss a local reset to per-
form a reset in H. We fix a missing one-shot timer by changing the type of
the identified timer from periodic to one-shot. A one-shot timer always causes
a location change in an MMLT. Therefore, we also remove local timers that

60 P. Kogel et al.

only expire after our new one-shot timer, as they do not have an effect any-
more. This step may yield an invalid hypothesis, as we illustrate next. Consider
the hypothesis of an MMLT in Fig. 4, where �0 has the local timers a, b with
the timeout symbols exa, exb, �1 is yet unknown, and exb is the prefix of �2.
Assume that we discovered the missing one-shot timer at exa and thus remove
exb when refining H. This makes �2 inaccessible via its stored prefix exb, vio-
lating a fundamental assumption of RS. We resolve this issue by removing all
locations recursively that no longer can be accessed via their stored prefix. In our
example, we remove �2 from H. As a result, we need to rediscover �2 later, intro-
ducing additional queries. In practice, however, we have only observed removals
in tests with randomly generated MMLTs yet.

We repeatedly fix inaccuracies in H with refinement until our learner receives
no more counterexamples. Then, we complete H to identify potentially missing
resets, as we describe next.

5.4 Hypothesis Completion

Some missing local resets may not yield counterexamples. We identify these
resets during completion, as we describe in the following.

Consider our sensor data collector from Fig. 1a. send causes a local reset in �0
and thus, a change from (�0, 1) to (�0, 0) in the expanded form of the collector (cf.
Fig. 1b). The reduced expanded form of an MMLT, though, represents specific
locations with a single configuration only. In our example, it models �0 solely
with (�0, 0). Hence, a local reset like send behaves like a normal self-loop in this
form4, and thus, yields no counterexample in an equivalence query.

We identify local resets in locations of H that are only represented by a single
configuration in H� by testing the reset behavior of all their self-looping non-
timeout transitions. Like in Sect. 5.2, we find a reset in a candidate location �
at a self-loop with the input s �= to iff λM+(
��, to) = λM+(
�� · τ · s, to), with
M as the SUL. We perform these tests at the end of learning, as this ensures
that all transition targets and assigned timers are correct, and thus, eliminates
redundant reset tests.

Having identified the remaining missing resets, learning concludes. In the
next section, we analyze the output query complexity of our learner.

5.5 Output Query Complexity

In the following, we analyze the output query complexity of our learner. This
is a common metric in active automata learning and describes the worst-case
number of output queries sent to the SUL M.

We first assume no location removals when refining the hypothesis H. As for
RS, the query complexity of our learner is composed of the complexity of ana-
lyzing all counterexamples and the complexity of the remaining learner actions.
In contrast to RS, our learner also analyzes counterexamples from missing resets

4 We omit this loop in Fig. 1b for readability because its output is silent.

Learning MMLTs 61

Table 1. Case studies with key properties

AKM CAS PC TCP Oven SCTP WSN

States in M+ 5 8 8 11 89 41 63

Non-timeout input symbols 5 4 9 8 5 12 4

Maximum timeout in learned MMLT [s] 2.5 270.0 10.0 20.0 300.0 1.0 3600.0

Locations in MM1T 4 8 8 11 89 41 63

Locations in learned MMLT 5 8 8 11 4 41 4

and one-shot timers. All timers and local resets are associated with an input sym-
bol in H. Thus, the complexity of analyzing all counterexamples in our learner
grows linearly to the number of input symbols of H, in addition to increasing lin-
early to the maximum size of H and logarithmically to the length of the received
counterexamples, like RS [6]. The query complexity of the remaining actions of
our learner is identical to that of RS, and thus increases linearly to the number
of input symbols of H and quadratically to its maximum size.

Location removals make learning more costly. We remove a location when it
is no longer accessible via its stored prefix. Then, we must relearn this location
via a different prefix later. With repeated location removals, we must at worst
rediscover each location once via each of its possible stored prefixes. The total
number of different prefixes stored by H increases at worst exponentially with
the maximum size of H. Thus, the worst-case query complexity of our learner
grows exponentially with the maximum size of H when removing locations.

Hence, our learner performs well unless we repeatedly remove locations. In
practice, though, we have only encountered location removals in tests with ran-
dom automata yet. Moreover, we can avoid redundant queries with a cache. We
present the detailed results of our evaluation next.

6 Practical Evaluation

We have compared the actual efficiency of our method across diverse case studies
to that of the state-of-the-art learner MM1T [12]. We present our evaluation
setup and results in the following.5

We have chosen seven diverse case studies ranging from automotive systems
to smart home appliances to validate the broad applicability of our approach,
including all real-life systems from the original evaluation of the MM1T learner
[12]. We have simulated these systems with models, as usual. We have also sim-
ulated the waiting times for the outputs of to- and τ -transitions s.t. the learner
must wait until these outputs occur. Table 1 shows their key properties. From
the domain of automotive systems, we have used a car alarm system (CAS) [1]
and a particle counter (PC) that counts particles in exhaust gases [1]. From
the area of network protocols, we have included a model of the connection han-
dling in TCP [12], a model of the Wi-Fi authentication used by Android (AKM)
5 Models and MMLT learner available at git.tu-berlin.de/pkogel/mmlt-learning.

62 P. Kogel et al.

Table 2. Evaluation results

SUL Resets SUL Inputs SUL Delay [d:hh:mm:ss]

MM1T MMLT Ratio MM1T MMLT Ratio MM1T MMLT Ratio

AKM 1503.60 296.20 5.08 8895.20 1625.00 5.47 0:00:41:15 0:00:10:05 4.09

CAS 1519.20 368.80 4.12 9937.30 2130.90 4.66 3:14:02:58 1:03:36:03 3.12

PC 3035.80 905.90 3.35 18591.00 4685.80 3.97 0:06:06:20 0:00:40:00 9.16

TCP 4300.20 1252.60 3.43 30729.00 7803.80 3.94 0:15:37:12 0:02:15:44 6.90

Oven 41665.20 240.30 173.39 150183.90 1324.90 113.35 96:01:03:55 0:19:22:30 118.97

SCTP 20687.60 7568.10 2.73 87111.90 30368.50 2.87 1:04:14:51 0:10:04:42 2.80

WSN 27539.70 209.10 131.71 67758.40 1446.10 46.86 1732:11:57:24 8:00:37:12 215.87

[12], and a model of an endpoint for the emerging Stream Control Transmission
Protocol (SCTP) [10]. Finally, we have added two models from our own collec-
tion that resemble major applications of RTS. These comprize a wireless sensor
node (WSN) that collects and transmits data at fixed rates, and an oven with a
time-controlled baking program and a heater.

We have implemented our MMLT learner in the established framework Learn-
Lib and have compared it to the reference implementation of the MM1T learner.
We have slightly adapted this implementation for a full black box setting. The
original learner assumes that self-loops without an effect produce a special unde-
fined output, letting it avoid many redundant queries. We model these transitions
as normal silent self-loops instead. We have set up our MMLT learner with a
query cache and a random Wp counterexample finder, due to its outstanding
performance in practice [2]. Since we assume a realistic black box setting, we
do not know the most efficient random Wp parameters per case study. There-
fore, we have chosen a configuration that is efficient across all case studies. The
MM1T learner integrates a cache by design. It can also use different learning
algorithms. Like [12], we have tested it with the RS and TTT [7] algorithms
and a random words and a Wp counterexample finder. We have also performed
tests with a random Wp finder. Again assuming a realistic black box setting, we
have chosen a configuration with RS and a random Wp finder as baseline for our
learner, as this has been the most efficient on average across all case studies. We
have observed that all tested counterexample finders fail on the Oven, SCTP,
and WSN models in all experiments. This is because parts of these systems
only show a change in behavior after many timeouts. Random Wp and random
words, though, find counterexamples by testing semi-random input sequences,
making it unlikely to find a sequence with many subsequent timeouts. Wp tests
all input combinations up to a specific length in each hypothesis state and thus,
could find counterexamples for above systems. Adjusting these input lengths for
our models, though, increases runtimes excessively. Therefore, we have used a
modified random Wp finder for the MMLT learner that, after observing a time-
out, samples a subsequent timeout with higher probability. For MM1T, we have
instead manually provided one additional counterexample per affected model, as
its learner design makes an efficient implementation of our modified random Wp
finder difficult.

Learning MMLTs 63

We have measured the efficiency of the MMLT and MM1T learners with
the common metrics resets, inputs, and delay [1]. Resets are all resets of the
SUL, inputs are all symbols except for to and τ executed by the SUL, and
delay is the total delay from single time steps with τ and waiting for timeouts.
We have also counted the locations that our MMLT learner has removed dur-
ing hypothesis refinements. However, we have not observed any such removals,
clearly indicating that they only rarely affect runtimes in practice. Table 2 shows
the remaining results. All values are averages over 10 runs. Ratio corresponds to
baseline/value. Thus, ratios above one indicate an improvement over the MM1T
learner.

As shown, our MMLT learner has drastically outperformed the MM1T
learner in all efficiency metrics across all case studies. The resulting runtime
savings become most immediately apparent in the accumulated delay, as this is
hardware independent. Here, our learner has saved at least 30 min when learning
AKM, 13 h when learning TCP, and at least 18 h for SCTP. For CAS, we have
reduced the delay even by more than 48 h. Combined with the drastic reduc-
tions in resets and inputs, these improvements make our method well suited for
regular use in practice.

We have saved even more time for the Oven and WSN models, where the
learned MMLT has been significantly smaller than the respective MM1T (cf.
Table 1). Here, our learner has used drastically fewer SUL resets, inputs, and
delay than the MM1T learner. This effect is most significant in the WSN model,
where the MM1T learner would have waited for at least 4.5 years, while our
learner would have only delayed the SUL for about eight days.

Hence, our method does not only reduce runtimes drastically compared to
the state-of-the-art learner MM1T in practice but thereby also opens automata
learning to a wide range of applications that were unable to use it before.

7 Conclusion and Future Work

We have introduced Mealy machines with local timers (MMLTs), a new class
of Mealy machines that permit multiple local timers and constrain timer use
to enable efficient learning of real-time systems. We have also presented a new
efficient learning algorithm for MMLTs that is based on the Rivest-Schapire
method. We have described our model and learner in detail and demonstrated
across diverse case studies ranging from automotive systems to smart home
appliances that our method drastically reduces runtimes compared to the state-
of-the-art approach, hence, making active automata learning feasible for a wide
range of real-time systems, including systems that were unable to use it before.

We see several exciting possibilities to improve the efficiency of our method
even further. First, we plan to explore modifications of the MMLT semantics that
enable even smaller models, like multiple one-shot timers per location. We also
intend to exploit imprecise knowledge of the SUL, as this often reduces runtimes
significantly [8]. Finally, we would like to investigate methods for counterexam-
ple search that specifically target MMLTs, as efficient comparison of real-time
behavior promises significant further savings [11].

64 P. Kogel et al.

References

1. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed
automata efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.)
NFM 2020. LNCS, vol. 12229, pp. 1–19. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-55754-6 1

2. Aichernig, B.K., Tappler, M., Wallner, F.: Benchmarking combinations of learning
and testing algorithms for active automata learning. In: Ahrendt, W., Wehrheim,
H. (eds.) TAP 2020. LNCS, vol. 12165, pp. 3–22. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-50995-8 1

3. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed
automata. In: TACAS 2020. LNCS, vol. 12078, pp. 444–462. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45190-5 25

4. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
Theor. Comput. Sci. 411(47) (2010)

5. Henry, L., Jéron, T., Markey, N.: Active learning of timed automata with unob-
servable resets. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol.
12288, pp. 144–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
57628-8 9

6. Howar, F., Steffen, B.: Active automata learning as black-box search and lazy
partition refinement. In: In: Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A
Journey from Process Algebra via Timed Automata to Model Learning. LNCS,
vol. 13560. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15629-8 17

7. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

8. Kogel, P., Klös, V., Glesner, S.: TTT/IK: learning accurate mealy automata effi-
ciently with an imprecise symbol filter. In: Riesco, A., Zhang, M. (eds.) For-
mal Methods and Software Engineering, vol. 13478, pp. 227–243. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17244-1 14

9. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. Inf.
Comput. 103(2) (1993)

10. Stewart, R., Tüxen, M., Nielsen, K.: Stream Control transmission protocol. Tech-
nical report (2022). https://doi.org/10.17487/rfc9260

11. Tang, X., Shen, W., Zhang, M., An, J., Zhan, B., Zhan, N.: Learning deterministic
one-clock timed automata via mutation testing. In: Bouajjani, A., Hoĺık, L., Wu,
Z. (eds.) ATVA 2022, vol. 1350, pp. 233–248. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-19992-9 15

12. Vaandrager, F., Ebrahimi, M., Bloem, R.: Learning Mealy machines with one timer.
Inf. Comput. (2023)

13. Vaandrager, F., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active
automata learning based on apartness. In: TACAS 2022. LNCS, vol. 13243, pp.
223–243. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 12

14. Xu, R., An, J., Zhan, B.: Active learning of one-clock timed automata using con-
straint solving. In: Bouajjani, A., Hoĺık, L., Wu, Z. (eds.) ATVA 202. LNCS, vol.
13505, pp. 249–265. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
19992-9 16

https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/978-3-030-50995-8_1
https://doi.org/10.1007/978-3-030-50995-8_1
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/978-3-031-15629-8_17
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-031-17244-1_14
https://doi.org/10.17487/rfc9260
https://doi.org/10.1007/978-3-031-19992-9_15
https://doi.org/10.1007/978-3-031-19992-9_15
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1007/978-3-031-19992-9_16
https://doi.org/10.1007/978-3-031-19992-9_16

Compositional Vulnerability Detection
with Insecurity Separation Logic

Toby Murray1(B), Pengbo Yan1, and Gidon Ernst2

1 University of Melbourne, Melbourne, Australia
toby.murray@unimelb.edu.au, pengpoy@student.unimelb.edu.au

2 LMU Munich, Munich, Germany
gidon.ernst@lmu.de

Abstract. Memory-safety issues and information leakage are known to
be depressingly common. We consider the compositional static detection
of these kinds of vulnerabilities in first-order C-like programs. Indeed
the latter are relational hyper-safety violations, comparing pairs of pro-
gram executions, making them more challenging to detect than the for-
mer, which require reasoning only over individual executions. Existing
symbolic leakage detection methods treat only non-interactive programs,
avoiding the challenges of nondeterminism. Also, being whole-program
analyses they cannot be applied one-function-at-a-time, thereby rul-
ing out incremental analysis. We remedy these shortcomings by pre-
senting Insecurity Separation Logic (InsecSL), an under-approximate
relational program logic for soundly detecting information leakage and
memory-safety issues in interactive programs. Importantly, InsecSL rea-
sons about pairs of executions, and so is relational, but purposefully
resembles the non-relational Incorrectness Separation Logic (ISL) that is
already automated in the Infer tool. We show how InsecSL can be auto-
mated by bi-abduction based symbolic execution, and we evaluate two
implementations of this idea (one based on Infer) on various case-studies.

1 Introduction

Almost all program logics are for proving the correctness of programs. Hoare logic
is a classic example, whose judgements have the form {P} c {Q} for a program
command c and pre- and postconditions P and Q. This judgement means that
when executed from an initial state satisfying P that after command c finishes,
Q is guaranteed to hold. In this sense postcondition Q over-approximates the
final states that command c can reach from an initial P -state. Recently, interest
has emerged in program logics for proving incorrectness [16], i.e., for diagnosing
bugs in programs with a true-positives guarantee. Such logics inherit the under-
approximate structure of Reverse Hoare Logic [8]. Their judgements [P] c [Q]
mean that for all final states t satisfying Q, there exists an initial P -state from
which Q can execute to terminate in state t. Thus Q under-approximates the
final states that command c can reach from an initial P -state.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 65–82, 2023.
https://doi.org/10.1007/978-981-99-7584-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_5&domain=pdf
https://doi.org/10.1007/978-981-99-7584-6_5

66 T. Murray et al.

While the two approaches are roughly equivalent for deterministic programs,
under-approximate reasoning is necessary to accurately diagnose vulnerabilities
in nondeterministic programs, including those that allocate memory or interact
with an outside environment or user. Incorrectness Separation Logic [12,17] (ISL)
is such an under-approximate logic, which has proved especially useful for auto-
matic memory-safety bug detection because program analysis in the logic can
be carried out automatically via bi-abduction based symbolic execution [5,17],
and supports compositional and incremental program analysis [12].

All such under-approximate logics to-date, however, reason only about indi-
vidual program executions. They can therefore detect only those bugs that can
be observed in this way, like assertion failures (as in Incorrectness Logic [16]) or
memory-safety errors like null-pointer dereferences and use-after-free errors (as
in Incorrectness Separation Logic [17]). Yet, vulnerabilities come in many kinds,
beyond memory-safety issues. In this paper we focus on the automatic detec-
tion of information leakage vulnerabilities. These are especially interesting as
they are very common and can be devastating. But since information leakage is
semantically expressed as a hyperproperty [6], which compares pairs of program
executions, it is out of scope for the existing under-approximative logics.

Can we design an under-approximate logic for reasoning about such vulner-
abilities which inherits the nice property that all defects which are flagged are
true positives? If so, can analysis using this logic be automated to produce a
compositional vulnerability analysis method?

Contribution: We answer both of these questions in the affirmative. In this
paper, we present Insecurity Separation Logic (InsecSL, Sect. 4), an under-
approximate separation logic for diagnosing information leakage and memory-
safety vulnerabilities. InsecSL reasons about pairs of program executions but
purposefully closely resembles the (single execution) logic ISL [17]. We show
in Sect. 5 how reasoning in InsecSL can be automated via bi-abduction based
symbolic execution by formalising and proving that the same symbolic execu-
tion procedure as is used for ISL is also sound for InsecSL. We demonstrate the
practicality of our ideas by implementing them in two different tools (Sect. 6),
including an extension of the Infer tool in which we adapt Infer’s ISL implemen-
tation to diagnose information leakage vulnerabilities via InsecSL. We evalu-
ate our implementations (Sect. 7) by applying them to a range of case studies.
Soundness theorems (namely Theorem 1 for InsecSL and Theorem 2 for sym-
bolic execution respectively) have been mechanised in Isabelle/HOL. All artifacts
are available online with the extended version of this paper: https://covern.org/
insecurity.html.

2 Motivation

We use the program in Fig. 1 to both motivate and explain our approach. This
program implements the core of a simple sealed-bid auction server. In a sealed-
bid auction, all information about bids must be kept secret until after the auction
is finished, at which point only the winning bid is announced.

https://covern.org/insecurity.html
https://covern.org/insecurity.html

Compositional Vulnerability Detection with Insecurity Separation Logic 67

Fig. 1. The core of a sealed-bid auction server, adapted from a case-study in SecC:
https://bitbucket.org/covern/secc/src/master/examples/case-studies/auction.c.

Bids in this auction are pairs of ints: (id , qt) where id identifies the bidder
who submitted the bid, and qt is the amount (or quote) submitted in the bid.
The C struct type bid_t pairs these two values together. The top-level function
run_auction() maintains the current maximum bid highest, and a temporary
bid used to store newly submitted bids, which are received via the get_bid()

function. Each new bid is then compared to the current highest one using the
function update_max(), which potentially updates the current highest bid and
persists a record about this fact via log_current_max. Note that get_bid() is
inherently nondeterministic: It may return arbitrary values, since it is the inter-
face between the program and its environment. This puts it outside the scope of
Relational Symbolic Execution [11] as implemented in tools like Binsec/Rel [7].

Unfortunately, update_max() is insecure. As it updates the maximum bid only
when the newly submitted bid is larger than the current maximum, its timing
depends on whether the branch is taken or not. This timing leak can be exploited
by auction participants to game the auction. In particular if log_current_max

incurs a notable delay—writing to disk or even network storage synchronously
may be slow—they might be capable to infer whether the bid they have sub-
mitted is greater than the current maximum or not. Moreover, the call to
announce_winner() is potentially insecure under the premise that we only want
to disclose the winning bid. If highest has not been computed correctly, then
we may accidentally reveal sensitive information about another bid.

Challenge: The question of whether a potential information leak in a program
becomes critical therefore strongly depends on the context in which functions
like update_max() and announce_winner() are called. A compositional underap-
proximative analysis like that of InsecSL must therefore be capable of tracking
such relationships precisely to be sound, i.e., to avoid false positives.

As an example, the security-related summary inferred for update_max(),
shown below, expresses that each potentially insecure final state as marked
by insec is guaranteed to be reachable under the sufficient presumption that
parameters a and b are valid pointers. Assertion (bqt > aqt) ::� � denotes that this
insecurity occurs if within a given calling context the outcome of the conditional
bqt > aqt is not already known to the attacker of security level � (cf. Sect. 3 and
Sect. 4).

https://bitbucket.org/covern/secc/src/master/examples/case-studies/auction.c

68 T. Murray et al.

[&b->qt �→ bqt ∗ &a->qt �→ aqt]
update_max(a,b)

[insec : (bqt > aqt) ::� � ∗ &b->qt �→ bqt ∗ &a->qt �→ aqt]

Note that this summary is beyond the scope of type systems like [19] which just
capture whether information flow happens or not, but which fail to adequately
reason about logical conditions like (bqt > aqt) ::� �.

3 Attacker Model

We imagine that the execution of the program in question is being observed by
an attacker, who has certain observational powers and initial knowledge and is
trying to deduce secret information that the program is trying to protect. An
information leak occurs if the attacker can deduce some secret information that
they did not already know initially before the program was executed.

As standard, the attacker is assumed to know the program being executed
and certain initial values in memory as specified by assertions characterising pre-
states. The program may perform inputs and outputs during its execution and
the attacker is assumed to be able to observe some of these. All other information
is considered secret, and information flow security requires that the attacker
can never learn any new information above that which they were assumed to
know initially. As usual, we therefore define what an attacker can observe with
the help of a security lattice comprised of labels � which are comparable by
a binary relation � with low and high being the least resp. greatest elements,
modeling public and fully sensitive information, respectively. A channel at level �′

is observable by an �-attacker if �′ � �, e.g., the low channel is observable
publicly.

As motivated in Sect. 2, the security property for InsecSL is timing-sensitive.
This means that the attacker can not just observe inputs and outputs on certain
channels, but also at what times they occur. As is typical, time is measured
in terms of the number of small-steps of execution in the language’s small-step
operational semantics. Following the standard program counter (PC) security
model [13], the security property targeted by InsecSL assumes an attacker who
is able to observe at each point in time (i.e. after each small-step of the semantics)
the program code that is running. This implies that e.g. when executing an if-
conditions if e then c1 else c2 endif where c1 �= c2, that the attacker can
infer some information about e (namely whether it evaluated to true or not),
since they will be able to tell in the subsequent execution step whether c1 or c2 is
being executed. A similar argument applies to while-loops. While not as strong as
constant-time security [3], InsecSL can be easily extended to cover the stronger
attacker model of constant-time security if desired (see the extended version of
this paper [14]).

We emphasize that the choice of this attacker model is a trade-off: under this
attacker model it is not possible to verify programs that have if/while conditions
that depend on secrets, even if leakage from such conditions is considered accept-
able in certain situations. On the other hand, a PC-security security guarantee

Compositional Vulnerability Detection with Insecurity Separation Logic 69

requires one to consider only “matched” executions, as exploited by SecCSL [10]
and also by InsecSL, which drastically simplifies the logic and its automation
in comparison to product constructions like [9].

4 Insecurity Separation Logic (INSECSL)

Insecurity Separation Logic (InsecSL) is the relational analogue of ISL [17]
and the underapproximative dual to Security (Concurrent) Separation Logic
(SecCSL) [10]. Judgements in InsecSL are written as

�� [P] c [ε : Q] (1)

where relational assertions P characterizes the pre-states (“presumption”) and Q
characterize reachable final states (“result”), � is a security level, c is a program
command, and ε is a status flag that indicates whether the command has termi-
nated normally (ε = ok), whether a runtime error has occurred (ε = err(L)), or
whether an insecurity has been detected (ε = insec(L)). The latter two track a
program location L that points to the cause of the defect.

The capability to precisely characterise insecurity for nondeterministic pro-
grams is what distinguishes InsecSL from prior logics. As an example, InsecSL
allows us to derive that the output of the value of an expression e to a chan-
nel of security level �′ can be potentially witnessed as insecure without further
presumptions in any (pair of final) state(s) in which e is secret wrt. �′, written
e ::� �′, under the assumption of an �-attacker (which implies �′ � �):

�� [emp] L : output(�′, e) [insec(L) : e ::� �′]
OutInsec (2)

Judgement (1) is defined relative to a relational semantics of assertions like
e ::� �′ and emp, written (s, h) (s′, h′) |=� P where s, s′ are stores (mappings from
variables to values) and h, h′ are heaps (mappings from addresses to values), and
a small-step program semantics k1

σ−−→ k2 where configurations k are either a
running program k1, k2 = 〈run “c” s h〉, a terminated execution k2 = 〈stop s h〉
or a program error k2 = 〈abort s h〉, where the latter two correspond to a final
status ε of ok and err(L), respectively.

As a hyperproperty, security cannot be defined solely by looking at the final
state of a single execution, comprised of the store s and heap h in 〈stop s h〉
configurations. Instead, we have to compare what is observable between pos-
sible pairs of executions. To capture this notion, execution steps additionally
keep track of relevant events as a schedule σ, which records for example input
events in〈�′, v〉 and outputs events out〈�′, v〉 to track a value v together with
the security level �′ of the respective communication channel. The key issue for
defining a security logic like InsecSL (and also SecCSL) and proving sound-
ness of rules like (2) is therefore to connect the three ingredients, namely the
judgements (1), observations σ, and the assertions P , Q encountered throughout
a derivation. It is based on the following semantic notion:

70 T. Murray et al.

Definition 1 (Execution Witness). Presumption P and result Q witness
an execution of program c against the �-level attacker and a given status ε when
for all final states s, h, s′, h′ such that (s, h) (s′, h′) �� Q, there exist ini-
tial states s0, h0, s′

0, h′
0, and σ, σ′, k, k′ such that (s0, h0) (s′

0, h
′
0) �� P and

〈run “c” s0 h0〉 σ−−→∗k and 〈run “c” s′
0 h′

0〉 σ′
−−−→∗k′, where σ and σ′ have equal

lengths and are input-equivalent for the �-level attacker (Definition 2), and the
final store and heap of k are respectively s and h and likewise for k′, s′ and h′.
Moreover,

If ε = ok resp. ε = err(L) then
• σ and σ′ are output-equivalent to the �-level attacker (Definition 2),
• and k and k′ must both be stopped resp. aborted.

If ε = insec(L) then
• either σ and σ′ are not output-equivalent to the �-level attacker,
• or k and k′ both denote running configurations with different commands.

Witnessing an insecure behaviour therefore violates the standard security con-
dition of program counter (PC) security [13]. Also note that the conditions are
mutually exclusive, i.e., an execution witness can uniquely be classified into an
ok behavior, an erroneous behavior, or an insecure one.

Theorem 1 (True Positives). InsecSL guarantees that if �� [P] c [ε : Q] is
derivable via the rules, shown in Fig. 2, then there is an execution witness for P ,
Q, c, and ε wrt. an �-attacker, according to Definition 1.

Assertions. InsecSL assertions are relational [10,20]; pure assertions ρ and
spatial assertions P , Q are defined according to the following grammar:

ρ ::= e | ρ =⇒ ρ | e :: e� | e ::� e�

P,Q ::= emp | ρ | e �→ e′ | e ��→ | P ∗ Q | ∃x. P | P =⇒ Q

where e ranges over pure expressions, including boolean propositions (first case
of ρ), similarly, e� ranges over pure expression that denote security labels of some
designated data type that models the security lattice and includes constants low
and high but is not further specified here.

Semantically, assertions are evaluated over pairs of states, written s s′ |=� ρ
and (s, h) (s′, h) |=� P for stores s, s′ and heaps h, h′, where the unprimed
resp. primed states come from the two executions being compared. Stores are
mappings from variable names to values as usual, whereas heaps h : Val ⇀ Val ∪
{⊥} are partial functions that include an additional ⊥ element as in ISL, where
p ∈ dom(h) and h(p) = ⊥ means that pointer p is definitely invalid in contrast
to p /∈ dom(h), which means we do not currently have access resp. own p.

The key definitions are as follows (see [14] for the full list):

s s′ �� e ⇐⇒ [e]s = true ∧ [e]s′ = true (3)
s s′ �� e :: e� ⇐⇒ [e�]s � � ∧ [e�]s′ � � =⇒ [e]s = [e]s′ (4)
s s′ �� e ::� e� ⇐⇒ [e�]s � � ∧ [e�]s � � ∧ [e]s �= [e]s′ (5)

Compositional Vulnerability Detection with Insecurity Separation Logic 71

where we define (s, h) (s′, h′) |= ρ iff s s |= ρ and h = h′ = ∅, and [e]s denotes
the evaluation of pure expression e in store s, and � is the partial order between
security labels. Conditions [e�]s � � and [e�]s′ � � therefore mean that e� denotes
a security label that is relevant wrt. the “current” �-attacker from |=� resp. (1).

We can assert a pure boolean expression e if it is known to hold in both
states s and s′ (3). Assertion e :: e� denotes agreement of value e with respect
to the security label denoted by e�, i.e., the value of e is the same in both s
and s′ (4). It coincides with A e of [2] for e� = low but just as in SecCSL [10],
e� can be a more complex expression, not just a constant. It expresses that an
e�-attacker knows the value of e, specifically e :: low means that e is public.
Dually, disagreement e ::� e� formalises that an attacker who can observe level e�

has some uncertainty about e (5). Semantically, s, s′ |=� e ::� e� requires that it
is possible for the expression e to take two different values in the two stores s
and s′ being compared. Therefore, leaking the value of e to an e�-visible output
channel is insecure because the attacker can learn whether the system is actually
in state s or in s′ by observing the value of e.

The second feature for bug-detection is the assertion e ��→ from ISL [17],
which expresses that e is known to be an invalid pointer, so that dereferencing e
is necessarily incorrect. This is dual to the standard points-to assertion e �→ e′

which states that memory location e is valid and contains value e′.
We point out that relational implication =⇒ is distinct from pure implica-

tion at the level of expressions (not shown here). All other connectives intuitively
mean the same as in a non-relational setting, e.g., emp denotes an empty heap
and P ∗ Q asserts P and Q on two disjoint parts of the heap, but of course
technically these have to be lifted to the relational setting semantically.

Commands and Semantics. Commands c in the language are as follows,
where e is a pure expression that can mention program variables x:

c ::= skip | x := e | x := [e] | [e] := e′ | x := alloc(e) | free(e) |
L : c | c1; c2 | if e then c1 else c2 endif | while e do c done |
output(e, e′) | x := input(e)

Here [e] denotes dereferencing pointer e and e.g. in C would be written *e. As in
ISL [17], commands in InsecSL carry an optional label L that is used for error-
reporting, written L : c. Most commands are standard, except x := input(e�)
and output(e�, e). Command x := input(e�) means input a value from the
channel denoted by e� and assign the inputted value to the variable x; command
output(e�, e) means to output the value denoted by the expression e on the
output channel denoted by the expression e�.

The language of InsecSL is given a small-step semantics k1
σ−−→ k2, allowing

judgements to talk about partial executions ending in running non-final states
(cf. insec(L) case in Definition 1). Importantly, this semantics records the values
and security labels of input and output commands as part of schedule σ, which
is necessary to state the formal security properties used for InsecSL’s soundness
result in Theorem 1 via Definition 2 below.

72 T. Murray et al.

The schedule is a list of events e ::= τ | in〈�, v〉 | out〈�, v〉 | allocate〈v〉 for
security level � and value v ∈ Val . Event τ represents a single, non-input, non-
output, non-alloc step of computation, i.e., τ steps are not critical for security.
Event in〈�, v〉 records that value v was input at security level � and out〈�, v〉
records that value v was output at security level (i.e. on the output channel) �,
while allocate〈v〉 records that address v was dynamically allocated. It is simply
included as a convenience to ensure that all non-determinism can be resolved by
the schedule σ. Some key rules are shown below, the full listing is in [14].

a = [p]s h(a) = v

〈run “x := [p]” s h〉 [τ]−−−→ 〈stop s(x := v) h〉

a = [p]s a �∈ dom(h) ∨ h(a) = ⊥
〈run “x := [p]” s h〉 [τ]−−−→ 〈abort s h〉

〈run “x := input(e�)” s h〉 [in〈[e�]s,v〉]−−−−−−−−→ 〈stop s(x := v) h〉

〈run “output(e�, e)” s h〉 out〈[e�]s,[e]s〉−−−−−−−−−→ 〈stop s h〉

The first rule shows a load via pointer expression p from a valid address a, the
corresponding value in the heap is then assigned to variable x in the updated
store s(x := v). Notice that we can observe memory errors in this semantics
directly by transitions to 〈abort s h〉 configurations, as it is for example when
the pointer expression p instead evaluates to an unknown address a /∈ dom(h)
or one that is definitely not allocated h(a) = ⊥ (second rule). Reading from an
input channel returns a non-deterministic value v that is assigned to x in the
successor state. However, information leakage can only be observed by comparing
pairs of executions in terms of their schedules (cf. Definition 1).

As an example, output(e�, e) with [e�]s = �′ and [e�]s′ = �′ in a pair of execu-
tions with stores s and s′ respectively, will expose two schedules σ = [out〈�′, v〉]
and σ′ = [out〈�′, v′〉], where v = [e]s and v′ = [e]s′ are the values that are output
over the channel in the two runs. If �′ � �, i.e., the channel is visible to the
attacker, then an information leak occurs if v �= v′ and we have an execution
witness according to Definition 1 and Eq. (5) for result [insec : e ::� �′]. Input- and
output-equivalence which Definition 1 relies on is therefore as follows:

Definition 2 (Input and Output Equivalence). Two schedules are are
input resp. output equivalent for the �-level attacker when all inputs resp. out-
puts observable to that attacker are identical in each, i.e., after projecting the
schedules to those input resp. output events, in〈�′, v〉 or out〈�′, v〉 for which �′ � �.

Proof Rules and Soundness. The proof rules of InsecSL are in Fig. 2. Rules
analog to those of ISL [17] are included, those rules that mention value classifi-
cation (e.g. in Input) and those with insec result are specific to InsecSL.

Compositional Vulnerability Detection with Insecurity Separation Logic 73

Fig. 2. The rules of InsecSL.

Rule LoadErr captures the case when loading via pointer p leads to an error,
which is reachable from a presumption p ��→, i.e., states in which p is definitely an
invalid pointer [17]. It is formulated as a “small axiom” as typical for separation

74 T. Murray et al.

logic which is put into larger context by the standard frame rule (which is valid
in our setting). We remark that sequential composition, too, works as expected.

Rule Input derives that the new value of variable x in the result can be
classified with respect to e�—auxiliary variable x′ is just a technical artifact to
lift e over the assignment to x if e depends on x. Input commands can never
be insecure, instead, manifest the domain assumption that only e�-attackers can
observe the value that has been stored in x so that x is rightly classified by the
level denoted by e�. Soundness of the rule therefore considers whether x::e�[x′/x]
holds in a given trace, i.e., whether [x]s(x:=v) = v equals [x]s′(x:=v′) = v′ in case e�

is �-visible (via (4)), and if not, this pair of traces can be neglected as respective
schedule-fragments σ = [in〈[e�]s, v〉] and σ′ = [in〈[e�]s′ , v′〉] from the small-step
semantics are not input equivalent (cf. Definition 1).

In comparison, there are two rules for the output command, one for a secure
output, OutOk, and one for an insecure output, OutInsec shown in (2). If
one wants to prove for a given case study that the insecure outcome e ::� e� is
unreachable, one can check the result and presumption wrt. a frame assertion P
that captures the path condition of the context in which the output was made,
so that if P ∗ e ::� e� is unsatisfiable the result is demonstrated to be unreachable.

Moreover, there are rules that expose branching on secrets as the test of if
and while statements, and rule SeqInsec propagates an insecurity in the first
part of a sequential composition similarly to an error.

5 Symbolic Execution

InsecSL’s careful design, as a relational logic that resembles the non-relational
ISL, means that its application can be automated via bi-abduction [5] based
symbolic execution method for automatically deriving InsecSL judgements.

We formalise the symbolic execution method for ISL, atop InsecSL, prov-
ing that it yields a sound analysis method for automatically inferring InsecSL
judgements. Ours is the first such symbolic execution method, for an under-
approximate logic, to enjoy a mechanised proof of soundness.

To define our symbolic execution, it helps to introduce an extra program com-
mand assume(e). This command is not a “real” command in the sense that it
cannot appear in program text. Instead, it is used to remember, during symbolic
execution, which conditional branches have been followed along the current exe-
cution path. As we will see, our symbolic execution maintains a trace that records
the execution path followed so far, in which assume commands assume(e) can
appear. Their semantics is to evaluate the condition e and, if e holds to act as a
no-op but otherwise execution gets stuck.

Our symbolic execution method stores the path followed so far. Doing so
allows it to provide detailed information to the user when a vulnerability is
detected (e.g. to tell precisely along which path the vulnerability arises). Doing
so is also necessary to prove the soundness of our method, as explained later.
The current path is stored as a trace, which is a list of pairs (c, P) where c
is a program command and P an InsecSL assertion. For convenience, traces

Compositional Vulnerability Detection with Insecurity Separation Logic 75

are stored in reverse order. Each element (c, P) is understood to mean that
command c was executed from symbolic state P , i.e. P represents the state
before c was executed. We write the empty trace [] (which represents that there
has been no preceding symbolic execution), and the trace whose head is x and
whose tail is xs as x : xs.

When a new spatial assertion F is inferred to make forward progress in
symbolic execution, it is then back-propagated along the trace tr, causing F to
be added into each of the assertions P in each element (c, P) of F . Given an
assertion F , back-propagating it over trace tr produces the transformed trace tr′,
and operates in the expected way by successively appealing to the Frame rule.
We define the procedure backprop�(F, tr, tr′) for doing this.

Definition 3 (Backprop). For any assertion F , any security level �, and
any traces tr and tr′ where each of them is a list of command-assertion pairs,
backprop�(F, tr, tr′) holds if and only if: tr = tr′ = []∨ (∃c P F F ′ tr2 tr′

2. tr =
(c, P) : tr′ ∧ tr′ = (c, P ∗ F) : tr′

2 ∧ mod(c) ∩ fv(F) = ∅ ∧ backprop�(F ′, tr2, tr′
2))

Symbolic execution is then defined as follows. We define a judgement
symex�(tr, JQ, c, tr′, JQ′). Here c is a command, tr and tr′ are traces, while
JQ and JQ′ are judgement post assertions, i.e. have one of the following forms
each for some assertion Q: ok : Q, err : Q, or insec : Q. Trace tr and JQ repre-
sent the current state of symbolic execution before command c is executed, in the
sense that tr is the trace followed up to this point and JQ represents the sym-
bolic state immediately before c is executed. Executing c necessarily extends the
trace (possibly also transforming it via back-propagation), yielding an updated
trace tr′ and a new post assertion JQ′.

The symbolic execution rules are shown in Fig. 3. When encountering branch-
ing, symbolic execution will flag insecurity (SEIfInsec) if the branch condi-
tion b is secret (b = true ::� �); however it can also proceed (e.g. SEIfTrue) by
assuming the branch condition (implicitly assuming it is non-secret). The rule
SEOutInsec detects insecure outputs. Rules for inferring spatial predicates via
bi-abduction follow their counterparts in ISL [12].

Theorem 2 (Soundness of Symbolic Execution). For all commands c,
security levels �, post-assertions JQ and JQ′ and all traces tr, produced by sym-
bolic execution, i.e., symex�([], JQ, c, tr, JQ′) holds, we have tr is not empty.
Furthermore, letting (c, P) denote the last element of tr, we have �� [P] c [JQ′].

As mentioned earlier, the trace tr is not merely a user convenience but a
necessary ingredient to prove soundness of the structural rules, like SEIfTrue
above. Soundness of this rule for instance requires deducing a judgement
�� [P] c0; c′ [ε : Q] given premise �� [P] c0; c [ε : Q] and inductive hypothe-
sis ∀P Q. �� [P] c [ε : Q] =⇒ �� [P] c′ [ε : Q]. Unfortunately the premise is not
strong enough to deduce some intermediate assertion R for which �� [P] c0 [ε : R]
and �� [R] c [ε : Q] as required to instantiate the inductive hypothesis. Inclu-
sion of trace tr allows us to express the necessary strengthening of the theorem.
This construction was not necessary for the pen-and-paper soundness proof of

76 T. Murray et al.

Fig. 3. Symbolic execution rules.

ISL [12,17] because for any single state there exists an ISL assertion that pre-
cisely describes that state, and hence the existence of the intermediate assertion
R is trivial in ISL. The same is not true for InsecSL because InsecSL’s asser-
tions, while resembling unary ones, are evaluated relationally (cf. Sect. 4).

Our symbolic execution as described can be applied to the body of a function
to infer InsecSL judgements that describe its internal behaviour. Such judge-

Compositional Vulnerability Detection with Insecurity Separation Logic 77

ments must be transformed into summaries that describe the function’s external
behaviour. To do so we follow the same approach as in ISL [12]. For instance, con-
sider the trivial function void func(int x){ x = x + 1; } that uselessly incre-
ments its argument x. Its internal behaviour is captured by the judgement
�� [x = v] x = x + 1 [ok : v′ = v ∗ x = v′ + 1], where the logical variable v cap-
tures the initial value of x. Transforming this internal judgement into an external
summary (after simplification) yields the summary �� [emp] func(x) [ok : emp].

6 Implementation

We implemented the symbolic execution procedure for automating the applica-
tion of InsecSL in two tools: Underflow and Pulse-InsecSL. Underflow
implements the entirety of InsecSL via contextual, top-down inter-procedural
symbolic execution. Pulse-InsecSL on the other hand is a modification of the
existing non-contextual, bottom-up inter-procedural symbolic execution method
for ISL that is implemented in the Pulse-ISL plugin for Infer [12], which we
modify to implement a useful subset of the InsecSL logic.

Underflow is a proof-of-concept tool, which we built by modifying an
existing verifier for the over-approximate security separation logic SecCSL [10].
Underflow implements a top-down inter-procedural analysis in which individ-
ual functions (procedures) are analysed using the symbolic execution method of
Sect. 5 to derive summaries for their behaviours.

When analysing a function f() that calls another g() Underflow attempts
to apply all summaries known about g(). If none of them are applicable (i.e.
applying them yields an inconsistent state), Underflow performs a contex-
tual analysis of g() to compute new summaries applicable at this callsite. To
perform a contextual analysis of callee g() from caller f() we take the current
symbolic state R and filter it to produce a state R′ that describes only those parts
of R relevant to the call. Underflow’s present implementation does so using
a fixed-point computation that identifies all pure formulae from R that mention
arguments passed to g() and values (transitively) related to those arguments by
such pure formulae. It identifies all spatial assertions in R that describe parts of
the heap reachable from those values, filtering everything else as irrelevant.

In contrast to Infer [12,17], Underflow does not unroll loops to a fixed
bound. Instead it controls symbolic execution using two mechanisms. Firstly,
for each program point it counts the number of paths that have so far passed
through that point during analysis. When that number exceeds a configurable
bound, additional paths are discarded. Additionally it monitors the latency of
symbolically executing each program statement. When this latency gets too
high (exceeds a configurable timeout), the current path is discarded. The for-
mer bound is reached only when unfolding relatively tight loops, while the
latter attempts to maintain reasonable symbolic execution throughput. When
analysing a function Underflow will avoid generating multiple summaries that
report the same problem for a single program point. Underflow reports uncon-
ditional (aka manifest [12]) bugs whose presumptions are true.

78 T. Murray et al.

Underflow encodes all non-spatial formulae to SMT via a relational encod-
ing which directly encodes their relational semantics [14]. Doing so necessarily
duplicates each variable, meaning that SMT encodings of formulae are often
relatively large. While this can impede scalability, it ensures that Underflow
encodes the entirety of InsecSL in a semantically complete way.

Pulse-InsecSL takes a different design to Underflow, and makes max-
imum advantage of the fact that InsecSL is purposefully designed to be very
similar to ISL [17], allowing its symbolic execution procedure (Sect. 5) to very
closely resemble that for ISL also [12].

Pulse-InsecSL implements a non-trivial fragment of InsecSL. In this frag-
ment, there are only two security levels �: low (bottom) and high (top). The
level of the attacker is low. Insecurity assertions b::� low appear only over boolean
expressions b and mention only the security level low. Security assertions e :: low
do not appear directly. Instead, whenever an expression e is to be treated as low
(e :: low), the expression e is concretised, i.e. replaced by a concrete value (a con-
stant). We refer to this process as low concretisation. Since constants are low by
definition, concretising low expressions e ensures that Pulse-InsecSL treats
them as low without having to perform a relational encoding of the security
assertion e :: low. In our current implementation, constants for concretisation
are not chosen randomly, ensuring determinism.

Likewise, Pulse-InsecSL avoids having to perform relational encoding of
insecurity assertions b ::� low by soundly encoding them as follows. In particular:

sat b ::� low ⇐⇒ sat b and sat ¬b.

Thus satisfiability of insecurity assertions over boolean conditions b can be
checked via unary (non-relational) satisfiability checking.

With these two techniques, Pulse-InsecSL automates InsecSL reasoning
directly within the existing symbolic execution framework for ISL with minimal
modifications, inheriting Infer’s highly optimised implementation and scalabil-
ity. In this implementation, Pulse-InsecSL performs symbolic execution in
a bottom-up fashion: each function is analysed in isolation from all others to
produce summaries. Loops are unrolled up to a fixed bound, making symbolic
execution entirely deterministic.

7 Evaluation

We evaluate both Underflow and Pulse-InsecSL on the programs, listed
in Table 1. The auction sample is the synthetic auction case study from
Fig. 1. The samples ctselect, ctsort, haclpolicies, kremlib, libsodiumutils,
opensslutil, ssl3cbcrem, tls1lucky13, tls1patched are cryptographic library
code, drawn from benchmarks for the Binsec/Rel tool [7]. Samples ctselect,
ctsort and tls1lucky13 contain known vulnerabilities. Most are libraries of basic
helper routines, except for ssl3cbcrem, tls1lucky13 and tls1patched. The latter
two are the vulnerable and patched versions of the infamous “Lucky13” TLS

Compositional Vulnerability Detection with Insecurity Separation Logic 79

Table 1. Tool evaluation results. For each sample we record its size in (SLOC) and
the number of top-level functions analysed (# funs). The third column (sec?) indicates
whether the sample had no security vulnerabilities known a-priori. Analysis time of
Underflow for each sample is reported in seconds. Pulse-InsecSL analysed each
sample in less than one second. The unique top-level bugs reported we break down
into memory safety errors (# err, for Underflow) and information leaks (# insec, for
both). (†) indicates samples that were analysed in Pulse-InsecSL with a manually set
loop unrolling bound. (‡) indicates samples that were analysed in Underflow with
an increased symbolic execution pruning and SMT timeout of 600 s.

vulnerability [1]. The remaining samples are drawn from the Constant-Time
Toolkit (CTTK) (https://github.com/pornin/CTTK): cttkinner is a library of
basic helper functions, hex is purportedly constant-time routines for converting
to/from binary and hexadecimal strings; int31 is drawn from big integer library;
oram1 is a basic oblivious RAM (ORAM) library.

Accuracy and Bug Discovery. For the known vulnerable samples, Under-
flow and Pulse-InsecSL correctly detect the known vulnerabilities. Under-
flow additionally identifies an out-of-bounds array access in the big integer
library int31. This vulnerability we confirmed by fuzzing the affected code with
libFuzzer and AddressSanitizer enabled, and was subsequently confirmed by the
developer of the CTTK library. Underflow also identified an undocumented
information leak in the hex CTTK sample, which leaks the location of non-
hex characters in strings. Upon reporting this issue to the developer, we were
informed it was intended behaviour. This behaviour was also detected by Pulse-
InsecSL. Underflow identified two information leaks also in the int31 library
in routines for copying one big integer to another. In particular, if the destination
big integer is not initialised, then these routines can leak information about the

https://github.com/pornin/CTTK

80 T. Murray et al.

destination memory contents. Limitations in Pulse-InsecSL’s current imple-
mentation prevent it from running on int31 at the time of writing.

The information leak identified by Underflow in libsodiumutils is simi-
lar to that in hex and occurs in a routine for converting hex strings to binary,
leaking information if the hex string contains non-hex characters. Both tools cor-
rectly identify the “Lucky13” vulnerability in tls1lucky13. Underflow addi-
tionally identifies an out-of-bounds array access in this legacy (now patched)
code, heretofore undiagnosed. The two information leaks that Underflow iden-
tifies in the patched “Lucky13” code tls1patched are due to if-conditions that
branch on secrets but, which many compilers optimise away and hence why this
sample is considered to have no known vulnerabilities. Thus whether one regards
these reports as true or false positives depends on how the code is compiled.

In two samples, Pulse-InsecSL reports additional information leaks not
reported by Underflow (bold entries). These arise because Pulse-InsecSL
treats expressions like (a > b) - 1 as if they branch on the boolean condition a > b.
Indeed, gcc 13.1 will compile such code to a conditional jump when compiled at the
lowest optimisation level -O0 for x86-64, so we regard these reports as true posi-
tives; however we note that on all higher optimisation levels all modern C compilers
will compile such expressions to straight line code that doesn’t leak.

Performance. Pulse-InsecSL is orders of magnitude faster than Under-
flow, in general. In particular, while Underflow can take minutes to run on
some samples, Pulse-InsecSL takes no more than a second to analyse each
sample. This should be expected, for a number of reasons. Firstly, recall that
Underflow uses a timeout mechanism to prune paths during symbolic execu-
tion in which paths are pruned when symbolic execution of individual statements
becomes too slow. On the other hand Pulse-InsecSL uses a deterministic strat-
egy to prune paths, by choosing to unroll loops up to a fixed bound only (by
default, once). Thus programs with unbounded loops, like auction, take a long
time for Underflow to analyse because it keeps unrolling the main loop until
symbolic execution becomes sufficiently slow due to the growing size of the path
condition. This also means that Underflow may explore loops many more
times (and so uncover more behaviours) than Pulse-InsecSL in general, so the
amount of symbolic execution that the former performs on a given program is
often much greater than the second. To scale Underflow to the int31 sample
required increasing its default path pruning timeout. Thus we might expect that
scaling Underflow beyond samples of this size may be challenging. Pulse-
InsecSL on the other hand suffers no such scalability challenges.

Secondly, Underflow makes use of an external SMT solver in which all non-
spatial assertions are given a relational (i.e. two-execution) encoding to SMT,
with very little simplification before formulae are encoded to SMT. On the other
hand, Pulse-InsecSL is designed to avoid the need for relational assertion
encoding and in any case uses a highly performant in-built satisfiability checking
library while continually performing aggressive formula simplification. Pulse-
InsecSL benefits from many years of development effort and optimisation, while
having a much simpler problem to solve (unary symbolic execution). Under-

Compositional Vulnerability Detection with Insecurity Separation Logic 81

flow on the other hand has far fewer optimisations and has not been designed
for speed, while solving a much harder problem (relational symbolic execution).

We note that the analysis times of Pulse-InsecSL also dwarf the reported
analysis times of the relational symbolic executor Binsec/Rel [7] which, like
Underflow, takes minutes to analyse some samples (e.g. the “Lucky13” sample
for which it requires over an hour of execution time [7, Table III]).

8 Related Work and Conclusion

Our logic InsecSL is the relational analogue of ISL [17], in the same way that
Security Concurrent Separation Logic (SecCSL) [10] is the relational analogue
of traditional separation logic [15,18]. InsecSL can also be seen as the under-
approximate dual of SecCSL, in the same way that Incorrectness Logic [16] is
the under-approximate dual of Hoare logic. Despite InsecSL being relational,
our symbolic execution procedure is purposefully essentially identical to that
for ISL [12,17]. This allowed us to implement it as an extension of the existing
symbolic execution implementation for ISL in the Infer tool.

Our symbolic execution procedure is also somewhat similar to relational
symbolic execution [11] (RSE). However, RSE is not defined for programs with
nondeterminism (including from dynamic memory allocation or external input,
both of which we support). Indeed, RSE was proved sound with respect to over-
approximate Relational Hoare logic [4], whereas ours is based on our under-
approximate logic InsecSL. We conjecture that extending RSE to handle nonde-
terminism would be non-trivial, not least because over-approximate logics cannot
precisely describe errors in nondeterministic programs (as we noted in Sect. 1).
Unlike RSE, which is a whole-program analysis, our method is compositional,
allowing it also be applied incrementally.

The recently developed Outcome Logic [21] unifies underapproximative and
overapproximative reasoning within a uniform framework. It would be interesting
to instantiate this approach with our relational setting.

Declassification is the act of intentionally revealing sensitive information in
a controlled way. This aspect is orthogonal to the contribution of InsecSL and
could be incorporated with standard approaches [2].

We have presented InsecSL, a logic that soundly discovers insecurities in
program code. The logic strikes a particular balance: Despite being based on
a relational semantic foundation, it is fairly straight-forward to automate and
inherits many strengths of comparable approaches like ISL, foremost being com-
positional. We have demonstrated that it is capable of precise reasoning about
real insecurities (and errors) in C source code.

References

1. Al Fardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: IEEE Symposium on Security and Privacy, pp. 526–540. IEEE
(2013)

82 T. Murray et al.

2. Banerjee, A., Naumann, D.A., Rosenberg, S.: Expressive declassification policies
and modular static enforcement. In: IEEE Symposium on Security and Privacy,
pp. 339–353. IEEE (2008)

3. Barthe, G., et al.: Formal verification of a constant-time preserving C compiler.
PACMPL 4(POPL), 1–30 (2020)

4. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL, pp. 14–25 (2004)

5. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of Bi-abduction. In: POPL, pp. 289–300 (2009)

6. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

7. Daniel, L.A., Bardin, S., Rezk, T.: BINSEC/REL: efficient relational symbolic
execution for constant-time at binary-level. In: IEEE Symposium on Security and
Privacy, pp. 1021–1038. IEEE (2020)

8. De Vries, E., Koutavas, V.: Reverse Hoare logic. In: SEFM, pp. 155–171 (2011)
9. Eilers, M., Müller, P., Hitz, S.: Modular product programs. In: ESOP, pp. 502–529

(2018)
10. Ernst, G., Murray, T.: SecCSL: security concurrent separation logic. In: Dillig,

I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 208–230. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5_13

11. Farina, G.P., Chong, S., Gaboardi, M.: Relational symbolic execution. In: PPDP,
pp. 1–14 (2019)

12. Le, Q.L., Raad, A., Villard, J., Berdine, J., Dreyer, D., O’Hearn, P.W.: Finding
real bugs in big programs with incorrectness logic. PACMPL 6(OOPSLA1), 1–27
(2022)

13. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006). https://doi.org/10.1007/11734727_14

14. Murray, T., Yan, P., Ernst, G.: Compositional vulnerability detection with insecu-
rity separation logic(extended version) (2023). https://covern.org/insecurity.html

15. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 49–67. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8_4

16. O’Hearn, P.W.: Incorrectness logic. PACMPL 4(POPL), 1–32 (2019)
17. Raad, A., Berdine, J., Dang, H.-H., Dreyer, D., O’Hearn, P., Villard, J.: Local

reasoning about the presence of bugs: incorrectness separation logic. In: Lahiri,
S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 225–252. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-53291-8_14

18. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE (2002)

19. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

20. Yang, H.: Relational separation logic. Theoret. Comput. Sci. 375(1–3), 308–334
(2007)

21. Zilberstein, N., Dreyer, D., Silva, A.: Outcome logic: a unifying foundation for
correctness and incorrectness reasoning. PACMPL 7(OOPSLA1), 522–550 (2023)

https://doi.org/10.1007/978-3-030-25543-5_13
https://doi.org/10.1007/11734727_14
https://covern.org/insecurity.html
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-030-53291-8_14

Dynamic Extrapolation in Extended
Timed Automata

Nicolaj Ø. Jensen(B), Peter G. Jensen, and Kim G. Larsen

Department of Computer Science, Aalborg University, Selma Lagerløfs Vej 300,
9220 Aalborg, Denmark

{noje,pgj,kgl}@cs.aau.dk

Abstract. Abstractions, such as extrapolation, ensure the termination
of timed automata model checking. However, such methods are normally
only defined for classical timed automata, whereas modern tools like
Uppaal take as input timed automata extended with discrete data and
C-like language constructs (XTA) making classical extrapolation exces-
sively over-approximating if even applicable. In this paper, we propose a
new dynamic extrapolation technique for XTAs that utilizes information
from the immediate state of the search to find more precise extrapola-
tion values. We determine which code snippets are relevant to obtain the
extrapolation values ahead of verification using static analysis and then
execute these dynamically during verification. We implement our novel
extrapolation technique in Uppaal and find that it reduces the zone
graph sizes by 34.7% overall compared to a classic location-clock-based
extrapolation. The best case is an 82.7% reduction and the worst case is
a surprising 8.2% increase.

Keywords: Extended timed automata · Extrapolation · Program
analysis · Graphs

1 Introduction

Model checking and verification [2,9] are powerful tools to ensure the correct-
ness of systems with critical requirements. However, verification of real-time sys-
tems relies on abstractions due to the infinite state space of the models. Timed
automata, first introduced by R. Alur and D. Dill in [11], is one type of model
for time-real systems and it is popular due to the various tools which exist for it
today: Uppaal [10], TChecker [18], PAT [15], etc. In timed automata, a count-
able representation of the state space is achieved using regions, sets of which can
be represented as zones, and finiteness is typically achieved with extrapolation.
Proposed in [11], a simple form of extrapolation finds a value k such that once
the value of a clock x is greater than k, then the exact value of x no longer
matter, only that it is greater than k matters. This technique can be extended
by finding extrapolation values on a clock- and a location basis as seen in [3].

Funded by the VILLUM INVESTIGATOR project S4OS.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 83–99, 2023.
https://doi.org/10.1007/978-981-99-7584-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_6&domain=pdf
https://doi.org/10.1007/978-981-99-7584-6_6

84 N. Ø. Jensen et al.

However, some of the aforementioned tools use more expressive timed automata
known as extended timed automata (XTA), where edges are decorated with
C-like code and timing constraints can be expressions with integer variables.

Fig. 1. Extrapolation of clock x in location q0 depends on all reachable constraints on
x between q0 and resets of x. In XTAs, these constraints may be dynamic and involve
expressions.

Consider Fig. 1 showing a fragment of an XTA and paths from location q0 to
resets of clock x. We cannot use typical extrapolation directly since the timing
constraints are dynamic and depend on the integer variables a, b, c and the func-
tion foo. One solution is to estimate the maximal value of each integer variable
and thus each expression. In Uppaal, the maximal value of variables is com-
puted from type information, which defaults to a large value if not specified by
the user. This allows us to find a value k sufficient to achieve a finite verification.
However, the lower k is the fewer zones in the zone graph. So we propose a more
precise technique. During verification, the exact values of all variables are known
in the immediate state of the search. Hence, we can evaluate the expressions to
obtain exact extrapolation values. If a timing constraint is not local, we apply
the updates along the path to the timing constraint first and then evaluate the
expression. For instance, the extrapolation value for clock x in location q0 in
Fig. 1 is the greatest value among the results of evaluating b, evaluating a := 2
and then a, evaluating b := c · 2 + 2 and then a + b, and evaluating c ++ and
then foo(). While we are not able to find exact extrapolation values in general
due to updates in cycles, we can identify such cases ahead of verification using
static analysis. In fact, we can find all relevant updates and expressions ahead
of verification, avoiding the overhead of locating relevant constraints whenever
extrapolation is needed. When it is not feasible to find exact extrapolation val-
ues, we fall back to existing techniques.

Related Work. The efficient zone-based abstraction was introduced in [11].
Research has since been exploring ways to ensure the termination of the forward
analysis with coarser abstractions and extrapolation techniques. As mentioned,
natural extensions include per-clock and per-location extrapolation values [3].
The current implementation of Uppaal uses LU -extrapolation in the form of

Dynamic Extrapolation in Extended Timed Automata 85

the Extra+
LU operator [4] which differentiates upper- and lower bounds as well.

The limitations of extrapolation have been investigated in [6,7]. In [13] the a�LU

abstraction from [4] is shown to be the biggest abstraction based on LU bounds
that is sound and complete for reachability. Additionally, they show how to use
non-convex abstractions while working with zones by using the abstractions indi-
rectly. In [12] they use a similar idea for a new simulation relation in order to
tackle diagonal constraints, which was shown to be problematic in [6]. See [8]
for a survey by P. Bouyer et al. Parametric timed automata (PTA) allow for
unknown timing constants to parameterize the model at the cost of undecidabil-
ity. Recent work [1] investigates several definitions of extrapolation in PTA and
finds methods to enhance efficiency and the chance of termination. However, the
constant parameters in PTA are not comparable to the discrete variable data
in XTA, so the techniques do not transfer. All of the aforementioned work is
on timed automata without discrete variable data. The closest related work is
therefore in [16] where the authors approximate the ranges of integer variables
and thus expressions in XTAs using abstract interpretation. This removes the
reliance on users to define accurate ranges, but they are limited to linear expres-
sions. We refine their work by employing a more exact method that partially
runs at verification time.

Our Contributions. In this paper, we focus on XTAs from Uppaal [10]. We
define a clock- and location-based M -extrapolation for XTAs using an arbitrary
domain analysis. We then define the dynamic DynM -extrapolation which gives
more accurate extrapolation values in XTAs by taking advantage of the current
state. We show how the relevant paths used in DynM -extrapolation can be found
ahead of verification and discuss simple extensions which reduce the number of
paths, updates, and expressions that need to be evaluated during verification.
Finally, we show the effectiveness of our DynM -extrapolation by implementing
it in Uppaal and experimenting on XTA families with dynamic constraints.
We find that DynM reduces the zone graph by up to 82.7% compared to M -
extrapolation in non-artificial models while being almost on par with M in other
cases. Across all experiments, we explore 34.7% fewer zones and use 3.3% less
time when using our DynM -extrapolation.

Outline. The outline of the paper is as follows. In Sect. 2, we recall the defi-
nition of XTAs and their semantics. We also define the zone abstraction and
M -extrapolation on XTAs. In Sect. 3, we present our dynamic extrapolation
technique and show how it can be broken down to finding acyclic paths in the
XTA and then evaluating those paths to find more accurate extrapolation values.
We briefly describe extensions to the technique as well. Experiments and results
are presented in Sect. 4, and finally, in Sect. 5, we conclude on our findings.

2 Preliminary

Let us recall the definition of extended timed automata and its semantics.

86 N. Ø. Jensen et al.

2.1 Extended Timed Automata

Clocks and Valuations. Let X be a set of clock variables. A clock valuation is a
function ν : X → R≥0 assigning each clock to a non-negative real number. The
set V(X) contains all clocks valuations over X. We use ν0 to denote the clock
valuation such that ν0(x) = 0 for all x ∈ X. We write ν + d with d ∈ R≥0 for
a clock valuation such that (ν + d)(x) = ν(x) + d for all clocks x ∈ X. Lastly,
given a set r ⊆ X of clocks to reset, we define ν[r] such that ν[r](x) = 0 if x ∈ r,
and ν[r](x) = ν(x) otherwise.

Discrete Data States, Updates, and Expressions. A discrete data state (or sim-
ply a data state) is denoted using σ, and Σ is the set of all data states. An
update is a function u : Σ → Σ which transforms data states to data states
and U is the set of all updates. We use e, b : Σ → Z to denote expressions
which evaluates to an integer given a data state. Expressions denoted b repre-
sent boolean expressions for which evaluation to 0 (false) is of interest. Let E be
the set of all expressions. The definition of the discrete data states, updates, and
expressions are simplifications of the formalism in Uppaal. Yet, the definitions
provided are sufficient to underpin our method. Our implementation fully sup-
ports the imperative language of Uppaal, including its arrays, functions, and
record types.

Constraints. The set G(X) contains clock constraints generated from the gram-
mar g ::= 1 | g1 ∧ g2 | x �� e where x ∈ X, �� ∈ {<,≤,=,≥, >}, and e ∈ E. If
g ∈ G(X), we write (x �� e) ∈ g when x �� e is one of the terms of the conjunction
g. Given a data state σ, we write g(σ) to denote a conjunction similar to g, but
where all right-hand sides of the constituent constraints have been evaluated,
i.e. each (x �� e) ∈ g has been replaced by x �� e(σ). The satisfaction relation
� is defined naturally for clock valuations and evaluated clock constraints, i.e.
ν � g(σ) iff ∀(x �� c) ∈ g(σ) we have ν(x) �� c.

Definition 1 (Extended Timed Automata (XTA)). An extended timed
automaton A is a 6-tuple (Q, q0, σ0, T,X, I) where

– Q is a finite set of locations,
– q0 ∈ Q is the initial location,
– σ0 is the initial discrete data state,
– T ⊆ Q × [G(X) × E × U × P(X)] × Q is a set of edges between locations such

that if (q, g, b, u, r, q′) ∈ T then q and q′ are respectively source and target
locations, g is a clock constraint (also called guard), b is a data condition, u
is an update, and r is a subset of clocks to be reset,

– X is a non-empty set of clocks, and
– I : Q → G(X) assigns clock invariants to locations.

Given any XTA A, we assume that all data states produced by updates in A
fall within a finite domain which we call ΣA with σ0 ∈ ΣA too. However, we
also assume ΣA to be impractical to iterate. It follows that each expression e
evaluates to value within a finite domain DA(e). We assume that DA(e) can be
estimated, either from type information or as done in [16].

Dynamic Extrapolation in Extended Timed Automata 87

Definition 2 (Extended Timed Automata Semantics). The semantics of
an XTA A = (Q, q0, σ0, T,X, I) is given by a transitions system SA = (S, s0,→),
where S = Q × ΣA × V(X) is the set of configurations, s0 = (q0, σ0, ν0) is the
initial configuration, and → ⊆ S × S is the transition relation given by:

∀0 ≤ d′ ≤ d : ν + d′ � I(q)(σ)

(q, σ, ν) → (q, σ, ν + d)
where d ∈ R≥0, and (1)

ν � g(σ) b(σ) �= 0 ν[r] � I(q′)(u(σ))

(q, σ, ν) → (q′, u(σ), ν[r])
where (q, g, b, u, r, q′) ∈ T. (2)

In order to verify interesting behavioral properties of an XTA, we must first
define zones and symbolic semantics.

2.2 Symbolic Semantics

Future and Reset. Given a set of clocks X, let W ∈ P(V(X)) be a set of clock
valuations. We define W↗ = {ν +d | ν ∈ W,d ∈ R≥0} as the future of W . Given
a set r ⊆ X of clocks to reset, we define W [r] = {ν[r] | ν ∈ W} as the reset of r
in W .

Zones. Given a set of clocks X, the set of zones Z(X) is generated from the
grammar Z ::= 1 | Z1 ∧ Z2 | x �� c | x − y �� c, where x, y ∈ X, c ∈ N, and
�� ∈ {<,≤,=,≥, >}. Given a data state σ, notice that for all g ∈ G(X) we have
g(σ) ∈ Z(X), and thus g(σ) can be considered a zone. The future, reset, and
intersection operations all transform zones into other zones.

Difference Bound Matrices. A zone can be represented using a difference bound
matrix (DBM) and has been the default representation for zones since [11]. We
will briefly describe DBMs and point to [5] and [7] for more details. A DBM is
a square matrix D = (ci,j ;≺i,j)0≤i,j≤n such that ci,j ∈ N and ≺i,j ∈ {<,≤}
or ci,j = ∞ and ≺i,j = <. A DBM D defines a zone �D� which is defined by
�D� = {ν | ∀0 ≤ i, j ≤ n : ν(xi) − ν(xj) ≺i,j ci,j} where {x1, . . . , xn} is a set
of clocks, and x0 is a special clock always with the value 0, i.e. ∀ν : ν(x0) = 0.
A DBM is not a canonical representation of zones, but a normal form can be
found by considering it an adjacency matrix of a weighted directed graph and
computing the shortest paths closure. DBMs are a useful representation of zones
since all operations presented above can be computed efficiently.
Definition 3 (Symbolic Semantics of Extended Timed Automata). The
symbolic semantics of an XTA A = (Q, q0, σ0, T,X, I) is given by a transitions
system S�

A = (S, s0,⇒), where S = Q × ΣA × Z(X) is the set of configurations,
s0 = (q0, σ0, {ν0}) is the initial configuration, and ⇒ ⊆ S × S is the transition
relation given by:

Z′ = (Z↗ ∩ I(q)(σ)) Z′ �= ∅
(q, σ, Z) ⇒ (q, σ, Z′)

, and (3)

b(σ) �= 0 Z′ = (Z ∩ g(σ))[r] ∩ I(q′)(u(σ)) Z′ �= ∅
(q, σ, Z) ⇒ (q′, u(σ), Z′)

where (q, g, b, u, r, q′) ∈ T. (4)

88 N. Ø. Jensen et al.

The zone abstraction does not guarantee a finite state graph. There may be an
infinite number of reachable zones. As suggested in [3], we apply an abstraction
a : P(V(X)) → P(V(X)) such that W ⊆ a(W) and a(W) = a(a(W)). The
abstract transition system ⇒a is then given by the induction rule:

(q, σ,W) ⇒ (q′, σ′,W ′)
(q, σ,W) ⇒a (q′, σ′, a(W ′))

where W = a(W). (5)

A simple way to ensure that the reachability graph induced by ⇒a is finite is
to establish that there is only a finite number of abstractions of sets of valuations.
That is, the image of a is finite. In this case, a is said to be a finite abstraction.
Moreover, ⇒a is said to be sound and complete whenever:

Sound: (q0, σ0, {ν0}) ⇒∗
a (q, σ, W) implies ∃ν ∈ W : (q0, σ0, ν0) →∗ (q, σ, ν)

Complete: (q0, σ0, ν0) →∗ (q, σ, ν) implies ∃W : ν ∈ W ∧ (q0, σ0, {ν0}) ⇒∗
a (q, σ, W)

Completeness follows from the definition of abstraction. Given two abstrac-
tions a and b such that for any set of clock valuations W we have a(W) ⊆ b(W),
then we prefer abstraction b because the graph induced by b is smaller than the
one induced by a.

2.3 M-Extrapolation in XTA

In extended timed automata without discrete data, finiteness is achieved with
extrapolation based on the constants appearing in the constraints. Modern
extrapolation techniques find different extrapolation values per clock and per
location for coarser abstractions. Unfortunately, these techniques cannot be used
as-is in XTAs, since bounds are expressions instead of constant values. What
follows is the location-clock-based M -extrapolation from [3] extended to XTAs
based on expression domains.

In XTA A, M is given by:

M(q, x) = max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max DA(e1) where (x �� e1) ∈ I(q),

max DA(e2) where (q, g, b, u, r, q′) ∈ T
and (x �� e2) ∈ g,

M(q′, x) where (q, g, b, u, r, q′) ∈ T
and x /∈ r

(6)

By convention max ∅ = −∞. The values of M can be found using fixed-point
iteration.

Definition 4 M-equivalence ≡M [3]). Given an XTA A with transition sys-
tem SA = (S, s0,→), then ≡M ⊆ S × S is a relation such that (q, σ, ν) ≡M

(q, σ, ν′) iff for all clocks x either

– ν(x) = ν′(x), or

Dynamic Extrapolation in Extended Timed Automata 89

– ν(x) > M(q, x) and ν′(x) > M(q, x).

Lemma 1. The relation ≡M is a bisimulation relation [3] and therefore pre-
serves reachability, liveness, and deadlock properties.

Definition 5 (a≡M ,q,σ, abstraction w.r.t. ≡M [3]). Let W be a set of valu-
ations. Then the abstraction w.r.t. ≡M is defined as a≡M ,q,σ(W) = {ν | ∃ν′ ∈
W : (q, σ, ν) ≡M (q, σ, ν′)}.
Lemma 2. [3] The abstraction a≡M ,q,σ is sound and complete.

As M -extrapolation uses max DA, it is clear that M(q, x) is an over-
approximation and not necessarily the tightest bound value relevant for a given
clock x in a given location q. It does not take advantage of the data state σ,
which is also part of the configuration. In the following section, we will define
dynamic extrapolation, which uses the given data state σ to evaluate expressions
on-the-fly for tighter bound values.

Remark 1. The widely used LU -extrapolation technique of [4] can be extended
to XTAs in a similar manner as shown above.

3 Dynamic Extrapolation

Fix an XTA A for this section. Dynamic extrapolation is given by a function
DynM : Q×ΣA×X → N which takes the discrete data state σ into consideration
when determining the extrapolation values of a configuration (q, σ, ν).

Let us first give a recursive definition of DynM :

DynM (q, σ, x) = max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e1(σ) where (x �� e1) ∈ I(q),

e2(σ) where (q, g, b, u, r, q′) ∈ T
and (x �� e2) ∈ g,

DynM (q′, u(σ), x) where (q, g, b, u, r, q′) ∈ T
and x /∈ r and b(σ) �= 0

(7)

However, unlike for M , it is infeasible to find a fixed-point solution for DynM
since, by assumption, it is impractical to iterate all data states ΣA. Addition-
ally, some expressions may be expensive to evaluate. We need to deal with the
recursiveness in another way.

The definition is recursive whenever there are cycles in the XTA. Trying to
determine if cycles can only be repeated a finite number of times is generally
undecidable [19]. By assumption of finite domains, it is not undecidable in our
case, but practically infeasible. Consider the example XTA in Fig. 2a. We can
easily compute DynM (q2, σ, x) and DynM (q3, σ, x) for any data state σ, but
to compute DynM (q0, σ, x) and DynM (q1, σ, x) we may have to iterate a huge
number of data states due to the cycle consisting of edges t1 and t2. This is
the only cycle that is not broken up by a reset of x. We overcome this issue

90 N. Ø. Jensen et al.

Fig. 2. (a) Example XTA where cycles make DynM troublesome to compute. The x is
a clock, a, b, c are integer variables comprising the data state, foo and bar are arbitrary
functions. (b) The PathsM found by Algorithms 1 and 2.

by detecting the problematic cycles and which location-clock pairs (q, x) depend
on these cycles. For these cases, we fall back to M -extrapolation. In the same
algorithm, we also precompute all paths to constraints relevant for each location-
clock pair (q, x), such that they do not have to be found anew each time we want
to compute our extrapolation values. Let us introduce some terminology.

A path w = t1 . . . tn = (q1, g1, b1, u1, r1, q
′
1) . . . (qn, gn, bn, un, rn, q′

n) is a
sequence of edges from T , such that for all 1 ≤ i ≤ n − 1 : q′

i = qi+1. We
say that the path starts in q1 and ends in q′

n. A path is cyclic if there are j, k
with j < k such that qj = q′

k. A path resets clock x if there exists a j such
that x ∈ rj . We say that x �� e is a local constraint of q if (x �� e) ∈ I(q) or
(q, g, b, u, r, q′) ∈ T such that (x �� e) ∈ g.

Our problem at hand can now be expressed succinctly. Given a location-
clock pair (q, x), we want to find all path-expression pairs (w, e) such that w is
a path starting in q that does not reset x, and x �� e is a local constraint at the
end of w. Note that w can be empty, in which case the end of w refers to q. For
short, we call these relevant paths of (q, x). If any relevant path is cyclic, then we
simply need to know that instead, such that we can fall back to M -extrapolation.
We find all relevant paths for each location-clock pair using a depth-first search
(DFS) and coloring. By coloring location-clock pairs as they are visited, the DFS
is able to detect cycles. There are four colors with the following meanings:

– White: The location-clock pair is unexplored
– Gray: The location-clock pair is being processed
– Black: All relevant paths have been found for this location-clock pair
– Red: One or more relevant paths starting in this location-clock pair are cyclic

Dynamic Extrapolation in Extended Timed Automata 91

Algorithm 1: ComputePaths
Input : An XTA (Q, q0, σ0, T,X, I)
Output: A mapping PathsM : Q × X → P(T ∗ × E) ∪ {⊥}

1 Let PathsM be a new map, mapping all location-clock pairs to ∅;
2 foreach x ∈ X do
3 Mark all locations as white;
4 foreach q ∈ Q do
5 if q is white then
6 Run ComputePathsRecursive(PathsM , q, x)

7 return PathsM

Algorithm 2: ComputePathsRecursive
Input : A mapping PathsM : Q × X → P(T ∗ × E) ∪ {⊥}, a location q, a

clock x
Output: Modifications to PathsM

1 Mark q as gray;
2 LC := {e | (x �� e) ∈ g, (q, g, b, u, r, q′) ∈ T} ∪ {e | (x �� e) ∈ I(q)};
3 foreach e ∈ LC do
4 PathsM (q, x) := PathsM (q, x) ∪ {(ε, e)}
5 foreach t = (q, g, b, u, r, q′) ∈ T do
6 if x ∈ r then
7 Continue

8 if q′ is white then
9 Run ComputePathsRecursive(PathsM , q′, x);

10 // q′ is now black or red

11 if q′ is red or gray then
12 // We found a cycle
13 PathsM (q, x) := ⊥;
14 Mark q as red;
15 return

16 if q′ is black then
17 PathsM (q, x) := PathsM (q, x) ∪ {(tw, e) | (w, e) ∈ PathsM (q′, x)};

18 Mark q as black;
19 return

The algorithm constructs a mapping PathsM : Q × X → P(T ∗ × E) ∪ {⊥}
that assigns each location-clock pair to a finite set of relevant path-expression
pairs or ⊥ if the location-clock pair has a cyclic relevant path. The algorithm
for finding PathsM is shown in Algorithms 1 and 2. Fig. 2b shows the resulting
PathsM when the algorithm is run on the XTA in Fig. 2a.

Lemma 3. Let PathsM be the result of Algorithms 1 and 2. If PathsM (q, x) �=
⊥ then PathsM (q, x) contains all relevant paths (w, e) such that w is acyclic,

92 N. Ø. Jensen et al.

does not reset x, starts in q, and ends in q′ such that x �� e is a local constraint
to q′.

Lemma 3 is easily proven by showing that the loop invariants induced by the
definition of the colors hold at the exit of Algorithm 2, and therefore we do not
include the proof in this version of the paper.

We can now define PDynM which approximates DynM by using PathsM
and auxiliary function eval:

PDynM (q, σ, x) =

⎧
⎨

⎩

M(q, x) if PathsM (q, x) = ⊥,

max
(w,e)∈PathsM (q,x)

eval(w, e, σ) otherwise
(8)

eval(tw, e, σ) =

{
eval(w, e, u(σ)) if t = (q, g, b, u, r, q′) ∧ b(σ) �= 0,

−∞ otherwise
(9)

eval(ε, e, σ) = e(σ) (10)

This definition is well-defined and feasibly computable by using M(q, x) as a
fallback whenever PathsM (q, x) = ⊥, i.e. in locations with cyclic paths to rele-
vant constraints. In locations without cycles, PDynM is equivalent to the ideal
DynM . We shall now argue, that PDynM is a valid abstraction. Specifically:

Definition 6 (PDynM-equivalence ≡PDynM). Given an XTA A with tran-
sition system SA = (S, s0,→), then ≡PDynM ⊆ S × S is a relation such that
(q, σ, ν) ≡PDynM (q, σ, ν′) iff for each clocks x either

– ν(x) = ν′(x), or
– ν(x) > PDynM (q, σ, x) and ν′(x) > PDynM (q, σ, x).

Lemma 4. The relation ≡PDynM is a bisimulation relation and therefore pre-
serves reachability, liveness, and deadlock properties.

Proof. From Lemma 3 and the definition of PDynM , it is clear PDynM (q, σ, x)
is either equal to M(q, x) or is the greatest value obtained from evaluating the
updates and data conditions along a relevant path of (q, x) and then a final bound
expression, local to the end of the path. Hence, by Lemma 3, PDynM (q, σ, x)
must be equal to or greater than the greatest value which x is ever compared
to before getting reset in any path starting from q. This implies that ν and ν′

satisfy the same clock constraints and it follows that ≡PDynM a bisimulation
relation. ��
Definition 7 (a≡PDynM

, abstraction w.r.t. ≡PDynM). Let W be a set of valu-
ations. Then the abstraction w.r.t ≡PDynM is defined as a≡PDynM ,q,σ(W) = {ν |
∃ν′ ∈ W : (q, σ, ν) ≡PDynM (q, σ, ν′)}.
Lemma 5. The abstraction a≡PDynM ,q,σ is sound and complete, and it is coarser
than a≡M,q,σ

Proof. Completeness is obvious. Soundness follows from Lemma 4. The increased
coarseness follows from the definitions, where we have that PDynM (q, σ, x) ≤
M(q, x) for any location q and clock x. ��

Dynamic Extrapolation in Extended Timed Automata 93

The abstraction a≡PDynM ,q,σ does not preserve convexity of valuation sets.
Even if Z is a convex zone, a≡PDynM ,q,σ(Z) is not always convex, which means
it cannot be represented with a DBM. We shall therefore define a location-
and data-dependent extrapolator called Extra+

PDynM ,q,σ which is an operator
defined on DBMs and approximates a≡PDynM ,q,σ. The naming and the definition
are intentionally similar to that of Extra+

M in [4] since the only difference is that
our extrapolation values come from PDynM instead of M . If D is a DBM in
normal form given by (ci,j ;≺i,j)0≤i,j≤n, then Extra+

PDynM ,q,σ(D) is defined as:

(c′
i,j ;≺′

i,j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(∞;<) if ci,j > PDynM (q, σ, xi)
(∞;<) if − c0,i > PDynM (q, σ, xi)
(∞;<) if − c0,j > PDynM (q, σ, xj), i �= 0
(−PDynM (q, σ, xj);<) if − ci,j > PDynM (q, σ, xj), i = 0
(ci,j ;≺i,j) otherwise

(11)

Note that Extra+
PDynM ,q,σ(D) is not necessarily in normal form. From the

extrapolator Extra+
PDynM ,q,σ follows the abstraction aExtra+

PDynM ,q,σ

Theorem 1. The abstraction aExtra+
PDynM ,q,σ

is sound, complete, and preserves
zone convexity.

Proof. The extrapolator Extra+
PDynM ,q,σ transforms zones into larger zones,

which implies completeness and zone convexity. Finiteness follows from the fact
that all the DBM coefficients fall within a finite number of values. Soundness is
not obvious, and we point to [4] where a similar abstraction is proven sound. ��

3.1 Reducing Relevant Paths

Let us briefly describe ways to reduce the number of relevant paths.

Strongly Connected Components. So far, we have deemed all cycles as problem-
atic based on the fact that their updates can be repeated indefinitely resulting
in an infeasible number of possible data states to evaluate our constraint expres-
sion in. However, this issue does not apply to cycles where all updates are iden-
tity updates, i.e. updates uid such that uid(σ) = σ for all σ ∈ ΣA. Repeating
uid indefinitely makes no difference. Hence, we can reduce the number of cases
where PathsM (q, x) = ⊥ by essentially computing strongly connected compo-
nents (SCCs) in the XTA. The internal edges of SCCs must have empty data
conditions and identity updates, and cannot reset x. The latter condition implies
that we must compute an SCC graph for each clock x ∈ X, but since SCCs can
be constructed in linear time using Tarjan’s algorithm, this is not a concern.
Using the SCC graphs, we can compute PathsM SCC which assigns ⊥ to fewer
cases than PathsM . Remark that cycles of identity updates are often modeling
mistakes and the models used in the experiments in Sect. 4 do not contain any
such cycles.

94 N. Ø. Jensen et al.

Redundant Paths Using Expression Domains. Let (P(Z),�) be a partial order
such that if A,B ⊆ Z then A � B iff ∀a ∈ A.∀b ∈ B : a ≤ b. We can use this
to determine which bound programs will never be the greatest relevant bound
expression. If a bound expression is never the greatest relevant bound, then we
can discard the path leading to it, reducing the number of paths that needs to
be evaluated. The function PathsM � below is a subset of PathsM without these
redundant paths:

PathsM �(q, x) =
{

⊥ if PathsM (q, x) = ⊥
{(w, e) ∈ PathsM (q, x) | ¬∃(w′, e′) ∈ PathsM (q, x) : DA(e) � DA(e′)} otherwise

(12)

The more precise (i.e. smaller) the domains of DA are, the better this
improvement is.

3.2 Dynamic LU -Extrapolation

We can easily extend the dynamic extrapolation in a similar manner as proposed
in [4] and achieve a lower- and upper-bound aware extrapolation. We simply
distinguish between bounds using � ∈ {>,≥,=} and � ∈ {<,≤,=} in line 2
of ComputePathsRecursive in Algorithm 2 in order to compute separate PathsL
and PathsU , which are mappings to paths respectively leading to lower- and
upper-bound expressions. This allows us to create an abstraction a�PDynLU ,q,σ

based on the simulation relation �PDynLU ,q,σ, which is correct for reachability,
but not for deadlock and liveness properties. While orthogonal techniques, the
resulting PDynLU -extrapolation is only slightly coarser than LU -extrapolation
in practice, which is why we have not defined PDynLU in detail.

3.3 A Note on Timed Automata Networks

In tools for modeling timed systems using timed automata, e.g. Uppaal [10],
it is common to have timed automata networks consisting of multiple timed
automata components. The dynamic extrapolation technique presented in this
paper extends to this formalism with some caveats. PathsM and PDynM can be
found and evaluated on a component-wise basis such that for a clock x the great-
est bound across all components is used, similar to M -extrapolation in [3]. This
is correct for shared clocks too. Remark, however, that dynamic extrapolation
cannot be done component-wise in networks with expressions relying on a glob-
ally shared data state. In networks, a relevant path of one component may be
interleaved with transitions in other components. If the other components can
change the globally shared state, then our assumption that the relevant path
contains all updates leading up to the evaluation of the guard breaks down. If
we instead attempt to find relevant paths in the composed network as opposed
to the component-wise approach, the number of relevant paths increases expo-
nentially, resulting in exponentially more work during verification whenever we
extrapolate.

Dynamic Extrapolation in Extended Timed Automata 95

4 Experiments and Results

In order to test the contributions of this paper, we have implemented a proto-
type of our dynamic extrapolation technique in Uppaal [10]. We use the SCC
improvement and discard redundant paths as discussed in Sect. 3.1 and compute
PathsM�

SCC once prior to verification. During verification, the paths are used to
find the extrapolation values for each clock whenever a configuration is explored.
We will refer to our implementation simply as DynM in this section.

In the experiments, various models are used. Some of the models have
dynamic constraints using expressions, others have not. Our experiments show
that our dynamic extrapolation never reduces the size of the zone graph com-
pared to its non-dynamic counterpart M unless there is at least one dynamic
constraint or unless data conditions can exclude bound expressions. We shall
therefore delimit our results to all models in our repository with dynamic con-
straints such that dynamic extrapolation may take effect. These models include:1

– Simple (Simple-I): The artificial example from [16] designed to showcase the
issues of relying purely on type information for extrapolation in XTA.

– TCP back-off protocol (TCP-V -N): In this model, N clients estimate a
congestion window based on how often their messages to the server are
lost/denied. They limit their rate of messaging inversely proportional to the
size of the congestion window. Our experiments include both an additive-
increase/multiplicative-decrease (AIMD) back-off protocol and a linear back-
off protocol.

– Gossip Protocol (Gossip-V -N): In this classical model of information sharing,
N components each have a secret. They can call each other and exchange their
secrets. We use two variants of this model. In one variant, the duration of the
call between two components is the union of their known secrets. In the other,
the duration is the size of the symmetric difference of their known secrets plus
one.

– Firefly synchronization (Firefly-W -H-N): In this model, N fireflies live on an
W by H grid. A firefly blinks every 60 − t seconds, where t is the number of
times it has seen another firefly in the same cell blink at least 30 s after its own
latest blink. Over time this results in the fireflies blinking in synchronization.

– Leader election (Leader-N): In this model, N network nodes attempt to elect
a leader by communicating with each other. The timeout deadline is dynam-
ically calculated based on the number of hops a message do.

– Printing projects (Printing-M -P): In this model, P projects require a varying
number of pieces printed. Each piece has a different size and will therefore
take a different amount of time to print. There are M printers available.

.
All integer variables in the models use the default integer range from −32768

to 32767. There is no globally shared state. Each model is run in Uppaal using

1 The test models and results can be found at https://github.com/NicEastvillage/
DynamicExtrapolationDataArtifact.

https://github.com/NicEastvillage/DynamicExtrapolationDataArtifact
https://github.com/NicEastvillage/DynamicExtrapolationDataArtifact

96 N. Ø. Jensen et al.

Table 1. Number of zones in the zone graph and time spent exploring the zone graph
when using M - and DynM -extrapolation in various models with dynamic constraints.
The better results are highlighted in bold. A dash ‘-’ indicates that the experiment did
not finish within the allocated 4 h. Time is in milliseconds.

M DynM DynM /M%

Model Zones Time Zones Time Zones Time

Simple-7 32,772 14,589 4 0 0.01% 0.00%

Simple-100 32,772 14,440 4 0 0.01% 0.00%

Simple-1000 32,772 14,675 4 1 0.01% 0.01%

Firefly-1-1-10 6,501 176 6,501 255 100.00% 144.89%

Firefly-1-1-15 49,233 179,011 49,233 180,645 100.00% 100.91%

Firefly-1-1-20 – – – – – –

Firefly-2-1-4 167,359 25,987 167,359 27,345 100.00% 105.23%

Firefly-2-1-5 – – – – – –

Gossip-symdiff-3 135 3 135 8 100.00% 266.67%

Gossip-symdiff-4 13,792 538 6,972 356 50.55% 66.17%

Gossip-symdiff-5 4,699,522 986,726 919,243 144,123 19.56% 14.61%

Gossip-symdiff-6 – – – – – –

Gossip-union-3 138 3 138 3 100.00% 100.00%

Gossip-union-4 16,536 99 17,640 133 106.68% 134.34%

Gossip-union-5 3,016,463 25,906 3,264,863 35,047 108.23% 135.29%

Gossip-union-6 – – – – – –

Leader-2 40 0 40 0 100.00% -

Leader-3 127,537 1,070 127,537 1,271 100.00% 118.79%

Leader-4 – – – – – –

Printing-2-5 7,037 105 7,257 145 103.13% 138.10%

Printing-2-6 121,135 3,064 125,525 4,484 103.62% 146.34%

Printing-2-7 1,546,909 78,747 1,601,757 108,729 103.55% 138.07%

Printing-2-8 49,755,991 7,914,155 51,128,387 9,448,237 102.76% 119.38%

Printing-2-9 – – – – – –

TCP-aimd-2 66,261 385 28,736 218 43.37% 56.62%

TCP-aimd-3 37,528,973 807,340 6,486,638 87,975 17.28% 10.90%

TCP-aimd-4 – – – – – –

TCP-linear-2 75,045 307 62,358 389 83.09% 126.71%

TCP-linear-3 46,989,547 813,729 30,274,603 479,942 64.43% 58.98%

TCP-linear-4 – – – – – –

SUM 144,286,460 10,881,055 94,274,934 10,519,305

% of M 100% 100% 65.34% 96.68%

M - and DynM -extrapolation with a time limit of 4 h, and we measure the size
of the zone graph and the time spent exploring it for each model. Many prop-
erties of these models can be verified without visiting the entire zone graph,

Dynamic Extrapolation in Extended Timed Automata 97

Fig. 3. Cactus plot of the number of zones in the zone graph as a ratio w.r.t. M -
extrapolation

but these metrics can describe the relative coarseness and overhead of the two
extrapolation techniques and give insight into their performance in a worst-case
scenario. Our results can be seen in Table 1. We find that DynM - outperforms
M -extrapolation in some families of models while being almost on par with M in
others. Whenever there are improvements, those improvements are exponentially
better as the parameters of the models are increased. Especially the constructed
Simple-I model shows the potential of DynM -extrapolation. The abstract inter-
pretation technique in [16] results in a number of zones proportional to the
parameter I, while we always have 4 zones regardless of I. However, we also
observe a time overhead of up to 46.3% in the worst case. The time overhead
is not surprising given that DynM is evaluating additional expressions during
verification compared to M . There are two anomalies in our results. Specifically,
we have that M -extrapolation produces fewer zones in the printing-project mod-
els and in the gossip-protocol models using union despite our Lemma 5 stating
that DynM is a coarser abstraction. Having confirmed that DynM finds equal
or smaller extrapolation values for these models, we hypothesize these anomalies
occur due to how Uppaal merges zones, and this merging happens to benefit
the experiments using M in these models.

Summed across all models, DynM -extrapolation results in 65.3% zones and
96.7% time spent compared to M -extrapolation, a reduction of 34.6% and 3.3%,
respectively. Despite anomalies and occasional increased time overhead, the
DynM -extrapolation provides great memory savings in the general case, at least
on the given benchmark set. Since memory is usually a more limited resource,
this is a satisfactory outcome.

Finally, Fig. 3 is a plot of the ratios of the zone graph sizes w.r.t. M -
extrapolation, where the test instances have been sorted along the x-axis based
on their ratio. The graph clearly shows that DynM -extrapolation notably out-
performs on a subset of the models, while also maintaining comparable perfor-
mance on other test models. When using DynM -extrapolation, the number of
zones in the zone graph of TCP-aimd-3 is 17.3% of what it is when using M -
extrapolation, which is the greatest reduction among our experiments, if we do

98 N. Ø. Jensen et al.

not consider the artificially constructed Simple model, where the reduction is
close to 100%.

5 Conclusion

In this paper, we refine extrapolation techniques for extended timed automata
(XTA), which is the input used in practice in tools like Uppaal. Our technique
takes advantage of the immediate state of the search to evaluate more exact
extrapolation values during verification. Our experiments show that our dynamic
DynM -extrapolation is a better abstraction for some families of XTA while being
almost on par with its non-dynamic counterpart in other cases. Our summed
reduction in the sizes of zone graphs is 34.7%. The best reduction of a zone
graph is by 82.7% and our worst case is an increase of 8.2%. Our technique has
a high time overhead, up to 46.3% slower in the worst case, but the overall time
spent is reduced by 3.3%.

Future Work. Since the paths of PathsM are essentially programs, possible
optimizations include dead-code elimination and constant propagation [14,17].
We also want to use a live variable analysis to further reduce the number of cases
where PathsM (q, x) = ⊥.

References

1. Arcile, J., André, É.: Zone extrapolations in parametric timed automata. In: Desh-
mukh, J.V., Havelund, K., Perez, I. (eds.) NASA Formal Methods. NFM 2022.
LNCS, vol. 13260, pp. 451–469. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-06773-0 24

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

3. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed
automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 254–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 18

4. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems, pp. 312–326.
Springer, Berlin (2004). https://doi.org/10.1007/s10009-005-0190-0

5. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

6. Bouyer, P.: Untameable timed automata! In: Alt, H., Habib, M. (eds.) STACS
2003. LNCS, vol. 2607, pp. 620–631. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36494-3 54

7. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods Syst.
Des. 24, 281–320 (2004). https://doi.org/10.1023/B:FORM.0000026093.21513.31

https://doi.org/10.1007/978-3-031-06773-0_24
https://doi.org/10.1007/978-3-031-06773-0_24
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1023/B:FORM.0000026093.21513.31

Dynamic Extrapolation in Extended Timed Automata 99

8. Bouyer, P., Gastin, P., Herbreteau, F., Sankur, O., Srivathsan, B.: Zone-based
verification of timed automata: extrapolations, simulations and what next?. In:
Bogomolov, S., Parker, D. (eds.) Formal Modeling and Analysis of Timed Systems.
FORMATS 2022. LNCS, vol. 13465, pp. 16–42 (2022). Springer, Cham. https://
doi.org/10.1007/978-3-031-15839-1 2

9. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., et al.: Handbook of model
checking, vol. 10. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
10575-8

10. David, A., et al.: Uppaal 4.0. In: Third International Conference on the Quantita-
tive Evaluation of SysTems (QEST) 2006, pp. 125–126. IEEE Computer Society
Press, United States (2006). https://doi.org/10.1109/QEST.2006.59

11. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems. pp.
197–212. Springer, Berlin (1990). https://doi.org/10.1007/3-540-52148-8 17

12. Gastin, P., Mukherjee, S., Srivathsan, B.: Fast algorithms for handling diagonal
constraints in timed automata. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Ver-
ification. pp. 41–59. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 3

13. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed
automata. Inf. Comput. 251, 67–90 (2016). https://doi.org/10.1016/j.ic.2016.07.
004

14. Janowska, A., Janowski, P.: Slicing of timed automata with discrete data. Fundam.
Informaticae 72, 181–195 (2006)

15. Liu, Y., Sun, J., Dong, J.S.: Developing model checkers using PAT. In: Bouajjani,
A., Chin, W.N. (eds.) Automated Technology for Verification and Analysis, pp.
371–377. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-15643-4 30

16. Lund, S., van Diepen, J., Larsen, K.G., Muñiz, M., Jørgensen, T.R., Andersen,
T.S.D.: An integer static analysis for better extrapolation in Uppaal. In: Dima, C.,
Shirmohammadi, M. (eds.) Formal Modeling and Analysis of Timed Systems. pp.
84–99. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85037-1 6

17. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Publishing Company, Incorporated (2010). https://doi.org/10.1007/978-3-662-
03811-6

18. Point, G., Herbreteau, F.: The TChecker tool and librairies. https://github.com/
ticktac-project/tchecker

19. Sipser, M.: Introduction to the Theory of Computability, 2nd edn. PWS Publishing
Company, Computer Science Series (2006)

https://doi.org/10.1007/978-3-031-15839-1_2
https://doi.org/10.1007/978-3-031-15839-1_2
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-030-25540-4_3
https://doi.org/10.1007/978-3-030-25540-4_3
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1007/978-3-642-15643-4_30
https://doi.org/10.1007/978-3-030-85037-1_6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://github.com/ticktac-project/tchecker
https://github.com/ticktac-project/tchecker

Formalizing Robustness Against
Character-Level Perturbations for Neural

Network Language Models

Zhongkui Ma1(B) , Xinguo Feng1 , Zihan Wang1 , Shuofeng Liu1 ,
Mengyao Ma1 , Hao Guan1 , and Mark Huasong Meng2,3

1 The University of Queensland, St Lucia, QLD, Australia
{zhongkui.ma,s.feng,zihan.wang,shuofeng.liu,mengyao.ma,hao.guan}@uq.edu.au

2 National University of Singapore, Singapore, Singapore
huasong.meng@u.nus.edu

3 Institute for Infocomm Research, A*STAR, Singapore, Singapore

Abstract. The remarkable success of neural networks has led to a grow-
ing demand for robustness verification and guarantee. However, the dis-
crete nature of text data processed by language models presents chal-
lenges in measuring robustness, impeding verification efforts. To address
this challenge, this work focuses on formalizing robustness specification
against character-level perturbations for neural network language mod-
els. We introduce a key principle of three metrics, namely probability dis-
tribution, density, and diversity, for generalizing neural network language
model perturbations and meanwhile, formulate the robustness specifica-
tion against character-level perturbed text inputs. Based on the specifica-
tion, we propose a novel approach to augment existing text datasets with
specified perturbations, aiming to guide the robustness training of lan-
guage models. Experimental results demonstrate that the training with
our generated text datasets can enhance the overall robustness of the
language model. Our contributions advance the field of neural network
verification and provide a promising approach for handling robustness
challenges in neural network language models.

Keywords: Neural network · Language model · Character-level
perturbations · Adversarial training · Robustness

1 Introduction

The field of natural language processing (NLP) has been revolutionized by the
rapid advancements in neural network language models, especially after the
introduction of the Transformer architecture [28]. These models have demon-
strated remarkable performance across a range of NLP tasks, including machine

Z. Ma and X. Feng—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 100–117, 2023.
https://doi.org/10.1007/978-981-99-7584-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_7&domain=pdf
http://orcid.org/0000-0002-2392-3751
http://orcid.org/0000-0003-2307-2771
http://orcid.org/0000-0002-6536-2948
http://orcid.org/0000-0002-6438-5224
http://orcid.org/0000-0002-5550-5845
http://orcid.org/0000-0002-5533-4433
http://orcid.org/0000-0003-1039-2151
https://doi.org/10.1007/978-981-99-7584-6_7

Formalizing Robustness for Neural Network Language Models 101

translation [28], text classification [8], sentiment analysis [30], and text genera-
tion [25]. However, their vulnerability to adversarial attacks poses a significant
threat to the reliability and accuracy of NLP models.

Adversarial attacks can take many forms, ranging from minor perturbations
that are imperceptible to humans to more significant modifications that can
result in incorrect or misleading outputs. This vulnerability brings challenges to
the adoption of neural network language models in safe-critical domains such
as clinical diagnosis, financial services, infrastructure, and cybersecurity [33]. To
address these challenges, the training of a language model needs to take input
perturbations into account and guarantee the generated model is resilient to
adversarial attacks. However, discovering adversarial samples is expensive and
there is an infinite number of them in specific circumstances.

Robustness is a crucial property of language models that ensures they can
produce accurate or reasonable outputs even in the presence of perturbations in
the input. The capacity to withstand perturbations gives rise to the ability to
defend against adversarial samples, which is referred to as robustness training.
Rather than relying solely on adversarial samples that lead to incorrect outputs,
robustness training utilizes perturbed samples based on real samples to maintain
the local robustness for each sample. This is an inexpensive and straightforward
solution, and the challenge is to determine suitable perturbations for particular
attacks. The way in which the perturbation for neural language inputs is for-
malized has a direct impact on the ability to protect against a particular kind of
perturbed samples. Furthermore, formalizing the language model and its pertur-
bations takes a step further towards verifying them to guarantee their practical
implications. Given ε-perturbation has been widely adopted to measure local
robustness for continuous inputs, such as numbers, images, and voice, there still
lacks a measurement of the robustness specification for language models that
takes text as input.

In this paper, we consider that natural language text is formed by characters
as the atomic elements, and therefore we focus on robustness against character-
level perturbations. Our aim is to formalize a unified concept for the impercep-
tible character-level perturbations. We consider perturbations of text input can
be produced by three operations, namely insertion, deletion, and replacement, as
demonstrated in Fig. 1. We apply the three operations in an adversarial context
and propose four types of character-level attacks based on local perturbation. We
then introduce a set of metrics including probability distribution (P), density (d),
and diversity (D), to measure the perturbations, and accordingly, provide a for-
mal definition of the robustness property against character-level perturbations.
In addition to defining the robustness property, our proposed set of metrics can
also be applied to augment existing text datasets by generating perturbed sam-
ples based on benign ones, which can be used to enhance the model’s robustness
through robustness training.

Our evaluation aims to investigate whether our proposed metrics, written as
(P, d,D), can sufficiently define the robustness property against character-level
attacks and, moreover, can be used to carry out robustness training. To this

102 Z. Ma et al.

Fig. 1. Examples of character-level perturbations in English text

end, we apply the proposed metrics in augmenting existing text datasets with
perturbed samples, and perform robustness training of three representative neu-
ral network language models. The experimental results show that, being guided
by the defined robustness specifications, our robustness training can effectively
enhance robustness for the specified perturbation while maintaining a high level
of fidelity.

Contributions. Our contributions can be summarized as follows.

– We develop a canonical representation of character-level input perturbations,
specifically for text and covering four types of existing attack models, with
three different metrics: probability distribution, density, and diversity. Sub-
sequently, we formalize language models and their robustness specification
against character-level perturbations.

– We propose a set of perturbation generation algorithms configurable by the
three metrics. We also implement a dataset augmentation tool called PdD,
aiming to produce sufficient perturbed samples in addition to the original/real
ones in the existing datasets.

– We implement adversarial training on various typical language models using
PdD. The results demonstrate that the generated perturbed datasets are
beneficial for enhancing the robustness against specified character-level per-
turbations.

Formalizing Robustness for Neural Network Language Models 103

Paper Organization. This paper is organized as follows. In Sect. 2, we provide
related works. Sect. 3 formalizes the perturbation and its metrics and robust-
ness. A formalization for language models and character-level perturbation is
given. Sect. 4 presents our experiment and evaluation using generated augmented
dataset by our algorithm. We conclude in Sect. 6.

Notation. We use lowercase letters, a, b, c, p, x, y to denote variables, and bold
lowercase letters, x, y, to denote vectors or sequences. Sets, D, P , U , Σ, are
denoted by uppercase letters. f denotes a function or model.

2 Related Work

The current work draws inspiration from existing research on adversarial attacks
and the robustness of deep neural networks, with a particular focus on NLP tasks.

2.1 Adversarial Manipulations in NLP Tasks

Adversarial attacks in the NLP domain aim to manipulate systems by altering
the input text, resulting in erroneous decision-making [9]. The perturbation of
text inputs without prior knowledge can be achieved by utilizing special char-
acter sets, such as diacritics or invisible characters, as perturbed candidates.
Boucher et al. [4] find that the injection of a single imperceptible encoding,
named bad character, can lead to a remarkable decline in the performance of
the targeted model, and when it comes to three injections, most models can be
functionally broken. Boucher et al. [3,4] also explore a pile of adversarial attacks
on NLP tasks without making any human-perceptible visual modification to
inputs, and generate perturbations by uncommon encoded representations to
control results across search engines and large language models (LLMs).

Performing an automatic search for adversarial samples around a given input
typically requires access to gradient information from the model. This process
demands additional expertise and skills, as it involves leveraging the gradient
information to iteratively modify the input and search for potential adversar-
ial examples. Behjati et al. [2] propose a gradient projection based approach
to generate data-independent adversarial sequences, which can fool the classi-
fiers into getting incorrect predictions effectively. They demonstrate that even
adding one word of the adversarial sequences into the input text can downgrade
the classification accuracy dramatically. Garg and Ramakrishnan [11] present
BAE, a black-box attack that uses BERT masked model to hide some words of
the original text with <mask> and then using BERT-MLM to predict <mask> by
insertion or replacement. The usage of BAE can not only undermine the accu-
racy of predictions but also strengthen the grammatical and semantic coherence
of the adversarial text. Morris et al. [22] propose an open-source framework
called TextAttack, which implements existing 16 adversarial attacks on vari-
ous datasets and NLP models. Song et al. [26] develop adversarial attacks that
are more like human-readable English by natural triggers and show that using
such triggers together with their proposed gradient-based search can degrade the
accuracy of classification tasks.

104 Z. Ma et al.

2.2 Robustness of Neural Networks

Robustness typically refers to how sensitive a model is to perturbations or noise
in the input data [21,27,32]. Specifically, a model is considered robust when it
is able to maintain the stability and consistency of its outputs as the input data
have been changed. Several studies have been done to improve the robustness of
deep learning models. Gao et al. [10] propose a mutation-based fuzzing technique
to augment the training data of deep neural networks, which is capable of improv-
ing the accuracy and robustness and meanwhile, saving the training time. Zhang
et al. [36] explain adversarial robustness via the sensitivity of neurons and then
further analyze robustness by stabilizing the behaviors of the sensitive neurons.
They reduce neuron sensitivity to improve adversarial robustness successfully.
Yoo and Qi [35] propose A2T, a simple and improved vanilla adversarial train-
ing process for NLP models, that can improve the robustness of NLP models
to the attack being originally trained with. Wang et al. [29] present a CAT-
Gen model which mainly generates adversarial examples through controllable
attributes being known to be invariant to task labels, and then fine-tune and
re-train the models with adversarial examples to construct more robust NLP
models. Wu et al. [34] present methods to improve robustness of NLP mod-
els from the standpoint of disentangled representation learning and shows that
models trained with proposed criteria provide better robustness in many super-
vised learning tasks. Cheng et al. [7] address the problem of enhancing model
robustness through regularization and they find for both fully supervised and
semi-supervised settings, regularizing the posterior differential with f-divergence
can result in well-improved model robustness.

Although there are many additional approaches to perform adversarial
attacks or improve robustness [1,6,13,14,16,17,20,24,31], finding a proper rep-
resentation of adversarial perturbations when it comes to NLP tasks is still an
open question, due to its discrete features of the input data. Therefore, to the
best of our knowledge, we are the first to explore this and provide solutions
through the lens of formalization.

3 Formalization

In this section, we formulate a comprehensive framework for applying input
perturbation techniques that can be extended to natural language settings. Our
primary goal is to evaluate the robustness of natural language models within this
framework. Throughout our analysis, we introduce three fundamental character-
level operations and three metrics, namely probability distribution, density and
diversity, to effectively control the level of input perturbation. These metrics
serve as essential tools for quantifying and managing the extent of perturbation
applied to the input.

3.1 Formalizing Perturbations to General Inputs

Our initial step involves considering the neighborhood of an input, as our primary
objective is to formalize the local robustness of a model. Within this framework,

Formalizing Robustness for Neural Network Language Models 105

a perturbed input is considered to be within the neighborhood of the original
input vector, denoted as x0 ∈ X. The neighborhood, denoted as Ux0 , is a subset
of the space of all possible inputs, represented as X.

To effectively quantify the variance between the original input and its per-
turbed counterparts, we introduce three key metrics: probability distribution,
density, and diversity. These metrics serve as valuable tools for measuring and
evaluating the differences among various input samples within the neighborhood.

Probability Distribution. A discrete probability distribution is utilized to
depict the probability of perturbing each item within the input vector. This
distribution provides a representation of the likelihood associated with selecting
each item for perturbation.

Definition 1. The probability distribution P of a perturbation for a given input
vector x = (x1, x2, · · · , xn) refers to the distribution that governs the probability
P (i) of i-th element xi (1 ≤ i ≤ n) in the input vector being perturbed.

Density. The density parameter characterizes the count of perturbed items
within a given vector. It is important to emphasize that we impose a constraint
where only one element can be perturbed at a time during a single perturbation.
Consequently, a perturbation to the input may involve altering multiple distinct
elements, but each element is perturbed individually, ensuring that only one
element is modified at a time.

Definition 2. The density d (0 ≤ d ≤ 1) of perturbation refers to the percentage
of perturbed elements in the given input vector.

Diversity. The diversity of perturbation pertains to the collection of possible
candidate characters that can be employed to perturb each original element
in the input vector. This encompasses all the available choices for characters
that can replace or modify the original element. The diversity metric provides a
comprehensive view of the range of alternative characters that can be utilized for
perturbation, offering insights into the various options for altering each element
in the input vector. Notably, special character sets, such as diacritics or typos,
can be utilized as candidate sets to expand the range of perturbation options.

Definition 3. The diversity D = {(xi,Di)|1 ≤ i ≤ n} is a set of sets that
contains all pairs (xi,Di), where Di = {x′

i, x
′′
i , · · · } is the set of all possible

candidate elements that can be used to perturb xi.

Example 1: (ε-perturbation) When considering ε-perturbation, which is a com-
mon setting in verification, all elements of the input vector are available for being
perturbed, resulting in a density of 1. In this case, the distribution of perturba-
tion can be considered as any distribution. ε-perturbation define each input item
xi has a diversity that is a interval [xi − ε, xi + ε] containing all values within a
distance of ε to the input.

106 Z. Ma et al.

Algorithm 1: PdD(x, P , d, D)
// Get the number of perturbed elements

1 n ← floor(d ∗ len(x));
2 i ← 0;
3 while i < n do

// Choose the perturbed element

4 while TRUE do
5 j ∼ P ;
6 if x[j] is not perturbed then break;

// Randomly choose a perturbed candidate

7 x′ ← getPtbCandidate(D[x[j]]);
// Perturb the specified element

8 x[j] = x′;
9 i ← i + 1;

10 return x;

Example 2: (Character-level perturbation) When adding character-level pertur-
bation to a sentence, the sentence is represented by a character vector, and the
distribution describes the probability of each character being perturbed, while
the density describes how many characters can be perturbed. The diversity can
be a discrete character set to describe all possible replacements.

Therefore, we define the perturbation for a text input x as U(x;P, d,D).
Generating perturbations to an input is a process described in Algorithm 1.
The algorithm takes a vector x, the probability distribution P , the density d,
and the diversity parameter D as inputs and output a perturbed vector. One
element of x is perturbed in one loop until the perturbed elements achieve the
targeted density. When choosing a perturbed element, the distribution P is used.
Choosing the perturbed candidate follows a uniform distribution.

3.2 Formalizing Language Models

In this section, our attention is directed towards formulating a specific frame-
work for language models in the context of machine learning. We enumerate
three fundamental character-level operations employed in the perturbation pro-
cess. Additionally, We provide a formalized definition of robustness within this
framework.

Language Model. Let L be a formal language over an alphabet Σ, which is
a subset of the set of words Σ∗1. We begin by defining a language model in
machine learning, denoted as f .

1 We use Kleene star to denote the concatenation of words.

Formalizing Robustness for Neural Network Language Models 107

Definition 4. (Language Model) A language model f is a function that takes
a sequence of words x ∈ Σ∗ as input and outputs a sequence of words y ∈ Σ∗,
where Σ∗ is its finite word set.

In practice, a language model typically uses a token-level encoding to generate
a token embedding, which is then taken as a part of the model. Due to the finite
memory of computers, a language model always has its own finite token set
Σ∗. In cases where a token is not included in Σ∗, it is represented by a special
tag/token [UNK], denoting that it is unknown. For text classification models, the
output is typically binary and can be regarded as numbers in natural language.
In this paper, to ease the understanding, we interchangeably use token and word
to represent the basic input of a language model.

Robustness. Robustness is a critical property for neural networks, as it ensures
that the network can produce accurate outputs even in the presence of pertur-
bations. The definition highlights the importance of ensuring that the output
remains within a predefined set, indicating that the network is capable of han-
dling different types of perturbations without compromising its accuracy.

Definition 5. Robustness is the property that, given a language model f and a
input x0 and its perturbed values set Ux0 , the resulting output set f(Ux0) satisfies
being a subset of the predefined set Uy0 ⊆ Σ∗, i.e.

∀x′ ∈ Uxo
, y′ = f(x′) =⇒ y′ ∈ Uy0

For a classification model, it is highly desirable that the output label for a
perturbed input remains consistent with the label for the original input, i.e.,
Uy0 = {y0}. In general cases, we aim to ensure that the output for a perturbed
input remains within a predefined set Uy0 , i.e. f(Ux0) ⊆ Uy0 . Note that it is not
necessary for Ux0 ⊆ Σ∗ when considering the model f . However, it is always
necessary for Uy0 ⊆ Σ∗ since a reasonable output under perturbed inputs is
what robustness requires and expects.

3.3 Character-Level Perturbation

We note that a sequence of words can be represented as a string or a sequence of
characters. We use [EMP] to denote an empty character. For example, a sequence
of words x = (x1, x2, · · · , xn), where xi (1 ≤ i ≤ n) is a word and xi = aibici · · · ,
which is composed of a finite set of characters ai, bi, ci, etc., concatenated to
form the word. Therefore, we consider a sequence of words in character-level as
a vector x = a1b1c1 · · · a2b2c2 · · · anbncn · · · in the following discussion. In the
following discussion, we will focus on the character representation of a sequence
of words and take it as a sequence of characters.

Definition 6. (Character-level Perturbation) Given an input x ∈ Σ∗ for a lan-
guage model L, a character-level perturbation x′ ∈ Σ̃ (Σ̃∗ ⊇ Σ∗) is another

108 Z. Ma et al.

sequence of words, whose words have several characters that differ from the cor-
responding words in x. Let x = a1b1c1 · · · a2b2c2 · · · anbncn · · · (ai, bi, ci ∈ Σ),
and let x′ = a′

1b
′
1c

′
1 · · · a′

2b
′
2c

′
2 · · · a′

nb′
nc′

n · · · (a′
i, b

′
i, c

′
i ∈ Σ̃ and Σ̃ ⊇ Σ), then x′

is almost the same to x.

The perturbed words need not be elements of the original word set Σ∗.
Furthermore, certain types of perturbation may use characters outside of the
original alphabet Σ. Therefore, for a given type of perturbation, it is necessary
to have an alphabet Σ̃ ⊇ Σ and a word set Σ̃∗ ⊇ Σ∗.

In the following discussion, we explore three fundamental character-level
operations that can be utilized to generate perturbations: replacement, deletion,
and insertion. An illustrative example of generating character-level perturbations
is provided in Fig. 1.

Replacement. This operation serves as a general case encompassing all other
operations. It is inherently implied in our perturbation definition. For each ele-
ment xi in the input vector x, we define a finite discrete set of candidates Di.
The set Di comprises k candidate characters, denoted as cij , where 1 ≤ j ≤ k.
Each cij represents a possible substitution from the candidate set Di.

Other operations can be derived from the replacement operation. We illus-
trate two significant cases: deletion and insertion.

Deletion. For deletion, we set (xi,Di) = (xi, [EMP]), where [EMP] represents
an empty character. This operation effectively removes the character xi from the
input.

Insertion. For insertion, we set (xi,Di) = (xi, xicij , cijxi|1 ≤ j ≤ k, k ∈ Z),
where cij is defined as in the replacement operation. Here, xicij or cijxi rep-
resents the concatenation of the original character xi and the inserted character
cij . We limit our focus to the insertion of a single character at a time in Algo-
rithm 1 for perturbation at the character level.

It is also possible to define operations that affect subsequent characters in
different sizes. Moreover, for more complex operations such as transposition or
swapping two characters, a well-defined probability distribution of perturbation
is required. Different operations can lead to various types of perturbations. For
instance, insertion allows for the generation of diverse perturbations such as
inserting invisible characters, replacing with diacritics, or introducing typos.

4 Experiments

In this section, we assess the effectiveness of our perturbation metrics on various
language models and tasks trained with different perturbed datasets. Then we
compare the accuracy of original or augmented trained model on original or
perturbed datasets.

4.1 Experiment Setup

This section discusses the models and tasks we employed, the criteria for pertur-
bation, the procedure for creating perturbed datasets, and the training details.

Formalizing Robustness for Neural Network Language Models 109

Table 1. Experimental models and datasets

Model Dataset Task #Class

BERT Rotten Tomatoes Sentiment Analysis 2

RoBERTa SNIL Natural Language Inference 3

ALBERT E-commerce Text Classification 4

Models and Tasks. We conduct our experiments on three widely used language
models, including BERT [8], RoBERTa [18], and ALBERT [15]. These models
are within the Transformer Encoder family and are usually used for classification
tasks. In this work, we focus on the classification task due to its well-defined mea-
sure of robustness, which is the accuracy of the classification. The task of BERT
is sentiment analysis, RoBERTa is for natural language inference, and ALBERT
is for text classification. Several benchmark text classification datasets, includ-
ing Rotten Tomatoes [23], Stanford Natural Language Inference (SNLI) [5], and
E-commerce [12], are used to evaluate the performance of the models. Table 1
displays the models and datasets evaluated in this study.

Perturbation Settings. To create augmented datasets comprising perturbed
samples, we employ our formalized perturbation metrics including proba-
bility distribution, density, and diversity to define the perturbed input set
U(x0;P, d,D) for each input sample x0 by combinations of different metrics. In
accordance with the definition presented in Sect. 3, the perturbations employed
in our experiments are practically elaborated as follows.

– On probability distribution, we consider two probability distributions, namely
the uniform distribution and the normal distribution, to deploy character-
level perturbations in original input samples. Specifically for normal distribu-
tion, we select μ = 0.5 × L and σ2 = 0.25 × L, where L represents the length
of the input sequence.

– On density, we investigate the densities of 0.05 and 0.2, which signify a small
and large number of perturbations of two levels.

– On diversity, we opt the specific perturbation generation method, encom-
passing deletion, keyboard typos, diacritics, invisible characters as follows,
and mixed perturbation.

• Deletion refers to replacing a character from the given sentence with the
empty character.

• Keyboard typos imitate the act of mistakenly pressing adjacent keys,
whereby we consider up to 8 neighboring keys as potential candidates for
a single key.

• Diacritics, by definition, are characters that bear a resemblance to a
specific character. In our approach, we carefully select 5 diacritics that
can serve as potential replacements for a single character in the input
sentence.

110 Z. Ma et al.

• Invisible characters encompass operational characters that are not
detectable by human eyes, and we choose from a pool of 48 invisible
characters to insert them behind the selected character.

Fig. 2. Examples of four practical attacks in English text

Figure 2 demonstrates some perturbation instances generated by the four
standalone attack methods. In addition to the four standalone methods, a mixed
perturbations method is also adopted to further assess the effectiveness of the
proposed adversarial training approach. It combines the aforementioned four
types of perturbation and randomly applies them to the input sequence.

Table 2. Perturbation settings used in our evaluation

Metrics Description Setting Options

P Probability Distribution uniform distribution, normal distribution

d Density 0.05, 0.2

D Diversity deletion, keyboard typos, diacritics, invisible characters

Augmented Datasets Generation. For each input sample, we generate 10
perturbed versions using a single perturbation setting. Consequently, an aug-
mented dataset produced using one perturbation setting is 10 times larger than
the original dataset. Using different combinations of these metrics as outlined
in Table 2, we separately apply each character-level perturbation method to all
samples in a dataset. We then utilize all the resulting perturbed samples to
evaluate the accuracy of the language models.

Implementation Details. In our experiments, we utilize three different pre-
trained large language model architectures and train them on both original train-
ing datasets and augmented training datasets. This training process results in
two separate models for each model architecture, namely a clean model Mclean,
and an augmentedly trained model Maug.

Formalizing Robustness for Neural Network Language Models 111

To maintain consistency, we randomly choose an equivalent amount of data
from the SNLI and E-commerce datasets, which are larger in size compared to
the Rotten Tomatoes dataset. This selection results in 9,000 training samples
and 2,000 testing samples for the original datasets. For each augmented dataset
under different settings, we obtain 99,000 training samples and 22,000 testing
samples, after the insertion of perturbed samples.

During the training phase, all models utilize a batch size of 16. We employ the
AdamW optimizer [19] with a fixed learning rate of 2 × 10−5. To determine the
best models, we incorporate early stopping with a patience of five. On average,
the training process spans approximately seven epochs. All reported experiments
are conducted on a workstation equipped with an AMD Ryzen Threadripper
PRO 5965WX 24-Core 4.00 GHz CPU, 252G of main memory, and one NVIDIA
RTX A6000 GPU.

4.2 Evaluation

In this section, we evaluate the effectiveness of making the model more robust
by using robustness training with different specified perturbations. We measure
the accuracy of the models on the original datasets and the perturbed datasets
to demonstrate the effectiveness of robustness for the specified perturbations.

Overall Performance. Table 3 reveals that the accuracy of the original models
is lower on perturbed datasets than augmented models. This indicates that all
the various perturbation types have a clear negative effect on the performance
of the models when trained normally. For the models trained with perturbed
datasets, their accuracy is significantly higher (up to 0.4) than those trained
without perturbated samples.

The results in Table 4 demonstrate that the augmented models have a com-
parable or even better accuracy (ranging from −0.05 to 0.005) than the original
models on the original datasets. This suggests that the augmented models are
able to maintain their performance on regular samples while still being tolerant
to perturbed samples.

This demonstrates the detrimental effect of character-level perturbation on
models that have been trained in the usual way, and highlights the need and
effectiveness for robustness training using perturbed samples.

Performance on Different Models and Tasks. We assess three cases, (1)
BERT with sentiment analysis, (2) RoBERTa with natural language inference,
and (3) ALBERT with text classification. For the accuracy on pertubed datasets
in Table 3, cases (1) and (2) are more vulnerable to perturbed samples, with
a decrease in accuracy ranging from 0.01–0.26 and 0.08–0.43, respectively. In
contrast, case (3) is less affected, with a decrease ranging from 0.01–0.14.

For the accuracy on original datasets in Table 4, the augmented models show
a similar accuracy (with a maximum difference of 0.01) for cases (1) and (3),
but a noticeable decrease (up to 0.06) for case (2).

112 Z. Ma et al.

Table 3. Model performance (F1-scores) on augmented datasets, presented as tuples of
the clean models (Mclean) and augmentedly trained models (Maug). The improvement
of model performance is displayed in bold font.

Deletion Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.5044 0.7499 0.4060 0.6769 0.8045 0.9443

0.05 0.7873 0.8358 0.7133 0.8027 0.9491 0.9566

Normal 0.2 0.5498 0.7505 0.4426 0.6788 0.8751 0.9466

0.05 0.7901 0.8329 0.7241 0.8074 0.9533 0.9612

Keyboard Typos Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.4963 0.7651 0.3625 0.6918 0.8095 0.9436

0.05 0.7911 0.8463 0.7161 0.8028 0.9470 0.9613

Normal 0.2 0.5529 0.7691 0.3891 0.6877 0.8819 0.9491

0.05 0.7966 0.8471 0.7214 0.8058 0.9515 0.9627

Diacritics Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.7588 0.8247 0.2879 0.7142 0.9407 0.9560

0.05 0.8404 0.8547 0.6799 0.8213 0.9588 0.9642

Normal 0.2 0.7727 0.8259 0.2978 0.7061 0.9485 0.9588

0.05 0.8466 0.8519 0.6883 0.8184 0.9600 0.9637

Invisible Characters Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.5336 0.7712 0.3630 0.6925 0.8380 0.9434

0.05 0.7978 0.8411 0.7099 0.7999 0.9501 0.9618

Normal 0.2 0.5812 0.7740 0.3995 0.6821 0.8885 0.9527

0.05 0.8051 0.8442 0.7176 0.8063 0.9542 0.9612

Mixed Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.5534 0.7630 0.3370 0.6750 0.8636 0.9477

0.05 0.8080 0.8416 0.7001 0.8035 0.9526 0.9613

Normal 0.2 0.6013 0.7667 0.3634 0.6742 0.9051 0.9529

0.05 0.8128 0.8387 0.7097 0.8101 0.9563 0.9594
SA: Sentiment Analysis NLI: Natural Language Inference TC: Text Classification

Our perturbation has a more significant effect on the natural language infer-
ence (NLI) task than the other two tasks. This is because NLI requires a thor-
ough analysis of each word and phrase in a sentence to create a detailed context,
which is one of the most difficult areas of NLP. On the other hand, text classi-

Formalizing Robustness for Neural Network Language Models 113

Table 4. Model performance (F1-scores) on original datasets, presented as tuples of
the clean models (Mclean) and augmentedly trained models (Maug). The improvement
of model performance is displayed in bold font.

Deletion Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.8625 0.8611 0.8686 0.8283 0.9636 0.9599

0.05 0.8611 0.8419 0.9620

Normal 0.2 0.8424 0.8394 0.9609

0.05 0.8574 0.8571 0.9644

Keyboard Typos Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.8625 0.8672 0.8686 0.8149 0.9636 0.9624

0.05 0.8653 0.8516 0.9630

Normal 0.2 0.8621 0.8277 0.9624

0.05 0.8672 0.8543 0.9657

Diacritics Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.8625 0.8638 0.8686 0.8299 0.9636 0.9599

0.05 0.8639 0.8568 0.9669

Normal 0.2 0.8601 0.8170 0.9639

0.05 0.8602 0.8571 0.9648

Invisible Characters Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.8625 0.8681 0.8686 0.8554 0.9636 0.9624

0.05 0.8658 0.8391 0.9644

Normal 0.2 0.8630 0.8393 0.9646

0.05 0.8634 0.8450 0.9634

Mixed Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.8625 0.8564 0.8686 0.8134 0.9636 0.9627

0.05 0.8600 0.8488 0.9637

Normal 0.2 0.8508 0.8510 0.9655

0.05 0.8615 0.8593 0.9595
SA: Sentiment Analysis NLI: Natural Language Inference TC: Text Classification

fication models usually only consider a few keywords to determine the category
of the review, resulting in a less noticeable impact. Despite the presence of per-
turbed characters, the model still manages to achieve a satisfactory result on
text classification.

114 Z. Ma et al.

Performance on Different Perturbation Settings. Perturbations with a
uniform distribution always lead to a greater decrease in accuracy (as much as
0.08) of the original models than perturbations with a normal distribution. The
uniform perturbation has a greater impact on all the words of the sentence, while
the normal distribution is more likely to affect words in certain positions with
higher probability. . The results of augmented models demonstrate that they
are able to learn the data with perturbation, regardless of the two distribution
settings, with little to no impact on their accuracy.

When perturbations with a higher density of 0.2 are applied, the accuracy
of the original models decreases by a range of 0.07 to 0.39, while the augmented
models experience a decrease of 0.01 to 0.14. It is logical to assume that the more
perturbed elements there are, the more challenging it is to make an inference.

Different types of character-level perturbations demonstrate varying levels of
vulnerability for the original models. In case (1), the original models are more
resilient to diacritics perturbations (with an accuracy of approximately 0.75–
0.85) than to other perturbations (with an accuracy of approximately 0.5–0.8).
In the second case, all types of perturbations have a similar effect on the accuracy
of the original models. In the third case, the original models are more resistant
to diacritics perturbations (with an accuracy of approximately 0.95) and less
resistant to other perturbations (with an accuracy of approximately 0.8–0.95).
The augmented models show a similar pattern when exposed to different types
of perturbations, but with a higher and more stable accuracy. Moreover, the
accuracy of the augmented models is not significantly affected by the various
types of perturbations when tested on the original datasets. In current natural
language models, the words are tokenized and converted into numerical vectors.
These perturbed characters often lead to the replacement of [UNK] token. Those
perturbation, causing another correct existing words, has a greater impact on
the inference of models.

It is evident that models and tasks with regular training can be affected
to varying degrees when exposed to different perturbations. Our three metrics
show different impacts on the performance of the original models, indicating that
these metrics do indeed measure the perturbation. If robustness training is used
to target a particular perturbation, the robustness of the original models can be
significantly improved.

5 Discussion

This study focuses on the formalization of perturbation at the natural language
level, treating it as a character sequence. Our work contributes a novel endeavor
by establishing a unified definition encompassing all types of inputs for neural
networks. However, to comprehensively evaluate the robustness of these mod-
els, it is imperative to develop additional metrics that effectively capture the
distance or dissimilarity between the original item and its perturbed counter-
part. Such metrics are essential for quantifying the diversity and construction
of the candidate set. Although our study provides an initial framework, further
refinement is expected in this aspect.

Formalizing Robustness for Neural Network Language Models 115

Our experiment results demonstrate that our approach can not only signif-
icantly enhance the robustness, but also retain a high level of fidelity of the
models. However, we only experiment with models of classification tasks. The
robustness of models of generative tasks such as Machine Translation and Text
Summarization can be further investigated.

We also remark that the robustness of neural network language models can
be extended to the word level. Defining metrics of word-level robustness presents
unique challenges as it entails considerations of semantic meaning and grammar
and therefore, desires future efforts from the research community.

6 Conclusion

This paper introduces a generalized formalization of perturbed inputs for natu-
ral language models, offering a crucial step towards testing and verifying their
robustness. We specifically focus on character-level perturbations, outlining the
basic operations of replacement, deletion, and insertion. By controlling the per-
turbation process through principles of probability distribution, density, and
diversity, we can generate different levels and types of character-level perturba-
tions using a clean dataset.

Our approach demonstrates significant improvements in robustness against
specific perturbations when training a network on a dataset perturbed by our
method compared to using only clean data. Augmenting existing text datasets
with adversarial perturbations, guided by our proposed approach, leads to
notable enhancements in overall model robustness.

Overall, this work contributes novel insights and techniques, advancing the
measurement and assurance of language model robustness. Given the critical
importance of reliability and accuracy in language models, our approach holds
great potential for further advancements in this area.

References

1. Bai, T., Luo, J., Zhao, J., Wen, B., Wang, Q.: Recent advances in adversarial
training for adversarial robustness. arXiv preprint arXiv:2102.01356 (2021)

2. Behjati, M., Moosavi-Dezfooli, S.M., Baghshah, M.S., Frossard, P.: Universal
adversarial attacks on text classifiers. In: ICASSP 2019–2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7345–7349
(2019). https://doi.org/10.1109/ICASSP.2019.8682430

3. Boucher, N., Pajola, L., Shumailov, I., Anderson, R., Conti, M.: Boosting big
brother: attacking search engines with encodings. arXiv preprint arXiv:2304.14031
(2023)

4. Boucher, N., Shumailov, I., Anderson, R., Papernot, N.: Bad characters: Imper-
ceptible NLP attacks. In: 2022 IEEE Symposium on Security and Privacy (SP),
pp. 1987–2004. IEEE (2022)

5. Bowman, S., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for
learning natural language inference. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 632–642 (2015)

http://arxiv.org/abs/2102.01356
https://doi.org/10.1109/ICASSP.2019.8682430
http://arxiv.org/abs/2304.14031

116 Z. Ma et al.

6. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: A
survey on adversarial attacks and defences. CAAI Trans. Intell. Technol. 6(1),
25–45 (2021)

7. Cheng, H., Liu, X., Pereira, L., Yu, Y., Gao, J.: Posterior differential regularization
with f-divergence for improving model robustness. arXiv preprint arXiv:2010.12638
(2020)

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

9. Eger, S., et al.: Text processing like humans do: visually attacking and shielding
NLP systems. arXiv preprint arXiv:1903.11508 (2019)

10. Gao, X., Saha, R.K., Prasad, M.R., Roychoudhury, A.: Fuzz testing based data
augmentation to improve robustness of deep neural networks. In: Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering, pp. 1147–
1158 (2020)

11. Garg, S., Ramakrishnan, G.: Bae: bert-based adversarial examples for text classi-
fication. arXiv preprint arXiv:2004.01970 (2020)

12. Gautam: E commerce text dataset. https://zenodo.org/record/3355823#.
ZF99xy8Rq-o (2019). Accessed 12 May 2023

13. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.:
Augmix: a simple data processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781 (2019)

14. Hu, P., Wang, Z., Sun, R., Wang, H., Xue, M.: M4i: multi-modal models mem-
bership inference. In: Advances in Neural Information Processing Systems, vol. 35,
pp. 1867–1882 (2022)

15. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: A
lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942 (2019)

16. Li, Y., Min, M.R., Lee, T., Yu, W., Kruus, E., Wang, W., Hsieh, C.J.: Towards
robustness of deep neural networks via regularization. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7496–7505 (2021)

17. Liu, S., Lei, P., Koji, K.: LSTM based hybrid method for basin water level predic-
tion by using precipitation data. J. Adv. Simul. Sci. Eng. 8(1), 40–52 (2021)

18. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

20. Ma, M., et al.: Loden: Making every client in federated learning a defender against
the poisoning membership inference attacks. In: 18th ACM ASIA Conference on
Computer and Communications Security ASIACCS 2023, ACM (2023)

21. Meng, M.H., et al.: Adversarial robustness of deep neural networks: a survey from
a formal verification perspective. IEEE Trans. Dependable Secure Comput. (2022)

22. Morris, J.X., Lifland, E., Yoo, J.Y., Grigsby, J., Jin, D., Qi, Y.: TextAttack: a
framework for adversarial attacks, data augmentation, and adversarial training in
NLP. arXiv preprint arXiv:2005.05909 (2020)

23. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment catego-
rization with respect to rating scales. In: Proceedings of the ACL (2005)

24. Qiu, S., Liu, Q., Zhou, S., Wu, C.: Review of artificial intelligence adversarial attack
and defense technologies. Appl. Sci. 9(5), 909 (2019)

25. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

http://arxiv.org/abs/2010.12638
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1903.11508
http://arxiv.org/abs/2004.01970
https://zenodo.org/record/3355823#.ZF99xy8Rq-o
https://zenodo.org/record/3355823#.ZF99xy8Rq-o
http://arxiv.org/abs/1912.02781
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2005.05909

Formalizing Robustness for Neural Network Language Models 117

26. Song, L., Yu, X., Peng, H.T., Narasimhan, K.: Universal adversarial attacks with
natural triggers for text classification. arXiv preprint arXiv:2005.00174 (2020)

27. Subbaswamy, A., Adams, R., Saria, S.: Evaluating model robustness and stability
to dataset shift. In: International Conference on Artificial Intelligence and Statis-
tics, pp. 2611–2619. PMLR (2021)

28. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

29. Wang, T., et al.: Cat-gen: Improving robustness in NLP models via controlled
adversarial text generation. arXiv preprint arXiv:2010.02338 (2020)

30. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level
sentiment classification. In: Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 606–615 (2016)

31. Wang, Z., Guo, H., Zhang, Z., Liu, W., Qin, Z., Ren, K.: Feature importance-aware
transferable adversarial attacks. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7639–7648 (2021)

32. Wang, Z., et al.: Data hiding with deep learning: a survey unifying digital water-
marking and steganography. IEEE Trans. Comput. Soc. Syst. 1–15 (2023). https://
doi.org/10.1109/TCSS.2023.3268950

33. Waqas, A., Farooq, H., Bouaynaya, N.C., Rasool, G.: Exploring robust architec-
tures for deep artificial neural networks. Commun. Eng. 1(1), 46 (2022)

34. Wu, J., Li, X., Ao, X., Meng, Y., Wu, F., Li, J.: Improving robustness and
generality of NLP models using disentangled representations. arXiv preprint
arXiv:2009.09587 (2020)

35. Yoo, J.Y., Qi, Y.: Towards improving adversarial training of NLP models. arXiv
preprint arXiv:2109.00544 (2021)

36. Zhang, C., et al.: Interpreting and improving adversarial robustness of deep neu-
ral networks with neuron sensitivity. IEEE Trans. Image Process. 30, 1291–1304
(2020)

http://arxiv.org/abs/2005.00174
http://arxiv.org/abs/2010.02338
https://doi.org/10.1109/TCSS.2023.3268950
https://doi.org/10.1109/TCSS.2023.3268950
http://arxiv.org/abs/2009.09587
http://arxiv.org/abs/2109.00544

Trace Models of Concurrent Valuation
Algebras

Naso Evangelou-Oost(B) , Larissa Meinicke(B) , Callum Bannister(B) ,
and Ian J. Hayes(B)

The University of Queensland, St Lucia, Australia
a.evangelouoost@uq.edu.au, {l.meinicke,C.Bannister,ian.hayes}@uq.edu.au

Abstract. This paper introduces Concurrent Valuation Algebras
(CVAs), a novel extension of ordered valuation algebras (OVAs). CVAs
include two combine operators representing parallel and sequential prod-
ucts, adhering to a weak exchange law. This development offers theoret-
ical and practical benefits for the specification and modelling of concur-
rent and distributed systems. As a presheaf on a space of domains, CVAs
enable localised specifications, supporting modularity, compositionality,
and the ability to represent large and complex systems. Furthermore,
CVAs align with lattice-based refinement reasoning and are compatible
with established methodologies such as Hoare and Rely-Guarantee logics.
The flexibility of CVAs is explored through three trace models, illustrat-
ing distinct paradigms of concurrent/distributed computing, interrelated
by morphisms. The paper also highlights the potential to incorporate a
powerful local computation framework from valuation algebras for model
checking in concurrent and distributed systems. The foundational results
presented have been verified with the proof assistant Isabelle/HOL.

Keywords: Concurrent valuation algebras · Concurrent systems ·
Distributed systems

1 Introduction

Valuation algebras are versatile algebraic structures that parameterise informa-
tion across multiple domains, representing for example subsets of variables or
events. These structures have been widely utilised across diverse disciplines such
as database theory, logic, probability and statistics, and constraint satisfaction,
among others. What sets valuation algebras apart is their robust computational
theory, enabling the deployment of highly efficient distributed algorithms for
addressing inference problems that involve information combination and query-
ing [17].

In our preceding work [7], we applied ordered valuation algebras to dis-
tributed systems, demonstrating their potential as a modular framework for
specifying these systems in a refinement paradigm. Moreover, we established a
link between sequential consistency—a crucial correctness criterion—and contex-
tuality, an abstract form of information inconsistency which valuation algebras
capture.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 118–136, 2023.
https://doi.org/10.1007/978-981-99-7584-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_8&domain=pdf
http://orcid.org/0000-0002-8313-6127
http://orcid.org/0000-0002-5272-820X
http://orcid.org/0000-0002-8799-054X
http://orcid.org/0000-0003-3649-392X
https://doi.org/10.1007/978-981-99-7584-6_8

Trace Models of Concurrent Valuation Algebras 119

Paper Outline. In Sect. 2, we introduce ordered valuation algebras (OVAs)
based on prior studies [1,9] and extend these to concurrent valuation algebras
(CVAs) in Sect. 3, a structure comprising two OVA structures on a space with
combine operators adhering to a weak exchange law. This design takes inspira-
tion from Communicating Sequential Processes (CSP) [12], Concurrent Kleene
Algebra (CKA) [13], Concurrent Refinement Algebra (CRA) [10], and duoidal/2-
monoidal categories [2]. We also define morphisms between CVAs, and explain
their alignment with the refinement reasoning methodologies of Hoare [11] and
Rely-Guarantee [14] logics. Section 4 delves into tuple systems and relational
OVAs, which underpin our trace models. The subsequent sections, Sects. 5 to 7,
introduce and contrast various trace models, elaborating on their distinct com-
bine operators and trace characteristics. In Sect. 8, we reflect on the potential
extension of the local computation framework from valuation algebras to CVAs.
Section 9 closes our paper, encapsulating our findings and suggesting avenues for
future exploration.

The theoretical underpinnings detailed in Sects. 2 to 4 have been rigorously
formalised using the proof assistant Isabelle/HOL, lending credibility to our
study.1 A separate formalisation of Sect. 6 is also available.2 Proofs of omitted
results can be found in the appendix of the arXiv version of this paper [6].

2 Ordered Valuation Algebras

We assume familiarity with foundational ideas in order theory and category
theory, including the definitions of a category, a functor, and a natural transfor-
mation. For those interested in a more detailed understanding, please refer to [8]
for an accessible introduction, or [18] as a thorough reference.

Notation. The category of sets and functions is denoted Set. Posets (partially
ordered sets) are identified with their associated (thin) categories, so that the
hom-set hom(a, b) is a singleton when a ≤ b and empty otherwise, and we write
Pos for the category whose objects are posets and whose morphisms are mono-
tone functions. A topological space (X,T) is a set X equipped with a topology
T, which is a family of subsets of X, termed open sets, partially ordered by
inclusion, and closed under arbitrary unions and finite intersections (in particu-
lar, the empty intersection, X, and the empty union, ∅, are open). For a category
C, Cop denotes its opposite category , that is the category C with the direc-
tion of its arrows reversed. A presheaf Φ on a topological space (X,T) is a
functor with domain Top. We notate the value of a presheaf Φ applied to A by
ΦA instead of Φ(A), and for B ⊆ A in T, the restriction map ΦA → ΦB is
denoted a �→ a↓B. All presheaves considered are valued in Set or Pos, though we
adopt the name prealgebra for a poset-valued presheaf, suggesting our intent
to develop an OVA structure upon it. A global element of a prealgebra Φ is
a natural transformation ε : 1 ⇒ Φ from the terminal prealgebra 1, defined
1 Available at https://github.com/nasosev/cva .
2 Available at https://github.com/onomatic/icfem23-proofs .

https://github.com/nasosev/cva
https://github.com/onomatic/icfem23-proofs

120 N. Evangelou-Oost et al.

1 := A �→ {♥}. For such a global element ε, we write εA instead of εA(♥). The
symbol P denotes the covariant powerset functor P : Set → Pos, sending
a set X to the poset of its subsets P(X), and sending a function f : X → Y
to its direct image f∗ := X �→ {f(x) | x ∈ X}. The symbol N denotes the set
of natural numbers {0, 1, . . .}, while N+ is the set of positive natural numbers
{1, 2, . . .}.

Throughout this paper, we fix a topological space (X,T). Here, the open
sets symbolise abstract domains, representing subsets of system elements like
memory locations, resources, or events, as well as their interconnectivity.

Example 1. A network composed of three computer systems a, b, c and three
network links d, e, f as pictured in Fig. 1 may be represented by the topological
space generated by unions and intersections of the domains {d, a, e}, {e, b, f},
{f, c, d}. More generally, a network defined by a labelled, undirected graph con-
verts to a finite topology where open sets are the upwards-closed sets of the
network’s face poset, i.e. the poset whose elements are the nodes n and edges e
of the network, where n ≤ e if and only if n is a vertex of e.3 Alternatively, a set
of memory addresses X may be given the discrete topology T = P(X).

Fig. 1. A network of three computers and three links.

A prealgebra Φ : Top → Pos comprises a family of posets {ΦA}A∈T param-
eterised by the domains of the space T, and a family of monotone restriction
maps

{
a �→ a↓B : ΦA → ΦB

}
A,B∈T,B⊆A

parameterised by the inclusions of the
space.

The elements of the posets ΦA represent abstract units of information per-
taining to their domain. Their ordering signifies information refinement: a
 b
means a is more deterministic than b, a convention that aligns with the intuitions
of program refinement.

The prealgebra’s restriction maps a �→ a↓B serve to project or query informa-
tion a ∈ A onto a subdomain B ⊆ A. These mappings facilitate the extraction
of specific details from a wider context. Further, restriction maps are transitive
and idempotent: for C ⊆ B ⊆ A and a ∈ ΦA, we have (a↓B)↓C = a↓C , and
a↓A = a.

3 The topology described is the Alexandrov topology of the face poset of the network,
viewed as a simplicial complex. Another possibility is to take its geometric realisa-
tion, but this typically results in an infinite space. These spaces, however, are weakly
homotopy equivalent [3].

Trace Models of Concurrent Valuation Algebras 121

This family of posets {ΦA}A∈T can be unified into a single poset ∫ Φ, through
a canonical process known as the Grothendieck construction of Φ (for a detailed
explanation within a broader context, refer to [19]).

Definition 1 (covariant Grothendieck construction for a prealgebra).
Let Φ : Top → Pos be a prealgebra. The covariant Grothendieck construc-
tion of Φ is the poset (∫ Φ,
) whose elements are pairs (A, a) ∈ ∫ Φ where
A ∈ T and a ∈ ΦA, and whose ordering
 is defined

(A, a)
 (B, b) if and only if B ⊆ A and a↓B ≤ΦB
b (1)

For the projection map d : ∫ Φ → Top, (A, a) �→ A, call da the domain of a.

Notation. As shorthand, we suppress the domain in the first component of ele-
ments (A, a) belonging to ∫ Φ, writing a instead of (A, a).

Remark 1. In Definition 1, we apply the covariant Grothendieck construction
to a contravariant functor, treating it as a covariant functor from its domain’s
opposite. This choice, though atypical, aligns with a semantic interpretation for
refining program specifications, explained in Sect. 3.1.

Next, the concept of an ordered valuation algebra (OVA) is introduced, which
incorporates a prealgebra Φ : Top → Pos, a binary operator ⊗ : ∫ Φ×∫ Φ → ∫ Φ,
and a global element ε : 1 ⇒ Φ, satisfying a number of axioms. Before delving
into the formal definition, we illustrate the concept with an example.

Example 2. A familiar instance of an OVA models relational databases. Here,
a set X of attributes is fixed (e.g., X = {‘name’, ‘age’, ‘height’}). A schema is
a subset A of X defining a table’s columns, while each row defines a tuple:
an assignment of a value to each attribute. A relation on X is a set a of tuples
sharing a common schema da, and a relational database is a set of such relations.

To frame this within an OVA, we define a prealgebra Φ : P(X) → Pos,
mapping a schema A ∈ T to the poset ΦA of all relations with schema A, with
ordering given by inclusion. The restriction maps of Φ correspond to querying,
by projecting the tuples of a relation a to a sub-schema B; the result is the
relation a↓B =

{
t↓B | t ∈ a

}
, where t↓B is the tuple t restricted to the attributes

in B.
The operator ⊗ is taken to be the natural join,

�� : ∫ Φ × ∫ Φ → ∫ Φ

a �� b :=
{
t ∈ Φda∪db | t↓da ∈ a and t↓db ∈ b

} (2)

This operation is associative and monotone (forming an ordered semigroup), and
the schema of a �� b is da ∪ db. Moreover, the natural join satisfies the following
combination axiom:

(a �� b)↓da = a �� b↓da∩db (3)

This identity is fundamental to query optimisation algorithms in relational
databases, with its right-hand side referred to as a semi-join.

122 N. Evangelou-Oost et al.

Lastly, the global element ε assigns to each schema A the universal relation
εA on A, encompassing all possible tuples on A. These universal relations serve
as units for the natural join, i.e. for all a ∈ ∫ Φ, we have a �� εda = a = εda �� a.

Please note that our definition of an OVA below deviates from standard
ones (e.g. [1,9,17]) in several ways. First, we do not mandate commutativity of
the operator ⊗, as a sequential product of programs is noncommutative. This
requires a symmetric revision Eq. (7) of the combination axiom. Second, con-
straints in the classical definition such as the existence of infima in the posets
ΦA are not imposed. Yet, we stipulate that neutral valuations correspond to a
global element, which is tantamount to the stability property in [17], though we
do not require neutral valuations to combine to neutral valuations—we call an
algebra in which this property holds strongly neutral (Definition 4). Last, while
Grothendieck constructions have been applied to ordered valuation algebras ([5]),
their conventional definition does not involve a Grothendieck ordering.

Definition 2 (ordered valuation algebra (OVA)). An ordered valuation
algebra (OVA) is a triple (Φ,⊗, ε), where Φ is a prealgebra Φ : Top → Pos,
⊗ is a binary operator ⊗ : ∫ Φ×∫ Φ → ∫ Φ, called the combine operator, and
ε : 1 ⇒ Φ is a global element, called the neutral element, satisfying the below
four axioms for all valuations a, b, c, a′, b′ ∈ ∫ Φ:

Ordered semigroup. The combine operator ⊗ is associative, and monotone:

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c, and, a
 a′ and b
 b′ =⇒ a ⊗ b
 a′ ⊗ b′ (4)

Labelling.
d(a ⊗ b) = da ∪ db (5)

Neutrality.
εda ⊗ a = a = a ⊗ εda (6)

Combination.

(a ⊗ b)↓da = a ⊗ b↓da∩db, (a ⊗ b)↓db = a↓da∩db ⊗ b (7)

Remark 2. The functor laws for Φ imply that for all C ⊆ B ⊆ A and a ∈ ΦA,
we have (a↓B)↓C = a↓C , and also a↓A = a. The requirement that ε is a global
element says for all B ⊆ A in T, we have ε

↓B
A = εB .

Remark 3. Monotonicity of ⊗ says for a1 ∈ ΦA1 , a2 ∈ ΦA2 , b1 ∈ ΦB1 , b2 ∈ ΦB2 ,
if a1
 b1 and a2
 b2, then a1 ⊗ a2
 b1 ⊗ b2, that is, (a1 ⊗ a2)↓B1∪B2 ≤ΦB1∪B2

b1 ⊗ b2. Taking A1 = A2 = B1 = B2, this implies local monotonicity , i.e. the
combine operator ⊗ restricted to each domain A, ⊗A : ΦA × ΦA → ΦA, is
monotone.

Definition 3 (commutative OVA). We call an OVA (Φ,⊗, ε) commutative
if ⊗ is commutative.

Trace Models of Concurrent Valuation Algebras 123

Definition 4 (strongly neutral). We call an OVA (Φ,⊗, ε) strongly neu-
tral if for all inclusions B ⊆ A in T, we have ε

↑A
B = εA.

Theorem 1. Let (Φ,⊗, ε) be an OVA. Then for each inclusion B ⊆ A in T,
the restriction map a �→ a↓B has a right adjoint given by b �→ εA ⊗ b. Moreover,
these right adjoints assemble to a functor T → Pos. We adopt the notation
b↑A := εA ⊗ b, and call b↑A the extension of b to A.

Proof. We must show that for all B ⊆ A and all a ∈ ΦA and b ∈ ΦB ,

a↓B ≤ΦB
b ⇐⇒ a ≤ΦA

εA ⊗ b

Assume a↓B ≤ΦB
b. Using the fact that a
 a↓B and monotonicity,

a = εA ⊗ a ≤ΦA
εA ⊗ a↓B ≤ΦA

εA ⊗ b

Now assume a ≤ΦA
εA ⊗ b. Using monotonicity of restriction, the combination

axiom, naturality of ε, and neutrality,

a↓B ≤ΦB
(εA ⊗ b)↓B = ε

↓A∩B
A ⊗ b = εB ⊗ b = b

So the adjunction holds. That extension is functorial (i.e. for C ⊆ B ⊆ A and
c ∈ ΦC , both (c↑B)↑A = c↑A and c↑C = c) is due to the composability and
uniqueness of adjoints.

Corollary 1. Let (Φ,⊗, ε) be a strongly neutral OVA. Then for all A,B in T,
εA ⊗ εB = εA∪B. Also, ∫ Φ is an ordered monoid.

Proof. We have, εA ⊗ εB = (εA∪B ⊗ εA∪B)⊗ (εA ⊗ εB) = (εA∪B ⊗ εA)⊗ (εA∪B ⊗
εB) = ε

↑A∪B
A ⊗ε

↑A∪B
B = εA∪B ⊗εA∪B = εA∪B. If a ∈ ∫ Φ, a⊗ε∅ = (a⊗εda)⊗ε∅ =

a ⊗ (εda ⊗ ε∅) = a ⊗ εda = a. Thus, ε∅ is a unit for ∫ Φ.

Corollary 2. Let (Φ,⊗, ε) be an OVA, and let B ⊆ A in T, a ∈ ΦA, and
b ∈ ΦB. Then,

1. Restriction after extension is the identity map, i.e., (b↑A)↓B = b.
2. Extension after restriction is extensive, i.e., a ≤ΦA

(a↓B)↑A.

Proof. For the first claim, by the neutrality and combination axioms and natu-
rality, we have (b↑A)↓B = (εA ⊗ b)↓B = ε

↓A∩B
A ⊗ b = εB ⊗ b = b. The second is

always true of the composition of a right adjoint after its left adjoint.

Corollary 3. If for each A ∈ T, ΦA is a complete lattice, then so is ∫ Φ.

Proof. See [19], where it is shown in more generality that completeness of the
poset ∫ Φ follows from: (i) cocompleteness of the poset T, (ii) completeness of
each poset ΦA, and (iii) that the restriction maps a �→ a↓B have right adjoints.

Definition 5 (morphism of OVAs). Let (Φ,⊗, ε) and (Φ′,⊗′, ε′) be OVAs. A
lax morphism f : Φ → Φ′ is a family of monotone maps {fA : ΦA → Φ′

A}A∈T

so that the below hold for all a ∈ ΦA, b ∈ ΦB and C ⊆ A,

124 N. Evangelou-Oost et al.

Monotonicity.
a
 b =⇒ fA(a)
 fB(b) (8)

Lax naturality.
fA(a)↓C
 fC(a↓C) (9)

Lax multiplicativity.

fA(a) ⊗′ fB(b)
 fA∪B(a ⊗ b) (10)

Lax unitality.
ε′
A
 fA(εA) (11)

Reversing the inequality directions above defines a colax morphism. A mor-
phism that is both lax and colax is termed a strong morphism.

2.1 Extension of Local Operators

In the following, let Φ be a prealgebra such that for each inclusion B ⊆ A in T,
the restriction map a �→ a↓B : ΦA → ΦB has a right adjoint b �→ b↑A : ΦB →
ΦA.

Definition 6 (extension of a family of local operators). Assume a fam-
ily of associative binary operators {�A : ΦA × ΦA → ΦA}A∈T. We define the
extension of {�A}A∈T to ∫ Φ to be the binary operator,

� : ∫ Φ × ∫ Φ → ∫ Φ

a � b := a↑da∪db �da∪db b↑da∪db
(12)

Note that a combine operator of an OVA (Φ,⊗, ε) is the extension of the
family {⊗A}A∈T, where ⊗A is the restriction of ⊗ to ΦA × ΦA, because

a ⊗ b = (εU ⊗ εU) ⊗ (a ⊗ b) = (εU ⊗ a) ⊗ (εU ⊗ b) = a↑U ⊗U b↑U (13)

where U = da ∪ db. Next is a key lemma establishing conditions for the reverse
direction, i.e. for when a family of local operators on Φ may give rise to a combine
operator.

Lemma 1. Assume {�A : ΦA × ΦA → ΦA}A∈T is a family of local associative
operators satisfying:

Local monotonicity. For all A ∈ T and a1, a
′
1, a2, a

′
2 ∈ ΦA,

a1 ≤ΦA
a′
1 and a2 ≤ΦA

a′
2 =⇒ a1 �A a2 ≤ΦA

a′
1 �A a′

2 (14)

Extension-commutation. For all B ⊆ A in T and b1, b2 ∈ ΦB,

(b1 �B b2)↑A = b↑A
1 �A b↑A

2 (15)

Then (∫ Φ,�) is an ordered semigroup, where � is the extension of {�A}A∈T.

Trace Models of Concurrent Valuation Algebras 125

The next lemma shows that to establish the weak exchange axiom for a
CVA (Definition 7 below), it suffices to show a local weak exchange law on each
domain.

Lemma 2. Let (Φ, ‖, run) and (Φ, �, skip) be OVAs whose combine operators
‖ and � are respectively defined as extensions of {‖A}A∈T

and {�A}A∈T. Assume
that on each A ∈ T, a weak exchange law holds: for all a1, a2, a3, a4 ∈ ΦA,
(a1 ‖A a2) �A (a3 ‖A a4) ≤ΦA

(a1 �A a3) ‖A (a2 �A a4). Then the weak exchange law
holds on ∫ Φ: for all a, b, c, d ∈ ∫ Φ, (a ‖ b) � (c ‖ d)
 (a � c) ‖ (b � d).

3 Concurrent Valuation Algebras

We now introduce a concurrent valuation algebra (CVA), structured as two
OVAs sharing the same underlying prealgebra, whose combine operators rep-
resent parallel and sequential products. These operators are interlinked via a
weak exchange law, and their neutral elements are related by a pair of inequali-
ties.

Definition 7 (concurrent valuation algebra (CVA)). A concurrent valu-
ation algebra (CVA) is a structure (Φ, �, skip, ‖, run) satisfying the four axioms:

Sequential OVA. (Φ, �, skip) is an OVA.
Parallel OVA. (Φ, ‖, run) is a commutative OVA.
Weak exchange. For all a, b, c, d ∈ ∫ Φ,

(a ‖ b) � (c ‖ d)
 (a � c) ‖ (b � d) (16)

Neutral laws. For all A ∈ T,

skipA
 skipA ‖ skipA, and, runA � runA
 runA (17)

This definition is motivated by the relationship between sequential and paral-
lel products. Sequential product, signifying a temporal juxtaposition, is generally
noncommutative. In contrast, parallel product, signifying a spatial juxtaposition,
is commutative. These two interlink by the weak exchange law. It states that the
sequential composite of two parallel compositions, a‖ b and c‖d, results in fewer
behaviours than the parallel composite of two sequential compositions, a � c and
b �d. Pictorially, this can be represented by a diagram (Fig. 2) where, on the left,
a and b must finish together, causing c and d to start simultaneously. On the
right, no such constraint is applied.

The neutral element of sequential composition, skip, acts as a null specifi-
cation, thus skipA ‖ skipA must equal skipA. Dually, the neutral element of
parallel composition, run, signifies an unconstrained specification, so runA �runA

equals runA. The proof of Proposition 1 below shows that it’s enough to assume
one direction of these equalities; the other is derivable.

Proposition 1. In a CVA (Φ, �, skip, ‖, run), for all A ∈ T, we have skipA

runA, skipA ‖ skipA = skipA, and runA � runA = runA.

126 N. Evangelou-Oost et al.

Fig. 2. Graphical representation of the weak exchange law.

Proof. By neutrality and weak exchange, for each A ∈ T, skipA = skipA �

skipA = (runA ‖ skipA) � (skipA ‖ runA)
 (runA � skipA) ‖ (skipA � runA) =
runA ‖ runA = runA. Given the neutral laws, for the remaining two properties,
it suffices to show that skipA ‖ skipA
 skipA and runA
 runA � runA. By
monotonicity of combination, we have skipA ‖ skipA
 skipA ‖ runA = skipA.
Similarly, runA = skipA � runA
 runA � runA.

Proposition 2. In a CVA (Φ, �, ε, ‖, ε) in which the neutral elements of parallel
and sequential product coincide, for all a, b ∈ ∫ Φ, we have a � b
 a ‖ b.

Proof. Let a ∈ ΦA and b ∈ ΦB . We have, a � b = a↑A∪B � b↑A∪B = (a ‖ εA∪B) �

(εA∪B ‖ b)
 (a � εA∪B) ‖ (εA∪B � b) = a↑A∪B ‖ b↑A∪B = a ‖ b.

Definition 8 (morphism of CVAs). Let (Φ, �, skip, ‖, run) and
(Φ′, �′, skip′, ‖′

, run′) be CVAs. A lax/colax/strong morphism f : Φ → Φ′

is a function f : ∫ Φ → ∫ Φ′ that is both a lax/colax/strong morphism of
OVAs (Φ, �, skip) → (Φ′, �′, skip) and a lax/colax/strong morphism of OVAs
(Φ, ‖, run) → (Φ′, ‖′

, run).4

3.1 Reasoning in a CVA

Refinement. In a CVA Φ, the ordering between elements a and b in ∫ Φ is
defined as a
 b if and only if db ⊆ da and a↓db ≤Φdb b. Viewing these elements
as system specifications, this ordering is interpreted as refinement: a
 b means
that all behaviour of a within domain db also exists in b, making a on db more
deterministic than b. However, the domain da of a may exceed db, as a refined
specification may introduce constraints outside the initial domain.

Hoare Logic and Rely-Guarantee Reasoning. Hoare triples and Jones
quintuples facilitate formal reasoning about program behaviour, leveraging the
well-established methodologies of Hoare logic and rely-guarantee reasoning.
These constructs may be realised in a CVA by adapting their definitions as
framed within Concurrent Kleene Algebras [13].

Let (Φ, �, skip, ‖, run) be a CVA, and p, a, q ∈ ∫ Φ. We define the Hoare
triple of a with precondition p and postcondition q as

p {a} q := p � a
 q (18)
4 In duoidal categories, morphisms may also be lax with respect to � and colax with

respect to ‖, but not the reverse [2].

Trace Models of Concurrent Valuation Algebras 127

From this definition, we may derive inference rules5 of Hoare logic, such as:

Proposition 3 (concurrency rule). Let p, p′, a, a′, q, q′ ∈ ∫ Φ. Then

p {a} q and p′ {a′} q′ =⇒ (p ‖ p′) {a ‖ a′} (q ‖ q′) (19)

Proof. Assume p � a
 q and p′ � a′
 q′. By weak exchange and monotonicity,
(p ‖ p′) � (a ‖ a′)
 (p � a) ‖ (p′ � a′)
 q ‖ q′. Thus, (p ‖ p′) {a ‖ a′} (q ‖ q′).

A Jones quintuple with rely r and guarantee g can then be defined as6

p r {a} g q := p {r ‖ a} q and a
 g (20)

To employ the standard inference rules of rely-guarantee reasoning, constraints
must be placed on the rely variable r and the guarantee variable g. Though this
definition serves as a gateway to rely-guarantee reasoning in the context of a
CVA, exploration of this aspect is beyond the present study’s purview.

4 Tuple Systems

In Sects. 5 to 7, each CVA examined is based on an underlying OVA of a specific
form—they are OVAs of T-relations associated to certain tuple systems T.
Tuple systems are presheaves that abstract the characteristic projecting and
lifting properties of ordinary tuples. For more on tuple systems and the valuation
algebras they induce, please see [15, Section 6.3, p. 169] and [17, Section 7.3.2,
p. 286]. A T-relation is a subset of these generalised tuples sharing a common
domain. In the trace models to follow, actions, states, traces and valuations
themselves are encoded as tuples within tuple systems. The structure of the
tuple system T governs how tuples on a larger domain project to a smaller
one through the presheaf’s restriction maps, as well as how tuples on a smaller
domain lift to a larger one via the presheaf’s flasque and binary gluing properties.

Definition 9 (tuple system). A tuple system is a presheaf T : Top → Set

satisfying the below axioms:

Flasque. For all B ⊆ A in T, the restriction map TA → TB is surjective.
Binary gluing. For all a ∈ TA and b ∈ TB, if a↓A∩B = b↓A∩B, then there

exists c ∈ TA∪B so that c↓A = a and c↓B = b.

Elements of TA are called tuples (on A) or A-tuples.

Theorem 2 (OVAs of T-relations). Let T : Top → Set be a tuple system.
Define the prealgebra Ψ := P ◦ T : Top → Pos. Then Ψ, equipped with the
relational join as the combine operator, defined

∧ : ∫ Ψ × ∫ Ψ → ∫ Ψ

a ∧ b :=
{
t ∈ Tda∪db | t↓da ∈ a, t↓db ∈ b

} (21)

5 Other basic rules are verified in the computer formalisation (see Footnote 1).
6 The guarantee requirement is stronger than required by Jones, where the guarantee

only must hold while the rely does.

128 N. Evangelou-Oost et al.

is a strongly neutral commutative OVA, that we call the OVA of T-relations.
Its local orderings ≤TA

are given by subset inclusion ⊆, and it has as neutral
element � = A �→ TA for each A ∈ T. Moreover, U ◦Ψ is itself a tuple system,
where U : Pos → Set is the forgetful functor that sends a poset to its underlying
set, and a monotone map to its underlying function.7

Proof. Monotonicity is easily verified. The other details are found in [15, p. 170].

It is worth noting the close resemblance of Eq. (21) with the trace semantics
of the CSP parallel operator [12, Section 2.3.3, p. 53].

Proposition 4. Extension is given by the preimage to restriction; i.e. for a ∈
ΦA, and B ∈ T with B ⊆ A, we have b↑A =

{
t ∈ TA | t↓B ∈ b

}
.

Proof. It is a standard proof that direct image is left-adjoint to preimage.

Proposition 5. The relational join of an OVA of relations is the extension
of intersection (from Definition 6): for a, b ∈ ∫ Φ, a ∧ b = a↑da∪db ∩ b↑da∪db.
Moreover, ∫ Φ is a complete lattice, and relational join is its meet.

Lemma 3. Let Ω : Top → Set be a tuple system, and let L : Set → Set be the
functor that sends a set X to the set of finite lists in X, i.e. L := X �→ ∐

n∈N
Xn,

and let L+ be the functor that sends X to the set of nonempty finite lists in X,
i.e. L+ := X �→ ∐

n∈N+
Xn. Then both L ◦ Ω and L+ ◦ Ω are tuple systems.

Notation. Square brackets are used to display the components of a tuple t ∈
(ΩA)n, i.e. we write t = [t1, . . . , tn]. Such tuples are referred to as traces.

5 Action Trace Model

Let Ωact : Top → Set be a tuple system whose values Ωact
A represent possible

actions of a system in the variables A. Some concrete examples: for a semiring S

of values, Ωact
A is the set of matrices A × A → S (linear actions); the set of pairs

S
A × S

A (events); the set of relations P(SA × S
A) (events with external choice).

Let Tact := L ◦ Ωact, so that for each A ∈ T, Tact
A is the set of (possibly empty)

traces of elements of Ωact
A . By Lemma 3, Tact is a tuple system. Let

Γ : Top → Pos

Γ := P ◦ Tact = A �→ P(L(Ωact
A))

(22)

be the OVA of Tact-relations. We now develop a CVA structure on Γ that we
call the action trace model .

For each A ∈ T, define
ιA := {[]A} (23)

where []A ∈ Tact
A is the unique length-0 trace with domain A. As restriction of

a trace preserves length, this defines a global element ι : 1 ⇒ Γ.
7 This last point follows from the idempotence property of ∧ [17, Example 7.7, p. 287].

Trace Models of Concurrent Valuation Algebras 129

5.1 Interleaving Product

For all p, q ∈ N, let Σp,q be the set (p, q)-shuffles, i.e. bijections {1, . . . , p + q} →
{1, . . . , p + q} (or permutations) such that σ(1) < · · · < σ(p) and σ(p + 1) <
· · · < σ(p + q). For each A ∈ T, define an operator on traces,

�̇A : Tact
A × Tact

A → ΓA

[t1, . . . , tp] �̇A [tp+1, . . . , tp+q] := {[tσ(1), . . . , tσ(p+q)] | σ ∈ Σp,q}
(24)

Then lift each �̇A to a local operator on valuations,

�A : ΓA × ΓA → ΓA

a�A a′ :=
⋃

{ta �̇A ta′ | ta ∈ a, ta′ ∈ a′} (25)

It is well-known that �A is commutative, associative, and has unit ιA. We then
define the interleaving product as the extension � of {�A}A∈T to ∫ Γ:

� : ∫ Γ × ∫ Γ → ∫ Γ

a� b := a↑da∪db
�da∪db b↑da∪db

(26)

Note that � is clearly commutative, and has as neutral element ι.

Lemma 4. For all t, s ∈ Tact
A and B ⊆ A, we have (t �̇A s)↓B = t↓B

�̇B s↓B.

Lemma 5. The structure (∫ Γ,�) is an ordered semigroup.

Proof. By Lemma 1, it suffices to show that the local monotonicity and
extension-commutation properties hold. The former follows directly from the
definition of �A. For extension-commutation, let B ⊆ A, let b, b′ ∈ ΓB , and let
t ∈ b↑A

�A b′↑A. By definition of �A, there exists r ∈ b↑A, s ∈ b′↑A so that
t ∈ r �̇A s. By Lemma 4, t↓B ∈ (r �̇A s)↓B = r↓B

�̇B s↓B ⊆ b �B b′. Thus,
t ∈ (b �B b′)↑A. Conversely, let t′ ∈ (b �B b′)↑A. Now there is r ∈ b, s ∈ b′

so that t′↓B ∈ r �̇B s. We may write r = [t1, . . . , tp], s = [tp+1, . . . , tp+q], and
t′↓B = [tσ(1), . . . , tσ(p+q)] for a (p, q)-shuffle σ ∈ Σp,q. For each 1 ≤ i ≤ p + q,
we then have a lifting t′σ(i) of tσ(i) so that t = [t′σ(1), . . . , t

′
σ(p+q)]. Then

r′ = [t′1, . . . , t
′
p] is a lifting of r, s′ = [t′p+1, . . . , t

′
p+q] is a lifting of s, and

t′ ∈ r′
�̇A s′ ∈ b↑A

�A b′↑A is exhibited as a trace associated to the same
(p, q)-shuffle σ. The result follows.

Lemma 6. The interleaving product � satisfies the combination axiom.

Proof. Let A,B ∈ T, a ∈ ΓA and b ∈ ΓB . Note that one direction of the
combination law follows from monotonicity. It then suffices to show a�b↓A∩B ⊆
(a� b)↓A and a↓A∩B

� b ⊆ (a� b)↓B . Let t ∈ a� b↓A∩B = a�A (b↓A∩B)↑A. By
definition of �A, there exists ta ∈ a and tb ∈ (b↓A∩B)↑A so that t ∈ ta �̇A tb. Let
t′a ∈ a↑A∪B be a lifting of ta. Let s := t↓A∩B

b ∈ ((b↓A∩B)↑A)↓A∩B = b↓A∩B, where
the equality follows by Corollary 2. There then exists s′ ∈ b so that s′↓A∩B = s.

130 N. Evangelou-Oost et al.

By binary gluing, there exists a common lifting t′b ∈ b↑A∪B of tb and s′. As in
the proof of Lemma 5, it is easily shown that there is t′ ∈ t′a �̇A∪B t′b ∈ a� b
(associated to the same (p, q)-shuffle as t) so that t = t′↓A ∈ (a� b)↓A. Similarly,
a↓A∩B

� b ⊆ (a� b)↓B . The result follows.

As strong neutrality easily holds, we have the following.

Proposition 6. The structure (Γ,�, ι) is a strongly neutral commutative OVA.

5.2 Concatenating Product

For each A ∈ T, define the associative binary operator on traces,

�. A : Tact
A × Tact

A → Tact
A

[t1, . . . , tn] �. A [s1, . . . , sm] := [t1, . . . , tn, s1, . . . , sm]
(27)

Then lift each �. A to a local operator on valuations,

�A : ΓA × ΓA → ΓA

a �A a′ := {ta �. A ta′ | ta ∈ a, ta′ ∈ a′} (28)

We call the extension � to ∫ Γ of {�A}A∈T the concatenating product .

Proposition 7. The structure (Γ,�, ι) is a strongly neutral OVA.

Proposition 8. The structure (Γ,�, ι,�, ι) is a CVA.

Proof. Both � and � define OVA structures on Γ (Propositions 6 and 7), and
the neutral laws ιA ⊆ ιA � ιA and ιA � ιA ⊆ ιA hold trivially. To show the
weak exchange law, by Lemma 2, it suffices to show a local exchange law holds
on each A ∈ T. Let a1, a2, a3, a4 ∈ ΓA and t ∈ (a1 �A a2) �A (a3 �A a4). By
definition of �, there is r ∈ a1 �A a2 and s ∈ a3 �A a4 so that t = r �. A s. It is
clear every action of t coming from a1 precedes every action of t coming from a3,
and similarly every action of t coming from a2 precedes every action of t coming
from a4. It follows that t is in (a1 �A a3)�A (a2 �A a4). The result follows.

Proposition 9. For all a, b ∈ ∫ Φ, we have a � b
 a� b.

Proof. As the units for � and � coincide, this follows from Proposition 2.

6 State Trace Model

Here we define a CVA whose valuations consist of traces of states of an abstract
system that progress in lockstep to an implied global clock. For each domain
A ∈ T, denote the hom-functor Ωstate := A �→ (A → S), i.e., Ωstate

A is the set of
(ordinary) A-tuples in some nonempty set S of values, and the action of Ωstate

on inclusions in T is by precomposition. Notably, Ωstate
∅ has a unique value ♥,

Trace Models of Concurrent Valuation Algebras 131

the empty state. By Lemma 3, Tstate := L+ ◦ Ωstate is a tuple system. For traces
t := [t1, . . . , tn] ∈ Tstate

A , a component ti is the system’s state at time i. Let

Σ : Top → Pos

Σ := P ◦ Tstate = A �→ P(L+(A → S))
(29)

be the OVA of Tstate-relations. The relational join ∧ on Σ behaves as synchroni-
sation, and we take this as the parallel product for a CVA structure on Σ that
we call the state trace model .

Let λ : Tstate
A → N+ denote the length function, and define

τ := A �→ {
t ∈ Tstate

A | λ(t) = 1
}

(30)

As restriction preserves lengths of traces, this defines a global element τ : 1 ⇒ Σ.

6.1 Gluing Product

Let A ∈ T. For a trace t ∈ Tstate
A , let t−, t+ respectively denote the first and last

components of t. Define an associative binary operator �. A on each Tstate
A by

�. A : Tstate
A × Tstate

A → Tstate
A

t �. A s := (t1, . . . , tλ(t)−1, s1, . . . , sλ(s))
(31)

This then lifts to an associative binary operator on valuations,

�A : ΣA × ΣA → ΣA

a �A a′ :=
{
ta �. A ta′ | ta ∈ a, ta′ ∈ a′, t+a = t−a′

} (32)

We call the extension � to ∫ Σ of the family {�A}A∈T the gluing product .

Proposition 10. The structure (Σ,�, τ) is a strongly neutral OVA.

Proposition 11. The structure (Σ,�, τ,∧,�) is a CVA.

Proof. The neutral equalities are clear, and both ∧ and � define OVAs on
Σ by Theorem 2 and Proposition 10. By Lemma 2, it suffices to show an
exchange law holds on each A ∈ T. Noting that ∧ is the extension of inter-
section by Proposition 5, let a1, a2, a3, a4 ∈ ΣA and let t ∈ (a1∩a2)�A (a3∩a4).
By local monotonicity of �A, both t ∈ a1 �A a3 and t ∈ a2 �A a4. Thus,
t ∈ (a1 �A a3) ∩ (a2 �A a4), and the result follows.

6.2 Strong Morphisms Between Γ and Σ

There are no interesting strong morphisms between the action trace model Γ
and the state trace model Σ. As the neutral elements for parallel and sequential
coincide in Γ but not in Σ, there are no strong morphisms Γ → Σ. On the other
hand, a strong morphism f : Σ → Γ must map �A to ιA, and by monotonicity
this implies that fA(a) ⊆ ιA for all a ∈ ΣA. Whether there are interesting
(co)lax morphisms between Γ and Σ is an open question.

132 N. Evangelou-Oost et al.

7 Relative State Trace Model

We introduce a variant, Σrel, of the state trace model from Sect. 6, that we refer to
as the relative state trace model . In this model, traces are stuttering-reduced,
meaning they do not contain duplicate adjacent components. Consequently, only
the relative order of the indices in the trace components is significant, indicating
independence from a global clock. This may lead to intriguing phenomena like
sequential inconsistency [7].

An essentially equivalent construction of the underlying relational OVA was
already presented in [7] using simplicial sets. Here, we offer a more concise
and direct method using free semigroups with idempotent generators, previously
applied to concurrency theory and quantum computation [4].

Let S be a set. Construct a semigroup I(S) as the free semigroup on S
modulo the relation x2 = x for all x ∈ S. This is known as the free semi-
group on S with idempotent generators. For example, if S := {0, 1},
then I(S) = {0, 1, 01, 10, 010, 101, 0101, . . .}, and the semigroup product is con-
catenation modulo this congruence; e.g., 010 · 01 = 0101. Given a function
f : S → S′, there is a semigroup homomorphism I(f) : I(S) → I(S′), defined by
I(f)(x1 · · · xn) := f(x1) · · · f(xn), and moreover, this construction is functorial.
Let U : Semi → Set be the forgetful functor from the category of semigroups to
the category of sets, that sends a semigroup to its underlying set, and a semi-
group homomorphism to its underlying function. As in Sect. 6, let Ωstate be the
contravariant hom-functor Ωstate = A �→ (A → S) where S is a fixed set of values.
We then define Trel := U ◦ I ◦ Ωstate : Top → Set.

Proposition 12. The presheaf Trel is a tuple system.

Proof (sketch). This is essentially equivalent to [7, Theorem 2]. There, empty
traces were included in the tuple system by use of the augmented simplicial
nerve functor. If the ordinary nerve were used, the same proof goes through, and
we would exclude empty traces (problematic here in defining gluing product),
yielding a tuple system isomorphic to the one described here with semigroups.

Now let Σrel := P◦Trel be the OVA of Trel-relations, and denote the relational
join ∧rel and its neutral element �rel = A �→ Trel

A . Note that while �∅ = Tstate
∅

has infinitely many elements [♥], [♥,♥], . . ., the neutral component �rel
∅ = Trel

∅
has only one, namely [♥]. We define a local operator on valuations,

�rel
A : Σrel

A × Σrel
A → Σrel

A

a �rel
A a′ :=

{
ta ·A ta′ | ta ∈ a, ta′ ∈ a′, t+a = t−a′

} (33)

where ·A is the product8 of the semigroup I(Ωstate
A), and λ and t �→ t+, t− are

defined as in Sect. 6. We call the extension �rel of
{
�rel

A

}
A∈T

to ∫ Σrel the relative
gluing product . Let τrel := A �→ {

t ∈ Trel
A | λ(t) = 1

}
. We then have,

8 To avoid excessive notation, we apply the semigroup products ·A directly to traces,
although their semigroup structure was forgotten by U.

Trace Models of Concurrent Valuation Algebras 133

Proposition 13. The structure (Σrel,�rel, τrel) is an OVA.

Unlike the models Γ and Σ of Sects. 5 and 6, we have the following.

Proposition 14. The OVA (Σrel,�rel, τrel) is not strongly neutral.

Proof. We have�rel
∅ = τrel

∅ and yet �rel �= τrel. The result follows.

Proposition 15. The structure (Σrel,�rel, τrel,∧rel,�rel) is a CVA.

Proof. The neutral laws are immediate, and we are only obliged to show
the local weak exchange laws hold by Proposition 5 and Lemma 2. Locally
∧rel

A = ∧A = ∩, and also �A and �rel
A have the same effect on traces, i.e. the glu-

ing of two stuttering-reduced traces is already stuttering-reduced, so the proof
of Proposition 11 goes through unchanged.

7.1 Colax Morphism from Σ to Σrel

Define the free semigroup functor F : Set → Semi mapping set S ∈ Set to finite
lists of its elements, using concatenation as the semigroup product. Please note
there is an evident isomorphism L+

∼= U ◦ F that we will apply implicitly. The
universal property of the free semigroup leads to a surjective map qS : F(S) �
I(S) for each set S, which acts to eliminate duplicated adjacent elements in a
list. This process defines a natural transformation q : F ⇒ I, allowing us to
obtain another natural transformation by whiskering9 on both sides of q.

(34)

We denote this composite f := (P ◦ U) ◦ q ◦ Ωstate : Σ → Σrel.

Proposition 16. The map f : Σ → Σrel is a colax morphism of CVAs.

Proposition 16 effectively realises the relative trace model Σrel as a quotient
of the state trace model Σ.

8 Local Computation

Valuation algebras provide a foundation for practical computation through a
suite of distributed local computation algorithms. These algorithms are designed
to resolve inference problems that arise in the context of valuation algebras. A
comprehensive reference to this topic is [17].

9 See [18, Remark 1.7.6., p.46].

134 N. Evangelou-Oost et al.

Definition 10. Let Φ be an OVA. A knowledgebase is a finite subset of valu-
ations K ⊆ ∫ Φ. Let A := {Ai ∈ T}i∈I be a finite family of domains, so that for
each i ∈ I, we have Ai ⊆ ⋃

a∈K da. Then the task of computing
(⊗

a∈K a
)↓Ai

for each i ∈ I, is called the inference problem for (K,A). In this context,⊗
a∈K a is called the joint valuation, and the domains Ai are called queries.

In distributed systems, an inference problem corresponds to determining the
local behaviours of a composite system of interacting components. For example,
sequential consistency of a specification, as shown in [7], can be framed as an
inference problem. The key to local computation is the combination axiom (a ⊗
b)↓da = a ⊗ b↓da∩db. However, traditional theory falls short in our setting as
it presumes a single commutative combine operator. Though the generalised
combination axiom of Definition 2 supports local computation for CVAs, further
exploration in this area is called for.

9 Conclusion

In this work, we have introduced the concurrent valuation algebra (CVA), a new
algebraic structure that expands upon ordered valuation algebras (OVAs) by
incorporating parallel and sequential products. This integration places the theory
of concurrent and distributed systems within the expansive scope of valuation
algebras.

Our CVAs draw inspiration from existing algebraic frameworks in concur-
rency theory such as Communicating Sequential Processes (CSP) [12], Concur-
rent Kleene Algebra (CKA) [15], Concurrent Refinement Algebra (CRA) [10],
and duoidal/2-monoidal categories [2]. They also facilitate key reasoning
methodologies for program specification, like Hoare logic [11], and rely-guarantee
reasoning [14].

Within the framework of CVAs, we explored three trace models, each repre-
senting distinct computational paradigms, and related them by morphisms.

This research marks a promising pathway to practical applications, particu-
larly through the potent local computation framework described in Sect. 8. Look-
ing ahead, our work will focus on several key areas. We aim to explore a wider
range of CVA models, including the trace semantics of CSP, as well as examples
founded on different structures, like trees or transition systems, instead of traces.
Our study will further involve deepening the understanding of the general theory
of CVAs, including the exploration of their categorical structure, and the ways
CVAs on different spaces relate via the pull-back and push-forward mechanisms
of their underlying presheaves. Of special interest is the examination of potential
links between OVAs and the monoidal Grothendieck construction [16].

Acknowledgements. We convey our sincere gratitude to the following for their valu-
able insights and support: Alexander Evangelou, Brae Webb, Christina Vasilakopoulou,
Cliff Jones, Des FitzGerald, Dylan Braithwaite, Brijesh Dongol, Graeme Smith, Igor
Dolinka, James East, Jesse Sigal, Joe Moeller, John Baez, Juerg Kohlas, Kait Lam,
Kirsten Winter, Luigi Santocanale, Marc Pouly, Mark Utting, Martti Karvonen, Matt

Trace Models of Concurrent Valuation Algebras 135

Garcia, Matteo Capucci, Michael Robinson, Mike Shulman, Morgan Rogers, Nick
Coughlin, Peter Hoefner, Ralph Sarkis, Reid Barton, Rob Colvin, Scott Heiner, Sori
Lee, Ted Goranson, Yannick Chevalier, and the Zulip category theory community. We
are thankful for the support of the Australian Government Research Training Program
Scholarship of Naso, and funding from the Australian Research Council (ARC) through
the Discovery Grant DP190102142. We gratefully acknowledge the use of GitHub Copi-
lot and OpenAI ChatGPT software in refining the readability of this paper, though
their contribution did not extend to the semantic substance of the research.

References

1. Abramsky, S., Carù, G.: Non-locality, contextuality and valuation algebras: a gen-
eral theory of disagreement. Philos. Trans. Roy. Soc. A 377(2157), 20190036 (2019).
https://doi.org/10.1098/rsta.2019.0036

2. Aguiar, M., Mahajan, S.: Monoidal functors, species and Hopf algebras, CRM
Monograph Series, vol. 29. American Mathematical Society, Providence, RI (2010).
https://doi.org/10.1090/crmm/029

3. Barmak, J.A.: Algebraic topology of finite topological spaces and applications,
Lecture Notes in Mathematics, vol. 2032. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22003-6

4. Bertoni, A., Mereghetti, C., Palano, B.: Trace monoids with idempotent generators
and measure-only quantum automata. Nat. Comput. 9(2), 383–395 (2010). https://
doi.org/10.1007/s11047-009-9154-8

5. Chen, L.-T., Roggenbach, M., Tucker, J.V.: An algebraic theory for data linkage. In:
Fiadeiro, J.L., Tutu, I. (eds.) WADT 2018. LNCS, vol. 11563, pp. 47–66. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23220-7_3

6. Evangelou-Oost, N., Bannister, C., Meinicke, L., Hayes, I.J.: Trace models of con-
current valuation algebras. arXiv:2305.18017 (2023)

7. Evangelou-Oost, N., Bannister, C., Hayes, I.J.: Contextuality in distributed sys-
tems. In: Glück, R., Santocanale, L., Winter, M. (eds.) Relational and Algebraic
Methods in Computer Science, pp. 52–68. Springer International Publishing, Cham
(2023). https://doi.org/10.1007/978-3-031-28083-2_4

8. Fong, B., Spivak, D.I.: Seven sketches in compositionality: an invitation to applied
category theory. LibreTexts (2022)

9. Haenni, R.: Ordered valuation algebras: a generic framework for approximating
inference. Int. J. Approx. Reason. 37(1), 1–41 (2004). https://doi.org/10.1016/j.
ijar.2003.10.009

10. Hayes, I.J., Meinicke, L.A., Winter, K., Colvin, R.J.: A synchronous program alge-
bra: a basis for reasoning about shared-memory and event-based concurrency. For-
mal Aspects Comput. 31(2), 133–163 (2018). https://doi.org/10.1007/s00165-018-
0464-4

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

12. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

13. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its
foundations. J. Log. Algebraic Methods Program. 80(6), 266–296 (2011). https://
doi.org/10.1016/j.jlap.2011.04.005

14. Jones, C.B.: Development methods for computer programs including a notion of
interference. Oxford University Computing Laboratory, Oxford (1981)

https://doi.org/10.1098/rsta.2019.0036
https://doi.org/10.1090/crmm/029
https://doi.org/10.1007/978-3-642-22003-6
https://doi.org/10.1007/978-3-642-22003-6
https://doi.org/10.1007/s11047-009-9154-8
https://doi.org/10.1007/s11047-009-9154-8
https://doi.org/10.1007/978-3-030-23220-7_3
http://arxiv.org/abs/2305.18017
https://doi.org/10.1007/978-3-031-28083-2_4
https://doi.org/10.1016/j.ijar.2003.10.009
https://doi.org/10.1016/j.ijar.2003.10.009
https://doi.org/10.1007/s00165-018-0464-4
https://doi.org/10.1007/s00165-018-0464-4
https://doi.org/10.1145/363235.363259
https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.1016/j.jlap.2011.04.005

136 N. Evangelou-Oost et al.

15. Kohlas, J.: Information algebras - generic structures for inference. Springer, Dis-
crete mathematics and theoretical computer science (2003)

16. Moeller, J., Vasilakopoulou, C.: Monoidal Grothendieck construction (2021)
17. Pouly, M., Kohlas, J.: Generic Inference: a Unifying Theory for Automated Rea-

soning. Wiley, Hoboken (2012)
18. Riehl, E.: Category Theory in Context. Courier Dover Publications, Mineola (2017)
19. Tarlecki, A., Burstall, R.M., Goguen, J.A.: Some fundamental algebraic tools for

the semantics of computation: Part 3: indexed categories. Theor. Comput. Sci.
91(2), 239–264 (1991). https://doi.org/10.1016/0304-3975(91)90085-G

https://doi.org/10.1016/0304-3975(91)90085-G

Branch and Bound for Sigmoid-Like
Neural Network Verification

Xiaoyong Xue and Meng Sun(B)

School of Mathematical Sciences, Peking University, Beijing 100871, China
{xuexy,sunm}@pku.edu.cn

Abstract. The robustness of deep neural networks has received exten-
sive attention and is considered to need guarantees by formal verification.
For ReLU neural network verification, there are abundant studies and
various techniques. However, verifying sigmoid-like neural networks still
relies on linear approximation, which inevitably introduces errors and
leads to imprecise results. To reduce error and get better results, we
present a branch and bound framework for sigmoid-like neural network
verification in this paper. In this framework, we design a neuron splitting
method and a branching strategy. The splitting method can split neu-
rons with non-linear sigmoid-like activation functions, and the branching
strategy reduces the size of the branch and bound tree, which improves
the verification performance. We implement our verification framework
as SigBaB and evaluate its performance on open source benchmarks.
Experiment results show that our method can produce more precise ver-
ification results than other state-of-the-art methods and our branching
strategy shows superior performance compared to other strategies.

Keywords: Robustness · Verification · Neural network

1 Introduction

While deep neural networks play a growing role in safety-critical fields [4,9], their
robustness is becoming a major concern. Studies show that deep neural networks
are vulnerable to adversarial attacks. Small and imperceptible perturbations may
lead to completely different prediction result from the original image [7,10,17].
To address this problem, verification techniques are leveraged to make a rigorous
guarantee on the robustness of neural networks.

Formal verification of neural networks has been well studied recent years.
Numerous techniques, such as satisfiability modulo theory [5], mixed inte-
ger linear programming [13], abstract interpretation [15,16], linear approxima-
tion [19,22], branch and bound [2,14,18], are applied to verify the robustness
of neural networks with ReLU activation function. For sigmoid-like activation
functions, their non-linearity makes the verification far more complicated, and
thus formal verification of sigmoid-like neural networks mostly relies on linear
approximation [1,8,12,20,22], which adopts a lower linear relaxation and an
upper linear relaxation for the activation function. These works use different

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 137–155, 2023.
https://doi.org/10.1007/978-981-99-7584-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_9&domain=pdf
https://doi.org/10.1007/978-981-99-7584-6_9

138 X. Xue and M. Sun

linear relaxations for sigmoid-like activation functions, such as tangent lines at
an end point or the mid point [1,22], parallel lines [20], and lines with minimal
enclosed area [8].

Linear approximation can be efficiently obtained through propagation based
methods [22]. But it is well known that this method inevitably introduces devia-
tions regardless of the choice of linear relaxations, which means a neural network
may be robust even if linear approximation fails to prove that. Moreover, linear
approximation can not refine its results by itself, i.e. it is unable to produce
more precise result even if more time is invested, since the linear relaxations for
each neuron remain unchanged during the computation.

In order to refine the results of linear approximation, we propose a branch
and bound verification framework for sigmoid-like neural networks in this paper.
For a verification problem that linear approximation fails to prove, we divide it
into several sub-problems by splitting some hidden neurons. If all sub-problems
are proved to be true, the answer to the parent problem is true. If one of the
sub-problems is proved to be false, the answer to the parent problem is false.
Otherwise, we continue to divide problems with unknown results.

Our verification framework contains a neuron splitting method and a branch-
ing strategy. The neuron splitting method splits a non-linear sigmoid-like func-
tion into several segments, and computes a lower linear relaxation and an upper
linear relaxation for each of them. These relaxations are computed based on lin-
ear relaxations of the parent problem and the convexity of activation functions,
which ensures the solutions of the sub-problems are at least as good as those
of the parent problem. The branching strategy applies a heuristic scoring func-
tion to make branching decisions. The scoring function assigns a score to each
neuron, which estimates the potential improvement obtained by splitting the
neuron. The score for each neuron is computed locally, enabling the entire scor-
ing process to be completed in one backward propagation. Our strategy chooses
a neuron with the highest score to split. The new branching strategy can reduce
the size of the branch and bound search tree, and thus improves the efficiency
of our framework. Besides, we can generate possible counterexamples for each
sub-problem, which may detect unsatisfiable properties.

We have made an implementation of this framework, called SigBaB. Differ-
ent from other verification tools for sigmoid-like neural networks, it runs in par-
allel and is amenable to GPU acceleration. We compare it with three representa-
tive tools, DeepCert [20], VeriNet [8], CROWN [22], and NeWise [23]. The
experiments show that SigBaB can produce more precise verification results.
Compared to other tools, SigBaB an average improvement of 34.9% and a max-
imum improvement of up to 160.9% in terms of the number of verified properties.

The rest of the paper is organized as follows. Section 2 provides the prelim-
inaries on robustness properties and linear approximations of neural networks.
Section 3 presents the branch and bound verification framework for sigmoid-like
neural networks. In Sect. 4 and Sect. 5, we introduce the splitting method and
the branching strategy, respectively. Section 6 shows the experimental results.
Finally, we conclude in Sect. 7.

Branch and Bound for Sigmoid-Like Neural Network Verification 139

2 Preliminaries

In this section, we briefly introduce some background knowledge about neu-
ral networks, robustness property of neural networks, and linear relaxations of
sigmoid-like activation functions.

2.1 Neural Networks

A neural network is formed by sequentially connected layers, consisting of one
input layer, one output layer and multiple hidden layers. Formally, a neural
network with n-dimensional input and m-dimensional output can be regarded
as a function f : Rn → R

m. The connections between layers in the neural network
can be formulated as follows:

z0,i = xi ∀i = 1 . . . n (1)

ẑl,i =
nl−1∑

j=1

wl
i,jzl−1,j + bl

i ∀l = 1 . . . L, i = 1 . . . nl (2)

zl,i = σ(ẑl,i) ∀l = 1 . . . L − 1, i = 1 . . . nl (3)
yi = ẑL,i ∀i = 1 . . . m (4)

This neural network has L − 1 hidden layers and nl neurons for layer l. The
behaviors of the input layer and the output layer are represented in Eq. (1)
and Eq. (4), respectively. The i-th dimension of the output is denoted as yi or
fi(x). We use ẑl,i as the i-th pre-activation neurons in layer l and zl,i as the
corresponding post-activation neuron. The weighted-sum is described in Eq. (2),
where wl

i,j and bl
i denote weights and biases respectively. We also use wl and wl

i

to represent the weight matrix and the i-th row of wl. Equation (3) describes the
activation layer, where σ(x) is the activation function. In this paper, we focus
on sigmoid-like activation functions, such as Sigmoid and Tanh:

σ(x) =
1

1 + e−x
σ(x) =

ex − e−x

ex + e−x

In classification tasks, for a given input x, the neural network determines that
x belongs to class t if and only if (iff) for any k �= t (1 ≤ k ≤ m), ft(x) > fk(x).

2.2 Robustness Property

Local robustness property [23] is an important and widely studied property,
which means that the prediction label stays unchanged when a small perturba-
tion is added to a given input. Formally, local robustness is defined as follows:

Definition 1 (Local robustness). Let f be a neural network with m-
dimensional output. Given an input x0 with ground-truth label l and a perturba-
tion radius ε under �p norm, the neural network f is local robust at x0 within
the radius of ε iff

∀x′ ∈ {x′ | ||x′ − x0||p ≤ ε},
∧

j �=l

fl(x′) > fj(x′).

140 X. Xue and M. Sun

It can be observed that the constraint on the output layer is a conjunction
of a set of atomic formulas. Each atomic formula means that the neural network
is robust to a certain dimension of the output. We call the property represented
by an atomic formula targeted robustness.

Definition 2 (Targeted robustness). Let f be a neural network. Given an
input x0 with ground-truth l, one certain dimension t of the output and a per-
turbation radius ε under �p norm, the neural network f is targeted robust for t
at x0 within the radius of ε iff

∀x′ ∈ {x′ | ||x′ − x0||p ≤ ε}, fl(x′) > ft(x′) (5)

In practice, the local robustness property is examined by checking all targeted
robustness properties derived from it. In this paper, we consider the verification
of targeted robustness in the sense of �∞ norm, which the most general case.

2.3 Linear Relaxation of Sigmoid-Like Functions

A widely adopted method to verify targeted robustness (5) is transforming itself
into the following optimization problem:

min yl − yt

s.t. yl = wL
l zL−1 + bL

l , yt = wL
t zL−1 + bL

t ,

ẑk = wkzk−1 + bk k = 1 . . . L − 1,

zk = σ(ẑk) k = 1 . . . L − 1,

||z0 − x0||p ≤ ε.

(6)

If the optimal value of this optimization problem is greater than zero, we have
fl(x′) > ft(x′), and then the targeted robustness is satisfied.

The main obstacle in solving (6) is the non-linearity of activation functions.
Linear approximation addresses this by finding a lower linear relaxation hL and
an upper linear relaxation hU for each activation function σ(x), which satisfies

hL(x) ≤ σ(x) ≤ hU (x).

In our framework, we apply the linear relaxation method used in Deep-

Cert [20]. Assume that the input interval of σ(x) is [l, u]. Let k = σ(u)−σ(l)
u−l .

The method computes linear relaxations in three categories:

(1) If σ′(l) < k and σ′(u) > k, the linear relaxations are hL(x) = kx + σ(d) − kd
and hU (x) = kx + σ(l) − kl, where σ′(d) = k and l < d < u.

(2) If σ′(l) > k and σ′(u) < k, the linear relaxations are hL(x) = kx + σ(l) − kl
and hU (x) = kx + σ(d) − kd, where σ′(d) = k and l < d < u.

(3) If σ′(l) < k and σ′(u) < k, the linear relaxations are hL(x) = σ′(d1)x+σ(u)−
σ′(d1)u and hU (x) = σ′(d2)x + σ(l) − σ′(d2)l, where σ′(d1) = σ(d1)−σ(u)

d1−u and

σ′(d2) = σ(d2)−σ(l)
d2−l .

Branch and Bound for Sigmoid-Like Neural Network Verification 141

3 Branch and Bound for Sigmoid-Like Neural Networks

In this section, we propose a branch and bound framework to verify neural
networks with sigmoid-like activation functions. This starts with a high level
overview, followed with step-by-step explanation.

Fig. 1. Verification framework

The overall framework is depicted in Fig. 1. The input of the framework
includes a neural network f , a data vector x0 and a targeted robustness property
P . In order to examine the robustness property, f must be a white box, which
means that all information about weights, biases and activation functions is
provided to the framework.

In the first step of our framework, we use symbolic interval propagation to
compute bounds and linear relaxations for each hidden neuron. The bounds of
each neuron determine the initial feasible domain of each neuron. Using the
relaxations, we check the satisfiability of property P by finding the lower bound
of problem (6) on the feasible domain. If the property is satisfied, our frame-
work terminates and return “True”. Otherwise, we divide the initial feasible
domain into several smaller domains. The satisfiability of P is checked on every
domain, and those domains on which property P is verified are discarded. The
results of satisfiability checking for the rest domains are used to generate pseudo-
counterexamples. If one of the pseudo-counterexamples is valid, property P is
proved to be unsatisfiable and our framework returns “False”. Otherwise, we
perform branching on these domains and continue this process until all domains
have been verified and “True” is returned, or the time limit is reached and
“Unknown” is returned.

The rest of the section provides a detailed explanation of each step.

Symbolic Interval Propagation. Symbolic interval propagation computes
bounds and linear relaxations for each hidden neuron. The computation starts
from the first hidden layer and proceeds layer by layer. For the first hidden layer,
we first compute a lower bound l and an upper bound u for every pre-activation
neuron by interval arithmetic, and then use l and u to calculate linear relax-
ations of activation functions using the method proposed in [20] (see Sect. 2.3
for more details). For every remaining hidden layer, l and u are computed based

142 X. Xue and M. Sun

on linear relaxations of all preceding layers, and we use l and u to calculate linear
relaxations in the same way.

Remark that the tool presented in [20] for computing linear relaxations of
sigmoid-like activation functions is limited to be executed on CPU. To improve
the efficiency of symbolic interval propagation, we leverage a modern deep learn-
ing library to compute linear relaxations in parallel, which enables GPU accel-
eration and thus significantly reduces time consumption.

Unchecked Domain List. The unchecked domain list is used to store domains
that need to checked. If the unchecked domain list is empty, it indicates that
the property P is satisfied across all domains, and thus our framework returns
“True”. Domains in the unchecked domain list are sorted descendingly according
to bounding results of their parent domain. In this way, the domain that is most
likely to be proved is selected first, thereby reducing memory usage.

Check Satisfiability. We check the satisfiability of the input property P for
every domain via transforming the verification problem into an optimization
problem. To get over the non-linearity of the activation function, the constraints
on activation functions in problem (6) are replaced with linear relaxations. The
lower and upper linear relaxations for the activation function in layer k are
denoted as αL

k x + βL
t and αU

k x + βU
k , respectively, where αL

k and αU
k (βL

k and
βU

k) are constants representing the slops (intercepts) of linear relaxations. The
optimization problem for an domain is formally written as:

min DẑL

s.t. ẑk = wkzk−1 + bk k = 1 . . . L,

αL
k ẑk + βLk ≤ zk ≤ αU

k ẑk + βUk k = 1 . . . L − 1,

l′k,i ≤ ẑk,i ≤ u′
k,i i ∈ Sk, k = 1 . . . L − 1,

||z0 − x0|| ≤ ε.

(7)

where D is the coefficient vector of the linear constraints on the output layer,
and Sk is the set of neurons that are split in this domain. The bound constraints
l′k,i ≤ ẑk,i ≤ u′

k,i are generated by the neuron splitting method. For neurons that
are not in Sk, the bound constraints are omitted because they can be inferred
from the linear relaxations. As the optimal value of problem (7) serves as a
lower bound for the optimal value of problem (6), property P is satisfiable on
this domain if the optimal value of problem (7) is greater than 0.

For the initial domain, Sk is empty, and the optimization problem can be
solved by backward propagation. For other domains, we use Lagrange Relax-
ation [18] to transform problem (7) into a simpler problem:

max
μ,λ

min
z

DẑL +
L−1∑

k=1

∑

i∈Sk

(μk,i(l′k,i − ẑki
) + λk,i(ẑk,i − u′

k,i))

s.t. ẑk = wkzk−1 + bk k = 1 . . . L,

αL
k ẑk + βLk ≤ zk ≤ αU

k ẑk + βUk k = 1 . . . L − 1,

||z0 − x0|| ≤ ε, λk,i ≥ 0, μk,i ≥ 0 i ∈ Sk, k = 1 . . . L − 1.

(8)

Branch and Bound for Sigmoid-Like Neural Network Verification 143

Algorithm 1: Solving the optimization problem (8)
Input: Optimization problem (8), number of iterations T .
Output: The optimal value γ

1 Initialize all μ, λ to positive values;
2 for t ← 1 to T do
3 RL−1, cL−1 ← D · wL, D · bL;
4 for k ← L − 1 to 1 do
5 c′

k ← [Rk]+βL
k + [Rk]+βU

k + ck;

6 R′
k ← [Rk]+αL

k + [Rk]+αU
k ;

7 for each i ∈ Sk do
8 R′

k,i ← R′
k,i + λk,i − μk,i;

9 c′
k ← c′

k + μk,il
′
k,i − λk,iu

′
k,i;

10 ck−1 ← Rk · bk + ck;

11 Rk−1 ← Rk · wk;

12 γ ← the minimum value of R0 · z0 + c0 subject to ||z0 − x0|| ≤ ε;
13 Update μ, λ according to the gradient;

14 return γ

The bound constraints on neurons in Sk are incorporated into the objective
function with the multipliers λ and μ, which must be non-negative. In this way,
the problem (8) can be solved with multiple iteration of backward propagation,
which is shown in Algorithm 1.

Algorithm 1 adopts projected gradient ascent to solve the outer maximization
problem. The multipliers λ and μ are initialized as positive values (Line 1) and
updated according to the gradient (Line 13), which is computed according to the
inner minimization problem. For any specific μ and λ, the inner minimization
problem can be solved with backward propagation (Line 3–Line 12). For layer
k, the backward propagation use the constraints on weights and relaxations to
replace variables ẑk in the objective function with ẑk−1. We use Rk and ck to
represent the coefficient vector and constant term of the objective function for
layer k. When the propagation reaches the input layer, we just need to find the
minimum value of R0z0 + c subject to ||z0 − x0|| ≤ ε.

By exploiting weak duality, we can get that the optimal value to the inner
minimization problem is a valid lower bound of problem (7) for any μ and λ
that are greater than 0. Therefore, the soundness of Algorithm 1 is guaranteed
regardless of whether the outer maximization problem converges. This means
that if the result γ returned by Algorithm 1 is greater than zero, the input
property P is satisfied on the domain corresponding to the optimization problem.

Counterexample. If the result returned by Algorithm 1 is less than zero, we
cannot determine the input property is unsatisfiable because of the relaxations
in problem (8). But we can derive a pseudo-counterexample from Algorithm 1.
The optimum point of inner minimization problem is regarded as a pseudo-
counterexample and checked for validity. If it is valid, the input property P is

144 X. Xue and M. Sun

unsatisfiable. Otherwise, the branch and bound framework continues to split
more neurons.

4 Neuron Splitting

In this section, we propose a new neuron splitting method for sigmoid-like acti-
vation functions.

For a neuron with a piece-wise linear activation function like ReLU, there
exists a natural splitting method, that is, splitting at the breakpoints of the piece-
wise function. However, for a neuron with a sigmoid-like activation function,
there are an infinite number of ways to split it due to the non-linearity of the
sigmoid-like function. A direct method is to split at the middle point, which has
two disadvantages. First, the linear relaxations of the created subdomains may
require computing tangent lines with given slops, which needs time-consuming
iterative calculation. Second, splitting at the middle point may generate looser
linear relaxations, which makes the produced subdomains worse than the original
one. The two weaknesses are illustrated by the following example.

Fig. 2. An example of splitting neuron at the middle point.

Example 1. Consider a neural network shown in Fig. 2(a), which has only one
hidden layer. The input layer contains two neurons x1 and x2, where x1 ∈ [0, 1]
and x2 ∈ [0, 1]. We want to check whether this neural network satisfies the
property y1 ≥ y2. This requires finding the minimum value of y1 − y2. Using
interval arithmetic, we get a lower bound 0 and an upper bound 4 for the pre-
activation neuron ẑ1. Linear relaxations of z1 are represented as blue lines in
Fig. 2(b). With these relaxations, we get the minimal value of y1−y2 is −0.071.

Branch and Bound for Sigmoid-Like Neural Network Verification 145

If we split neuron z1 at the middle point of its range [0, 4], two subdomains
are obtained: ẑ1 ∈ [0, 2] and ẑ1 ∈ [2, 4]. Linear relaxations for these two domains
are depicted as red lines in Fig. 2(b). Note that computing the upper linear
relaxations for these two domains requires finding tangent lines with given slops,
which is accomplished through iterative computation and takes a lot of time. We
also notice that the region enclosed by the red lines is not entirely contained
within the region enclosed by the blue lines. The gray region in Fig. 2(b) is
an additional part introduced by splitting. The additional part may make the
verification of the two new domains more difficult than that of the parent domain.
In fact, the minimal value of y1 − y2 on these two domains are −0.1502 and
−0.1115. Both are less than the minimal value −0.071 of the parent domain,
which means that the produced subdomains are worse than the parent domain.

We propose a new neuron splitting method, which overcomes the two weak-
nesses. Consider splitting a neuron with a sigmoid-like activation function σ(x),
whose feasible domain is [l, u]. The original lower and upper linear relaxations for
σ on [l, u] are αLx + βL and αUx + βU , respectively. According to the following
three cases, we split the parent domain [l, u] into several subdomains and give
the lower and upper linear relaxations for σ on every part. The lower and upper
linear relaxations on the i-th subdomain are denoted as hL

i and hU
i , respectively.

In Fig. 3–Fig. 5, we depict relaxations for the parent domain using blue lines,
relaxations for subdomains using red lines and the regions enclosed by red lines
using grey regions.

(1) If l < 0 < u, we split the domain [l, u] into two parts: [l, 0] and [0, u]. We use
αLx+βL and αUx+βU as the lower linear relaxation on [l, 0] and the upper
linear relaxation on [0, u], respectively. Remark that a sigmoid-like activation
function is convex on the negative axis (−∞, 0) and concave on the positive
axis (0,+∞). So, we set the line connecting the points (l, σ(l)) and (0, σ(0))
as the new upper linear relaxation on [l, 0], and the line connecting the points
(0, σ(0)) and (u, σ(u)) as the new lower linear relaxation on [0, u]. That is,

hL
1 (x) = αLx + βL, hU

1 (x) = −σ(0) − σ(l)
l

x + σ(0),

hL
2 (x) =

σ(u) − σ(0)
u

x + σ(0), hU
2 (x) = αUx + βU .

(2) If l ≥ 0, there are two subcases. The first subcase is that the intersection point
of the activation function σ and the original upper linear relaxation is neither
the left endpoint (l, σ(l)) nor the right endpoint (u, σ(u)), which is equivalent
to αU �= σ′(l) and αU �= σ′(u). The second subcase is that the intersection
point of them is one of the endpoints, which is equivalent to αU = σ′(l) or
αU = σ′(u). For the first subcase, as shown in Fig. 4(a), we first compute
the intersection point d1 (d2) of the original upper linear relaxation and the
tangent line of σ at l (u), where

d1 = −σ(l) − σ′(l)l − βU

σ′(l) − αU
and d2 = −σ(u) − σ′(u)u − βU

σ′(u) − αU
.

146 X. Xue and M. Sun

Fig. 3. Neuron splitting on l < 0 < u.

Then, we split the domain [l, u] into three parts: [l, d1], [d1, d2] and [d2, u].
Recall that σ is concave on (0,+∞). So, we have (1) the line connecting the
left endpoint and the right endpoint of each part is a lower linear relaxation
on the part; and (2) the tangent lines at point l and at point u are upper
linear relaxations on [l, d1] and [d2, u], respectively. We set the original upper
linear relaxation as the upper linear relaxation on [d1, d2]. Namely, we have

hL
1 (x) =

σ(d1) − σ(l)
d1 − l

(x − l) + σ(l), hU
1 (x) = σ′(l)(x − l) + σ(l),

hL
2 (x) =

σ(d2) − σ(d1)
d2 − d1

(x − d1) + σ(d1), hU
2 (x) = αUx + βU ,

hL
3 (x) =

σ(u) − σ(d2)
u − d2

(x − u) + σ(u), hU
3 (x) = σ′(u)(x − u) + σ(u).

For the second subcase, we only explain the case where the intersection point
is the right endpoint u, as shown in Fig. 4(b), since the other case where
the intersection point is the left endpoint is the same. We first compute the
intersection point d of two tangent lines at point l and at point u, where

d = − (σ(l) − σ′(l)l) − (σ(u) − σ′(u)u)
σ′(l) − σ′(u)

. (9)

Then, we split the domain [l, u] into two parts: [l, d] and [d, u]. Similar to the
first subcase, we set (1) the line connecting the left endpoint and the right
endpoint of each part as the lower linear relaxation on the part; and (2) the
tangent lines at point l and at point u as the upper linear relaxations on [l, d]
and [d, u], respectively. We have

hL
1 (x) =

σ(d) − σ(l)
d − l

(x − l) + σ(l), hU
1 (x) = σ′(l)(x − l) + σ(l),

hL
2 (x) =

σ(u) − σ(d)
u − d

(x − u) + σ(u), hU
2 (x) = σ′(u)(x − u) + σ(u).

Branch and Bound for Sigmoid-Like Neural Network Verification 147

Fig. 4. Neuron spliting for l ≥ 0.

(3) If u ≤ 0, there are two subcases, which are similar to the subcases for l ≥ 0.
For the first subcase where the intersection point is not an endpoint, as shown
in Fig. 5(a), we again compute the intersection point d1 (d2) of the original
upper linear relaxation and the tangent line at point l (u), where

d1 = −σ(l) − σ′(l)l − βL

σ′(l) − αL
and d2 = −σ(u) − σ′(u)u − βL

σ′(u) − αL
.

We divide the domain [l, u] at point d1 and point d2 to get three parts. Recall
that σ is convex on (−∞, 0). So, we have (1) the line connecting the left
endpoint and the right endpoint of each part is an upper linear relaxation on
the part; and (2) the tangent lines at point l and at point u are lower linear
relaxations on [l, d1] and [d2, u], respectively. We set the original lower linear
relaxation as the lower linear relaxation on [d1, d2]. That is, we have

hL
1 (x) = σ′(l)(x − l) + σ(l), hU

1 (x) =
σ(d1) − σ(l)

d1 − l
(x − l) + σ(l),

hL
2 (x) = αLx + βL, hU

2 (x) =
σ(d2) − σ(d1)

d2 − d1
(x − d1) + σ(d1),

hL
3 (x) = σ′(u)(x − u) + σ(u), hU

3 (x) =
σ(u) − σ(d2)

u − d2
(x − u) + σ(u).

For the second subcase where the intersection point is an endpoint, we only
explain the case where the intersection point is the left endpoint l, as shown in
Fig. 5(b). Similarly, we divide the domain [l, u] at point d to get two parts [l, d]
and [d, u], where d is shown in Equation (9). We set (1) the line connecting
the left endpoint and the right endpoint of each part as the upper linear
relaxation on the part; and (2) the tangent lines at point l and at point u as

148 X. Xue and M. Sun

Fig. 5. Neuron splitting for u ≤ 0.

the lower linear relaxations on [l, d] and [d, u], respectively. We have

hL
1 (x) = σ′(l)(x − l) + σ(l), hU

1 (x) =
σ(d) − σ(l)

d − l
(x − l) + σ(l),

hL
2 (x) = σ′(u)(x − u) + σ(u), hU

2 (x) =
σ(u) − σ(d)

u − d
(x − u) + σ(u).

Remark that in each of the three cases, the region enclosed by relaxations
of the subdomains is contained in the region enclosed by original relaxations
(see Fig. 3–Fig. 5). This ensures that the subdomains produced by splitting are
not worse than their parent domain. Moreover, we only need to compute the
tangent lines at endpoints, which is more efficient than computing tangent lines
with given slops.

5 Branching Strategy

In this section, we present a novel branching strategy for neural networks with
sigmoid-like activation functions.

Recall the verification framework presented in Fig. 1. We need to perform
branching on domains where the input property fails to be verified. This requires
the branching strategy to decide which neuron to split. Ideally, we hope that the
branching strategy takes the neuron that maximizes the improvements of the
produced subdomains, which are measured by the change of the result computed
by Algorithm 1. However, due to the vast number of neurons in a network,
computing the exact improvement for each neuron is impractical and usually
replaced by approximation methods such as BaBSR [2] and FSB [14]. These
two methods were originally designed for ReLU neural networks and show poor
compatibility with our splitting method. We propose a novel branching strategy
called Neuron Improvement (NI), which estimate the branching improvement

Branch and Bound for Sigmoid-Like Neural Network Verification 149

for each neuron and choose a neuron with the maximum estimated improvement
as the branching decision.

Splitting a neuron to branching a domain creates multiple subdomains. We
first introduce how to estimate the improvement of one subdomain. To approx-
imate the result of Algorithm 1, we set all all λ and μ to 0 and cease their
updates. In this way, Algorithm 1 only involves the inner backward propagation.
Assume that the branching is taken on the i-th neuron in layer k. It directly
changes the linear relaxations for neuron ẑk,i. As a result, the computation in
layers k′ is changed for all k′ < k. If we want to get the result, we need the
full backward propagation. To improve efficiency, we make a rough estimation
by terminating the backward propagation and computing the minimal value at
layer k. Because relaxations of all neurons except ẑk,i are the same, we only need
to consider the contribution of neuron zk,i to the optimal value. For the parent
domain, denoting the lower and upper bound of zk,i as lk,i and uk,i respectively,
the contribution of neuron zk,i is

[Rk,i]+(αL
k,ilk,i + βL

k,i) + [Rk,i]−(αU
k,iuk,i + βU

k),

where (1) αL
k,iẑk,i + βL

k,i and αU
k,iẑk,i + βU

k,i are the linear relaxations of ẑk,i,
and (2) lk,i and uk,i are the lower and upper bounds, respectively. The Rk,i is
computed according to Line 6 and Line 11 in Algorithm 1. For the subdomain,
suppose the linear relaxations of neuron ẑk,i are α̃L

k,iẑk,i + β̃L
k,i and α̃U

k,iẑk,i + β̃U
k,i.

The contribution of neuron zk,i is

[Rk,i]+(α̃L
k,ilk,i + β̃L

k,i) + [Rk,i]−(α̃U
k,iuk,i + β̃U

k).

As the linear relaxations for other neurons in layer k remain unchanged, the
estimated improvement for a subdomain is the difference between the above two
formulas, which is

impk,i =

{
Rk,i(α̃L

k,i − αL
k,i)lk,i + Rk,i(β̃L

k,i − βL
k,i), Rk,i ≥ 0,

Rk,i(α̃U
k,i − αU

k,i)uk,i + Rk,i(β̃U
k,i − βU

k,i), Rk,i < 0.
(10)

After computing the estimated improvement for a subdomain, we show how
to compute the estimated improvement for a neuron. Recalling the neuron split-
ting method in Sect. 4, splitting neuron zk,i may produce two or three subdo-
mains. We take all of them into consideration by calculating the average esti-
mated improvements of all subdomains. The neuron improvement score NI of
neuron zk,i is

NIk,i =
1
n

(imp
[1]
k,i + imp

[2]
k,i + · · · + imp

[n]
k,i),

where imp
[i]
k,i is the estimated improvement of the i-th subdomain created by

branching neuron zk,i.
Notice that the computation of estimated improvement only needs Rk,i and

linear relaxations of zk,i in the parent domain and subdomains, and branching
the neuron zk,i does not change the value of Rj for all j > k. Thus, the compu-
tation is local and we can use one backward propagation to get the estimated

150 X. Xue and M. Sun

Table 1. Number of proved properties of fully connected neural networks.

Model ε SigBab DeepCert VeriNet CROWN NeWise Falsified

MNIST 3×50 0.01 800 759 753 544 436 23

0.02 248 162 148 34 25 146

MNIST 3×100 0.01 826 805 803 626 625 12

0.02 343 266 247 47 53 114

MNIST 5×100 0.01 619 577 574 120 611 89

0.02 73 52 46 0 33 342

MNIST 6×500 0.08 709 626 607 9 10 9

0.12 132 59 34 0 2 18

Fashion 3×50 0.01 735 713 710 581 370 34

0.02 345 233 218 66 8 143

Fashion 5×100 0.01 533 493 479 202 404 89

0.02 146 117 105 2 5 294

CIFAR10 3×50 0.005 360 303 298 166 98 94

0.01 60 23 19 1 0 275

CIFAR10 5×100 0.005 213 176 160 23 99 141

0.01 7 3 3 2 0 346

improvement for each neuron. After computing NI for all neurons, a neuron
with the highest NI is chosen as the branching decision.

6 Experiments

We implement our branch and bound verification framework as SigBaB, which
is available at https://github.com/xue-xy/SigBaB. To show the effectiveness
of our branch and bound verification framework and branching strategy, the
experiments contain two parts. In the first part, we evaluate SigBaB against
other state-of-the-art verification tools to demonstrate the effectiveness of our
tool. In the second part, we compare different branching strategies in our branch
and bound framework to show the effectiveness of our branching strategy.

6.1 Experimental Setup

Datasets and Networks. Our experiments are conducted on fully connected
neural networks (FNNs) and convolutional neural networks (CNNs). The neu-
ral networks are taken from publicly available benchmarks ERAN [6] and
NeWise [23] with Sigmoid activation function. These neural networks are well
trained on MNIST [11], Fashion MNIST [21] and CIFAR10 [3] datasets, and the
accuracy on the corresponding test sets is around 0.95, 0.85 and 0.4, respectively.

https://github.com/xue-xy/SigBaB

Branch and Bound for Sigmoid-Like Neural Network Verification 151

Table 2. Number of proved properties of convolutional neural networks.

Network ε SigBaB VeriNet DeepCert CROWN NeWise Falsified

MNIST 3-2-3 0.12 276 271 270 254 202 503

MNIST 6-5-3 0.12 196 190 188 47 10 390

Fashion 4-5-3 0.08 482 478 479 450 262 211

Fashion 6-5-3 0.08 413 407 404 228 105 158

CIFAR10 3-2-3 0.02 294 294 294 286 290 73

CIFAR10 6-5-3 0.02 200 199 199 149 166 100

Metric. We use the number of proved targeted properties to measure the effec-
tiveness. For each neural network, we take the first 100 images from the corre-
sponding test set and filter out the misclassified images. As the output dimen-
sions of all networks are 10, there are at most 900 targeted robustness properties
to be checked.

Competitors. We consider four representative verification tools for neural net-
works with sigmoid-like activation functions: DeepCert [20], VeriNet [8],
CROWN [22], and NeWise [23]. They use different linear relaxations for acti-
vation functions, and achieve state-of-the-art performance in different neural
networks. It is worth noting that NeWise is specially designed for neural net-
works with only one single hidden layer or neural networks that all weights are
positive. It may show worse performance in general neural networks [23]. How-
ever, because it is a recent work, we still compared with it.

Implementation. We use PyTorch to implement SigBaB so as to accelerate
the computation process with GPU. However, the original implementations of
those four competitors does not support GPU acceleration. To make a fair com-
parison, we re-implement tools according to the formulas and algorithms given
in their papers [8,20,22,23] and make them compatible with GPU acceleration.

6.2 Experimental Results

Experiments Results for FNNs. Table 1 shows the experiment results for 8
fully connected neural networks. The first word of the model name indicates the
training dataset, and a × b denotes that this network has a hidden layers and
each layer has b neurons. For each network, we conduct experiments on different
ε to show the performance on large radius and small radius. The time limit for
each property in SigBaB is 5 min.

In almost all cases, our method achieves significant improvement over other
methods. On average, SigBaB proves 34.9% more properties than DeepCert
and 62.6% more than VeriNet. And it is obvious that SigBaB outperforms
CROWN by a large margin. NeWise also shows poor performance due to its
special linear relaxation design for neural networks with only positive weights,
which compromises its performance on general neural networks. Compared with

152 X. Xue and M. Sun

Table 3. Number of proved properties for different branching strategies.

Model ε NI BaBSR Max

MNIST 3*50 0.01 800 800 774

0.02 248 235 148

MNIST 3*100 0.01 826 823 813

0.02 343 329 285

MNIST 5*100 0.01 619 611 602

0.02 73 66 55

MNIST 6*500 0.08 709 699 674

0.12 132 123 91

Fashion 3*50 0.01 735 734 720

0.02 345 325 283

Fashion 5*100 0.01 533 519 504

0.02 146 137 121

CIFAR 3*50 0.005 360 350 318

0.01 60 53 26

CIFAR 5*100 0.005 213 200 182

0.01 7 6 7

small radius, our method has better performance on large radius. For example,
the improvement over DeepCert is 123.7% on MNIST 6×500 ε = 0.12 and
160.8% on CIFAR10 3×50 ε = 0.01. The reason is that the linear approximation
method has relative tighter relaxations in smaller radius and is able to prove
most properties, which leaves little room for improvement. We also show the
number of falsified properties by SigBaB in the “Falsified” column. Notice that
most properties from CIFAR10 5×100 ε = 0.01 are unsatisfiable. This explains
why number of proved properties are limited in those cases.

Experiments Results for CNNs.
Table 2 presents the experiment results for 6 convolutional neural networks. The
network “Fashion 4-5-3” denotes a CNN trained on FashionMNIST dataset with
4 convolution layers, each with 5 filters of size 3×3, and the same for other
networks. For experiments on convolutional neural networks, the time limit for
each property in SigBaB is 10 min.

The experiment results show that SigBaB outperforms other tools in most
cases. Although the improvement is not as significant as on fully connected
neural networks, it shows that we can improve the verification precision with
more time, which cannot be achieved by other linear approximation methods.

Branch and Bound for Sigmoid-Like Neural Network Verification 153

In addition, the number of falsified properties by SigBaB is presented in the
“Falsified” column in Table 2. Notice that a large amount of properties are proved
to be false. This leaves little room for the improvement in the number of proved
properties.

6.3 Experiments on Branching Strategy

We compare our branching strategy NI with BaBSR [2] and Max. BaBSR
focuses on the influence of bias terms in linear approximation. It is originally
designed for ReLU neural networks, but can be directly applied to sigmoid-
like activation functions. The strategy “Max” means maximum range, which
takes the neuron with the maximum value range as the branching decision
because larger range usually indicates looser relaxation. We did not compare
with FSR [14] because it is not compatible with our neuron splitting method.

The experiments are conducted on fully connected neural networks with 5 min
time limit. We use different branching strategies in our branch and bound frame-
work and compare the number of proved properties. The results are shown in
Table 3. In all cases, NI proves more properties than the other two strategies,
which demonstrates the superiority of our branching strategy.

7 Conclusion

In this paper, we present a branch and bound verification framework for neural
networks with sigmoid-like activation functions. This framework includes a new
neuron splitting method and a new branching strategy. The splitting method
allows us to split neurons with sigmoid-like activation functions while ensuring
the created subdomains are not worse than the parent domain. The branch-
ing strategy improves the performance of the framework by choosing a neuron
with the maximum estimated improvement. We implement our framework and
evaluate it on a set of neural networks with different architectures. Experiment
results demonstrate the effectiveness of our methods. In the future, we would
like to investigate branching strategies that are based on neural network archi-
tectures to further improve the verification efficiency.

Acknowledgements. This research was sponsored by the National Natural Science
Foundation of China under Grant No. 62172019.

References

1. Boopathy, A., Weng, T., Chen, P., Liu, S., Daniel, L.: CNN-Cert: an efficient frame-
work for certifying robustness of convolutional neural networks. In: The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 3240–3247.
AAAI Press (2019)

2. Bunel, R., Lu, J., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Branch and
bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21,
1–39 (2020)

154 X. Xue and M. Sun

3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

4. Chen, Z., Huang, X.: End-to-end learning for lane keeping of self-driving cars. In:
2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1856–1860. IEEE (2017)

5. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

6. Gagandeep, S., et al.: ERAN verification dataset. https://github.com/eth-sri/eran.
[online]

7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: 3rd International Conference on Learning Representations (ICLR),
Conference Track Proceedings (2015)

8. Henriksen, P., Lomuscio, A.R.: Efficient neural network verification via adaptive
refinement and adversarial search. In: Giacomo, G.D., et al. (eds.) ECAI 2020.
Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 2513–2520. IOS
Press (2020)

9. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy com-
pression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), pp. 1–10. IEEE (2016)

10. Kos, J., Fischer, I., Song, D.: Adversarial examples for generative models. In: 2018
IEEE Security and Privacy Workshops (SPW), pp. 36–42. IEEE (2018)

11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

12. Lin, W., et al.: Robustness verification of classification deep neural networks via
linear programming. In: IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR, pp. 11418–11427. Computer Vision Foundation / IEEE (2019)

13. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks (2017). https://arxiv.org/abs/1706.07351

14. Palma, A.D., et al.: Improved branch and bound for neural network verification
via Lagrangian decomposition (2021). https://arxiv.org/abs/2104.06718

15. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron con-
vex barrier for neural network certification. In: Advances in Neural Information
Processing Systems (NeurIPS), vol. 32, pp. 15072–15083 (2019)

16. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Programm. Lang. 3(POPL), 1–30 (2019)

17. Szegedy, C., et al.: Intriguing properties of neural networks. In: 2nd International
Conference on Learning Representations (ICLR), Conference Track Proceedings
(2014)

18. Wang, S., et al.: Beta-CROWN: efficient bound propagation with per-neuron split
constraints for neural network robustness verification. In: Advances in Neural Infor-
mation Processing Systems (NeurIPS), vol. 34, pp. 29909–29921 (2021)

19. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the con-
vex outer adversarial polytope. In: Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
10–15 July 2018. Proceedings of Machine Learning Research, vol. 80, pp. 5283–
5292. PMLR (2018)

20. Wu, Y., Zhang, M.: Tightening robustness verification of convolutional neural net-
works with fine-grained linear approximation. In: Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, pp. 11674–11681. AAAI Press (2021)

21. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. CoRR abs/1708.07747 (2017)

https://doi.org/10.1007/978-3-319-68167-2_19
https://github.com/eth-sri/eran
https://arxiv.org/abs/1706.07351
https://arxiv.org/abs/2104.06718

Branch and Bound for Sigmoid-Like Neural Network Verification 155

22. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: Advances in
Neural Information Processing Systems (NeurIPS), vol. 31, pp. 4944–4953 (2018)

23. Zhang, Z., Wu, Y., Liu, S., Liu, J., Zhang, M.: Provably tightest linear approx-
imation for robustness verification of sigmoid-like neural networks. In: 37th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2022, pp. 1–13. ACM (2022)

Certifying Sequential Consistency
of Machine Learning Accelerators

Huan Wu1(B), Fei Xie1(B), and Zhenkun Yang2(B)

1 Portland State University, Portland, OR 97201, USA
{wuhuan,xie}@pdx.edu

2 Intel Corporation, Hillsboro, OR 97124, USA
zhenkun.yang@intel.com

Abstract. Machine learning accelerators (MLAs) are increasingly
important in many applications such as image and video processing,
speech recognition, and natural language processing. To achieve the
needed performances and power efficiencies, MLAs are highly concur-
rent. The correctness of MLAs hinges on the concept of sequential con-
sistency, i.e., the concurrent execution of a program by an MLA must
be equivalent to a sequential execution of the program. In this paper,
we certify the sequential consistency of modular MLAs using theorem
proving. We first provide a formalization of the MLAs and define their
sequential consistency. After that, we introduce our certification method-
ology based on inductive theorem proving. Finally, we demonstrate the
feasibility of our approach through the analysis of the NVIDIA Deep
Learning Accelerator and the Versatile Tensor Accelerator.

Keywords: Machine Learning Accelerator · Sequential Consistency ·
Theorem Proving

1 Introduction

Advances in machine learning have led to the widespread adoption of deep learn-
ing models in various applications, such as image and video processing, voice
recognition, and natural language processing. Existing processors often struggle
to meet the computational demands of large-scale machine learning models in
terms of training time, inference latency, and power consumption. It has moti-
vated the development of Machine learning accelerators (MLAs) that speed up
machine learning in training and inference while lowering power consumption,
e.g., Google’s Tensor Processing Unit [5], Intel’s Nervana Neural Network Pro-
cessor [13], NVIDIA Deep Learning Accelerator (NVDLA) [11] and Versatile
Tensor Accelerator (VTA) [10]. To achieve the required performance and power
efficiency, MLAs are highly concurrent and utilize design features such as multi-
core and pipelining. However, these concurrent designs may lead to potential
issues like race conditions, deadlocks, and non-deterministic outputs. Further-
more, in the MLA ecosystem, the software stack generates sequential workloads
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 156–171, 2023.
https://doi.org/10.1007/978-981-99-7584-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_10&domain=pdf
https://doi.org/10.1007/978-981-99-7584-6_10

Certifying Sequential Consistency of Machine Learning Accelerators 157

that are compiled and executed by hardware. This transition from sequential
software execution to concurrent hardware processing potentially introduces data
inconsistencies and race conditions.

Therefore, central to the correctness of MLAs is the concept of sequential
consistency, that is, a concurrent execution of a program must be equivalent to
a sequential execution of the same program. Sequential consistency essentially
maps the executions of an MLA to the executions of its sequential reference
design. This greatly reduces the complexities in validating the MLA’s design.
Properties that can be established on the executions of the sequential refer-
ence design also hold on to the executions of the concurrent MLA design if the
sequential consistency is maintained.

Two major methods are widely used for design validation: simulation-based
validation and formal verification. Simulation-based validation exercises the
behavior of a design with a series of tests and compares the test results against
expectations. However, exhaustive simulation is prohibitively expensive in time
and space, and this method only covers a limited set of execution paths, poten-
tially allowing design errors to go undetected. In contrast, formal verification uses
a set of formal models, tools, and techniques to mathematically reason about
the design and prove its correctness. Theorem proving is a crucial technique in
formal verification. It is powerful, imposes no a priori limit on the design size
or complexity, and tends to suffer fewer machine-scaling issues than more auto-
mated techniques. Nonetheless, it does often require significant human efforts.

In this paper, we present our approach to certifying the sequential equiva-
lence of modular MLAs using inductive theorem proving. Firstly, we propose a
formalization of MLAs by formalizing the instruction-driven accelerator design
based on the control data flow graph (CDFG). Then, based on this formaliza-
tion, we prove the sequential consistency of the MLA through induction on the
instruction sequence of a program being executed by MLA. Furthermore, we con-
duct case studies focusing on VTA and NVDLA, demonstrating the feasibility
of our approach. Our contributions can be summarized as follows:

1. Formalization of the modular MLAs and their sequential consistency;
2. An inductive theorem proving method to prove the sequential consistency of

modular instruction-driven MLAs;
3. Case studies of applying our method to the VTA and NVDLA designs.

The remainder of this paper is organized as follows. Section 2 provides back-
ground information on the CDFG, VTA, and NVDLA. Section 3 focuses on the
formalization of the modular MLA and its sequential consistency. In Sect. 4, the
proof sketch is presented. The case studies conducted on VTA and NVDLA are
discussed in Sect. 5. Section 6 explores relevant prior work in this area. Finally,
Sect. 7 concludes the study and discusses future work.

2 Background

2.1 Control Data Flow Graph

CDFG combines the concepts of control flow graphs and data flow graphs to
model the behavior of a program. Each instruction in a programming language

158 H. Wu et al.

can be decomposed into a series of primitive operations. This set of operations
includes assignments, comparisons, arithmetic, logical operations, classic if-then-
else, while-loop, and for-loop structures, etc. The control flow represents the
sequence of operations performed in a program, organized into basic blocks with
distinct entry and exit points. The data flow represents how data is used and
modified within a program.

The state of a CDFG is a list of all variables with their corresponding values.
To formally define CDFG, let Vop be a set of operations involving variables, and
Vbb be a set of basic blocks, each consisting of a sequence of operations from Vop.

Definition 1 (Control Flow and Data Flow Graphs). A data flow graph
is a directed acyclic graph defined as GD � (Vop, Ed), where an edge e ∈ Ed

from operation op1 to op2 represents a data dependency of op1 on op2. Similarly,
a control flow graph is denoted as GC � (Vbb, Ec), where an edge e ∈ Ec from
basic block bb0 to bb1 represents a control dependency of bb0 on bb1.

Definition 2 (CDFG). A CDFG is a triple G � (GD, GC , R), where GD is the
data flow graph, GC is the control flow graph, and R is a mapping R : Vop → Vbb

such that R(Vopi) = Vbbj if and only if Vopi occurs in Vbbj.

2.2 Versatile Tensor Accelerator

VTA [10] is an open-source, customizable hardware platform for accelerating
tensor-based computations. Figure 1 gives a high-level overview of the VTA archi-
tecture. It comprises four modules: fetch, load, compute, and store. Together,

Fig. 1. VTA architecture

Certifying Sequential Consistency of Machine Learning Accelerators 159

these modules define a task pipeline, which enables high compute resource uti-
lization and high memory bandwidth utilization. These modules communicate
via first-in-first-out (FIFO) queues (l2cDepQ , c2lDepQ , c2sDepQ , s2cDepQ)
and on-chip shared memories (inputBuf , weightBuf , outputBuf) that act as uni-
directional data channels. The memory accesses are synchronized through the
dependency FIFO queues to prevent data hazards.

2.3 NVIDIA Deep Learning Accelerator

NVDLA is an open-source, scalable deep learning accelerator architecture devel-
oped by NVIDIA [11]. It has a modular architecture that can be customized
and optimized for specific use cases. The architecture consists of multiple mod-
ules working together in a pipeline to perform convolution operations, as shown
in Fig. 2, including Convolution Direct Memory Access (CDMA), Convolution
Buffer (CBUF), Convolution Sequence Controller (CSC), Convolution Multiply-
Accumulate (CMAC), and Convolution Accumulator (CACC). Configuration
Space Bus (CSB) serves as an interface that connects the host system with
NVDLA.

Fig. 2. NVDLA architecture

3 Formalization

To perform verification on an MLA such as VTA, we formalize its design and
the desired property into mathematical specifications for theorem proving. MLAs
are hardware accelerators designed to speed up machine learning tasks, and they
rely on instructions provided by the software to execute these tasks efficiently.
These instructions can encompass various aspects, such as defining the model
layers and operations to be executed, configuring parameters, and managing
data transfers between the host system and the accelerator.

Given the significance of instructions in driving MLA behavior, we propose an
instruction-driven architectural pattern (IAP), as depicted in Fig. 3. Within the
IAP, we define the components involved and establish the necessary constraints.
Furthermore, we specify the specific property of sequential consistency. The

160 H. Wu et al.

Fig. 3. Instruction-driven Architectural Pattern

architecture of an MLA is usually composed of multiple modules and global
memory. Each module can be viewed as a CDFG. All modules can load and
store data in the global memory.

Definition 3 (Global Memory). Let M be the memory between some CDFGs
G1, G2, ..., GN (N ∈ N), where Gn(0<n≤N) is capable of either loading data from
or storing data to M .

Data exchange and communication often occur between various modules. To
describe these interactions, we introduce the notion of a ‘channel’.

Definition 4 (Channel). A channel, denoted as c(G1, G2), represents a dedi-
cated pathway between CDFGs G1 and G2 for transmitting data. Each channel
is unidirectional, allowing data exchange from source G1 to destination G2.

Channels can be classified based on the transmitted data type: instruction
channels for instructions, control channels for control information, and data
channels for input and weight data. We now provide a formal definition of the
instruction, which is the critical element driving the functionality of MLAs.

Definition 5 (Instruction). An instruction is defined as i = {opcode,
memspace, option}, where opcode identifies the CDFG to be controlled by this
instruction; memspace specifies the address and size of data when the CDFG
performs data loading or storing operations; option provides flexibility for accom-
modating design-specific requirements or custom functionalities.

Certifying Sequential Consistency of Machine Learning Accelerators 161

Let (in)Nn=1 = {i1, i2, ..., iN |1≤n≤N,N∈N} be an instruction sequence,
and s0 be the initial state of an MLA. We formally define the function
isRunToComplete(s0, (in)Nn=1) to determine, starting from s0, whether all
instructions (in)Nn=1 can be executed sequentially and completely, resulting in
a final state. The function returns a Boolean value, where the true value indi-
cates that all instructions can be executed completely.

Definition 6 (Valid Instruction Sequence). A valid instruction sequence is
a sequence of instructions (in)Nn=1 satisfying the following conditions:

1. The function isRunToComplete(s0, (in)Nn=1) returns true.
2. If there exist ik1and ik2(1≤k1<k2≤N), having the same opcodes and

memspace, and no instruction between them has the same opcodes and
memspace, and they control the same CDFG to write data in the same
space, then there exists ik3(k1<k3<k2) with a different opcode but the same
memspace. ik3 controls another CDFG to read the data written by ik1 .

3. If multiple instructions that control different CDFGs perform load and store
operations on the global memory, their access locations are distinct.

Now, we formalize the IAP. As depicted in Fig. 3 and defined by Γ �
{(H,G1, G2, ..., Gn), C,M |n∈N}, the IAP encompasses the following compo-
nents: H, which represents a special CDFG; Gk (1≤k≤n), representing a CDFG,
where n denotes the total number of CDFGs excluding H; C, a set of edges rep-
resenting channels connecting these CDFGs; and M , the global memory. The
IAP satisfies the following conditions:

1. Instruction-driven. The CDFG H is responsible for fetching the sequence of
instructions (in)Nn=1 from the global memory and distributing them to CDFGs
(G1, G2, ..., Gn) through the channels c(H,G1), c(H,G2), ..., c(H,Gn). Each
CDFG Gk (1≤k≤n) executes under the control of these instructions.

2. Producer and consumer pattern. If there exists a data channel between two
CDFGs G1 and G2, a producer and consumer pattern is established between
them. There are two control channels, p2cCtrlC and c2pCtrlC , and at least
a data channel, dataC , between G1 and G2. An instruction channel, pInsC,
exists between H and G1, and another one, cInsC exists between H and G2.

Algorithm 1. Producer(pInsC,
p2cCtrlC, c2pCtrlC, dataC)
1: var pIns = pInsC.read()
2: var memSpace = pIns.memSpace
3: var readySig = c2pCtrlC.read()
4: while isFalse(readySig) do
5: skip

dataC.write(data,memSpace)
6: p2cCtrlC.write(validSig)

Algorithm 2. Consumer(cInsC,
p2cCtrlC, c2pCtrlC, dataC)
1: var cIns = cInsC.read()
2: var memSpace = cIns.memSpace
3: var validSig = p2cCtrlC.read()
4: while isFalse(validSig) do
5: skip
6: dataC.read(data,memSpace)
7: c2pCtrlC.write(readySig)

162 H. Wu et al.

Algorithm 1 demonstrates the producer mode. Initially, an instruction pIns is
read from pInsC . To produce and transmit new data to the consumer via dataC ,
it is crucial to check if there is available space for production. This is determined
by reading a ready signal from ctrlC 2, indicating the consumer’s readiness to
receive new data. If the consumer is ready to receive the new data, the producer
writes data to dataC and sets a valid signal in ctrlC 1 to inform the consumer of
the availability of consumable data. If the consumer is not ready, the producer
waits until space becomes available for production.

Algorithm 2 illustrates the consumer mode. Initially, an instruction cIns is
read from cInsC . To consume data through dataC , it is necessary to check if the
producer has produced data in this space. This is determined by reading a valid
signal from ctrlC 1, indicating the presence of new data from the producer. If
new data is available, the consumer reads the data from dataC and sets a ready
signal into ctrlC 2 to notify the producer of its readiness to receive new data. If
the producer has not yet produced new data, the consumer waits until the data
becomes available for consumption.

The IAP has two execution semantics: sequential and concurrent.

Definition 7 (Sequential Semantics). The instruction sequence (in)Nn=1 dis-
tributed by CDFG H is executed in the exact order of (in)Nn=1. Each step involves
the execution of a single instruction.

Definition 8 (Concurrent Semantics). The instruction sequence (in)Nn=1

distributed by CDFG H is executed concurrently, allowing only those instruc-
tions that have no dependencies on each other to be executed concurrently in a
single step.

The state of IAP includes the content of the global memory M , channels
C, and the state of all CDFGs H,G1, G2, ..., Gn. We define SeqM (s, (in)Nn=1)
and ConM (s, (in)Nn=1) as the state of the IAP obtained from the initial state s
after executing the instruction sequence (in)Nn=1 sequentially and concurrently,
respectively. Now we specify the property of sequential consistency:

Definition 9 (Sequential Consistency). Given a valid instruction sequence
(in)Nn=1, the initial state s0, and the IAP Γ , ConM (s0, (in)Nn=1) is equivalent to
SeqM (s0, (in)Nn=1).

4 Proof Sketch

We use an induction based on the instruction sequence to prove sequential con-
sistency. In conjunction with the formalization presented in the previous section,
we introduce seven auxiliary theorems that are integral to our proof. Figure 4
shows the relationship between these theorems and their role in establishing
sequential consistency. Figure 4(a) depicts that sequential consistency is estab-
lished based on the core step. This core step is to prove that the state obtained
after executing a valid instruction sequence (in)k+1

n=1 concurrently is equivalent

Certifying Sequential Consistency of Machine Learning Accelerators 163

to the state obtained by executing the first k instructions concurrently and then
executing the last instruction ik+1. The proof process of this core step is detailed
in Fig. 4(b).

Fig. 4. Proof Overview

To prove the core step, we introduce the following six theorems. (1) Con-
current completeness. A valid instruction sequence can be executed concurrently
and completely, reaching a reachable final state. Otherwise, there may be dead-
locks. (2) Concurrent commutativity. The instructions in each concurrent step
can be executed in any order without affecting the final state of each step.
Concurrency improves performance while preserving correctness. Concurrent
completeness and commutativity are the fundamental properties of concurrent
execution and are the premise of other theorems. (3) Concurrent equivalence.
The state resulting from executing a valid instruction sequence concurrently is
consistent with the state obtained from concurrently executing the correspond-
ing instruction sequence rearranged in the concurrent step order of execution.
Although the instruction order may differ, the final state remains the same.
(4) Sequential associativity. The state obtained from sequentially executing all
instructions is equivalent to executing the preceding instructions sequentially

164 H. Wu et al.

and then the remaining instructions sequentially. It allows instructions to be
grouped or associated differently without affecting the final state. (5) Concur-
rent consistency. The state obtained by concurrently executing the instruction
sequence, sorted according to the order of concurrent execution steps, is equal
to the state obtained from sequentially executing the same instruction sequence.
(6) Sequential independence. When an instruction has no dependencies with
the other instructions within an instruction sequence, executing this instruc-
tion sequentially, followed by the remaining instructions, yields the same state
as executing the other instructions first and then executing this instruction.

We present the formulation of the theorems above and provide sketches of
the proof for the core step and the final theorem that establishes sequential
consistency. Assume the total number of steps required to concurrently execute
the instructions (in)Nn=1 is denoted as T , the sequence of steps is represented by
(tn)Tn=1, and the instructions in each step are denoted as (rtn)Rn=1, where 0<R≤N
represents the number of instructions in the step, and 0<t≤T represents the
step index. According to the valid instruction sequence definition, (in)Nn=1 can
be executed concurrently and completely, resulting in a reachable final state.

Theorem 1 (Concurrent completeness). If isRunToComplete(s0, (in)Nn=1)
is true, then sf = ConM (s0, (in)Nn=1)), (in)Nn=1 can be executed completely and
sf is reachable.

We define the function isValid(s0, (in)Nn=1) to determine whether the
sequence of instructions starting from the initial state s0 is a valid instruction
sequence. The function returns a Boolean value, where the true value indicates
that (in)Nn=1 is a valid instruction sequence from s0.

Theorem 2 (Concurrent Commutativity). ∀0<t≤T , let (at
n)

R
n=1 be the

instruction sequence with random order of (rtn)Rn=1. If isValid(s, (rtn)Rn=1) is true,
then ConM (s, (rtn)

R
n=1)) = ConM (s, (at

n)
R
n=1)).

Let the instruction sequence (jn)Nn=1 be the collection of concurrently exe-
cuted instructions (in)Nn=1 arranged in the order of steps. By the concurrent
semantics, the concurrent equivalence theorem follows.

Theorem 3 (Concurrent Equivalence). If isValid(s, (in)Nn=1) is true, then
ConM (s, (in)Nn=1)) = ConM (s, (jn)Nn=1).

Based on the sequential semantics, if there are N instructions, executing N
instructions sequentially results in a state consistent with executing the first A
instructions (A<N) sequentially and then executing the remaining instructions
sequentially.

Theorem 4 (Sequential Associativity). If A≤N and isValid(s, (in)Nn=1) is
true, then sa = SeqM (s, (in)An=1), SeqM (s, (in)Nn=1) = SeqM (sa, (in)Nn=A+1).

The concurrent execution of (jn)Nn=1 can be viewed as the sequential execu-
tion of the instructions within each concurrent step.

Certifying Sequential Consistency of Machine Learning Accelerators 165

Theorem 5 (Concurrent Consistency). If isValid(s, (in)Nn=1) is true, then
ConM (s, (jn)Nn=1)) = SeqM (s, (jn)Nn=1).

To determine whether there is a dependency relationship between instruction
ik1 and all instructions in (in)k3

n=k2
, we use the function dep(ik1 , (in)

k3
n=k2

). Here,
k1 �=k2, k1 �=k3, and k2≤k3. The function returns a Boolean value. If the return
value is false, it indicates that ik1 and (in)k3

n=k2
can run simultaneously without

causing a deadlock, thereby implying that ik1 has no dependencies with any
of the instructions in (in)k3

n=k2
. If the first instruction i1 has no dependence on

the remaining instructions in (in)Nn=2, then i1 can be scheduled to be executed
in the last step without changing the final state obtained by executing (in)Nn=1

sequentially.

Theorem 6 (Sequential Independence). If N>1, isValid(s, (in)Nn=1) is true
and dep(i1, (in)Nn=2) is false, then st = SeqM (s, (in)Nn=2), SeqM (s, (in)Nn=1) =
SeqM (st, (in)1n=1).

Based on the previous theorems, we prove the core step theorem:

Theorem 7 (Core Step). If isValid(s, (in)N+1
n=1) is true, then s1 =

ConM (s, (in)Nn=1), ConM (s, (in)N+1
n=1)) = SeqM (s1, (in)N+1

n=N+1).

Proof. As shown in Fig. 4(b), based on Theorem 3 (concurrent equivalence),
the original instruction sequence (in)N+1

n=1 can be converted to an instruction
sequence (jn)N+1

n=1 arranged according to the step order of concurrent execution
while preserving the final state. Then according to Theorem 5 (concurrent consis-
tency), where ConM (s, (jn)N+1

n=1) = SeqM (s, (jn)N+1
n=1), the concurrent execution

can be substituted with the sequential execution. Next, let’s consider the last
instruction iN+1 in (in)N+1

n=1 , which is also present in (jn)N+1
n=1 . Assume (pn)Nn=1

is the instruction sequence that preserves the order of the remaining instruc-
tions after removing iN+1 from (jn)N+1

n=1 , with pN+1 = iN+1. Applying Theorem
6 (sequential independence), the sequential execution can be divided into two
parts: executing (pn)Nn=1 sequentially and then executing pN+1. Additionally,
due to Theorem 5 and Theorem 3, the state obtained from executing (pn)Nn=1

sequentially is the same as that obtained by executing (in)Nn=1 concurrently.

Finally, we prove the theorem of sequential consistency:

Theorem 8. if isValid(s, (in)Nn=1) is true, then
ConM (s, (in)Nn=1) = SeqM (s, (in)Nn=1).

Proof. As shown in Fig. 4(a), by induction on the sequence of instructions.
Base case: if N = 1, it is true trivially.
Inductive case: assume ConM (s, (in)kn=1) = SeqM (s, (in)kn=1) holds, we need

to prove ConM (s, (in)k+1
n=1) = SeqM (s, (in)k+1

n=1). Let s1 = ConM (s, (jn)kn=1),
since

ConM (s, (in)k+1
n=1)) = SeqM (s1, (in)k+1

n=k+1) (Theorem 4.8),
SeqM (s0, (in)k+1

n=1) = SeqM (s1(in)k+1
n=k+1) (Theorem 4.5)

Therefore, this theorem holds.

166 H. Wu et al.

5 Case Studies

For case studies, we utilize VTA and NVDLA to illustrate how these accelera-
tors align with our previously formalized IAP architectural pattern. When the
architectures of MLAs adhere to IAP, the proof process outlined in Sect. 4 can
be applied to establish the sequential consistency of the MLA. Our analysis pri-
marily evaluates how well these accelerators adhere to the specifications and
characteristics defined in our formalization.

5.1 Case Study 1: VTA

The VTA architecture is an instruction-driven architecture. Each instruction in
VTA is encoded with specific fields to indicate the type of operation, control
flags, memory addresses, data sizes, and other relevant information. The VTA
architecture consists of four functional modules shown in Fig. 1, each designed
to handle specific tasks. The fetch module, represented by CDFG H in IAP,
retrieves an instruction stream from DRAM and decodes the instructions. It
routes the instructions to one of three instruction FIFO queues. Within VTA,
there are two sets of producer and consumer models, and between each set, there
exist two control FIFO queues and at least a data buffer.

The load and compute modules follow the producer and consumer pattern.
There are two control FIFO queues l2cDepQ and c2lDepQ , and two buffers
inputBuf and weightBuf between the load and compute modules. The data and
control communication process between these modules is as follows:

– The load module operates by reading an instruction from the load instruc-
tion FIFO queue. Each load instruction contains flags associated with control
FIFO queues, indicating dependencies on the compute module. If the flag cor-
responding to c2lDepQ is set, the load module checks the status of c2lDepQ
to determine if it’s empty. In the event that c2lDepQ is empty, indicating that
the consumer is not ready to receive new data, the load module waits for the
compute module to write the control information into c2lDepQ . Otherwise,
the load module proceeds to load input or weight tensors from DRAM into
weightBuf or inputBuf . Additionally, if the flag corresponding to the con-
trol queue l2cDepQ is set, the load module writes control information into
l2cDepQ .

– The compute module reads an instruction from the compute instruction FIFO
queue. Each compute instruction has flags associated with control FIFO
queues, indicating dependencies on the load module. If the flag for l2cDepQ is
set, the compute module checks the status of l2cDepQ . If l2cDepQ is found to
be empty, indicating that there is no new data available for consumption, the
compute module waits for the load module to write the control information
into l2cDepQ . Otherwise, the compute module proceeds to read data from
buffers and performs various computations on the input data. Furthermore,
if the flag corresponding to the control queue c2lDepQ is set, the compute
module writes control information into c2lDepQ .

Certifying Sequential Consistency of Machine Learning Accelerators 167

The compute and store models also function following the producer and con-
sumer pattern. Similarly, they have two control FIFO queues, c2sDepQ and
s2cDepQ , and a buffer, outputBuf , between them. Similar to the communica-
tion process described above between the load and compute modules, both the
compute and store modules follow a similar procedure. They start by reading an
instruction from their respective instruction queues and then check the corre-
sponding control queue based on the flag specified in the instruction. The com-
pute module stores the computed data in the buffer outputBuf , while the store
module reads data from outputBuf and stores it in DRAM. Finally, they write
control information to each control queue based on the flag in the instruction.

The VTA architecture and IAP demonstrate a strong alignment in terms of
their instruction-driven nature and the communication between different mod-
els. In both cases, there is a module for acquiring instructions and effectively
distributing them to their respective instruction channels. Additionally, the com-
munication patterns within VTA exhibit a clear producer-consumer relationship,
where data flows from one module to another in a coordinated manner. This cor-
respondence further solidifies the compatibility between the VTA architecture
and IAP, reinforcing the effectiveness and accuracy of the formalized model in
capturing the essential aspects of the accelerator architecture.

Mechanized Proof in Dafny. We use Dafny [9] as our theorem prover to cer-
tify the sequential consistency of VTA. Table 1 summarizes the statistics about
our Dafny implementation. The “Formalization” column shows the lines of code,
including the formalization of the instruction definition, the valid instruction
sequence, VTA, and sequential consistency. The “Proof” column shows lines of
code of all proofs we need to certify the sequential consistency. The overall ver-
ification time for proof-checking all Dafny code is about 35min.

Table 1. Code size and verification time

Formalization (LoC) Proof (LoC) Verification Time (Min)

1788 14274 35

We illustrate the implementation details with the theorem that ultimately
proves sequential consistency. Figure 5 shows the proof of Theorem 8 in Dafny.
The input of lemma function theorem8 includes: the instruction sequence
insSeq1 ; the global memory gsmem; the buffers InputB, WeightB, and OutputB ;
and FIFO queues L2CQ, C2LQ, C2SQ, and S2CQ. The precondition requires
a valid instruction sequence, denoted as validInsSeq, while the property to be
proven is sequential consistency, represented as seqConsistency. The proof fol-
lows an induction method based on the input sequence of instructions. The base
case involves only one instruction, and the property holds trivially. In the induc-
tive step, sequential consistency is proved by leveraging theorem 7, the induction
hypothesis theorem8, and theorem4. Overall, Theorem 8 is certified by Dafny.

168 H. Wu et al.

Fig. 5. Mechanized Proof of Theorem 8 in Dafny

5.2 Case Study 2: NVDLA

NVDLA also follows an instruction-driven architecture. The CSB module facil-
itates communication between the host system and NVDLA, allowing the host
system to send commands and configuration parameters to define the behavior
and settings of NVDLA. CSB acts as the CDFG H in IAP and distributes instruc-
tions to the register file in various modules within NVDLA. These instructions
can include configuration parameters, control commands, memory addresses, and
other information for configuring and controlling the accelerator. The specific
instructions that CSB distributes depend on the desired operation and function-
ality of NVDLA, as specified by the host system.

The NVDLA convolution core pipeline consists of 5 stages that work together
to perform convolution operations efficiently. The CDMA is responsible for fetch-
ing input and weights from memory and storing the data in CBUF, which acts as
a buffer for holding the received data. The CSC controls the sequencing of convo-
lution operations. It takes input and weights from CBUF and distributes them to
the relevant CMAC units for processing. The CMAC performs the convolutions,
receiving CSC data and executing the multiply and accumulate operations. The
CACC accumulates the results from CMAC by collecting the partial products
generated and combining them to produce the final output. There are two sets
of producers and consumers.

The CDMA and CSC follow the producer and consumer pattern. There are
two ports, sc2cdmaC and cdma2scC, and a buffer CBUF between CDMA and
CSC. These ports facilitate the transmission of CBUF’s status between CDMA
and CSC. The communication process follows these steps:

Certifying Sequential Consistency of Machine Learning Accelerators 169

– The CDMA reads the instruction from the register file to determine the data
and weights to be fetched from memory. It checks the status of the CBUF
using port sc2cdmaC to determine if there is available space in the CBUF
to store the data. If space is available, the CDMA writes the data into the
CBUF and sends the current status of the CBUF to the CSC through port
cdma2scC, informing the CSC about the data availability. If there is no space,
the CDMA waits until space becomes available.

– The CSC reads the instruction from the register file to determine which data
to retrieve from the CBUF. It checks the status of the CBUF using the port
cdma2scC to determine if there is data available in CBUF for processing. If
data is available in the CBUF, the CSC reads the data from the CBUF for
further processing and sends the updated status of the CBUF to the CDMA
through the port sc2cdmaC. This status update informs the CDMA about
the current status of the CBUF after data retrieval. If no data is available,
the CSC waits until data becomes available.

The CSC, CMAC, and CACC also follow the producer and consumer pattern.
The CSC serves as the producer model, while the combined CMAC and CACC
modules function as the consumer model. There is a data port sc2macDC and
a control port sc2macC between the CSC and the CMAC. Similarly, there is a
data port mac2accDC and a control port mac2accC between the CMAC and
the CACC. Additionally, there is a control port acc2scC between CACC and
CSC. The communication process follows these steps:

– The CSC reads the instruction from the register file. It checks the credit signal
from the CACC through acc2scC to determine if there is available space for
the CACC to perform computations. If space is available, the CSC sends
the data to the CMAC through sc2macDC and sends the valid signal to the
CMAC through sc2macC . If no space is available, the CSC waits until space
becomes available.

– The CMAC reads the instruction from the register file. It checks the valid
signal from CSC through sc2macC to determine if there is valid data to
receive. If there is valid data, the CMAC gets the data and performs the
convolution computation, producing intermediate results. The intermediate
data is then sent to the CACC through mac2accDC , and the valid signal is
sent to the CACC through mac2accC . If there is no valid data, the CMAC
waits until valid data is available.

– The CACC reads the instruction from the register file. It checks the valid
signal from CMAC through mac2accC to determine if there is valid data
to receive. If there is valid data, the CACC gets the data and performs the
accumulated operations. The CACC sends a credit signal to the CSC through
acc2scC , indicating the space available for the CSC. If there is no valid data,
the CACC waits until valid data is available.

The NVDLA architecture aligns with IAP. The CSB plays the role of CDFG
H in the pattern. Within NVDLA, there are two sets of producers and consumers.
In one set, the CDMA is the producer, while the CSC is the consumer. In the

170 H. Wu et al.

other set, the CSC is the producer, and the CMAC and CACC act as consumers.
Using Theorem 7, Theorem 4, and the induction method, we can establish the
sequential consistency of NVDLA.

6 Related Work

There have been many approaches to certifying concurrent processor features
using theorem proving techniques. For example, Kroening et al. [8] demon-
strate the correctness of generating a pipelined microprocessor from an arbitrary
sequential specification. They employ the PVS proof assistant [2] to implement
this proof. Sawada et al. [14] verify the equivalent of the state transitions of
pipelined and non-pipelined machines in the presence of external interrupts.
They create a table-based model of pipeline execution and achieve this proof in
the ACL2 theorem prover [6]. Damm et al. [3] establish the property that out-
of-order execution produces the same final state as a purely sequential machine
running the same program. Their proof is based on the semantic model of syn-
chronous transition systems [12]. Vijayaraghavan et al. [15] develop a modular
proof structure to prove that the distributed shared-memory hardware system
implements sequential consistency. This method is based on labeled transition
systems (LTSes) theory [7], and the proof is carried out using the Coq proof
assistant [1].

The statement of correctness in our work is sequential consistency; that is,
the MLA produces the same final state as the same design with sequential seman-
tics. The formalization follows the style of Communicating Sequential Processes
(CSP) [4] and adds features to formalize MLA designs. CDFG is used to real-
ize the process in CSP. Since CDFG contains data and control dependencies, it
helps prove the properties of the corresponding sequential design. Moreover, the
data communication between models adheres to the producer-consumer pattern,
ensuring the proper synchronization and communication between them.

7 Conclusions and Future Work

This paper presents a comprehensive formalization of MLAs and specifies and
certifies their sequential consistency, that is, the concurrent execution of a pro-
gram by the MLA is equivalent to a sequential execution of the program by its
sequential reference design. This finding is crucial as it paves the way for simpli-
fying the verification process of concurrent MLAs by leveraging their sequential
counterparts. Building upon the foundation of sequential consistency, in future
work, we can explore and validate various properties of concurrent MLAs, such
as correctness, optimizations, resource utilization, or novel execution models.

Acknowledgment. This research is partially supported by a gift from Intel Corpo-
ration.

Certifying Sequential Consistency of Machine Learning Accelerators 171

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: the Calculus of Inductive Constructions. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-07964-5

2. Cyrluk, D., Rajan, S., Shankar, N., Srivas, M.K.: Effective theorem proving for
hardware verification. In: Kumar, R., Kropf, T. (eds.) TPCD 1994. LNCS, vol. 901,
pp. 203–222. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59047-
1_50

3. Damm, W., Pnueli, A.: Verifying out-of-order executions. In: Advances in Hardware
Design and Verification. IAICT, pp. 23–47. Springer, Boston, MA (1997). https://
doi.org/10.1007/978-0-387-35190-2_3

4. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

5. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit.
In: Proceedings of the 44th Annual International Symposium on Computer Archi-
tecture, pp. 1–12 (2017)

6. Kaufmann, M., Moore, J.S.: ACL2: an industrial strength version of Nqthm. In:
Proceedings of 11th Annual Conference on Computer Assurance. COMPASS 1996,
pp. 23–34. IEEE (1996)

7. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976)

8. Kroening, D., Paul, W.J., Mueller, S.M.: Proving the correctness of pipelined
micro-architectures. In: MBMV, pp. 89–98 (2000)

9. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

10. Moreau, T., et al.: A hardware-software blueprint for flexible deep learning spe-
cialization. IEEE Micro 39(5), 8–16 (2019)

11. Nvidia: Nvidia deep learning accelerator (2018). http://nvdla.org/primer.html
12. Pnueli, A., Shankar, N., Singerman, E.: Fair synchronous transition systems and

their liveness proofs. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS,
vol. 1486, pp. 198–209. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055348

13. Rao, N., et al.: Intel Nervana: a next-generation neural network processor. In:
Proceedings of the 2017 IEEE Hot Chips Symposium on High Performance Chips
(HOTCHIPS), pp. 1–28. IEEE, Cupertino, CA, USA, August 2017

14. Sawada, J., Hunt, W.A. Jr.: Processor verification with precise exceptions and
speculative execution. In: CAV, vol. 98, pp. 135–146 (1998)

15. Vijayaraghavan, M., Chlipala, A., Dave, N.: Modular deductive verification of mul-
tiprocessor hardware designs. In: Kroening, D., Păsăreanu, C. (eds.) Computer
Aided Verification. CAV 2015. LNCS, San Francisco, CA, USA, July 18–24, 2015,
Proceedings, Part II 27, vol. 9207, pp. 109–127. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21668-3_7

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/3-540-59047-1_50
https://doi.org/10.1007/3-540-59047-1_50
https://doi.org/10.1007/978-0-387-35190-2_3
https://doi.org/10.1007/978-0-387-35190-2_3
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
http://nvdla.org/primer.html
https://doi.org/10.1007/BFb0055348
https://doi.org/10.1007/BFb0055348
https://doi.org/10.1007/978-3-319-21668-3_7
https://doi.org/10.1007/978-3-319-21668-3_7

Guided Integration of Formal Verification
in Assurance Cases

Irfan Sljivo(B), Ewen Denney, and Jonathan Menzies

KBR/NASA Ames Research Center, Moffett Field, CA, USA
{irfan.sljivo,ewen.denney,jonathan.j.menzies}@nasa.gov

Abstract. Assurance cases are being increasingly acknowledged as a
way to build trust in complex systems with autonomous capabilities. An
assurance case is a comprehensive, defensible, and valid justification that
a system will function as intended for a specific mission and operating
environment. Formal verification is often reserved for the most critical
components of such systems. However, formal verification tools are them-
selves often complex, and their usage is subject to many constraints and
contextual dependencies. This can raise challenges both for performing
the verification and reflecting the verification results appropriately in the
assurance case, especially for non-expert users of the formal tool.

To address these challenges, we present a tool-supported methodology
for integrating formal verification into an assurance case by capturing
key verification method information in a rigorously constructed assur-
ance case. In particular, we capture the tool specifications in terms of its
inputs, outputs, and assurance constraints as assumptions over inputs
and guarantees provided over its outputs. The tool specifications are
parametrized over the inputs and outputs to both guide the intended
application of the tool, and to check that the tool has been applied fol-
lowing the stated assumptions and that the guarantees hold. We define a
generic tool assurance argument pattern that enables integration of the
verification in the assurance case through custom refinement and auto-
mated instantiation for each tool use. We demonstrate our methodology
on two formal verification tools and their applications to the verification
of neural network properties for the aircraft domain.

Keywords: Assurance Cases · Formal Verification · Tool Assurance

1 Introduction

Even though formal tools have been shown to be effective at finding defects in
safety-critical systems, their adoption in industry is much slower than the pace of
research in formal verification [21]. One of the main reasons for this is being able
to assure trustworthiness of the tools in terms of their design, implementation
and correct usage. The issue from the developer side is the prescriptive nature
of the tool qualification standards and a lack of assurance understanding. The
issue from the user side is the lack of the tool understanding due to its complex-
ity, which hinders integration with non-formal parts of the system development

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 172–190, 2023.
https://doi.org/10.1007/978-981-99-7584-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_11&domain=pdf
https://doi.org/10.1007/978-981-99-7584-6_11

Guided Integration of Formal Verification in Assurance Cases 173

process. The issue for the certification experts of the formal tool qualification is
the lack of expertise in the formal method qualification.

Standards such as DO-333 [19] offer a process for qualifying a formal tool.
DO-333 requires evidence that any formal method to be used will never pro-
vide unwarranted confidence. However, constructing such evidence and following
the prescriptive requirements can make it difficult for tools that originate in a
research environment to achieve qualification [21]. Even when the tool qualifi-
cation is achieved, it does not help the user to integrate the results with the
non-formal parts of the development process, nor does it assist the certification
experts to review the tool qualification and accept its usage in a safety-critical
setting.

Assurance cases are increasingly acknowledged as a way to build trust in
complex systems [2]. An assurance case is a comprehensive, defensible, and valid
justification that a system will function as intended for a specific mission and
operating environment [8]. In this paper, we propose to complement the prescrip-
tive tool qualification with assurance cases in order to ease adoption of formal
methods in critical applications. We present a tool-supported methodology that
assists both the formal tool developer to prepare the formal tool for assurance
in advance, and the user applying a formal tool to safely use and assure the tool
results. The result of following the proposed methodology is an assurance case
argument that clearly communicates the tool trustworthiness. We demonstrate
the proposed methodology in two case studies performed using different formal
verification tools. Finally, we describe the tool support for our methodology in
the Assurance Case Automation Toolset (AdvoCATE) [8].

In prior work, assurance case arguments have been used to automatically
integrate output from a formal verification tool [3,7,9,12], though the focus
there was on converting individual reasoning steps and assumptions from verifi-
cation artifacts into corresponding fragments of an assurance case, rather than
assembling results from multiple tools. [5] describes a case study in constructing
an assurance case based on verifications from a set of verification tools. In this
work, in contrast, we provide a systematic methodology that guides both tool
developers and users to assure tools and their application, while constructing
an assurance case. We do not focus on integration of a particular formal verifi-
cation tool in an assurance case, but provide a generic methodology that could
be used for any formal verification tool. Considering the approach [20] for tool
qualification of a model checker according to DO-333, we do not aim to replace
the prescribed tool qualification process, but rather to complement it and offer
ways to ease the issues that different stakeholders of formal tool assurance have.

The Evidential Tool Bus (ETB) [6] provides a formal way for tools to col-
laborate in creation and management of evidence, out of which claims can be
derived for their inclusion in an assurance case. While the ETB focuses on evi-
dence, the Structured Assurance Case Metamodel (SACM) [18] defines a meta-
model covering different assurance aspects with the aim of supporting structured
creation and reuse of assurance cases across different tools. In contrast, in this
work, we provide a methodology that integrates not only input and output evi-
dence of tools, but confidence in the tools and their uses as well. Both of these

174 I. Sljivo et al.

concepts are complementary with the AdvoCATE methodology and the pro-
posed methodology for integration of formal verification in assurance cases.

Though not directly addressing assurance cases, there have been several
attempts to create general frameworks for tools. Wildmoser et al. [22] give
a model of tool chains and a confidence model, incorporating notions of tool
fault, error, and failure (based on ISO 26262), which allows them to generate
review checklists and evaluation reports, and compute tool confidence levels. The
SAMATE (Software Assurance Metrics and Tool Evaluation) project from NIST
[17] has created a tool taxonomy covering concepts such as static analysis tools,
functionalities, and weaknesses.

2 Background

2.1 AdvoCATE

AdvoCATE (Assurance Case Automation Toolset [8]) is a tool that supports
the development and management of safety assurance cases. A safety assurance
case comprises all the artifacts that are created during system development and
verification that are needed to assure that the system is acceptably safe for its
intended operation. Assurance cases are often represented and documented in the
form of a graphical argument that presents how the system safety goals have been
achieved and supported by the various items of evidence, such as test results,
simulations, and formal verifications. AdvoCATE supports a range of notations
and modeling formalisms, including Goal Structuring Notation (GSN) [1] to
document the safety cases. To enable automation of the development and man-
agement of assurance cases, AdvoCATE implements an assurance metamodel
that allows all the artifacts relevant from the safety assurance perspective can
be explicitly defined and their relations captured.

AdvoCATE Assurance Methodology. The high level AdvoCATE assurance
methodology is presented in Fig. 1. The rounded rectangles represent the dif-
ferent activities and arrows the data flow. Briefly, the AdvoCATE assurance
methodology starts by defining the physical decomposition of the system in
terms of its components and their failure modes, followed by the functional
decomposition of the system in terms of the system functions and their devia-
tions. Each system function captures intended (logical) behavior of the system
based on a set of functional requirements. Then, hazard analysis is performed
based on the system definition and recorded in the hazard log. Each hazard, along
with its causes, consequences, and their mitigations, is depicted in a bow tie dia-
gram that is used for risk modelling and control. The composition of all bow
tie diagrams comprises the safety architecture of the system. Information from
the safety architecture and evidence artefacts is used to construct structured
arguments presenting the system assurance rationale.

AdvoCATE Metamodel. Figure 2 presents an excerpt of the AdvoCATE
metamodel, focusing on the Requirements, Evidence and Tools Logs. System
requirements are defined as a part of mitigation planning and are stored in the

Guided Integration of Formal Verification in Assurance Cases 175

Fig. 1. Overview of the AdvoCATE assurance methodology [10]

Requirements Log. Each requirement has a verification method, which can be
a tool that indicates the way the requirement is to be verified, and a verifica-
tion allocation that represents the result of the verification method (e.g., tool
output), and serves as evidence artifact that verifies the requirement.

The Evidence Log records all the evidence artifacts (evidence for short) used
in the assurance case, as well as any evidence that is planned for use in future.
Evidence can be designated as pending, to indicate that it is anticipated that
it will eventually be obtained. Self-contained evidence artifacts will have no
dependencies on other evidence, but often evidence is created from other evidence
artifacts using some tool, e.g., simulation results are created using a simulator
from a model and an initial configuration, and these relations are recorded.

The Tools Log is used to record external tools which are used to create
evidence artifacts. The tools and evidence logs are interrelated and capture the
chain of dependencies through which evidence is constructed, along with the
supporting assumptions. Tools are characterized in terms of their inputs and
outputs, each of which is either an evidence artifact or value of primitive type.
Tool specifications give assumptions on the inputs and guarantees on the outputs.
A tool use represents an application of the tool to concrete evidence artifacts.

Structured Assurance Arguments. In this work, we use GSN [1] to repre-
sent assurance arguments. Figure 4 shows a simple argument pattern on the left
and the core GSN elements used in this paper on the right. An argument pat-
tern represents a pattern of reusable reasoning, which contains variables in its
nodes that need to be instantiated, e.g., Guarantee1 and Guarantee2 being two
variables used in the top node in Fig. 4. By instantiating all the variables within
an argument pattern, we create arguments that aim to establish the top-level
claim by supporting it with other claims, evidence and contextual information.

176 I. Sljivo et al.

Fig. 2. Excerpt of AdvoCATE metamodel with requirements, tools and evidence

3 Tool-Supported Methodology for Integration of Formal
Verification in Assurance Cases

In this section, we present our methodology for integration of formal verification
in assurance cases. We also describe the tool support in AdvoCATE.

3.1 Methodology

When integrating formal verification into an assurance case, it is not only that
the result of verification is being integrated, but also the assurance that commu-
nicates confidence in the tool and its result. Assuring that the tool methodology
is sound and that it has been implemented correctly is independent of a par-
ticular tool application and is reusable whenever the tool is used. We refer to
this setting independent of a specific application as out-of-context (similar to the
safety element out-of-context notion used in ISO 26262 [15]). In contrast, the
in-context setting represents the development and assurance of a specific system,
including application of a verification tool for that system.

An overview of the methodology is shown in Fig. 3. The out-of-context steps
are applied in advance and are generally performed just once for each tool. The
in-context steps are performed every time a tool is used in the context of a
specific system, and they aim at assuring the specific tool application, building
on the tool assurance information that is prepared in advance. Out of context
of a particular application, we perform the following steps:

Step 1: Create the tool assurance case. This step aims to capture the
reusable tool trustworthiness assurance argument. It can be supported by a
certificate of qualification, verification report, or an assurance case for the tool,
itself. To prepare a tool assurance case, we follow these steps:

– identify the tool functions and create the tool functional decomposition,

Guided Integration of Formal Verification in Assurance Cases 177

Fig. 3. Overview of the proposed verification tool assurance methodology

– define deviations for each function,
– perform hazard analysis based on the functional decomposition,
– identify hazards mitigated by the tool and those that remain,
– create an assurance argument describing all the hazards that have been mit-

igated and provide evidence to support the mitigation means.

Step 2: Derive the tool specifications. In this step we capture the tool speci-
fications in terms of an informal tool description, its input and output types, and
constraints over those input/output types as assumptions over inputs, and guar-
antees expressed as relations between inputs and outputs. The main challenge
with creating tool specifications is identifying all the prerequisites that need to
hold to ensure the result is trustworthy. To this end, we use the systematic haz-
ard analysis of the tool from Step 1 to identify all the remaining conditions not
covered by the internal mitigation mechanisms that the user should satisfy in
order to produce a trustworthy result. These conditions are captured in the tool
assumptions. The assumptions and guarantees are parametrized using variables
of specific type for each input and output, so that once the tool is applied, these
variables are instantiated so that the assumptions and guarantees refer to the
concrete evidence artefacts. Considering that a single verification tool can often
be used in different use cases, e.g., VerifAI [11] can be used for testing and train-
ing of NNs, we define one tool specification for each verification tool use case.
This is because different guarantees are offered by the tool in different use cases,
and also different assumptions need to be met for those guarantees to hold.

Step 3: Generate the tool assurance argument pattern. In this step,
we refine the generic assurance argument pattern (Fig. 4) for the specific tool
based on its tool specifications. This generic assurance pattern uses the tool
specification guarantees as the top assurance claim and uses support from two
assurance strategies, the satisfaction of the tool specification assumptions and
the trustworthiness of the tool. This pattern communicates that the guarantees
of the tool hold if all of the tool assumptions are met and the tool justifications
are trustworthy. For each tool specification, we refine this generic pattern to
create a more tool-specific argument pattern. The parametrized tool specifica-

178 I. Sljivo et al.

Fig. 4. Generic tool assurance pattern and a legend of the core GSN elements

tion guarantees become the top assurance claim, while each parametrized tool
specifications assumption is transformed into an assurance claim needing further
support under the S1 strategy. The G3 goal deals with the tool assurance justifi-
cations and includes the evidence specified in the first step of this methodology.

In context of a particular application and assurance case, we perform the
following steps that guide the application and integration of the verification tool
in the assurance case:

Step 4: Select the verification method. Given a library of predefined veri-
fication tool specifications, we can select which verification tool will be used to
verify the corresponding system requirement. By checking the offered tool guar-
antees, we can evaluate whether the tool can be used to support the requirement.

Step 5: Capture the tool application record. Before applying a verification
tool, we need to prepare and record the input evidence artefacts according to
the tool specifications, and make sure that all the assumptions over those inputs
are met. We record the outputs from the tool as evidence artefacts. We allocate
this output to the corresponding requirement based on Step 4.

Step 6: Generate the tool assurance argument. Once a tool application is
recorded, we use that information to instantiate the corresponding tool-specific
assurance pattern. The resulting assurance argument gives us the top assurance
claim that can be used to support higher-level claims in terms of requirements
and hazards, and it leaves the assumption-related claims undeveloped, to indicate
that evidence is needed to assure those claims.

Step 7: Extend the tool assurance argument. In this step, we further
extend the instantiated argument to support all the undeveloped goals and pro-
vide contextual information relevant for the particular tool application.

Step 8: Integrate the assurance argument. Once the tool application assur-
ance argument is finalized, it can be integrated in the overall assurance argument
to support the requirements associated with the verification tool.

Guided Integration of Formal Verification in Assurance Cases 179

3.2 Tool Support in AdvoCATE

The methodology for integrating formal verification results into an assurance
case extends the AdvoCATE methodology presented in Sect. 2.1. In particular, it
provides greater support for planning, performing, and documenting requirement
verification in an assurance case. In the reminder of the section, we will highlight
the tool support in AdvoCATE for each step of the methodology.

To prepare a tool for future application and integration in an assurance case,
a subset of the AdvoCATE assurance methodology can be used to perform Step 1
and assure trustworthiness in each tool. To support Step 2, we have extended
the tool specifications to include assumptions over its inputs and guarantees
over its inputs and outputs, as shown in Fig. 2. We have embedded the basic
tool assurance pattern in AdvoCATE to support Step 3 and enable automated
refinement of tool-specific argument patterns using the tool specification.

As a part of creating an assurance case for a specific system in AdvoCATE,
we create Tools log where we include Tool Specifications of different verification
tools that we may use to support safety requirements. To support Step 5 and
verification method selection, we connect Requirements and tools from the tools
log in AdvoCATE and allow the user to indicate which tool is planned for verifi-
cation of the specific requirement. Performing the verification and recording the
Tool Use as part of Step 5 is currently a manual process in AdvoCATE where
for each tool application we record which inputs evidence have been used to run
the tool and which output evidence have been obtained. To support Step 6, for
each tool use, we enabled automated instantiation of the tool-specific assurance
pattern. When a chain of tools is specified in the tools log, and output evidence
from one tool is used to perform verification with another tool, AdvoCATE sup-
ports recursive instantiation of tool use assurance arguments to generate a single
argument that integrates information from all the tools in the verification chain.
The assurance argument editor in AdvoCATE supports Steps 7 and 8, where
the generated tool argument can be manually refined and inserted into a specific
place in an overall system argument.

4 Application Examples

In this section, we demonstrate our methodology on the application of two formal
verification tools to the verification of neural network (NN) properties.

4.1 Application Example 1: Venus for Object Detection

Venus [4] is a verification toolkit for ReLU-based feed-forward NNs. Given a
feed-forward NN, Venus answers the verification problem whether for every input
within a linearly definable set the output is always contained within some other
linearly definable set. To optimize the verification, Venus decomposes the verifi-
cation problem into smaller, more manageable tasks so that they can be executed
in parallel. Each subproblem is encoded as a Mixed Integer Linear Program

180 I. Sljivo et al.

Fig. 5. Venus functional decomposition

Fig. 6. A portion of the Venus assurance argument

(MILP). An external MILP solver is called to solve each subproblem indepen-
dently. Due to the high dimensionality of inputs that the MILP solver would
have to handle, Venus implements a dependency analyzer as a callback function
supplied to the MILP solver, to reduce the dimensionality of inputs that need
to be verified. An example of a local robustness verification problem with Venus
is verifying a NN image classifier for open object detection. Answering the local
robustness problem requires establishing whether the NN correctly classifies all
perturbations of the input image within a specific perturbation radius. In the
reminder of this section, we first present the out-of-context assurance of Venus,
and then we present the assurance of its application on a concrete system.

Preparing the Out-of-Context Assurance for Venus

Step 1: Create the tool assurance case. To assure the trustworthiness of Venus, we
have developed an assurance case to capture its internal structure, risks, and how
these risks are mitigated. We have represented the internal structure of Venus
using a hierarchical functional decomposition in AdvoCATE, consisting of input
domain splitter, MILP encoder, MILP solver, dependency analyzer, and results

Guided Integration of Formal Verification in Assurance Cases 181

Fig. 7. Venus tool specifications for verification of an object detection ReLU NN

integrator (Fig. 5). Then we performed hazard analysis and identified hazards
as functional deviations, e.g., the input domain splitter can split the domain
to exclude certain parts or include parts that are not in the initial domain
specification. We have used the hazard analysis results to identify the mitigated
hazards and those that are yet to be mitigated. A portion of the assurance
argument highlighting the mitigated hazards is shown in Fig. 6.

Step 2: Derive the tool specifications. We focus on deriving the tool specifications
for verifying an image classifier for object detection system with Venus. While
Venus answers the verification problem for a single image serialized in the pickle
format, the verification use case here is to work on a set of images representing
the operational domain and determine the robustness level of the NN for that
data-set. We define the Venus tool specification for verifying the image data-set in
Fig. 7. We derived the tool specifications based on the Venus assurance case from
Step 1. For example, to use the Venus guarantee and its calculated robustness
level to support satisfaction of a requirement or a hazard, we need to make
sure that the data-set on which the verification is performed is representative of
the operating environment of the system, and if the entire data-set has not been
verified, we need to make sure that the subset of selected images for verification is
representative of the initial data-set. Such assurance aspects are captured in the
Venus tool assumptions, while the guarantee constrains the achieved robustness
level to the specific perturbation radius and image data-set.

Step 3: Generate the tool assurance argument pattern. Given the generic tool
assurance pattern in Fig. 4, AdvoCATE automatically generates a Venus-specific
version of that pattern by including the Venus tool specification assumptions and
guarantees, as shown in Fig. 8. We further extend the pattern with additional
contextual information (nodes C1 and C2 in Fig. 8) to clarify the notions of what
robustness means for the top assurance claim.

182 I. Sljivo et al.

Assurance of the Venus Application for Object Detection
In this section, we analyse the application of Venus for verification of an object
detection NN for the aircraft domain [16]. The Venus developers specified the
verification problem as a local robustness problem of the provided NN. For a
correctly classified image, the local robustness problem is to check that the NN
returns the same result for all the images within a specified perturbation radius.
Venus was run for a set of correctly classified images from the provided data-set.
Each image was verified for different perturbation radii, to determine how robust
the NN is for different perturbation radii. For each of the images and perturba-
tion radii, the NN and the verification problem are encoded as a MILP, and then
solved using splitting and dependency optimization. The results showed that for
a small perturbation radius, the NN was robust for all the images. Moreover, as
the radius increases, the robustness decreases, and more misclassifications are
detected. In the reminder of the section, we follow the in-context steps for inte-
grating the Venus application in an overall assurance case. We do not present
the overall assurance case here due to space constraints, but we describe the
portions relevant for Venus integration.

Fig. 8. Venus-specific tool assurance pattern

Step 4: Select the verification method. The aircraft level hazard analysis identi-
fied ways in which the failures of the object detection NN could contribute to
different hazards. For example, misclassification of an object, or failure to detect
one, can lead to a hazard loss of separation, where the aircraft could get closer
than it should to another object, which may lead to collision. Some causes that

Guided Integration of Formal Verification in Assurance Cases 183

may lead to this involve internal failures of the NN, but also conditions regard-
ing the inputs into the NN, such as distorted images. Images can be distorted
for a number of reasons, ranging from dirty camera lens, environmental condi-
tions, to malicious actors. The level of risk associated with each of those different
hazardous situations leads to requirements for how robust the NN should be to
potential image distortions in order to reduce the risk of those hazards to accept-
able levels. For those requirements, we can match the Venus tool specification
guarantee as an assurance claim that could be used to support them, and we
select Venus as a verification method for those requirements.

Fig. 9. Venus data-set verification tool applications captured in AdvoCATE

Step 5: Capture the tool application record. Figure 9 shows several different appli-
cations of Venus for data-set verification recorded in the AdvoCATE tools log.
Verification was performed on 20 images from the original image data-set for
three different perturbation radii 0.0001, 0.001 and 0.01. The results showed
that for the smallest perturbation radius 0.0001, the provided input NN was
100% robust, while the robustness level was 30% for perturbation radius 0.001.
The NN was not robust for any of the images for the perturbation radius 0.01.

Step 6: Generate the tool assurance argument. The Venus-specific assurance pat-
tern is instantiated with tool data to give the argument shown in Fig. 10. We
show here the fragment for the verification performed with the 0.001 perturba-
tion radius.

Step 7: Extend the tool assurance argument. We extend the argument with addi-
tional contextual information regarding the actual values of the perturbation
radius and the achieved robustness level. The assumption-specific assurance
claims remain undeveloped, indicating that they should be further supported
with evidence. Some of them can be simply supported by reviews, e.g., making
sure the type of the input NN is correct, while for others, like the process of
selecting images from the data-set or the representatives of the data-set itself,
may require additional assurances.

184 I. Sljivo et al.

Step 8: Integrate the assurance argument. Considering the different requirements
as to how robust should the object detection NN be for likely image distortions
for the different causes, we can now use this argument fragment to support safety
requirements addressing those causes where the likely perturbation radius is
0.001, assuming that the achieved 30% robustness level meets the corresponding
hazard’s risk targets. For other causes with different likely perturbation radii,
arguments can be generated for the other Venus uses and further tailored in
support of their corresponding requirements.

Fig. 10. Instantiated Venus assurance argument

4.2 Application Example 2: VerifAI for NN Testing

The VerifAI toolkit [11] implements a wide suite of verification tasks that
together constitute a methodology for the reliable design of systems that include
machine learning (ML) components. VerifAI uses an environment model speci-
fied in Scenic [14] to generate test vectors, i.e., concrete test scenes for simulation.
Each Scenic feature has an assigned value based on a distribution assigned in the
corresponding Scenic model. VerifAI can be coupled with different simulators.
The simulator should include a model of the system, with the controller and the
ML component, as well as an environmental model that is consistent with the
Scenic specification. VerifAI supports monitoring metric temporal logic (MTL)
properties by evaluating the property with respect to each simulation run. In the
reminder of this section, we first present the out-of-context assurance of VerifAI,
and then we present the assurance of its application on a concrete system.

Guided Integration of Formal Verification in Assurance Cases 185

Preparing the Out-of-Context Assurance for VerifAI

Step 1: Create the tool assurance case. Just as for Venus in Sect. 4.1, we devel-
oped an assurance case for VerifAI. We created a functional decomposition of
VerifAI for NN testing consisting of the following functions: abstract feature
space modelling, test case generation, X-Plane simulation, temporal logic falsi-
fication, and counterexample analysis. Then we performed hazard analysis and
allocated the identified hazards to the different functions, e.g., abstract feature
space modelling could omit an important feature for testing the NN, or it could
model a feature differently from how it is implemented in the simulator. Based on
the results of the analysis, we identified the assurance constraints that should be
made on the input into the VerifAI testing to guarantee the result with sufficient
confidence. We omit the VerifAI assurance case here due to space constraints.

Fig. 11. VerifAI tool specifications for NN testing

Step 2: Derive the tool specifications. VerifAI can be used for multiple use cases,
including NN testing and (re)training. We focus on the tool specifications for
testing of a NN with the X-Plane simulator (Fig. 11). The testing with VerifAI
relies on a Scenic model that captures the testing environment from which the
test cases are generated. Each test case is simulated for the same amount of time
using the same inputs, including models of the NN, the runway, and the airplane
controller. The results of each simulation are exported as a trace, and falsification
is performed on each trace. Based on the results of Step 1, we captured some
of the assumptions on the VerifAI inputs. For example, it is important to make
sure that the features captured in the Scenic model are consistent with the other
models of the environment, such as the runway model. The assurance guarantee
that we can claim based on the VerifAI testing results is that the input NN
meets the formalized property at the resulting success rate in the simulated
environment.

Step 3: Generate the tool assurance argument pattern. The refined tool assur-
ance pattern specific to VerifAI NN testing is shown in Fig. 12. We include the

186 I. Sljivo et al.

identified guarantees and assumptions and refine the pattern further to group
the assumptions over environment models and include additional contexts.

Assurance of the VerifAI Application for Testing a NN
In this section, we analyse the application of VerifAI for testing a NN in the
aircraft domain [13]. TaxiNet is an experimental autonomous aircraft taxiing
system. The system uses an NN to estimate the position of the aircraft relative
to the runway centerline, using images from wing-mounted cameras. A controller
then steers the plane to track the centerline. In the reminder of the section, we
follow the in-context steps for integrating the VerifAI application in the overall
TaxiNET assurance case. We omit details of the overall assurance case due to
space constraints, but we describe the portions relevant for VerifAI integration.

Fig. 12. VerifAI-specific tool assurance pattern

Fig. 13. VerifAI TaxiNet testing tool application entry captured in AdvoCATE

Step 4: Select the verification method. The main TaxiNet centerline tracking
requirement is that “TaxiNet shall keep the aircraft within 1.5 m of the runway

Guided Integration of Formal Verification in Assurance Cases 187

Fig. 14. Extended VerifAI assurance argument for testing of TaxiNET

centerline during taxiing”. To establish the quantitative target for this require-
ment, we consider human pilot performance with the same aircraft. For a Cessna
Caravan, the aircraft must remain within 1.5 m of the centerline 95% of the time.
Hence, the probability at which the system meets the requirement should not
be less than 95%. The VerifAI testing tool specifications guarantee matches this
requirement and hence the tool is suitable for its verification.

Step 5: Capture the tool application record. Figure 13 shows the tool use of VerifAI
for testing TaxiNet. The testing was performed with 4000 test cases and 30 s of
simulation for each test case. The formal property was relaxed compared to the
corresponding requirement to allow for the simulation to start from a position
that violates the property and evaluate whether the controller will steer the
aircraft to the position within 1.5 m of the centerline. The VerifAI results show
that the TaxiNet managed to satisfy the property 82% of the time.

Step 6: Generate the tool assurance argument. The instantiated VerifAI argu-
ment is shown in Fig. 14. The top goal of this argument concerns the formalized
requirement regarding the violation of the Cross Track Error and the success
rate of the TaxiNet system in satisfying this formalized requirement.

Step 7: Extend the tool assurance argument. Some extensions of the argument
in Fig. 14 are marked with orange nodes (C1, C2, C5, S4 and below, S5 and
below). For example, to assure the correctness of the Scenic model, we need to
argue over the set of features included in the Scenic model and the fixed value
distributions of each included feature. Furthermore, we extend the argument to
note that the formalized requirement verified using the tool is relaxed compared

188 I. Sljivo et al.

to the corresponding safety requirement. The relaxation is done to facilitate
verification of situations where initial states are in violation of the property.

Step 8: Integrate the assurance argument. Considering that the top level claim
is instantiated with the achieved 82% success rate of TaxiNet, this argument on
its own cannot be used to fully support the TaxiNet centerline tracking require-
ment. Additional mitigation measures such as paring the TaxiNet with a runtime
monitor or retraining of TaxiNet are needed to fully support the corresponding
requirement. Furthermore, since the verified property is relaxed compared to
the corresponding requirement, additional justifications may be needed to jus-
tify that this evidence is sufficient to support the more general requirement.

5 Conclusions

To address challenges in the qualification and use of formal tools that arise
for tool developers, users, and certification experts, we have proposed a tool-
supported methodology for the integration of formal verifications into assurance
cases. The proposed methodology is implemented in the assurance case toolset
AdvoCATE, guides developers to prepare tools for assurance, and helps users to
safely apply tools and assure their usage. The resulting assurance case arguments
are created in order to clearly communicate the trustworthiness of the tool as
well as its application, and assist certification experts in reviewing the formal
tool qualification. We have analysed two formal tool applications and demon-
strated how each of the tools can be prepared for assurance, how they can be
applied, and finally assured via structured arguments. Although the presented
application examples focused on formal verification of neural network properties,
the methodology is not specific to neural networks, but can be used for assur-
ance of formal verification tools, more generally. We focus on formal verification
tools because the additional effort invested can be justified, since such tools are
typically used only for the most critical parts of the system and greater confi-
dence is placed on their results. Although the methodology could be used for any
verification tool, the additional effort may not always be justified. Though not
described here, AdvoCATE also has the capability to generate various views that
show architectural abstractions of the assurance case, such as the dependencies
between the various tools used in the argument.

In future work, we will incorporate libraries of potential tool hazards to ease
the creation of tool assurance cases. We also aim to allow direct invocation of
formal tools from AdvoCATE applied to evidence artifacts stored in the evidence
log, and automatically store the results as evidence in the log. We are also
working on connecting the tools and the evidence artefacts with ontologies, as
a basis for a structured language for tool assumptions and guarantees that will
allow checking of additional properties. Finally, since tools are often used in
complex workflows, we are extending the tool specifications language with the
relevant constructs to support this.

Guided Integration of Formal Verification in Assurance Cases 189

References

1. GSN Community Standard Version 3. Technical report, Assurance Case Working
Group of The Safety-Critical Systems Club (2021). https://scsc.uk/r141C:1

2. Asaadi, E., Denney, E., Menzies, J., Pai, G.J., Petroff, D.: Dynamic assurance
cases: a pathway to trusted autonomy. Computer 53(12), 35–46 (2020). https://
doi.org/10.1109/MC.2020.3022030

3. Basir, N., Denney, E., Fischer, B.: Constructing a safety case for automatically
generated code from formal program verification information. In: Harrison, M.D.,
Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 249–262. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87698-4 22

4. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of relu-based neural networks via dependency analysis. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3291–3299 (2020)

5. Bourbouh, H., et al.: Integrating formal verification and assurance: an inspection
rover case study. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I.
(eds.) NFM 2021. LNCS, vol. 12673, pp. 53–71. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-76384-8 4

6. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the evidential
tool bus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 275–294. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 18

7. Denney, E., Pai, G.: Evidence arguments for using formal methods in software cer-
tification. In: 2013 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW), pp. 375–380. IEEE (2013)

8. Denney, E., Pai, G.: Tool support for assurance case development. Autom. Softw.
Eng. 25(3), 435–499 (2018)

9. Denney, E., Pai, G., Pohl, J.: Heterogeneous aviation safety cases: integrating the
formal and the non-formal. In: 17th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS), Paris, France, pp. 199–208 (2012)

10. Denney, E., Pai, G., Whiteside, I.: The role of safety architectures in aviation safety
cases. Reliab. Eng. Syst. Saf. 191, 106502 (2019)

11. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial
intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 25

12. Foster, S., Nemouchi, Y., Gleirscher, M., Wei, R., Kelly, T.: Integration of formal
proof into unified assurance cases with Isabelle/SACM. Formal Aspects Comput.
33(6), 855–884 (2021)

13. Fremont, D.J., Chiu, J., Margineantu, D.D., Osipychev, D., Seshia, S.A.: Formal
analysis and redesign of a neural network-based aircraft taxiing system with Ver-
ifAI. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 122–134.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 6

14. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation. In:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 63–78 (2019)

15. ISO 26262-10: Road vehicles – Functional safety – Part 10: Guideline on ISO 26262.
International Organization for Standardization (2011)

https://scsc.uk/r141C:1
https://doi.org/10.1109/MC.2020.3022030
https://doi.org/10.1109/MC.2020.3022030
https://doi.org/10.1007/978-3-540-87698-4_22
https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-642-35873-9_18
https://doi.org/10.1007/978-3-642-35873-9_18
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-53288-8_6

190 I. Sljivo et al.

16. Kouvaros, P., et al.: Formal analysis of neural network-based systems in the aircraft
domain. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol.
13047, pp. 730–740. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
90870-6 41

17. NIST: Metrics and measures. http://samate.nist.gov/index.php/Metrics and
Measures.html

18. OMG: SACM: Structured Assurance Case Metamodel. Technical report, Version
2.3, OMG (2022). https://www.omg.org/spec/SACM

19. RTCA DO-333: Formal Methods Supplement to DO-178C and DO-278A. Wash-
ington, DC (2011)

20. Wagner, L., Mebsout, A., Tinelli, C., Cofer, D., Slind, K.: Qualification of a model
checker for avionics software verification. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 404–419. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8 29

21. Wagner, L.G., Cofer, D., Slind, K., Tinelli, C., Mebsout, A.: Formal methods tool
qualification. Technical report, NASA/CR-2017-219371 (2017)

22. Wildmoser, M., Philipps, J., Slotosch, O.: Determining potential errors in tool
chains. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp.
317–327. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33678-
2 27

https://doi.org/10.1007/978-3-030-90870-6_41
https://doi.org/10.1007/978-3-030-90870-6_41
http://samate.nist.gov/index.php/Metrics_and_Measures.html
http://samate.nist.gov/index.php/Metrics_and_Measures.html
https://www.omg.org/spec/SACM
https://doi.org/10.1007/978-3-319-57288-8_29
https://doi.org/10.1007/978-3-319-57288-8_29
https://doi.org/10.1007/978-3-642-33678-2_27
https://doi.org/10.1007/978-3-642-33678-2_27

Validation-Driven Development

Sebastian Stock(B) , Atif Mashkoor , and Alexander Egyed

Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria
{Sebastian.Stock,Atif.Mashkoor,Alexander.Egyed}@jku.at

Abstract. Formal methods play a fundamental role in asserting the
correctness of requirements specifications. However, historically, formal
method experts have primarily focused on verifying those specifications.
Although equally important, validation of requirements specifications
often takes the back seat. This paper introduces a validation-driven
development (VDD) process that prioritizes validating requirements in
formal development. The VDD process is built upon problem frames - a
requirements analysis approach - and validation obligations (VOs) - the
concept of breaking down the overall validation of a specification and
linking it to refinement steps. The effectiveness of the VDD process is
demonstrated through a case study in the aviation industry.

Keywords: Validation-driven development · validation obligations ·
formal methods · Event-B

1 Introduction

Formal methods play a crucial role when developing critical systems, allowing a
correct specification of the system behavior. This specification can be checked for
consistency via verification that often takes preeminence in formal development.
Consequently, techniques like model checking, theorem proving, and associated
toolsets such as SPIN [12] or Isabelle [20] are widely used in industry. On the
other hand, the compliance of the specification with desired system behavior can
be ensured via validation. Validation is supported by techniques like animation
and simulation and associated toolsets like AsmetaA [5] or JeB [18]. Contrary to
verification, using validation techniques and toolsets is less common, especially
in state-based formal methods [16]. Even if used, they are considered a secondary
activity towards the end of the development cycle.

A typical formal requirements specification process starts with a set of (nat-
ural language) requirements. Once specified, requirements undergo a stringent
verification process for consistency checking. Then, the validation process fol-
lows. The whole development process is iterative. Verification is often given pre-
eminence over validation because it does not make sense to validate something

The research presented in this paper has been conducted within the IVOIRE project,
which is funded by “Deutsche Forschungsgemeinschaft” (DFG) and the Austrian Sci-
ence Fund (FWF) grant # I 4744-N and has been partly financed by the LIT Secure
and Correct Systems Lab sponsored by the province of Upper Austria.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 191–207, 2023.
https://doi.org/10.1007/978-981-99-7584-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_12&domain=pdf
http://orcid.org/0000-0002-2231-8656
http://orcid.org/0000-0003-1210-5953
http://orcid.org/0000-0003-3128-5427
https://doi.org/10.1007/978-981-99-7584-6_12

192 S. Stock et al.

inconsistent. However, prioritizing verification over validation may lead to cru-
cial issues, such as keeping the end users out of the loop. While specifiers create,
verify, and validate specifications, the end users only give inputs at the spec-
ification process’s beginning or end. Consequently, late feedback means more
changes, efforts, and costs.

Many techniques have been proposed to overcome this problem. For exam-
ple, Baumeister [4] suggested using test-driven development (TDD) for writing
formal specifications. The author proposes generating run-time assertions from
the specification to check for compliance between specification, code, and tests.
Later, Bonfanti et al. [6] proposed using behavior-driven development (BDD) for
a similar cause. The advantage of BDD over TDD is that it supports early col-
laboration among stakeholders, such as specifiers, developers, quality assurance
experts, and end users, by giving low-level tests a high-level meaning. However,
this reliance on tests comes with a price, and while testing is a valid means of
validation, it is not necessarily exhaustive enough to cover all validation chal-
lenges. BDD restricts itself to a scenario language translated to some test in
the target language (e.g., natural language to LTL formula), which may not be
extensive enough to validate all properties of interest. This translation is often
limited depending on the expressiveness of the target language. Furthermore,
BDD is usually applied to formal specifications late in the process.

This paper proposes a validation-driven development (VDD) process for writ-
ing formal specifications that puts validation at the center of formal development.
The VDD process focuses on creating validatable specifications, allowing end
users to subjugate the formal specification process. Furthermore, VDD suggests
a highly expressive and systematic structuring, elicitation, documentation, trac-
ing, and maintenance process for formal requirements specifications appealing
to all stakeholders.

The VDD process is built upon two well-known concepts: problem frames [13]
and validation obligations (VOs) [17]. Problem frames help analyze requirements
in a structured and collaborative manner. On the other hand, VOs help check
the compliance of a specification concerning the stakeholders’ requirements and
support incremental specification writing and evolution. Analogous to proof obli-
gations, VOs break down the overall validation of a specification and associate
it with the specification’s refinement steps.

The rest of the paper is structured as follows: Sect. 2 provides the necessary
background to understand the content of this paper by introducing Event-B and
VOs. However, note that the findings of this paper are language-independent.
Section 3 introduces and exemplifies the VDD process. Section 4 demonstrates
the application of the VDD process through a case study from the aviation
domain. Section 5 compares the VDD process to other similar approaches.
Finally, Sect. 6 concludes the paper with some proposed future work.

Validation-Driven Development 193

2 Background

2.1 Event-B

The formal language Event-B [1] is based on first-order predicate logic and set
theory and helps with specification writing, verification, and proving using the
platform Rodin [2]. The behavior of a specification is defined using machines
that contain a set of variables, which are described in the invariant section.
Events are considered state transitions, with a guard marked with the when
clause that must be true before enabling the event. Context defines the static
part of a specification. The Event-B language supports both vertical and hor-
izontal refinement styles. While vertical refinement is about concretizing the
abstract data structure, horizontal refinement is about introducing additional
features to the specification.

2.2 Validation Obligations

Validation obligations (VOs) are logical formulas associated with the correctness
claims of given validation properties. Each VO represents a requirement showing
evidence of its existence in the specification. Figure 1 shows the internal compo-
nents of a VO and their interplay. A validation expression (VE) is run against
the specification and can consist of one or more validation tasks (VT) connected
by the logical operators ∨,∧, and ;. The semicolon operator represents a vali-
dation expression where the components before and after the semicolon share
the same state space of the specification. Thus, this operator allows for complex
validation expressions where steps depend logically on each other. Typical valida-
tion techniques are animation, simulation, testing, or model checking. VTs have
parameters determined by the requirements and structures of the specification.
VOs help us with traceability, documentation, and maintenance throughout the
specification as they act as tokens documenting how a requirement is realized in
a specification. Further, they indicate when a requirement is no longer satisfied.

Let us consider the following requirement in a lift example where the oper-
ator can choose between multiple floors from 0 to 2. REQ0:The floor level will
eventually equal 2. This requirement is implemented in specification M0. Suppose
we choose LTL model checking as a validation technique. In that case, we can
encode the requirement into the following VO, where the parameter is an LTL
formula:

REQ0/M0 : LTL1 := FG({x = 1}) (1)

3 Validation-Driven Development

VDD proposes a systematic process for requirements elicitation, documentation,
tracing, and maintenance during formal developments. In the following, we dis-
cuss the workflow of the VDD process, the role of VOs in specification writing,
and the structuring of the specification through problem frames.

194 S. Stock et al.

Fig. 1. Internal view of a VO

3.1 Workflow

Figure 2 shows the workflow of the VDD process, which is as follows:

1. Select a requirement.
2. Write a VO that, if successful, would give evidence for correctly implementing

the requirement.
3. Implement the VO in the specification.
4. Verify the specification, e.g., check for internal consistency.
5. Run the VO, e.g., execute the associated validation task.

After satisfying a VO, the specifier can introduce a refactoring session to improve
the existing specification. Overall, the approach is iterative for all requirements,
and if we introduce additional VOs and change the specification, leading to
other VOs failing, we have a hint of inconsistency. The VDD process also helps
to keep things simple, i.e., if we need to introduce more than a handful of vari-
ables, state transitions, and invariants during the VO implementation, we most
likely want too much at once. The VO makes this apparent. Checking multiple
properties of one requirement hints that the requirement may be divided into
sub-requirements.

Example. Let us specify REQ0 from the previous lift example (step 1). For this,
we first create the VO as shown in Eq. 1 (step 2). Now we need to implement the
VO (step 3). We approach this as minimalist as possible. In the LTL formula, we
need a variable floor which is some form of a number. Consequently, we start
with x equaling 1. Then, we check the specification for internal consistency (step
4). If this is successful, we employ the LTL model checking to evaluate the VO
(step 5).

3.2 Specification Structuring and Refinement

We now focus on problem structuring and refinement planning, two challenging
tasks in formal developments [11]. The first challenge is to recognize what aspects
of the problem are related to which other elements, i.e., eliciting the structure of

Validation-Driven Development 195

Fig. 2. VDD workflow

the specification. The second challenge is to derive a valid refinement structure
from this, which supports the verification and validation process. However, both
challenges require experience to master them.

Framing the Problem. We adapt the problem frame methodology [13] to struc-
ture specifications. Figure 3 shows the problem frame of the lift example. The
rectangles represent the concerning domains. Each domain represents an aspect
of the physical world that is observable to the stakeholders. Lines between the
domains are interfaces and explain how the domains interact with each other.
The rectangle with the doubled vertical stripe is the machine domain, the speci-
fication we want to write. Rectangles with one stripe are designed domains that
represent the information we are free to express as we desire. This notation is for
complex domains where the design is up to the specifier but where the details
do not concern the global problem. Finally, rectangles with no stripe are given
domains. Given domains are those we need to consider but cannot alter their
appearance. They are usually very abstract for our specification purposes and
require less attention. Our addition to the problem frames is the arrows on the
interfaces indicating an information flow. Either they are uni- or bi-directional.

Example. In our running example in Fig. 3a, we want to specify a lift with three
areas of concern. The Floors we want to navigate to are a given domain we
cannot change. The lift Doors need to be detailed and marked as a designed
domain. Finally, the Buttons is also a designed domain, as we have yet to get
further instructions on how the buttons should look. Going into further detail,
in Fig. 3b, we can see a sub-problem only concerning the lift’s Doors. This sub-
problem was separated as it would bloat Fig. 3 with information only specific to
one domain. We can see that we replaced the Doors domain with two more spe-
cific domains related to each other. The Outer Doors are the doors on each floor.
Inner Door is the lift’s door and must read the outer door status to synchronize

196 S. Stock et al.

Fig. 3. Problem frame of the lift problem and the sub-problem concerning Doors

accordingly. Furthermore, three domains share the open/close interface. The
arrows at the interfaces show us the dependencies of their interaction, mainly
the lift specification. In reality, domains are chosen and marked according to
given and extracted information. This can lead to eliciting new requirements to
fill gaps between the desired specification and reality. Moreover, we may involve
non-technical stakeholders in the process due to a visual structure.

Structuring Specification. We use the following guidelines to structure the spec-
ification:

1. Domains sharing an interface will need to interact eventually. Therefore, they
should refine each other horizontally (e.g., Doors is dependent on Floors in
our problem frame and should refine it).

2. The first domain to be implemented is the one with the most connecting
incoming interfaces. We then implement the domain with the second-highest
incoming interfaces and proceed iteratively (e.g., specifying Floors before
Doors as Floors has the most incoming interfaces).

3. Whenever we omit details in the main problem frame and create a sub-
problem frame, we are confronted with a choice:
(a) We can introduce the details immediately, substituting the domain with

the domains introduced in the sub-problem (e.g., Doors is immediately
specified as Outer Doors and Inner Door).

(b) We can introduce the details later in a vertical refinement and keep the
abstract domain around (e.g., Doors is refined to Outer Doors and Inner
Door).

4. Whenever multiple domains share an interface without being connected oth-
erwise, they may be related in a vertical refinement relationship.

5. Domains not directly connected to the machine domain are of secondary
concern.

Structuring the specification further and fostering understanding for stake-
holders involved, we can annotate domains with corresponding requirements

Validation-Driven Development 197

extracted from the requirements document. This helps later with the elicitation
of VOs. We distinguish between two types of VOs: VOs focusing on the domain
and VOs focusing on the interplay of two domains. Separating both concerns
helps estimate the validation effort, as VOs focusing on the domain will likely
still be valid if we change unrelated domains.

ExampleContinued. Applying these guidelines,we canderive a specification struc-
ture. For example, to specify the lift, we would start with the floors, as they are
referenced most (Guideline 1). Next, we would specify the Doors. Here we are con-
fronted with a choice. We can keep the Doors abstract for now and move on to the
Buttons (Guideline 3b) or detail the Doors before moving on (Guideline 3a). The
decision for either is dependent on the requirements we want feedback on. If we
keep the Doors abstract (Guideline 3a), we can introduce the Buttons and gather
early feedback on the whole system and the interaction between domains. On the
other hand, if we choose to introduce the details of the Doors (Guideline 3b), we
encounter a special case of two domains sharing an interface and being connected
independently. The dependency structure is that Outer Doors and Inner Door
complement each other as the bidirectional interface indicates. However, as a sub-
problem, they refine the Doors domain. Consequently, both domains are intro-
duced at the same time. Therefore the problem frame helped us to evaluate the
impact of possible specification structures.

Validation and Refinement. When introducing VOs early and then applying
changes to the specification due to refinement or refactoring, we must tackle
the (re)validation question. We can use the problem frame to indicate where
revalidation might become necessary. For example, in horizontal refinement rela-
tionships, if we have an incoming interface, i.e., we consume information from
another domain and change the producing domain, we must revalidate every VO
consuming from this producing domain. Analogous is true for having producing
domain. Adding to the insights proposed by Stock et al. [26] if a VO only con-
cerns a single domain and is not dependent on others, outside changes do not
invalidate it. For vertical refinement, rechecking VOs depends on the specifica-
tion language. If the specification language has a strict notion of refinement, such
as Event-B, where we can show the preservation of safety and liveness properties,
our VOs will stay intact. For specification languages featuring a liberal notion of
refinement, such as ASMs, we might recheck VOs. In some cases, the VO can be
transferred, preserving its insights. For example, the works of Arcaini et al. [3]
and Stock et al. [25] tackle the problem of information transfer, and the insights
can be applied to VOs.

4 Case Study

4.1 System Description

We exemplify the VDD process on the Arrival Manager (AMAN) case study [19].
The AMAN system focuses on developing a human-machine interface for manag-

198 S. Stock et al.

ing aircraft arriving at an airport. The particularity lies in continuously schedul-
ing new aircraft to land at the airport while users can interact with the schedule
on a screen in three different. The first interaction to consider is dragging the
aircraft to another landing slot via the mouse. The second is blocking landing
slots and disallowing the computer from scheduling aircraft in this slot. The
third is to put the aircraft on hold, meaning that the countdown till landing is
not reduced for these planes. Furthermore, the user can zoom in and out on the
landing schedule, thus reducing or increasing the presented slots and aircraft,
respectively. Figure 4 shows the working of the AMAN system. In the middle,
one can see the remaining time till landing, and the boxes on the left and right
are planes. Colors indicate different statuses, for example, hold.

Fig. 4. Screenshot of the AMAN system [15]

4.2 Problem Structuring

This subsection demonstrates how the requirements of the AMAN system can
be specified using the VDD process. We use the problem frames approach intro-
duced in Sect. 3.2 to understand and define the problem. For brevity, only a
portion of the case study and the validation process is shown here. For the com-
plete specification and the VOs derived, please consider the work of Geleßus
et al. [7].

Defining Domains of Interest. Consider Fig. 5a, the AMAN we want to spec-
ify is marked as the centerpiece by the two extra bars inside; this is the goal
of the specification process. Next to the AMAN are designed domains partially
mentioned in the system description. Here, we have the designed domain User,
which encapsulates the user behavior. For example, the AMAN reacts to the

Validation-Driven Development 199

user input. We designated User as a designed domain because we know about
some user behavior, but we are unaware of the details and might want to create
a sub-problem frame. Then there is the designed domain of Schedule, which
encapsulates the process of the AMAN creating a schedule from aircraft and
time slots. We marked Schedule as a designed domain as we are not sure of the
structure and behavior of the schedule and want to investigate further. Finally,
we have the designed domain Display that works as a transmitter as a phys-
ical way of transmitting user inputs to the Schedule. However, the lack of an
interface with the AMAN suggests its secondary role.

Sub-problem Structure. Diving deeper into the designed domains, we start with
the sub-problem shown in Fig. 5b. Focusing on the Schedule itself, we now con-
sider the Schedule’s two components: Time, which is again a designed domain,
and Aircraft, a given domain. We decided here that Aircraft is a given domain
as no detail about Aircraft is available. Therefore, we consider it a rather prim-
itive datatype. On the other hand, Time is complex and might require much con-
sideration. Both tie into the Schedule domain, which, according to the proposed
guidelines, indicates a refinement. Additionally, both have the same amount of
incoming interfaces. Therefore, we can start specifying with any of them.

The second sub-problem in Fig. 5c covers the topic of user interaction. Here
the domain structure is simple. However, all sub-domains need the Schedule, and
additional domains share the interaction interface, which indicates some inter-
ference in the domains. Otherwise, the domains remain very loosely connected.
What could be a consideration is that we define abstract User interaction that
interacts with the Schedule and later refines the User interaction into the three
subdomains. This, again, depends on how we define the scheduling.

Final Specification Structure. We can use the proposed guidelines discussed
in Sect. 3.2 to derive a specification structure from these initial problem frames.
Considering incoming interfaces, starting with the Schedule seems reasonable.
We must decide if we detail the Schedule before implementing User interaction.
An argument for this would be that we can validate the most basic function of
the AMAN and get feedback on it. Further, we tackle the difficult representation
of time early. Afterward, we may implement the User interaction. We subjugate
the choice of what to implement first to what needs the most investigation and
validation effort, as the individual User interactions only are loosely connected.
Finally, we can conclude with the specification of the Display properties. The
Display has no direct connection to the primary concern of the AMAN system.
Therefore, its specification is a secondary concern.

The final specification structure is as follows:

200 S. Stock et al.

Fig. 5. Problem frame of the AMAN and a sub-problem frame concerning the schedul-
ing

1. Create the Schedule (Guideline 2):
(a) Introduce the Aircraft domain (Guideline 3a)
(b) Vertically refine the created specification by introducing Time (Guideline

3a & 4)
2. Horizontally refine the specification by introducing User interactions (Guide-

line 1 & 3a) and consequently Zoom, Hold/Unhold, and Move in any order
(Guideline 1)

3. Horizontally refine the specification by introducing Display (Guideline 5)

4.3 Specification and Validation

We start the specification process with the Schedule sub-problem. In the fol-
lowing, we refer to requirements directly derived from the specification as a
direct quote: REQX with X being a number. According to the tactics presented in
Sect. 3.1, we start by selecting a requirement, creating a VO, and then specifying
the requirement. For example, let’s assume we select the requirement of REQ1:
“Planes can be added to the flight sequence, e.g., planes arriving in close range of
the airport.” This requirement means: a) we have aircraft, b) we have something

Validation-Driven Development 201

Fig. 6. The schedule sub-problem with only aircraft

to store them, and c) we can manipulate this storage by adding planes. Let’s
formulate this as a VO:

REQ1/M0 : GF(BA(scheduledAirplanes �= scheduledAirplanes$0)) =⇒
GF(BA({∃x.(x ∈ scheduledAirplanes ∧ x /∈ scheduledAirplanes$0)}))

The GF (Globally-Finally) operator indicates that the brackets’ expression
will eventually be true. The BA is the before-after operator, comparing the
current version of a variable with the previous version marked with an $0, i.e.,
the difference between scheduledAirplanes in one step and the next step is
observed. The LTL formula will ensure that our scheduled aircraft can contain
an aircraft not previously in the set of scheduled aircraft. This, however, implies
some state transition in our specification, going from an initial state to a state
with one more aircraft that was not previously contained.

Figure 6 is an Event-B specification that attempts to satisfy the VO. We
have a variable representing our Schedule, an AIRPLANE datatype, and an event
creating a new schedule, eventually satisfying the VO. We could now generate
more VOs to ensure soundness implementation regarding the amount of added
planes. For now, we are satisfied and proceed.

Taking a look back at Fig. 5b, we need to implement the Time domain to cover
the Schedule domain fully. The corresponding requirement we want to satisfy
by introducing the time is REQ5: “The space between two aircraft is always ≥
3, with 3 being the time in minutes.” Following is the corresponding VO.

202 S. Stock et al.

Fig. 7. The schedule sub-problem with added time

REQ5/M1 :∀a1, a2 · a1 ∈ dom(landing sequence)∧
a2 ∈ dom(landing sequence) ∧ a1 �= a2 =⇒
(DIST(landing sequence(a1)
→ landing sequence(a2))
≥ AIRCRAFT SEPARATION MIN)

For this VO, we assumed that we upgraded our scheduledAirplanes from
Fig. 6 to landing sequence as shown in Fig. 7, which is a mapping from aircraft
to time slots. Consequently, we demand that every aircraft contained in this map-
ping has a distance (DIST) to every other aircraft of AIRCRAFT SEPARATION MIN,
which in our case is 3. Consequently, we must upgrade our scheduledAirplanes
and take care of the proof.

Figure 7 shows the corresponding specification. We introduced the mentioned
landing sequence and further introduced inv13,2 to establish proof. Further-
more, we refined our event to use the upgraded data structure. After discharging
the proof, we establish that our requirement is truly represented in the specifi-
cation.

As previously established, both domains Aircrafts and Time have a connec-
tion, and therefore when creating M1, we need to show that REQ1 is still preserved
in the specification. As Rodin only supports a safety-preserving notion of refine-
ment, re-establishing the VO must happen by re-executing the LTL formula.

Validation-Driven Development 203

After completing the scheduling sub-problem, we move on to the User inter-
action part. Our VOs concerning the Schedule will not be revalidated when
validating the interaction. We only consume the Schedule’s behavior as laid out
at the end of Sect. 4.2.

5 Related Work

Several approaches have been proposed for the validation of requirements speci-
fications. While some focus on the whole specification process, others focus only
on certain aspects. We briefly introduce and compare some of them with our
proposed process.

5.1 BDD Usage in Formal Requirement Specification

BDD [24] is a well-established technique in the area of software development. It
is appealing due to its easy-to-follow procedure and its effectiveness in establish-
ing that requirements are part of the code. First, a scenario is created and run
(with intermediate steps) against the code. If this is successful, the next scenario
is tackled. If it fails, either code or scenario has to be fixed. One strength is the
imposed iterative nature, which comes naturally by adding more satisfied scenar-
ios. Furthermore, tracing and maintaining requirements is massively simplified
as every requirement has one scenario mapped to a group of tests. Naturally,
attempts have been made to use BDD in formal developments.

There are many significant adaptations of the BDD approach for the formal
specification community. For example, Snook et al. [23] proposed an Event-B
targeting version of Cucumber [27] to describe scenarios in the Gherkin1 language
which is translated into a trace and executed against a specification. The scenario
language FRETISH [9] goes in a similar direction as it can be used to express
requirements which are then converted to an LTL formula with the help of the
FRET [8] tool. This approach orients itself heavily on what Gehrkin does for
programming examples. It provides a basic language to write scenarios, which
can be (automatically) linked to LTL formulas.

While these approaches can be applied successfully, they suffer from two
drawbacks. First, they consider validation after writing specifications, thus los-
ing out on the advantages of validation-centered specifications. Doing validation
last will compromise completeness due to time constraints or the complexity
of the specification. Second, scenario language used in BDD causes problems
of expressiveness and, therefore, suffers from a lack of completeness. Second,
while these approaches work well, they only provide one solution to a validation
problem. We must rely on the correct translation from the scenario language to
the validation technique. Furthermore, there is no way to choose between dif-
ferent validation techniques to translate the scenario. This means a method like
FRETISH can only react to a scenario by producing an LTL formula. However,
model checking may not always be a good solution, e.g., in infinite state spaces.
1 https://cucumber.io/docs/gherkin/.

https://cucumber.io/docs/gherkin/

204 S. Stock et al.

VDD addresses both concerns while keeping the compact and easy-to-follow
style of BDD. First, it puts validation at the center of the formal development
process. Second, it offers a liberal syntax allowing for expressing and conse-
quently validating different properties of interest with many techniques and tools.

Arcaini et al. [3] showed how BDD-like scenarios targeting ASMs can be
transferred between refinement steps of abstract state machines. While the pre-
viously mentioned disadvantages to using BDD-like scenarios apply, this work
highlights the importance of the transferability of validation results. In the con-
text of VDD, with our approach, we know early when results are transferable or
might be due to revalidation, as pointed out at the end of Sect. 4.2.

5.2 Bridging the Gap Between Natural Language Requirements
and Formal Specification

Several efforts have been made to narrow the gap between natural language
requirements and formal specifications, as it can reduce the mental load placed
on the specifier, and it helps when attempting to involve non-technical stakehold-
ers. The efforts are bidirectional: creating specifications from natural language
requirements and validating natural language requirements in specifications. As
discussed in Sect. 5.1, BDD for formal specifications caters to the latter concern.

Regarding creating specifications from natural language requirements, Golra
et al. [10] focus on creating intermediate steps with meta-models for systemat-
ically translating requirements to formal specifications. A second work of Sayer
et al. [21,22] uses translation patterns. However, as both approaches introduce
intermediate layers of abstraction, they also introduce additional error sources
where the translation could be wrong. Furthermore, they may suffer from the
same problems discussed in Sect. 5.1, where the intermediate language might not
be powerful enough to translate the constructs.

VDD does not introduce intermediate layers but changes the standard order
from specification first to validation. Therefore no new error source was intro-
duced. Furthermore, the mental load is reduced as the problem is tackled in
smaller portions. Finally, with VOs, non-technical stakeholders can get a feeling
for the progress the specification made and point to requirements that still need
work.

5.3 Requirements Tracing

Another field of interest is systematically tracing the implementation status of
requirements. Exculpatory for these efforts are, for example, the works [11,14],
where a sophisticated set-theoretic representation for requirements is proposed,
which is supposed to help with the tracing of requirements. Compared to our app-
roach, the authors heavily focus on the properties of Event-B and proofing with
proof obligations. Validation is a gap filler for everything that cannot be proven.
While our work also contributes to traceability, it takes a more lightweight app-
roach inspired by software development strategies and thus is more intuitive.

Validation-Driven Development 205

Furthermore, the focus is on validating and creating validatable specifications,
not fitting a validation solution to an existing specification.

6 Conclusion and Future Work

This paper presents the validation-driven development process for writing formal
specifications. It offers an iterative approach to formal specifications, strongly
focusing on their validation. The aim is to provide a systematic process to struc-
ture, elicit, document, trace, and maintain formal requirements specifications.
To this end, we employ an adapted version of problem frames complemented by
validation obligations.

In the future, we want to provide tool support that helps automate the
VDD process by keeping track of VOs, the specification structure, and changes.
Especially the steps of VOs elicitation and creation could be fully automated.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
Rodin: an open toolset for modelling and reasoning in Event-B. Int. J. Softw.
Tools Technol. Transf. 12(6), 447–466 (2010)

3. Arcaini, P., Riccobene, E.: Automatic refinement of ASM abstract test cases. In:
2019 IEEE International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), pp. 1–10 (2019)

4. Baumeister, H.: Combining formal specifications with test driven development. In:
Zannier, C., Erdogmus, H., Lindstrom, L. (eds.) XP/Agile Universe 2004. LNCS,
vol. 3134, pp. 1–12. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27777-4 1

5. Bonfanti, S., Gargantini, A., Mashkoor, A.: AsmetaA: animator for abstract state
machines. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018.
LNCS, vol. 10817, pp. 369–373. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-91271-4 25

6. Bonfanti, S., Gargantini, A., Mashkoor, A.: Generation of behavior-driven devel-
opment C++ tests from abstract state machine scenarios. In: Abdelwahed, E.H.,
et al. (eds.) MEDI 2018. CCIS, vol. 929, pp. 146–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-02852-7 13

7. Geleßus, D., Stock, S., Vu, F., Leuschel, M., Mashkoor, A.: Modeling and analysis
of a safety-critical interactive system through validation obligations. In: Glässer,
U., Creissac Campos, J., Méry, D., Palanque, P. (eds.) ABZ 2023. LNCS, vol.
14010, pp. 284–302. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
33163-3 22

8. Giannakopoulou, D., Mavridou, A., Rhein, J., Pressburger, T., Schumann, J., Shi,
N.: Formal requirements elicitation with FRET. In: International Working Con-
ference on Requirements Engineering: Foundation for Software Quality (REFSQ-
2020) (2020)

https://doi.org/10.1007/978-3-540-27777-4_1
https://doi.org/10.1007/978-3-540-27777-4_1
https://doi.org/10.1007/978-3-319-91271-4_25
https://doi.org/10.1007/978-3-319-91271-4_25
https://doi.org/10.1007/978-3-030-02852-7_13
https://doi.org/10.1007/978-3-031-33163-3_22
https://doi.org/10.1007/978-3-031-33163-3_22

206 S. Stock et al.

9. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Generation of
formal requirements from structured natural language. In: Madhavji, N., Pasquale,
L., Ferrari, A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 19–35. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44429-7 2

10. Golra, F.R., Dagnat, F., Souquières, J., Sayar, I., Guerin, S.: Bridging the gap
between informal requirements and formal specifications using model federation.
In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018. LNCS, vol. 10886, pp. 54–69.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92970-5 4

11. Hallerstede, S., Jastram, M., Ladenberger, L.: A method and tool for tracing
requirements into specifications. Sci. Comput. Program. 82, 2–21 (2014). Special
Issue on Automated Verification of Critical Systems (AVoCS’11)

12. Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

13. Jackson, M.: Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley, Boston (2001)

14. Jastram, M., Hallerstede, S., Leuschel, M., Russo, A.G.: An approach of require-
ments tracing in formal refinement. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K.
(eds.) VSTTE 2010. LNCS, vol. 6217, pp. 97–111. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15057-9 7

15. Martinie, C., Palanque, P., Pasquini, A., Ragosta, M., Rigaud, E., Silvagni, S.:
Using complementary models-based approaches for representing and analysing
ATM systems’ variability. In: 2nd International Conference on Application and
Theory of Automation in Command and Control Systems (ATACCS 2012),
Toulouse, pp. 146–157. IRIT Press (2012)

16. Mashkoor, A., Kossak, F., Egyed, A.: Evaluating the suitability of state-based
formal methods for industrial deployment. Softw. Pract. Exp. 48(12), 2350–2379
(2018)

17. Mashkoor, A., Leuschel, M., Egyed, A.: Validation obligations: a novel approach
to check compliance between requirements and their formal specification. In: ICSE
2021 NIER, pp. 1–5 (2021)

18. Mashkoor, A., Yang, F., Jacquot, J.: Refinement-based validation of Event-B spec-
ifications. Softw. Syst. Model. 16(3), 789–808 (2017)

19. Palanque, P., Campos, J.C.: Aman case study. In: Glässer, U., Creissac Campos, J.,
Méry, D., Palanque, P. (eds.) ABZ 2023. LNCS, vol. 14010, pp. 265–283. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-33163-3 21

20. Paulson, L.C.: Isabelle: A Generic Theorem Prover. Springer, Heidelberg (1994).
https://doi.org/10.1007/BFb0030541

21. Sayar, I., Souquières, J.: Bridging the gap between requirements document and
formal specifications using development patterns. In: 2019 IEEE 27th Interna-
tional Requirements Engineering Conference Workshops (REW), pp. 116–122.
IEEE (2019)

22. Sayar, I., Souquières, J.: Formalization of requirements for correct systems. In:
2020 IEEE Workshop on Formal Requirements (FORMREQ), pp. 28–34. IEEE
(2020)

23. Snook, C., et al.: Behaviour-driven formal model development. In: Sun, J., Sun, M.
(eds.) ICFEM 2018. LNCS, vol. 11232, pp. 21–36. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-02450-5 2

24. Solis, C., Wang, X.: A study of the characteristics of behaviour driven development.
In: 2011 37th EUROMICRO Conference on Software Engineering and Advanced
Applications, pp. 383–387 (2011)

https://doi.org/10.1007/978-3-030-44429-7_2
https://doi.org/10.1007/978-3-319-92970-5_4
https://doi.org/10.1007/978-3-642-15057-9_7
https://doi.org/10.1007/978-3-031-33163-3_21
https://doi.org/10.1007/BFb0030541
https://doi.org/10.1007/978-3-030-02450-5_2
https://doi.org/10.1007/978-3-030-02450-5_2

Validation-Driven Development 207

25. Stock, S., Mashkoor, A., Leuschel, M., Egyed, A.: Trace refinement in B and Event-
B. In: Riesco, A., Zhang, M. (eds.) ICFEM 2022. LNCS, vol. 13478, pp. 316–333.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17244-1 19

26. Stock, S., Vu, F., Geleßus, D., Leuschel, M., Mashkoor, A., Egyed, A.: Validation
by abstraction and refinement. In: Glässer, U., Creissac Campos, J., Méry, D.,
Palanque, P. (eds.) ABZ 2023. LNCS, vol. 14010, pp. 160–178. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-33163-3 12

27. Wynne, M., Hellesoy, A., Tooke, S.: The cucumber book: behaviour-driven devel-
opment for testers and developers. Pragmatic Bookshelf (2017)

https://doi.org/10.1007/978-3-031-17244-1_19
https://doi.org/10.1007/978-3-031-33163-3_12

Incremental Property Directed
Reachability

Max Blankestijn and Alfons Laarman(B)

Leiden University, Leiden Institute for Advanced Computer Science, Leiden,
The Netherlands

max@blankestijn.com, a.w.laarman@liacs.leidenuniv.nl

Abstract. Property Directed Reachability (PDR) is a widely used tech-
nique for formal verification of hardware and software systems. This
paper presents an incremental version of PDR (IPDR), which enables the
automatic verification of system instances of incremental complexity. The
proposed algorithm leverages the concept of incremental SAT solvers
to reuse verification results from previously verified system instances,
thereby accelerating the verification process. The new algorithm sup-
ports both incremental constraining and relaxing; i.e., starting from an
over-constrained instance that is gradually relaxed.

To validate the effectiveness of the proposed algorithm, we imple-
mented IPDR and experimentally evaluate it on two different problem
domains. First, we consider a circuit pebbling problem, where the number
of pebbles is both constrained and relaxed. Second, we explore parallel
program instances, progressively increasing the allowed number of inter-
leavings. The experimental results demonstrate significant performance
improvements compared to Z3’s PDR implementation SPACER. Experi-
ments also show that the incremental approach succeeds in reusing a
substantial amount of clauses between instances, for both the constrain-
ing and relaxing algorithm.

1 Introduction

Symbolic model checking based on satisfiability has revolutionized automated
verification. Initially, symbolic model checkers were based on (binary) decision
diagrams [13,42]. While they enabled the study of large software and hardware
systems [14,18,20], they were inevitably limited by memory constraints because
decision diagrams represent all satisfying assignments explicitly. Bounded Model
Checking (BMC) [5,6] alleviated the need for decision diagrams by encoding the
behavior of a system directly into propositional logic, in a way similar to the
reductions provided by Cook [19] and Levin [39] much earlier (who could have
foreseen this future application of the theory?). BMC, in turn, is limited by the
depth of the system under verification, since the encoding explicitly ‘unrolls’
the transition relation for each time step of the computation and each unrolling
requires another copy of the state variables. The introduction of the IC3 algo-
rithm [10,12], later known as Property Directed Reachability (PDR) [23,35,52],
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 208–227, 2023.
https://doi.org/10.1007/978-981-99-7584-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_13&domain=pdf
https://doi.org/10.1007/978-981-99-7584-6_13

Incremental Property Directed Reachability 209

circumvents this unrolling by using small SAT solver queries to incrementally
construct an inductive invariant from the property.

This work is inspired by the success of BMC and other verification methods
based on incremental SAT solving [1,24,45,53]. In order to reduce the search
space, modern SAT solvers learn new clauses, further constraining the origi-
nal problem, from contradictions arising during the search for satisfying assign-
ments [1,50]. BMC can exploit the power of clause learning by incrementally
increasing the hardness of the problem instance, while retaining learned clauses
from ‘easier’ instances [53]. A natural parameter here is the unrolling depth:
Incremental BMC increases the unrolling bound to generate a new problem
instance. This approach has shown to yield multiple orders of magnitude run-
time improvements [7], which often translates into unrollings that are multiple
times longer.

A natural question is whether PDR can also benefit from incremental SAT
solving. However, since PDR does not unroll the transition relation, we need new
parameters to gradually increase the hardness of instances and exploit incremen-
tal solvers. Moreover, the standard PDR algorithm requires an extension to reuse
information learned in previous runs. We provide both these parameters and a
new incremental PDR algorithm.

For instance, an increasing parameter to consider, other than the unrolling
depth, is the number of parallel threads in a system. However, it is not always
clear how a system with fewer threads relates to a larger one, since it is not
necessarily either an over- or under-approximation: Interaction between threads
can remove behavior in some systems, while the new thread also introduces
new behavior. And the incremental SAT solving requires either a relaxing or
a constraining of problem instances. Therefore, we focus here on bounding the
number of interleavings in a parallel program. Research has shown that most
bugs occur after a limited number of interleavings [29,49], so an incremental PDR

algorithm can exploit this parameter by solving a ‘relaxed’ instance bounded to
� + 1 interleavings by reusing the previous results (learned clauses in the SAT
solver) from solving an instance of � interleavings.

Another interesting application of incremental PDR is for optimization prob-
lems. An example is the PSPACE-complete circuit pebbling problem [40], used
to study memory bounds. It asks whether a circuit, viewed as a graph, can be
‘pebbled’ using p pebbles and the optimization problem is to find the lowest p.
These pebbles model the memory required to store signals at the internal wires
of the circuit (the working memory): An outgoing wire of a gate can be ‘peb-
bled’ if its incoming wires are and pebbles can always be removed (memory
erasure). In the reversible pebbling problem [2], pebbles can only be removed if
all incoming wires are pebbled, is relevant for reversible and quantum compu-
tations. An incremental PDR algorithm can potentially solve a ‘relaxed’ instance
with p+1 pebbles faster by reusing the results from a previous run on p pebbles.
Moreover, it could approximate the number of pebbles from above by solving a
‘constrained’ instance with p − 1 pebbles, by reusing the same previous results

210 M. Blankestijn and A. Laarman

(we could start for example with p equal the number of gates in the circuit,
which is always enough to successfully pebble it).

In Sect. 3, we introduce an incremental PDR (IPDR) algorithm that can both
handle relaxing, as well as constraining systems. It runs an adapted PDR algo-
rithm multiple times on instances of increasing (or decreasing) ‘constraintness’.
We show how the PDR algorithm can be adapted to reuse the internal state from a
previous run to achieve this. Moreover, IPDR can combine both constraining and
relaxing approaches in a binary search strategy in order to solve optimization
problems, such as the pebbling problem.

We emphasize here that the incremental approach of IPDR is orthogonal to
the incrementality already found in the original PDR algorithm: Its original name
IC3 comes from (IC)3, which stands for: “Incremental Construction of Induc-
tive Clauses for Indubitable Correctness.” This refers to the internals of the PDR

algorithm which maintain a sequence of increasingly constrained formulas (clause
sets) which ultimately converge to the desired inductive invariant. This sequence
is also extended incrementally. However, IPDR, in addition, incrementally grows
a sequence of problem instances that are increasingly (or decreasingly) con-
strained. This sequence exists in between runs of the adapted PDR algorithm.
Both approaches exploit incremental SAT solver capabilities: Or rather, IPDR

uses incremental SAT solving in two different and orthogonal ways: inside PDR

runs and in between PDR runs on incremental instances.
In Sect. 5, we give an open source implementation of an IPDR-based

model checker. We experimentally compare IPDR with Z3’s PDR implementa-
tion SPACER [22,36] and in our own PDR implementation. From the results, we
draw two separate conclusions: 1) for the relaxing of interleavings, IPDR can reuse
a large amount of information between increments, which gives roughly a 30%
performance gain with respect to our own naive PDR implementation, while out-
performing SPACER as well, and 2) for the pebbling problems, when gradually
constraining the system, IPDR again reuses many clauses between incremental
instances and can achieve performance gains of around 50% with respect to
SPACER and our naive PDR implementation, but relaxing or binary search (using
both relaxing and constraining) does not help.

2 Preliminaries

Given a set of Boolean variables X = {x1, x2, . . . , xn }, a propositional formula
F (X) represents a function F : Bn → B where B � { 0, 1 }. A literal is a variable
xi or its negation ¬xi (also written as xi). A clause is a disjunction of literals and
a cube a conjunction of literals. A formula in conjunctive normal form (CNF)
is a conjunction of clauses and a formula in disjunctive normal form (CNF) is a
disjunction of cubes. A (truth) assignment v is a function v : X → B, which can
also be expressed as a cube

∧
xi∈X xi ⇔ v(xi). Vice versa, we can think of the

formula F as a set of satisfying assignments { v ∈ B
X | F (v) = 1 }. We often use

this duality to interpret a formula F (X) as both a set of system states (satisfying
assignments) and its CNF description (which we may explicitly denote with F).

Incremental Property Directed Reachability 211

In symbolic model checking, a formula can represent the current set of states
of the system under analysis (each satisfying assignment of the constraint formula
represents one state). To reason over the next system states, i.e., the system
states after the system performs a transition, we use primed variables, e.g.,
F (X′), or more concisely: F ′. So F ′ is obtained by taking every variable xi in
F , and replacing it with the corresponding x′

i. E.g., if F = (a ∧ b) ∨ (a ∧ ¬c)
then F ′ = (a′ ∧ b′) ∨ (a′ ∧ ¬c′). A symbolic transition system (Definition 1)
describes the behavior of discrete systems in Boolean logic over a set of Boolean
variables X. Example 1 shows how to encode a simple system as an STS.

Definition 1 (Symbolic Transition System (STS)). A symbolic transition
system is a tuple TS � (X, I, Δ) where:

– S � B
X is the set of all system states defined over Boolean variables X =

{x1, x2, . . . , xn } (wlog). A system state s ∈ S is an assignment X → B.
– I ⊆ S is a finite set of initial states of the system.
– Δ ⊆ S ×S′ is the transition relation. Where S′ represents the states S in the

next state of the system. If there exists a pair of states (p, q) ∈ Δ, this means
that the system can go from state p to state q in a single step.

Example 1. We construct an STS (X, I, Δ) for the system in Fig. 1b. First,
we define its states over variables X = {x1, x2 }, denoting 00 for x1 = x2 = 0,
etc. We encode its states as a = 00, b = 01, c = 10 and d = 11. The initial
states can de encoded as I(x1, x2) = x1 ∧ x2. Finally, the transition relation
is encoded as: Δ(x1, x2, x

′
1, x

′
2) = x1 ∧ x′

1 ⇔ x2 ∧ x′
2 ⇔ x2 or alternatively

as (x1 ∧ x2 ∧ x′
1 ∧ x′

2) ∨ (x1 ∧ x2 ∧ x′
1 ∧ x′

2). Both encodings can be efficiently
transformed to CNF for use in SAT solver queries (see e.g. [47,51]).

A basic model checking task is to show that an STS (X, I, Δ) satisfies an
invariant property P ⊆ S, i.e., that no state s /∈ P is reachable from the initial
states I using the transitions encoded in Δ.

Image and Preimage. Given an STS (X, I, Δ), the image and preimage
under Δ(X,X ′) can be used to reason over the reachable states of a transition
system. For sets of states A ⊆ S, we define the (pre)image of A under Δ as the
states (backwards) reachable from A-states in one step as follows.

A.Δ � { q ∈ S | ∃p ∈ A : Δ(p, q) }
Δ.A � { p ∈ S | ∃q ∈ A : Δ(p, q) }

Of course, a SAT solver can only query individual states (satisfying assignments)
s ∈ A, t ∈ B for formulas A,B. In practice, however, we will not compute
(pre)images, but only whether the (pre)image is contained in a set of states,
e.g., A.Δ ⊆ B. This can be done with a SAT solver query SAT(A ∧ Δ ∧ B′),
which returns false iff no state in A can transit to a state in B, and otherwise
returns an example s ∈ A, t ∈ B such that Δ(s, t) = 1.

212 M. Blankestijn and A. Laarman

Fig. 1. STS Δ relaxes Γ , since Δ � Γ . STS Γ constrains Δ, since Γ � Δ.

Model Checking using the Inductive Invariance Method. Given an STS
(X, I, Δ) and a desired invariant property P ⊆ S, model checking can done
by computing all reachable states R = I ∪ I.Δ ∪ I.Δ.Δ ∪ . . . and showing that
R ⊆ P . This is the approach that BMC takes. Alternatively, Theorem 1 shows
that we may also construct an inductive invariant (see Definition 2) F ⊆ P ,
which contains the initial states: That is, a strengthening of P , which contains
I and is also inductive with respect to the transition relation Δ. E.g., the sets
of states F1, F2, . . . , Fk in Fig. 2 prove unreachability of P provided they are
inductive.

Definition 2 (Inductive Invariant). F ⊆ S is an inductive invariant for STS
(X, I, Δ) if F.Δ ⊆ F (or F ∧ Δ ∧ ¬F ′ = 0 as a SAT-solver query).

Theorem 1 (Inductive Invariant Method [21,26,28]). A property P ⊆ S is
an invariant for STS (X, I, Δ) if and only if there exists an inductive invariant
F such that I ⊆ F and F ⊆ P .

In particular, R is the strongest possible inductive invariant for an STS
(X, I, Δ) and all invariant properties P that hold for it. But in general, an
invariant property P ⊆ S is usually not initially inductive, even if it holds for
the STS. For instance, in the case of a mutual exclusion protocol, the property
that two processes do not end up in the critical section at the same time, can
be violated in states where one process is already in the critical section and
the other is about to enter it. However, in a correct protocol these states are
unreachable. (And this information is contained exactly in the set of reachable
states R.)

Constraining and Relaxing Symbolic Transition Systems. Consider the
transition systems (a) and (b) in Fig. 1. System (b) can be obtained by removing
transitions from system (a). Intuitively speaking, system (b) behaves much the
same as system (a) and if PDR were to collect clauses to describe the reachability
in (a), that information would seem useful when running PDR for system (b).
Definition 3 defines relaxing and constraining formally. For instance, if Δ encodes
the transition relation of a pebbling problem with at most k pebbles, then we
have Δ � Δ↑ for Δ↑ encoding the relaxed instance with k + 1 pebbles.

Definition 3 (Constrained and relaxed STSs). An STS M1 = (X, I1,Δ1)
is a constrained version of STS M2 = (X, I2,Δ2), denoted M1 � M2, iff I1 ⊆ I2
and Δ1 ⊆ Δ2. Vice versa, we say M2 relaxes M1, or M2 � M1.

Incremental Property Directed Reachability 213

Consequently, � is a partial order, and M1 = M2 iff M1 � M2 and M1 � M2.
We denote M1 � M2 (M1 � M2) when M1 � M2 (M1 � M2) and M1 = M2.

3 Incremental Property Directed Reachability

This section introduces a simplified PDR algorithm. The full version of PDR

requires intricate interactions with the SAT solver to attain efficiency (i.e., we
omit generalization and use set-based notation instead of SAT solver calls). We
emphasize that this simplified PDR is not efficient as it treats individual states
(and not their generalizations); nonetheless, this description suffices to define
IPDR in such a way that it is also compatible with the full version of PDR (as we
discuss in Sect. 3.1). For a full description of PDR, we refer to [11,12,23].

Section 3.1 extends PDR with an internal state that Incremental PDR (IPDR)
utilizes to reuse information between PDR runs. IPDR, introduced in Sect. 3.2,
takes a sequence of constraining (or relaxing) STS instances M1, . . . ,Mz such
that Mi+1 � Mi (or Mi+1 � Mi), solving them one by one with the extended
PDR algorithm, while passing the internal state along to speed up subsequent
PDR runs. Using the properties of simplified PDR (mostly the invariants defined
in Definition 5 maintained by the algorithm that also hold in the full PDR algo-
rithm), we demonstrate how IPDR correctly instantiates incremental PDR runs.

3.1 Extending PDR with an Internal State

Given a TST (X, I,Δ) and an invariant property P ⊆ S, constructing an induc-
tive invariant according to Theorem 1 is non-trivial. The PDR algorithm [10,23]
approaches this problem by using the concept of relative inductivity (Def-
inition 4). To construct the inductive invariant, PDR maintains a sequence
F0, F1, . . . Fk ⊆ S of candidate inductive invariants as defined in Definition 5
and illustrated in Fig. 2. The first candidate F0 is invariably set to the initial
states. Initially, the algorithm also sets k = 0 and assures that I ⊆ P so the Φ
conditions of Definition 5 are satisfied.

By virtue of the fact that PDR maintains the Φ properties as invariants, a
few observations can be made. First, the candidates are relatively inductive to
their neighbors: By Φ2, we have Fi+1 ∩ Fi = Fi. Paired with Φ3, this implies

Fig. 2. The box represents all states S = { 0, 1 }X = 1. The candidates Fi visualized.
All Fi for i ≤ k are a subset of P , each Fi is a subset of Fi+1, and there is no transition
from a state in Fi to a state in Fi+2.

214 M. Blankestijn and A. Laarman

that Fi+1 is inductive relative to Fi. It can also be shown that each candidate Fi

over-approximates the set of states reachable within i steps (only states proved
unreachable in i steps are blocked in Fi). It follows in turn that, in iteration k
of the PDR algorithm, all counterexamples traces (Definition 6) of length k have
been eliminated, because otherwise Φ1 would not hold. Finally, whenever Fi =
Fi+1 for some i < k, then Φ3 implies that Fi is an inductive invariant. Because
PDR maintains the candidates Fi as CNF formulas (the candidates are refined by
blocking cubes, which is the same as conjoining clauses), this termination check
can be done syntactically [12] (without expensive SAT solver call).

Towards incrementing k, the algorithm initializes Fk+1 to 1 = S = { 0, 1 }X
for each k. To make candidate Fk+1 satisfy Φ1, PDR proceeds to remove states
(block cubes) s ∈ Fk+1 \ P (initially s ∈ P). But removing these states might
invalidate Φ2 and Φ3. So the algorithm searches backwards to also refine previous
candidates Fi. Once a candidate Fi (which overapproximates states reachable in
i steps) is strong enough to show that some s ∈ Fi+1 cannot be reached in
one step, Fi+1 is refined by removing s by constraining the candidate with the
negation of cube s (a clause). We now explain this process in more detail.

Definition 4 (Relative Inductivity). A formula F is inductive relative to
G under a transition relation Δ if (F ∩ G).Δ ⊆ F (or F ∧ G ∧ Δ ∧ ¬F ′ = 0).

Definition 5. The sequence of candidate inductive invariants, or simply the
candidates, is defined as F = {F0 = I, F1, F2, . . . , Fk}. It has the following
properties Φ [10], which are maintained throughout the PDR algorithm:

F0 = I, (Φ0)
∀0 ≤ i ≤ k : Fi ⊆ P, (Φ1)
∀0 ≤ i < k : Fi ⊆ Fi+1, (Φ2)
∀0 ≤ i < k : Fi.Δ ⊆ Fi+1 (Φ3)

Figure 3 gives the simplified PDR algorithm. PDR takes as inputs: an STS
according to Definition 1, a property P and a sequence of candidate inductive
invariants F , all initialized to 1. It then produces either an inductive invariant,
which proves P to be an invariant of the system, or a counterexample trace, i.e.,
a path that shows a violation of P (see Definition 6). To do this, PDR iteratively
extends the sequence of candidate inductive invariants F1, F2, . . . , Fk in a major
loop (pdr-main). To maintain all invariants in Definition 5, the candidates are
refined by a minor loop (block) within each major loop iteration. This loop
uses a queue O of proof obligations (s, i) ∈ S × N; obligations to show that a
state s is not reachable in i + 1 steps. If there is no t ∈ Fi that can transit to
s (Δ(t, s) = 1), then (s, i) is removed from O and s is blocked in all candidates
F1, F2, . . . Fi+1, preserving Φ3 (because the algorithm never adds an obligation
(u, j) with u ∈ I as this would constitute one end of a counterexample trace).
The queue O is initialized with (P , k), because the algorithm wishes to refine
Fk+1 until it is a subset of P so that Φ1 is satisfied when k is increased to k+1.1

1 Without loss of generality, we may assume that P is a single state (i.e., a sink state).

Incremental Property Directed Reachability 215

Fig. 3. A simplified PDR algorithm

Once the minor loop completes the search by refining candidates, the major loop
continues by incrementing k.

Definition 6 (Counterexample trace). A counterexample trace for an STS
(X, I,Δ) and a property P is a path π0, π1, . . . , πm ∈ S with π0 ∈ I and πm ∈ P .

We now extend PDR with an internal state for restarting the algorithm. The
goal of the internal state is to let PDR suspend the search upon encountering a
counterexample or an inductive invariant, to restart it later on a constrained or
relaxed instance of the STS. PDR uses two main data structures during its exe-
cution the sequence of candidate inductive invariants F and a priority queue O
to track outstanding proof-obligations. Definition 7 gives a valid PDR state that
also records invariants maintained by the proof obligation queue O.

Definition 7 (Valid PDR state). Given an STS M = (X, I,Δ) and a prop-
erty P ⊆ { 0, 1 }X , a valid PDR state is a tuple (M,P, k, F,O) that satisfies:

– F = F0, F1, . . . , Fk with 0 ≤ k < 2|X| is a sequence of candidate invariants
that adheres to the properties Φ from Definition 5, and

– O ⊆ S × N is a queue (set) of proof obligations adhering to the properties:

∀(s, i) ∈ O : 0 < i ≤ k (Ω1)

∀(s, i) ∈ O : (s, i) = (P , k) ∨ ∃(t, i + 1) ∈ O : Δ(s, t) = 1 (Ω2)
∀(s, i) ∈ O : s /∈ Fi (Ω3)

The properties Ω follow from the fact that the minor loop (block) basi-
cally performs a backwards search starting from P states. The property Ω2 in
particular requires that all proof obligations lead to a P state (via other proof
obligations). Only Ω3 is non-trivial in this respect: It follows from the fact that

216 M. Blankestijn and A. Laarman

Algorithm 1: Propagation at the level of formulas and SAT queries
In : A sequence F0, F1, . . . , Fk (in CNF form Fi) and STS M = (X, I, Δ).

function propagate(F, TS)
� CNF Fi (set of clauses) represents Fi:1 for i ← 1 to k − 1 do

� Find the last Fi containing C2 forall C ∈ Fi \ Fi+1 do
3 if SAT(Fi ∧ Δ ∧ ¬C′) = 0 then
4 Fi+1 ← Fi+1 ∪ { C }

� Modified indirectly through its formula representation F5 return F

in each major iteration k (pdr-main) the nonexistence of counterexample traces
of length k has been proved, as noted above. Now if s would be in Fi, a coun-
terexample trace of length k would exist, thus contradicting the Φ invariants of
the algorithm.

The full version of PDR adds generalization of states and propagation of
clauses in candidates Fi, which we briefly explain here, as IPDR uses propagation
as well. In the above, the refinement of a candidate Fi is done by blocking
(removing) a state Fi := Fi \ { s } (in set notation). In reality, PDR maintains Fi

as a CNF formula Fi; a conjunction of clauses C which represent the removed
states ¬C. However, before blocking, states are first generalized by dropping
literals from C. The generalization gs of state s can greatly strengthen a candidate
Fi by blocking (removing) many states at once (since gs is a subcube of s, we
have s ⇒ gs) that can all be proven unreachable in i steps (while taking care
not to remove initial states!). So each (blocking) clause in Fi is a negated cube
gs, a subcube of s.

Generalization enables propagation (see Algorithm 1), as now other blocking
clauses in Fi may be used to strengthen later candidates Fi+1. Propagation
pushes blocking clauses forward and is done during the minor search (blocking)
and after it completes (see note in Fig. 3). Both generalization and propagation
have been shown to preserve the Φ invariants [12]. They also do not affect the
proof obligation queue. Therefore, Definition 7 holds in the full PDR algorithm.

We can now extend PDR with the internal state Y = ((X, I,Δ), P, k, F,O)
from Definition 7, by modifying the inputs and initializations on the initial edge
in Fig. 3. The inputs and variables are now all set to those provided by a valid
internal state (obtained from a previous run). In the first pdr-main loop itera-
tion, O should also not be reset to { (P , k) } but instead taken from Y . When
the algorithm terminates with a counterexample or an invariant, it should also
return the current internal PDR state. Note that the valid PDR state does not
record the line at which the PDR algorithm currently is. Consequently, we will
be able to restart it with a modified but valid PDR state to obtain a different
result (e.g., to avoid a counterexample in the next run by further constraining
the system).

Incremental Property Directed Reachability 217

3.2 Incremental Property Directed Reachability (IPDR)

IPDR takes a sequence of constraining (or relaxing) STS instances M1, . . . ,Mz

such that Mi+1 � Mi (or Mi � Mi+1), solving them one by one with the
extended PDR algorithm (pdr-main), while passing the internal state along
to speed up subsequent PDR runs. Here we define relaxing (and constraining)
IPDR as a loop around the PDR algorithm (extended with internal state). In
relaxing IPDR, the outer loop terminates when PDR finds a counterexample trace.
But when PDR finds an inductive invariant for the current instance Mi (wrt
property P), IPDR relaxes the instance to some M↑ = Mi+1 � M and calls
PDR iteratively. In constraining IPDR, the algorithm instead terminates when an
inductive invariant is found and iterates on a constrained version of the STS
when a counterexample is found. In both cases, we show how to modify the
internal PDR state such that is a valid internal PDR state for the constrained or
relaxed system.

Constraining IPDR Algorithm. Algorithm 2 shows constraining IPDR. Ini-
tially, pdr-main is called on the system M1 wrapped in a valid PDR state (Line
5). Effectively, pdr-main is initialized like in Fig. 3. Then the algorithm con-
siders the constrained systems M2, . . . ,Mz iteratively. If the previous pdr-main
returned an inductive invariant, then the algorithm stops at Line 8, as further
constraining the system is not necessary.2 Otherwise, a more constrained system
Mi � M or Mc+1 � M is considered next (we may skip instances Mi..Mc when
a counterexample is found that is valid in Mc for c ≥ i, as Line 10 does). How-
ever, we first update the PDR state for the constrained STS M↓ = Mi using the
constrain operation. It resets O at Line 3 to satisfy Ω in the constrained system
M↓ (repairing O would require at least as many operations as simply restarting
the search). It also propagates blocking clauses between candidates F1, . . . , Fk

as constraining can potentially block them. Finally, pdr-main is called again for
the updated PDR state and the IPDR continues to the next iteration (Line 12).

Constraining a system does not add behavior, therefore all the Φ invariants
remain intact (intuitively: for the constrained system, the candidates Fi still are
valid over-approximations of the reachable states in i steps and they disprove
counterexamples of length i). The propagation does not change this, as it merely
strengthens frames while preserving Φ. Because the queue O is emptied, Ω holds
vacuously. We conclude that the constrain function indeed yields a new valid
PDR state according to Definition 7. Consequently, the iterative call to pdr-main
at Line 12 of Algorithm 2 can proceed incrementally checking the constrained
system.

Relaxing IPDR Algorithm. Algorithm 3 shows relaxing IPDR. Like in the
constraining version, initially, pdr-main is called on the system M1 wrapped in
a valid PDR state (Line 8). Effectively, pdr-main is initialized like in Fig. 3. Then
2 This represents for instance the scenario when we find the minimum number of

pebbles to successfully pebble a circuit by approximating the pebble count from
above; reducing pebbles in each run until goal of pebbling the circuit is no longer
possible.

218 M. Blankestijn and A. Laarman

Algorithm 2: Constraining IPDR (C-IPDR)

In : (M, P, k, F, O) with F = { F0, . . . , Fk } satisfying Def. 7 and M↓ � M
Out: A valid PDR state for STS M↓ according to Def. 7
function constrain((M, P, k, F, O), M↓)

1 F ↓ ← { I↓, F1, F2, . . . , Fk }
2 F ↓ ← propagate(F ↓, M↓) � See Alg. 1

3 return
(
M↓, P, k, F ↓, O := ∅)

� Repair Ω2 from Def. 7 by setting O := ∅
In : M1 � M2 � · · · � Mz with Mi = (X, Ii, Δi) and P ⊆ B

X

Out: A counterexample trace or inductive invariant
function ipdr constrain(M1, M2, . . . Mz, P)

4 F ← { F0 := I1, F1 := 1 }
5 (M, P, k, F, O), result ← pdr-main((M1, P, k := 0, F, O := ∅))
6 for Mi ∈ { M2, . . . Mz } do
7 if result is an inductive invariant then
8 return result

9 if result is a trace valid in Mc for c ≥ i then
10 forward loop to Mi := Mc+1

11 (M, P, k, F, O) ← constrain((M, P, k, F, O), Mi)

12 (M, P, k, F, O), result ← pdr-main((M, P, k, F, O))
13 return result

Algorithm 3: Relaxing IPDR (R-IPDR)
In : (M, P, k, F, O) with F = { F0, .., Fk } satisfying Def. 7 and

M↑ � M with M↑ = (X, I↑, Δ↑).
Out: A valid PDR state for STS M↑ according to Def. 7
function relax((M, P, k, F, O), M↑)

1 F ↑ ← { F0 := I↑, F1 := 1, . . . , Fk := 1 } � The tautology 1 is ∅ in CNF

� As Alg. 1; try copy clauses from Fi to F↑
i

2 for i ← 1 to k − 1 do
3 forall C ∈ Fi do � Access the candidates F in CNF form F

� Does ¬C not block new initial states?4 if SAT(I↑ ∧ ¬C) = 0 then

5 if SAT(F↑
i ∧ Δ↑ ∧ ¬C′) = 0 then F↑

i+1 ← F↑
i+1 ∪ { C }

6 return
(
M↑, P, k := 0, F ↑, O

)

In : M1 � M2 � · · · � Mz with Mi = (X, Ii, Δi) and P ⊆ B
X

Out: A counterexample trace or inductive invariant
function ipdr-relax(M1, M2, . . . Mz, P)

7 F ← { F0 := I1, F1 := 1 }
8 (M, P, k, F, O), result ← pdr-main((M1, P, k := 0, F, O := ∅))
9 for Mi ∈ { M2, . . . Mz } do

10 if result is a counterexample trace then
11 return result

12 if ∃s ∈ I↑
i ∩ P then

13 return trace (s)

14 (M, P, k, F, O) ← relax((M, P, k, F, O), Mi)

15 (M, P, k, F, O), result ← pdr-main((M, P, k, F, O))
16 return result

Incremental Property Directed Reachability 219

the algorithm considers the constrained systems M2, . . . ,Mz iteratively. Now,
if the previous pdr-main returned a counterexample trace, then the algorithm
stops at Line 11, as further relaxing the system is not necessary.3 Otherwise, the
relaxed system Mi � M is considered next using the valid PDR state from the
previous run. However, we first update the PDR state for the constrained STS
M↓ = Mi using the relax operation. Here, it constructs a new set of candidate
inductive invariants F . Finally, pdr-main is called again for the updated PDR

state and the IPDR continues to the next iteration (Line 15).
After an instance terminates in iteration k, the pdr-relax function checks

whether the Φ properties hold for i = 0 at Line 12. If not, IPDR found a short
counterexample because of newly introduced (and erroneous) initial states in the
relaxed instance M↑ = Mi and terminates. As relaxing introduces new transi-
tions, the candidates Fi may no longer be strong enough to prove unreachability
of states ¬C for each C ∈ Fi+1. Therefore, the new PDR-state created by the
relax function will have to begin from k = 0 again in order to strengthen the
frames enough to prove unreachability of P in multiple steps. Nonetheless, relax
attempts to preserve as much as possible of the old candidate sequence in a new
sequence F ↑, so that once the PDR run on the relaxed system increases k, it
potentially no longer starts with a frame Fk+1 = 1 (or equivalently Fi = ∅),
but with a subset of the blocking clauses from the previous PDR run. This can
be done through a mechanism similar to the propagation phase from Algorithm
1. From Line 2 in relax, blocking clauses C in the original candidates Fi (the
CNF form of Fi) are inspected and copied to F↑

i if two conditions hold: 1) ¬C
does not block a new initial state in I↑, and 2) the candidate F↑

i−1 is strong
enough to prove unreachability of ¬C in the relaxed STS (i.e., under transition
relation Δ↑).

Because k is set to 0, Φ trivially holds, but the pre-initialized frames are
also sound for Δ↑. Because relaxing IPDR only considers a PDR-state tuple when
pdr-main terminates with an invariant, all outstanding obligations have been
eliminated (O = ∅) before returning the inductive invariant (see Fig. 3). This vac-
uously satisfies Ω. We conclude that the relax function indeed yields a new valid
PDR state satisfying Definition 7. Consequently, the iterative call to pdr-main at
Line 15 of Algorithm 3 can proceed incrementally checking the relaxed system.

Binary Search with Relaxing and Constraining IPDR. Assuming the value
of the target optimization parameter equals p, e.g., the minimal number of peb-
bles required to pebble a circuit, relaxing IPDR needs p PDR calls to find it. Assum-
ing a sound upper bound b on p, e.g., the number of gates in the circuit, con-
straining IPDR takes b−p calls. By combining the pdr-relax and pdr-constrain
functions, a binary search algorithm takes only log(b) PDR calls, or O(log(p)) in
practice, since often b = c · p [43,48]. (We omit the details here).

3 This represents for instance the scenario when we find a bug after increasing the
number of interleavings in a parallel program.

220 M. Blankestijn and A. Laarman

4 Related Work

Well-structured transitions systems [25] provide another formalization of relaxed
and constrained systems (Definition 3) that has been used to verify infinite-state
systems like priced [38] and timed automata [37]. Other approaches to deal with
infinite-state systems [3,8,15,30,35] extend PDR with SMT [1] using abstraction-
refinement [4,17]. In the same vein, [27] extends PDR with symmetry reduction.

Context-bounded analysis [44] in concurrent programming deals with the
study of programs by adding restrictions on the context switches of threads.
Incrementally increasing parallel interleavings has been exploited for model
checking in [29,49]. Reversible pebble game optimization was studied in [43,48].

5 Implementation and Experimental Evaluation

IPDR Implementation. We implemented IPDR in relaxing, constraining and
binary search form. The open source implementation in C++ is available at
GitHub.4 It uses the SAT solver Z3 [22] and fully exploits its incremental solv-
ing capabilities for PDR (internally) and IPDR (in between incremental runs). It
contains the following optimizations that have been discussed before for IC3 and
PDR. (None of which interfere with the discussed modifications for IPDR.)

– The delta encoding of [23] avoids duplicating blocked clauses by only storing
blocked clauses for the highest frame where it occurs.

– Subsumbtion checks [10,23] avoid storing redundant weaker blocked clauses.
– Generalization [10] with the later extension with the down algorithm [31] finds

stronger clauses to block. This methods brings along some additional param-
eters ctgs and max-ctgs. After some preliminary testing, these parameters
were set to 1 and 5 respectively; in line with the findings Bradley [31].

– Before handling a proof-obligation in the minor PDR loop, a subsumption
check can quickly detect if newly added clauses already block it [23].

– We also preempt future obligations by re-queueing a proof obligation (s, i) as
(s, i + 1), since it will have to be proven in later iterations anyway [23].

Benchmarks. As discussed in the introduction, we choose to apply IPDR to the
optimization problem of reversible circuit pebbling. We encoded the transition
relations as described in [43]. For a number of pebbles p between 1 and g (the
number of gates in the circuit), we encode a separate system Mp. It is easy to see
that adding more pebbles relaxes the problem, i.e., Mi � Mi+1. We took circuits
from the Reversible Logic Synthesis Benchmarks website [41], which lists several
“families” of circuits of increasing size and complexity. We selected those circuits
that could be completed within half an hour by all benchmarked algorithms.

For experimenting with increasing the number of interleavings [16,29,49], we
encoded the Peterson mutual exclusion protocol [46]. We added a scheduler [49]
to the encoding to bound the number of interleavings to �, starting from zero.
4 https://github.com/Majeux/pebbling-pdr.

https://github.com/Majeux/pebbling-pdr

Incremental Property Directed Reachability 221

Experimental Setup. All experiments were run on a computer with 16 GB
of 2400 MHz DDR4 memory and an i7 6700T CPU. All benchmarks were per-
formed ten times in a row providing a different random seed to the Z3 SAT-solver.
We compare IPDR with our own naive PDR implementation that does not reuse
information between runs and with the PDR implementation of Z3’s [22]: SPACER

[36], for which we re-encoded the systems in Horn clauses.

Results for Peterson. Figure 4 shows the runtimes for the Peterson protocol
with 2, 3 and 4 processes with a timeout of four hours. The number of context
switches that was feasible to run: Peterson2 was verified up to a bound of
10 switches, Peterson3 to a bound of 4 and Peterson4 to 3. With our Horn
clause encoding, SPACER is not competitive. With the most incremental steps,
Peterson2 achieved a speedup of almost a factor four over naive PDR. Peterson3
and Peterson4 both showed a similar improvement of around a factor 1,7.

Fig. 4. Average runtimes with standard deviation for Peterson’s protocol for naive
PDR, SPACER and relaxing IPDR. For Peterson4, SPACER timed out.

Results for Pebbling. Figure 5 shows the benchmark results for the constrain-
ing (C-IPDR), relaxing (R-IPDR) and binary search versions of IPDR on the pebbling
problem. In over half of the benchmarks, constraining IPDR achieves a speedup
of around roughly 50% (a factor two) compared to naive PDR and SPACER. For
larger benchmarks, however, SPACER has a clear advantage, reducing runtimes by
a factor five, a trend that persists for the relaxing and binary search strategies as
well. Relaxing IPDR appears to achieve little advantage over the other methods,
a result contrary to what we observed for the Peterson protocol.

Finally, we see that speedups of the constraining version are preserved by
binary search, but not improved. Internal statistics clearly show that a portion
of the incremental runs complete extremely fast, because they are either over-
or under-constrained. However, when the binary search approaches the optimal
pebble count, the runs become expensive (a well-known threshold behavior in
SAT solving [32–34]). The binary search is unable to reduce the number of
expensive incremental runs close to the optimal number of pebbles, because it
is now approached from both above and below.

Statistics. Figure 6 presents internal IPDR statistics for the ham7tc circuit (more
details in [9]). These measurements reveal that constraining IPDR reduces the
number of counterexamples to induction (CTIs) [10] by a factor six in incremen-
tal instances compared to naive PDR. This factor tends to reduce when approach-

222 M. Blankestijn and A. Laarman

Fig. 5. Average runtimes the constraining, relaxing and binary search strategies to
solve the pebbling problem with naive PDR, SPACER and IPDR. We omit standard
deviations, as these are as insignificant as in Fig. 4. Speedup denotes the percentage
runtime decrease or increase (gray) achieved by IPDR: 1 − time(IPDR)

time(other)
.

Incremental Property Directed Reachability 223

ing the optimal number of pebbles (threshold behavior that was observed else-
where [32–34]). Nonetheless, the result is that IPDR is consistently about as fast
for increment i as naive PDR for increment i + 1. For relaxing IPDR, we do not
always observe this behavior (also not for instances with positive speedups), but
R-IPDR is able to copy 60% of the blocked clauses between increments [9]. How-
ever, the copying process is expensive for the ham7tc circuit, which negates any
performance benefits for the subsequent incremental IPDR run.

Fig. 6. Statistics for the constraining (top) and relaxing (bottom) ham7tc experiment:
CTI count (bars left) and time (line left), percentage clauses copied between R-IPDR

iterations (bars bottom right), copy time for R-IPDR (lines bottom right) and propa-
gation time for C-IPDR (lines top right). For 23 pebbles, C-IPDR finds a trace with 18
pebbles, so it continues with 17 pebbles (Line 10).

6 Conclusions

We introduced Incremental Property Directed Reachability (IPDR), which har-
nesses the strength of incremental SAT solvers to prove correctness of parameter-
ized systems. Since PDR does not use unrolling like in bounded model checking,
we identified other structural parameters for IPDR to exploit: a bound on the

224 M. Blankestijn and A. Laarman

number of interleavings in the parallel program and the maximum number of
pebbles used to solve the pebbling game optimization problem.

With an open source implementation of IPDR, we demonstrated that the
incremental approach can optimize pebbling games and model check parallel
programs faster than SPACER [22,36]. Internal counters from the IPDR implemen-
tation reveal that ample of information is reused in both relaxing and constrain-
ing incremental runs. We therefore expect that further research on different
parameters and other problem instances will reveal more benefits of the IPDR

approach.

References

1. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 11

2. Bennett, C.: Time/space trade-offs for reversible computation. SIAM 18, 766–776
(1989)

3. Beyer, D., Dangl, M.: Software verification with PDR: an implementation of the
state of the art. In: TACAS 2020. LNCS, vol. 12078, pp. 3–21. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45190-5 1

4. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp.
146–162. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37057-
1 11

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

6. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. In: Handbook of Satisfiability, vol. 185, no. 99 (2009)

7. Biere, A., Jussila, T. (eds.) Hardware Model Checking Competition 2007
(HWMCC07). LNCS, vol. 10867. Springer, Heidelberg (2007)

8. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-
guided abstraction-refinement (CTIGAR). In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 831–848. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9 55

9. Blankestijn, M., Laarman, A.: Incremental property directed reachability. arXiv
preprint arXiv:2308.12162 (2023)

10. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

11. Bradley, A.R.: Understanding IC3. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 1–14. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31612-8 1

12. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of coun-
terexamples to induction. In: FMCAD 2007, pp. 173–180. IEEE (2007)

13. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

14. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: LICS, pp. 428–439 (1990)

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-319-08867-9_55
http://arxiv.org/abs/2308.12162
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/978-3-642-31612-8_1

Incremental Property Directed Reachability 225

15. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7 23

16. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. STTT 2, 279–287 (1999)

17. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

18. Clarke, E., Henzinger, T., Veith, H., Bloem, R.: Handbook of Model Checking.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

19. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, STOC 1971,
pp. 151–158. ACM (1971)

20. Coudert, O., Madre, J.C.: A unified framework for the formal verification of sequen-
tial circuits. In: Kuehlmann, A. (ed.) The Best of ICCAD, pp. 39–50. Springer,
Boston (2003). https://doi.org/10.1007/978-1-4615-0292-0 4

21. de Bakker, J.W., Meertens, L.G.L.T.: On the completeness of the inductive asser-
tion method. J. Comput. Syst. Sci. 11(3), 323–357 (1975)

22. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

23. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property
directed reachability. In: FMCAD 2011, pp. 125–134 (2011)

24. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. ENTCS
89(4), 543–560 (2003)

25. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
ret. Comput. Sci. 256(1–2), 63–92 (2001)

26. Floyd, R.: Assigning meanings to programs. In: Colburn, T.R., Fetzer, J.H.,
Rankin, T.L. (eds.) Program Verification, pp. 65–81. Springer, Dordrecht (1993).
https://doi.org/10.1007/978-94-011-1793-7 4

27. Goel, A., Sakallah, K.: On symmetry and quantification: a new approach to ver-
ify distributed protocols. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A.,
Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 131–150. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76384-8 9

28. Gribomont, E.P.: Atomicity refinement and trace reduction theorems. In: Alur,
R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 311–322. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 79

29. Grumberg, O., et al.: Proof-guided underapproximation-widening for multi-process
systems. In: POPL, pp. 122–131. ACM (2005)

30. Günther, H., Laarman, A., Weissenbacher, G.: Vienna verification tool: IC3 for
parallel software. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 954–957. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49674-9 69

31. Hassan, Z., Bradley, A.R., Somenzi, F.: Better generalization in IC3. In: 2013
Formal Methods in Computer-Aided Design, pp. 157–164 (2013)

32. Heule, M.: Schur number five. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1 (2018)

33. Heule, M., Kullmann, O.: The science of brute force. Commun. ACM 60(8), 70–79
(2017)

https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-1-4615-0292-0_4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-3-030-76384-8_9
https://doi.org/10.1007/3-540-61474-5_79
https://doi.org/10.1007/978-3-662-49674-9_69
https://doi.org/10.1007/978-3-662-49674-9_69

226 M. Blankestijn and A. Laarman

34. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 15

35. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 13

36. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2

37. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-
core emptiness checking of timed Büchi automata using inclusion abstraction. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 968–983. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 69

38. Larsen, K., et al.: As cheap as possible: efficient cost-optimal reachability for priced
timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 493–505. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44585-4 47

39. Levin, L.A.: Universal sequential search problems. Problemy Peredachi Informatsii
9(3), 115–116 (1973)

40. Lingas, A.: A PSPACE complete problem related to a pebble game. In: Ausiello,
G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 300–321. Springer, Heidelberg
(1978). https://doi.org/10.1007/3-540-08860-1 22

41. Maslov, D.: Reversible Logic Synthesis Benchmarks Page. https://
reversiblebenchmarks.github.io/. Accessed 24 July 2021

42. McMillan, K.L.: Symbolic Model Checking. Springer, New York (1993). https://
doi.org/10.1007/978-1-4615-3190-6

43. Meuli, G., et al.: Reversible pebbling game for quantum memory management. In:
DATE, pp. 288–291. IEEE (2019)

44. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI, pp. 446–455. ACM (2007)

45. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 19

46. Peterson, G.: Myths about the mutual exclusion problem. Inf. Process. Lett. 12(3),
115–116 (1981)

47. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3), 293–304 (1986)

48. Quist, A.-J., Laarman, A.: Optimizing quantum space using spooky pebble games.
In: Kutrib, M., Meyer, U. (eds.) Reversible Computation. LNCS, vol. 13960, pp.
134–149. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38100-3 10

49. Rabinovitz, I., Grumberg, O.: Bounded model checking of concurrent programs.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 82–97.
Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 9

50. Silva, J.P.M., Sakallah, K.A.: Grasp – a new search algorithm for satisfiability. In:
CAD, pp. 220–227 (1997)

https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-642-39799-8_69
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/3-540-08860-1_22
https://reversiblebenchmarks.github.io/
https://reversiblebenchmarks.github.io/
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-031-38100-3_10
https://doi.org/10.1007/11513988_9

Incremental Property Directed Reachability 227

51. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning, pp. 466–483. Springer,
Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1 28

52. Welp, T., Kuehlmann, A.: QF BV model checking with property directed reacha-
bility. In: DATE, pp. 791–796. EDA Consortium (2013)

53. Wieringa, S.: On incremental satisfiability and bounded model checking. In: CEUR
Workshop Proceedings, vol. 832, pp. 13–21 (2011)

https://doi.org/10.1007/978-3-642-81955-1_28

Proving Local Invariants in ASTDs

Quelen Cartellier1(B), Marc Frappier1 , and Amel Mammar2

1 GRIC, Université de Sherbrooke, Sherbrooke J1K2R1, QC, Canada
{Quelen.Cartellier,Marc.Frappier}@USherbrooke.ca

2 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau,
France

amel.mammar@telecom-sudparis.eu

Abstract. This paper proposes a formal approach for generating proof
obligations to verify local invariants in an Algebraic State Transition Dia-
gram (ASTD). ASTD is a graphical specification language that allows
for the combination of extended hierarchical state machines using CSP-
like process algebra operators. Invariants can be declared at any level
in a specification (state, ASTD), fostering the decomposition of system
invariants into modular local invariants which are easier to prove, because
proof obligations are smaller. The proof obligations take advantage of
the structure of an ASTD to use local invariants as hypotheses. ASTD
operators covered are automaton, sequence, closure and guard. Proof
obligations are discharged using Rodin. When proof obligations cannot
be proved, ProB can be used to identify counter-examples to help in
correcting/reinforcing the invariant or the specification.

Keywords: ASTD ⋅ invariant ⋅ proof obligation ⋅ Rodin ⋅ ProB

1 Introduction and Related Work

ASTD [6,12] is a graphical notation that combines process algebra operators
and hierarchical state machines. It is particularly well-suited for specifying mon-
itoring systems, like intrusion detection systems [4,18] and control systems [1,5].
ASTD allows for the combination of state transition diagrams (Statecharts-like)
with process algebra operators, drawn from CSP. Hence, ASTD takes advantage
of the strengths of both notations: graphical representation, hierarchy, orthog-
onality, compositionality, and abstraction. Statecharts-like notations offer only
two operators for decomposing behavior, OR and AND states. ASTDs support
these two operators (OR is represented by ASTD automaton; AND is repre-
sented by the flow operator), and it supports most of CSP’s operators. ASTDs
differ from these notations by using simpler communication mechanisms. ASTDs
can communicate through shared state variables or through synchronisation.
Statecharts’ broadcast communication is not supported.

This work was supported by the ANR projet DISCONT, Public Safety Canada and
NSERC.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 228–246, 2023.
https://doi.org/10.1007/978-981-99-7584-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_14&domain=pdf
http://orcid.org/0000-0002-4402-2514
http://orcid.org/0000-0003-0016-6898
https://doi.org/10.1007/978-981-99-7584-6_14

Proving Local Invariants in ASTDs 229

In order to promote the use of ASTDs for modeling safety critical systems,
it is crucial to have the ability to prove safety properties like invariants. Indeed,
designing an ASTD specification is an error-prone task, e.g., invariants of states
can be incorrect. Model-based methods like B and Event-B offer powerful envi-
ronments for proving invariants on formal specifications using refinement. But
still, proving global invariants on these systems is hard [9,10]. A translation of
ASTDs to B and Event-B has been proposed [5,11]. Global invariants which are
associated to all states of the system can be declared and proof obligations are
then generated to ensure that each event preserves the invariants. These proof
obligations are hard to discharge for large specifications, due to the encoding
of ASTD operators that introduces several control variables. Moreover, it does
not support local invariants which are associated to some states in the system.
In [1], it has been shown that the algebraic approach of ASTDs streamlines the
modularisation of a large specification.

Several works have addressed the specification and verification of invariants
in Statecharts-like notations (e.g., [7,13,14]), but only [16,17] have addressed
the proof of invariants; others are targeting model checking or assertions for
run-time verification. Model-checking is often limited by state explosion (e.g.,
[9,10]) for large specifications, whereas run-time verification is not satisfactory
for safety-critical system, as it offers no insight on system correctness before
deployment.

To overcome the limitations of [5,11], we propose in this paper to generate
proof obligations for invariant preservation directly from an ASTD specifica-
tion, in order to reduce proof complexity and make the traceability between
the ASTD invariants and the produced proof obligations straightforward. An
invariant can be declared by the user at any level in the specification (from com-
plex ASTDs to elementary states of an automaton). Our work differs from [17]
by permitting invariants on elementary automaton states, an important feature
for critical control systems, and by supporting invariants for complex ASTDs,
which amounts to supporting invariant for complex process expressions, since
complex ASTDs are defined using process algebra operators. UML-B [16] sup-
ports invariants on classes and traditional states machines; a UML-B specifica-
tion is translated into Event-B, and thus invariants are represented globally in
the resulting Event-B machine. Our POs are local to a state, and thus simpler.
They are represented as theorems of an Event-B context, and can be discharged
using Rodin1 and debugged using ProB [8], which are two industrial strengths
tools supporting the B and Event-B methods.

The rest of this paper is structured as follows. Section 2 introduces a subset
of the ASTD notation and its semantics. Section 3 defines the proof obligations
and illustrates them on a small example. Section 4 concludes the paper.

2 Overview of the ASTD Notation

The ASTD notation includes several ASTD types, which are Elem, Automa-
ton, Sequence, Kleene closure, Guard, Choice, Parameterized Synchronization, Flow,
1 http://www.event-b.org/.

http://www.event-b.org/

230 Q. Cartellier et al.

Fig. 1. ASTD Case study

Quantified choice, Quantified synchronization and Call. In this paper, we consider
only the first five types. Figure 1 illustrates a simple but representative ASTD
specification that is used to illustrate our approach throughout this paper.
ASTDs A and C are of type Kleene closure. ASTD B is of type Sequence, and
it executes ASTDs C and E in sequence. ASTD E is of type Guard. ASTDs D
and F are of type Automaton. Automaton states S0 , S1 , S2 , S3 are ASTDs of
type Elem. ASTD A is a Kleene closure that allows for iteration on ASTD B. B
executes C and D in sequence: when C reaches the final state S1 , E is enabled
to execute the event e2, to move from S2 to S3 . Since C is a Kleene closure, it
can trigger a new iteration of D when it is in the state S1 , and execute the event
e1 from the initial state S0 . When F is in the final state S3 , A can also trigger
a new iteration of B and execute the event e1 from S0 . Here is a possible trace
of this specification:

[e1, e1, e1, e2, e3, e2, e1, . . .]

ASTD types are organised into a type hierarchy. Specific ASTD types inherit
from the top-level type ASTD, which introduces three general fields ⟨n, V, I⟩,
where n is the name of the ASTD, V is a set of attributes and I an invari-
ant associated to all states of the ASTD. These properties are inherited by all
ASTD types. We refer to a field p of an ASTD a ∈ ASTD using the notation
a.p. Attributes a.V are variables that are initialised a and modified in a or in
its sub-ASTDs. For instance, an attribute declared in A can be modified in
B, C , D, E , F . The invariant a.I is a first-order logic formula on a.V and on
the attributes of its super-ASTDs. For instance, the invariant F.I can refer to
attributes A.V,B.V,E.V and F.V . Table 1 provides the main elements of these
ASTDs. If a is an elementary state, then a.I applies only to this state. But if a
is a complex ASTD, then a.I should be fulfilled by all sub-ASTDs of a.

The execution of an ASTD is defined by a labeled transition system using a
Plotkin-like operational semantics. The set of states is denoted by State. Each
type of ASTD comes with its own type of states, but each state type has a
property E ∶ Var → Term which represents the values of attributes declared in
the ASTD. Some states may be final and enable subsequent ASTDs to start.
Final states of an ASTD a are determined by the Boolean function final of type
ASTD × State → Boolean. Function init of type ASTD × (Var → Term) → State

Proving Local Invariants in ASTDs 231

returns the initial state of an ASTD. In the sequel, we use some mathematical
operators from the B notation; their definition is given in Table 3.

2.1 Automaton

The ASTD type Automaton is built on a set of states related by transitions.
It has the following structure: ASTD Automaton =̂ ⟨ aut, Σ, S, ν, δ, SF , DF ,
n0 ⟩ where Σ ⊆ Event is the alphabet and S ⊆ Name is the set of state names.
ν ∈ S → ASTD maps each state to its sub-ASTD, which can be elementary
(noted Elem) or complex (i.e., of any ASTD type). An automaton transition
from n1 to n2, labelled with σ[g]/Atr, is represented in the transition relation δ
as follows: δ(η, σ, g, Atr,final?). Symbol η denotes the type of the transition. In
this paper, we consider simple transitions of the form ⟨n1, n2⟩, where n1 and n2

are respectively the source and target states of the transition. Symbol final? is a

Table 1. Properties of ASTDs in Fig. 1

ASTD Attributes Initialisation Invariant Guard

A xA xA ≔ 0 xA ≥ 0

B xB xB ≔ xA + 1 xB > 0

C xC xC ≔ 0 xB ≥ xA

D xD xD ≔ xC + 1 xD ≥ 0

E xE xE ≔ xA xE ≥ 0 ∧ xE < xB ∧ xE ≤ xA xB > xA + 4

F xF xF ≔ 0 xF ≥ 0

S0 xD > xC ∧ xC ≥ 0

S1 xC ≥ xD ∧ xA > 0

S2 xF = 0 ∨ xA > xE

S3 xF > 0 ∧ xA > xE

Table 2. Transitions of ASTDs in Fig. 1

Event Guard Action

e1 xC ≔ xC + xD; xB ≔ xB + xC ; xA ≔ xA + 1

e2 xA ≔ xA + xB ; xF ≔ xF + 1

e3 xA < 10000 xA ≔ xA − xE

Table 3. Definitions of B operators

Description Expression Definition

domain antirestriction S ⊲− r {x ↦ y ∣ x ↦ y ∈ r ∧ x ∉ S}

range antirestriction r ⊳− S {x ↦ y ∣ x ↦ y ∈ r ∧ y ∉ S}

override r1 ⊲− r2 (dom(r2) ⊲− r1) ∪ r2

232 Q. Cartellier et al.

Boolean: when final? = true, the source of the transition is graphically decorated
with a bullet (i.e., •); it indicates that the transition can be fired only if n1 is
final. This is useful only when n1 is not an elementary state (i.e., it is a complex
ASTD). SF ⊆ S is the set of shallow final states, while DF ⊆ S denotes the set of
deep final states, with DF∩SF = ∅ and DF ⊆ dom(ν⊳−{Elem}). A deep final state
is final iff its sub-ASTD is final; a shallow final is final, irrespective of the state
of its sub-ASTD. n0 ∈ S is the name of the initial state. In this paper, for the
sake of simplicity, we denote by Atr the sequential composition of the actions
executed during a transition, that are, the actions executed when exiting the
source state, on the transition and when entering the target state. The type of
an Automaton state is ⟨aut◦, n, E, s⟩ where aut◦is a constructor of the Automaton
state. n ∈ S denotes the name of the current state of the automaton. E contains
the values of the Automaton attributes. s ∈ State is state of the sub-ASTD of
n, when n is a complex state; s = Elem when n is elementary.

Automaton F defines the attribute xF initialised by (xF ∶= 0). The transition
labelled with the event e2 permits to move from S2 to S3 . When it is triggered,
the action (xA ≔ xA + xB ; xF ≔ xF + 1) is executed.

To define the semantics of an Automaton a, the functions init and final are
defined as follows:

init(a,G) =̂ (aut◦, a.n0, a.Einit([G]), init(a.ν(n0), G ⊲− a.Einit))
final(a, (aut◦, n, E, s)) =̂ n ∈ a.SF ∨ (n ∈ a.DF ∧ final(a.ν(n), s))

where G and Einit denote respectively the environment (i.e., current values
of attributes defined in the enclosing ASTDs of a) and the initial values of
the attributes of a, which may refer to variables declared in enclosing ASTDs,
and thus they are replaced with their current values defined in G using the
substitution operator ([]) (e.g., (xF ∶= xA + 1)([xA ∶= 0])) ≡ xF ∶= 1). Note
that the sub-ASTD of n0 is initialised by recursively calling init on the ASTD
of n0.

Inference rule aut1 defines the semantics of an automaton a for a transition
between two states n1 and n2:

a.δ((n1, n2), σ
′
, g, Atr,final?) Ψ Ωlocaut1

(aut◦, n1, E, s1)
σ,Ee,E

′
e−−−−−−→a (aut◦, n2, E

′
, init(a.ν(n2), E

′
))

The conclusion of this rule states that a transition on event σ can occur from
n1 to n2 with before and after automaton attributes values E,E

′. The sub-
ASTD of n2, denoted by a.ν(n2), is initialised. The premise provides that such
a transition is possible if there is a matching transition, which is represented by
δ((n1, n2), σ

′
, g, Atr,final?). σ

′ is the event labelling the transition, and it may
contain variables. The value of these variables is given by the environment Ee,
which contains the values of variables in ASTDs enclosing the automaton (i.e.,
the super-ASTDs of a) and attributes of a, given in by E. This match on the
transition is provided by the premise Ψ defined as follows.

Ψ =̂ ((final? ⇒ final(a.ν(n1), s)) ∧ g ∧ σ
′ = σ)([Eg])

Proving Local Invariants in ASTDs 233

Ψ can be understood as follows. If the transition is final (i.e., final? = true), then
the current state s must be final with respect to the ASTD of n1. The transition
guard g holds. The event received, noted σ, must match the event pattern σ

′,
which labels the automaton transition, after applying the environment Eg as a
substitution. Environment Eg, defined as Ee ⊲− E, denotes the list of variables
of a and its super-ASTDs. The premise Ωloc determines how the new values of
the attributes in the environment are computed when the transition occurs; its
definition is omitted for the sake of concision.

Rule aut2 handles transitions occurring within a complex automaton state n.

s
σ,Eg,E

′′
g

−−−−−−→a.ν(n) s
′ Θ

aut2
(aut◦, n, E, s)

σ,Ee,E
′
e−−−−−−→a (aut◦, n, E

′
, s

′
)

The transition starts from a sub-state s and moves to the sub-state s
′ of the

state n. Actions are executed bottom-up. E
′′
g denotes the values computed by

the ASTD of the state n. Premise Θ determines how E
′′
g is computed, and it

is reused in all subsequent rules where a sub-ASTD transition is involved; it is
omitted here for the sake of concision and simplicity.

2.2 Kleene Closure

This operator comes from regular expressions. It allows for iteration on an ASTD
an arbitrary number of times (including zero). When the sub-ASTD is in a final
state, it enables to start a new iteration. The Kleene closure ASTD has the
following structure:

Kleene closure =̂ ⟨★, b⟩

where b ∈ ASTD is the body of the closure. A Kleene closure is in a final state
when it has not started or when its sub-ASTD b is in a final state. The type
of a Kleene closure state is ⟨★◦, E, started?, s⟩ where s ∈ State, started? is a
Boolean indicating whether the first iteration has been started. It is essentially
used to determine if the closure can immediately exit (i.e., if it is in a final state)
without any iteration. For a Kleene closure ASTD a, the initial and final states
are defined as follows.

init(a,G) =̂ (★◦, a.Einit([G]), false,⊥)
final(a, (★◦, E, started?, s)) =̂ ¬started? ∨ final(a.b, s)

where ⊥ denotes an undefined state. The semantics of a Kleene closure ASTD is
defined by two inference rules: ★1 allows for starting a new iteration (including
the first one); ★2 allows for execution on the sub-ASTD.

final(a, (★◦, E, started?, s)) init(a.b, Ee)
σ,Eg,E

′′
g

−−−−−−→a.b s
′ Θ

★1

(★◦, E, started?, s)
σ,Ee,E

′
e−−−−−−→a (★◦, E

′
, true, s′)

234 Q. Cartellier et al.

s
σ,Eg,E

′′
g

−−−−−−→a.b s
′ Θ

★2

(★◦, E, true, s)
σ,Ee,E

′
e−−−−−−→a (★◦, E

′
, true, s′)

In Fig. 1, C is a Kleene closure ASTD whose initial state is (★◦, ([xA =
0, xB = 1, xC = 1]), false,⊥); its sub-state is undefined (denoted by ⊥). But
when the first possible event is received (i.e., e1), the sub-ASTD D is initialised
(xD ≔ xC +1), the transition e1 is triggered from S0 and the action (xC = xC +
xD;xB = xB + xC ;xA = xA + 1) of the transition is executed. The current state
is now S1 and the values of attributes are ([xA = 1, xB = 4, xC = 3, xD = 2]). As
S1 is a final state of D (i.e., the sub-ASTD of C), D is final, and so is C , and
a new iteration of D can be started again by receiving e1. D is reinitialised to
start a new iteration, so xD is reinitialised prior to this new transition, but the
values of xA, xB , xC are unaffected by the initialisation of D.

2.3 Sequence

The SequenceASTD allows for the sequential composition of two ASTDs. When
the first ASTD reaches a final state, it enables the execution of the second
ASTD. In that case, it is the reception of the next event that determines which
ASTD is executed: if both the first and the second can execute it, then a non-
deterministic choice is made between the two. When the second ASTD starts
it execution, the first ASTD becomes disabled. The Sequence ASTD enables
decomposing problems into a set of tasks that have to be executed in sequence.
The Sequence ASTD has the following structure:

Sequence =̂ ⟨−▸, fst, snd⟩

where fst and snd are ASTDs denoting respectively the first and second sub-
ASTD of the Sequence. A Sequence state is of type ⟨−▸◦, E, [fst ∣ snd], s⟩, where
−▸◦ is a constructor of the Sequence state, [fst ∣ snd] is a choice between two
markers that respectively indicate whether the Sequence is in the first sub-ASTD
or the second sub-ASTD and s ∈ State. Since s does not indicate which ASTD
is currently executed, the marker [fst ∣ snd] is used for that purpose. Functions
init and final of a sequence ASTD are defined as follows.

init(a,G) =̂ (−▸◦, a.Einit([G]), fst, init(a.fst, G ⊲− a.Einit))
final(a, (−▸◦, E, fst, s)) =̂ final(a.fst, s) ∧ final(a.snd, init(a.snd, E))
final(a, (−▸◦, E, snd, s)) =̂ final(a.snd, s)

The initial state of a Sequence is the initial state of its first sub-ASTD. A
sequence state is final when either (i) it is executing its first sub-ASTD and this
one is in a final state, and the initial state of the second sub-ASTD is also a
final state, or (ii) it is executing the second sub-ASTD which is in a final state.

Proving Local Invariants in ASTDs 235

In Fig. 1, the ASTD B is a Sequence ASTD that allows the sequential exe-
cution of ASTDs C and E . B starts by executing C . As the initial state of E is
not final, B is final only when the final state of E is reached.

Three semantic rules are necessary to define the execution of the Sequence.
Rule −▸1 deals with transitions on the sub-ASTD fst only. Rule −▸2 deals with
transitions from fst to snd, when fst is in a final state. Rule −▸3 deals with
transitions on the sub-ASTD snd. Note that the arrow connecting ASTD C and
E is not labeled with an event pattern, because event patterns only occur on
automaton transitions; when the execution goes from C to E , it is an event of E
that is executed, in this case an event of automaton F .

s
σ,Eg,E

′′
g

−−−−−−→a.fst s
′ Θ

−▸1

(−▸◦, E, fst, s)
σ,Ee,E

′
e−−−−−−→a (−▸◦, E

′
, fst, s′)

final(a.fst, s) init(a.snd, Ee)
σ,Eg,E

′′
g

−−−−−−→a.snd s
′ Θ

−▸2

(−▸◦, E, fst, s)
σ,Ee,E

′
e−−−−−−→a (−▸◦, E

′
, snd, s′)

s
σ,Eg,E

′′
g

−−−−−−→a.snd s
′ Θ−▸3

(−▸◦, E, snd, s)
σ,Ee,E

′
e−−−−−−→a (−▸◦, E

′
, snd, s′)

In Fig. 1, in the sequence ASTD B, the ASTD E can be executed only when
the ASTD C reaches its final state, that is, it is not started at all or it is in the
state S1 . The first event executed in E is e2 because this is its only event that
starts from its initial state.

2.4 Guard

A Guard ASTD defines a conditional execution of its sub-ASTD using a pred-
icate. To be enabled, the first event executed must satisfy the Guard predicate.
Once the guard has been satisfied by the first event, the sub-ASTD of the guard
executes the subsequent events without further constraints from its enclosing
guard ASTD. The guard predicate can only refer to attributes declared in its
enclosing ASTDs. The Guard ASTD has the following structure:

Guard =̂ ⟨⇒, g, b⟩

where b ∈ ASTD is the body of the guard. The type of a Guard state is ⟨⇒◦
, E, started?, s⟩ where started? states whether the first transition has been done,
s ∈ State. The initial and final states of a Guard ASTD a are defined as follows.

init(a,G) =̂ (⇒◦, a.Einit([G]), false,⊥)
final(a, (⇒◦, Einit, false, s)) =̂ final(a, s)

final(a, (⇒◦, E, true, s)) =̂ final(a, s)

236 Q. Cartellier et al.

The semantic of the Guard ASTD is defined by two inference rules: ⇒1 deals
with the first transition and the satisfaction of the guard predicate; ⇒2 deals
with subsequent transitions.

g([Ee]) init(a.b, Ee)
σ,Eg,E

′′
g

−−−−−−→a.b s
′ Θ

⇒1

(⇒◦, Einit, false, init(a.b, Ee))
σ,Ee,E

′
e−−−−−−→ (⇒◦, E

′
, true, s′)

s
σ,Eg,E

′′
g

−−−−−−→a.b s
′ Θ

⇒2

(⇒◦, E, true, s)
σ,Ee,E

′
e−−−−−−→ (⇒◦, E

′
, true, s′)

Let us use the ASTD of Fig. 1 to explain when ASTDs are initialised in
a sequence ASTD. Suppose that the system is in the state S1 and that the
event e2 is received. Since S1 is a final state of D and C , the rule −▸2 allows
for the execution of the transition e2 from the initial state of F . To trigger e2,
the rule ⇒2 requires that the guard (xB > xA + 4) of E must be satisfied with
the current values of xA and xB . Finally, if the transition e2 had a guard, it
should also be satisfied with the current values of its enclosing ASTDs A, B, E
and F . The variables in E and F are initialised only when the transition e2 is
evaluated. If the guards are satisfied, e2 is executed and the state moves to S3 ;
if not, the system stays in S1 , and then E and F will be initialised again when
a new occurrence of e2 is received. In other words, E and F are initialised for
good only when the first transition of F can be executed.

3 Proof Obligations for Invariant Satisfaction

In this section, we describe a systematic approach for generating the proof obliga-
tions that ensure the satisfaction of the invariants of an ASTD for its reachable
states defined by the transition system. Proof obligations are generated accord-
ing to the structure of the ASTD. Hereafter, we introduce the definitions of
some concepts that we use in the sequel of the paper.

3.1 Definitions

We introduce the following definitions that are used as hypotheses when proving
an invariant.

Definition 1. The full invariant of an ASTD a is defined as follows:

Invfull(a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a.I if type(a)=Elem
a.I ∧ (⋁s∈a.S Invfull(a.ν(s))) if type(a)=Automaton
a.I ∧ (Invfull(fst) ∨ Invfull(snd)) if a =̂ (−▸, fst, snd)
a.I ∧ Invfull(b) if a ∈ {(★, b), (⇒, g, b)}

Proving Local Invariants in ASTDs 237

Invfull(a) denotes the conjunction of a.I and the invariants of its sub-ASTDs.
When a contains several sub-ASTDs, we take the disjunction of their invariants,
because the sub-state of a is in one of them.

Definition 2. The invariant of the final states of an ASTD a is defined as
follows:

InvF (a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a.I if type(a)=Elem

a.I ∧
⎛
⎜⎜
⎝

⋁n∈a.SF Invfull(a.ν(n))
∨

⋁n∈a.DF InvF (a.ν(n))

⎞
⎟⎟
⎠

if type(a)=Automaton

a.I ∧ InvF (snd) if a =̂ (−▸, fst, snd)
a.I ∧ InvF (b) if a =̂ (⇒, g, b)
a.I if a =̂ (★, b)

InvF (a) is the conjunction of a.I and the disjunction of the invariants of
its final states. A final state of an automaton can be deep or shallow. For a
shallow final state n of a, we take the full invariant of n, because according to
the definition of final , n is final irrespective of its current sub-state, so its sub-
state can be in any of its sub-ASTDs. For a deep final state n, we know that it
is final when its sub-ASTD is final, so we recursively call InvF on n to get only
the invariants of its final states. For a sequence, it suffices to take into account
InvF (snd), because when a sequence is in its first ASTD, the initial state of the
second ASTD must also be final, and it becomes a special of the second case.
In addition, for a Kleene clsoure, the state is final while not started. Therefore,
in that particular case, InvF (a) = a.I.

3.2 Proof Obligation Generation

To ensure that an ASTD is correct, we have to establish that the invariant of
each reachable state is fulfilled. To generate the PO related to the correctness of
an ASTD, we distinguish two cases:

– Initialisation: the state is determined by the init function at the initialisation
of an ASTD;

– Transition: the state is reached through a transition.

We define in the following sections two functions to generate proof obligations,
one for the initialisation, and another for the transitions. These functions recur-
sively traverse an ASTD to generate POs for all of its invariants declared in its
sub-ASTDs.

3.3 Proof Obligations for Initialisations

Following the semantics of ASTDs, initialisations are done from the main
ASTD down to its sub-ASTDs. Therefore we introduce a recursive function
POi(a, J,H, Act) to generate proof obligations for initialisations where:

238 Q. Cartellier et al.

– a stands for the ASTD whose POs for initialisation are generated.
– J stands for the conjunction of all the invariants of enclosing ASTDs of

a; it provides information on the values of the variables occurring in the
initialisation expression Act. It will be used as an hypothesis when proving
an invariant of a to provide properties of variables which are not initialised
by Act.

– H contains the hypotheses obtained from enclosing ASTDs that are needed
for the initialisation of the subsequent steps of a sequential execution; it is
used in the Kleene closure and the sequence ASTDs, because the values of
the enclosing variables are determined by the final states of the last executed
ASTD.

– Act stands for all the actions that are executed before executing the initiali-
sation of ASTD a, through the init functions or the transitions that lead to
a complex state of an Automaton.

To generate the PO of the initialisation of the main (i.e., root) ASTD a of a
specification and those of all its sub-ASTDs, the following call to POi is used:
POi(a, true, true, skip). Hereafter, we give the definition of POi according to each
type of ASTD. We illustrate them with the example of Fig. 1. We argue on the
correction of these POs with respect to the semantics of the ASTDs.

Kleene Closure Initialisation
Let a be a Kleene closure ASTD on an ASTD b: a =̂ (★, b). In that case, we
have to prove that a.J is verified and, for each iteration of the Kleene closure, the
invariant of the initial state of b is verified too. This is expressed by the following
proof obligation:

POi(a, J,H,Act) =̂ {H ⇒ [Act; Init(a)](a.I)} ∪ (i)
POi(b, (J ∧ a.I),H, (Act; Init(a))) ∪ (ii)
POi(b, (J ∧ a.I), (J ∧ a.I ∧ InvF (b)), skip) (iii)

(i) PO (i) aims at verifying that a.I holds after executing the initialisation
Init(a) of a following the initialisation actions Act executed in enclosing
ASTDs. H provides the properties of variables which are not affected by
(Act; Init(a)). Invariants of enclosing ASTDs do not have to be proved
again, because Init(a) does not modify variables of enclosing ASTDs.

(ii) PO (ii) is related to the first iteration of the ASTD b. a.I is added to
the invariant of enclosing ASTDs of b. Init(a) is added to the sequence of
actions that have been executed.

(iii) PO (iii) corresponds to the second and next iterations of b. As the next
iterations will happen from the final state of b, the value of the variables
of the enclosing ASTDs, which are in the initialisation of b, are described
by J ∧ a.I and the final values of these variables at the end of b, given by
InvF (b); thus, these two formulas are conjoined and passed as the value of
H for proving the invariant of b. skip is used as the set of previous actions
executed (parameter Act), because H denotes what is known about the
values of the variables of the enclosing ASTDs.

Proving Local Invariants in ASTDs 239

To illustrate these definitions, consider the following call to compute the POs
for the initialisation of ASTD A of Fig. 1: POi(A, true, true, skip). It generates
the following PO:

true ⇒ [Init(A)](A.I)

which is reduced to {(0 ≥ 0)} after applying the substitutions. In addition, it
generates the following two recursive calls:

1. POi(B,A.I, true, Init(A))
2. POi(B,A.I, (A.I ∧ InvF (B)), skip);

where InvF (B) = B.I ∧ E.I ∧ F.I ∧ S3.I, because B has only one final state, S3 .

Sequence Initialisation
Let a be a Sequence ASTD: a =̂ (−▸, fst, snd). In that case, we have to prove
that the invariant of the initial states of fst and snd are fulfilled when these
states are reached. The generated POs are:

POi(a, J,H,Act) =̂ {H ⇒ [Act; Init(a)](a.I)} ∪ (i)
POi(fst, (J ∧ a.I),H, (Act; Init(a))) ∪ (ii)
POi(snd, (J ∧ a.I), (J ∧ a.I ∧ InvF (fst)), skip) (iii)

(i) This PO follows the same pattern as case (i) of a Kleene closure.
(ii) This PO is related to the initialisation of the ASTD fst which occurs at

the start of the sequence ASTD. It follows the same pattern as case (ii) of
a Kleene closure.

(iii) This PO corresponds to the initialisation of the ASTD snd . According to
the rule −▸2 (see Sect. 2.3), the initialisation of snd can occur only when
fst is in a final state. Therefore, the PO is generated by taking (J ∧ a.I ∧
InvF (fst)) as hypothesis and skip as previous action since no additional
action is executed when moving from the ASTD fst into snd in a sequence
ASTD.

To illustrate these definitions, consider the following call to compute the POs
for the initialisation of ASTD B of Fig. 1: POi(B,A.I, true, Init(A)). By applying
the definitions, we obtain one generated PO and two recursive calls:

(i) true ⇒ [Init(A); Init(B)] B.I): after substitution, we obtain the PO: {(0+
1 > 0)}

(ii) POi(C, (A.I ∧ B.I), true, (Init(A); Init(B)));
(iii) POi(E, (A.I ∧ B.I), (A.I ∧ B.I ∧ C.I), skip): where C.I = InvF (C) because C

is a Kleene closure.

Guard Initialisation
Let a =̂ (⇒, g, b) be a Guard ASTD on an ASTD b. The invariant of the initial
state of b is verified by the following proof obligation:

POi(a, J,H,Act) =̂ {H ⇒ [Act; Init(a)](a.I)} ∪ (i)
POi(b, (J ∧ a.I),H, (Act; Init(a))) (ii)

240 Q. Cartellier et al.

(i) This PO follows the same pattern as in case (i) for a Kleene closure.
(ii) This PO is related to the initialisation of the sub-ASTD b. It follows the

same pattern as case (ii) of a Kleene closure and a sequence.

Note that the guard predicate g is not used in the generated POs. According
to the guard semantics given by rules ⇒1 and ⇒2, the guard only applies to the
first transition of b. The initialisation of a guard ASTD is executed before g is
evaluated in the first transition of the guard body. Therefore, no information can
be obtained from g in a guard ASTD initialisation. To illustrate these definitions,
consider the call (iii) from the previous section:

POi(E, (A.I ∧ B.I), (A.I ∧ B.I ∧ C.I), skip)

It generates the following PO and one recursive call:

(i) (A.I ∧ B.I ∧ C.I) ⇒ [Init(E)] (E.I): After substitution, we obtain the PO:

(A.I ∧ B.I ∧ C.I) ⇒ (xA ≥ 0 ∧ xA < xB ∧ xA ≤ xA)

(ii) POi(F, (A.I ∧ B.I ∧ E.I), (A.I ∧ B.I ∧ C.I), Init(E));

Automaton Initialisation
Let a be an automaton with a.n0 as initial state. Automaton initialisation POs
are generated as follows:

POi(a, J,H,Act) =̂ {H ⇒ [Act; Init(a)](a.I)} ∪ (i)
POi(a.ν(n0), (J ∧ a.I),H, (Act; Init(a))) (ii)

(i) This PO follows the same pattern as in case (i) for a Kleene closure.
(ii) This PO is related to the initialisation of the initial state of a. This initiali-

sation occurs at the start of the Automaton ASTD according to the syntax.
It follows the same pattern as case (ii) of a Kleene closure, sequence and
guard.

The initial state a.n0 could be an elementary state (i.e.type(a.no) = Elem).
Therefore we introduce a PO for a call on an elementary state n as follows:

POi(n, J,H,Act) = {H ⇒ [Act](n.I)}

This PO follows the same pattern as the first generated PO for a complex
ASTD, except there is no additional action of initialisation. That is because an
elementary state does not initialise variables.

In Fig. 1, F is an Automaton with an elementary state as initial state. With
the call (ii) from the Guard initialisation:

POi(F, (A.I ∧ B.I ∧ E.I), (A.I ∧ B.I ∧ C.I), Init(E))

we obtain two generated POs:

Proving Local Invariants in ASTDs 241

(i) (A.I∧B.I∧C.I) ⇒ [Init(E); Init(F)](F.I): After substitution, we obtain the
PO:

(A.I ∧ B.I ∧ C.I) ⇒ (0 ≥ 0)

(ii) POi(S2, (A.I∧B.I∧E.I∧F.I), (A.I∧B.I∧C.I), (Init(E); Init(F))): we apply
the definition of POi for an elementary state, generating the following for-
mula:

{ (A.I ∧ B.I ∧ C.I) ⇒ [Init(E); Init(F)](S2.I) }

After substitution, we obtain the PO:

{ (A.I ∧ B.I ∧ C.I) ⇒ (0 = 0 ∨ xA > xA) }

3.4 Proof Obligations for Local Transitions

When a transition t is triggered, it makes the system move from a source state n1

to a target state n2. So, we have to verify that the invariant of n2 and those of its
enclosing ASTDs are fulfilled. To this aim, we take as hypotheses the invariant
of n1 and those of its enclosing ASTDs. To get the set of POs associated with
transitions, we introduce the recursive function POtr(a, J) where:

– a stands for the ASTD whose POs for transitions are generated.
– J stands for all the invariants from the enclosing ASTD of a. Besides a.I, a

must verify J .

The POs associated with the transitions of the main (i.e., root) ASTD a are
generated by calling POtr as follows: POtr(a, true). Hereafter, we give the defi-
nition of POtr according to each type of ASTD:

POtr(a, J) =

(i) If a =̂ (−▸, fst, snd): POtr(fst, J ∧ a.I) ∪ POtr(snd, J ∧ a.I)
(ii) If a ∈ {(★, b), (⇒, g, b)}: POtr(b, J ∧ a.I)
(iii) If type(a)=Automaton:

⋃ s⋅ (s ∈ a.S ∧ a.ν(s) ≠ Elem) ∣ (POtr(s, J ∧ a.I)) (iii-1)

∪⋃ τ ⋅ (τ ∈ a.δ) ∣ (iii-2)
({J ∧ a.I ∧Hτ.final?(τ.η.n1) ∧ τ.g ⇒ [τ.Atr](J ∧ a.I)} ∪ (iii-2.1)
POi(ν(τ.η.n2), J ∧ a.I, J ∧ a.I ∧Hτ.final?(τ.η.n1) ∧ τ.g, τ.Atr)) (iii-2.2)

where: Htrue =̂ InvF & Hfalse =̂ Invfull

(i), (ii) According to the ASTD syntax, transitions only occur in an Automaton.
Thus, in a Sequence, Kleene closure or Guard ASTD, recursive calls on
POtr are done on sub-ASTDs.

242 Q. Cartellier et al.

(iii-1) In an Automaton, there are states and transitions. For each states, if
the state is a complex ASTD i.e., is not elementary, then a recursive
call on POtr must be done on this sub-ASTD to check all Automaton
ASTD.

(iii-2) For each transition τ in an Automaton ASTD, POs have to be generated
to verify that invariants of the target state are fulfilled after executing
action τ.Atr.

(iii-2.1) This PO aims at verifying the preservation of invariants of enclosing
ASTDs through the action of the transition. All invariants from the
source state are gathered as hypotheses, as well as the guard τ.g. A
distinction is made on the final? property of the transition using term
Hτ.final? because it determines if the previous state was final or not. For
a final transition, we use InvF , providing more precise hypotheses for
the proof, otherwise we use Invfull.

(iii-2.2) This PO aims at verifying that the local invariant of the target state
is fulfilled after the execution of the transition. A recursive call to POi

is done because the target state could be a complex ASTD, so it is
initialised with the transition as premises.

In Fig. 1, F is an Automaton ASTD. The call (obtained after going down the
recursion from A)

POtr(F, (A.I ∧ B.I ∧ E.I))

We obtain four generated POs:

1. (A.I ∧ B.I ∧ E.I ∧ F.I ∧ S2.I) ⇒ [Act(e2)](A.I ∧ B.I ∧ E.I ∧ F.I):
After substitution, we obtain the PO:
(A.I ∧ B.I ∧ E.I ∧ F.I ∧ S2.I) ⇒
(xA + xB ≥ 0 ∧ xB > 0 ∧ (xE ≥ 0 ∧ xE < xB ∧ xE ≤ xA + xB) ∧ xF + 1 ≥ 0)

2. POi(S3, (A.I ∧ B.I ∧ E.I ∧ F.I), (A.I ∧ B.I ∧ E.I ∧ F.I ∧ S2.I),Acte2):
We apply the formula for an elementary state:
(A.I ∧ B.I ∧ E.I ∧ F.I ∧ S2.I) ⇒ [Act(e2)](S3.I):
After substitution, we obtain the PO:
(A.I ∧ B.I ∧ E.I ∧ F.I ∧ S2.I) ⇒ (xF + 1 > 0 ∧ xA + xB > xE)

3. (A.I∧ B.I∧ E.I∧ F.I∧ S3.I∧Guard(e3)) ⇒ [Act(e3)](A.I∧ B.I∧ E.I∧ F.I):
After substitution, we obtain the PO:
(A.I ∧ B.I ∧ E.I ∧ F.I ∧ S3.I ∧Guard(e3))
⇒ (xA − xE ≥ 0 ∧ xB > 0 ∧ (xE < xB ∧ xE ≥ 0 ∧ xE ≤ xA − xE) ∧ xF ≥ 0)

4. POi(S2, (A.I∧B.I∧E.I∧F.I), (A.I∧B.I∧E.I∧F.I∧S3.I∧Guard(e3)),Acte3):
We apply the formula for an elementary state:
{(A.I ∧ B.I ∧ E.I ∧ F.I ∧ S3.I ∧Guard(e3)) ⇒ [Act(e3)](S2.I)}:
After substitution, we obtain the PO:
{(A.I ∧ B.I ∧ E.I ∧ F.I ∧ S3.I ∧Guard(e3)) ⇒ (xF = 0 ∨ xA − xE > xE)}

3.5 Proving Proof Obligations and Strengthening Invariants

In this section, we describe how to verify the generated proof obligations using
Rodin and how to reinforce invariants using ProB when POs are unprovable.

Proving Local Invariants in ASTDs 243

Using Rodin, proof obligations are represented as theorems of an Event-B
contexts. Since variables of an ASTD are typed in their declaration (i.e., x ∶ T),
we add this type in the invariant of the ASTD using x ∈ T ∧ a.I. Free variables
are universally quantified in each PO when defining them as theorems.

The PO generated for the initialisation of the ASTD E is the following:

(A.I ∧ B.I ∧ C.I) ⇒ [Init(E)](E.I)

Adding types of variables, replacing invariants names by their definitions and
adding quantifiers on free variables, we obtain the following formula which is
added as a theorem in a Rodin context:

∀xA ⋅ ∀xB ⋅ ∀xC ⋅ (((xA ∈ Z ∧ xA ≥ 0) ∧ (xB ∈ Z ∧ xB > 0)∧
(xB > xA ∧ xC ∈ Z))
⇒
(xA ∈ Z ∧ xA ≥ 0 ∧ xA < xB ∧ xA ≤ xA)))

This theorem is trivial to prove, since the goal consists of trivial properties or
formulas available in the hypotheses.

The following PO, related to the initialisation of the ASTD D after more
than one iteration of the closure ASTD C , is less trivial and requires some
deduction rules which are automatically applied by the Rodin provers.

∀xA ⋅ ∀xB ⋅ ∀xC ⋅ ∀xD ⋅ (((xA ∈ Z ∧ xA ≥ 0) ∧ (xB ∈ Z ∧ xB > 0)∧
(xC ∈ Z ∧ xB > xA)∧
(xD ∈ Z ∧ xD > 0) ∧ (xC ≥ xD ∧ xA > 0))
⇒
(xC + 1 ∈ Z ∧ xC + 1 > 0))

As hypotheses, we have xC ∈ Z and xC ≥ xD ∧ xD > 0 so the goal (xC + 1 ∈
Z ∧ xC + 1 > 0) is proven.

When a theorem is added to the context, Rodin will automatically try to
prove it. If it fails, the user has to prove it using the interactive provers. When
we fail to discharge a proof obligation, we use the model checker ProB [8] to
find a possible counter-example for it. The counter-example gives the values of
the different variables that violate one or several invariants. To fix this counter-
example, two cases are distinguished:

1. The counter-example denotes a reachable state: it means that the invariant
of a state is false and it should be corrected.

2. The counter-example is not a reachable state: in that case, the invariant that
is violated is of the form P1 ⇒ P2. This means that P1 is too weak; that
is, P1 denotes an unreachable state. To fix that, we have to strengthen some
state invariants to rule out this counter-example.

In Fig. 1, the generated PO for the transition e3 is not provable. The counter-
example found by ProB asserts that at the state S3 , the values of the variables
are as follows: xA = 2;xB = 2;xE = 1;xF = 1. Then, during the transition,

244 Q. Cartellier et al.

the substitution xA ≔ xA − xE is done, setting xA to 1, and thus, S2.I ≡
(xF = 0 ∨ xA > xE) is not satisfied. In fact, the state S3 is not reachable for
xA ≤ 2xE . That is because S2 ≡ xA ≥ xE ∧ xB > xE and the transition e2 does
the substitution xA ≔ xA + xB which leads to xA > 2xE in state S3 . Thus, we
derive a new invariant for S3 that rules out the counter-example:

xF > 0 ∧ xA > 2xE

It must be kept in mind that modifying an invariant modifies the generated
proof obligations. The Rodin archive of the running example can be found in [3].
Proof obligations for the final version (corrected with the above new invariant)
are automatically proved by Rodin.

4 Conclusion

In this paper, we have presented a systematic formal approach to verify the sat-
isfaction of local invariants of ASTDs diagrams. Roughly speaking, an ASTDs
is a set of hierarchical states (simple or complex) related by process algebra
operators and transitions. Local invariants can be associated to these states. We
generate proof obligations to ensure that each reachable state satisfies its invari-
ant. To this aim, our approach consists in recursively traversing the hierarchical
states and analysing state initialization and transition actions to generate appro-
priate proof obligations. The generated proof obligations are defined as theorems
in Event-B contexts and are discharged using the Rodin platform, and debugged
using ProB by using it as a model checker of first-order formulas. To show the
feasibility of our approach, we have applied it on several examples which are
available in [3].

We are currently working on the implementation of a tool that automatically
generates the proof obligations from the ASTD specification. We are also work-
ing on the proof obligations of the remaining ASTD operators (flow, choice,
synchronization and their quantified versions). Shared variables within synchro-
nized ASTDs represent a challenge for defining proof obligations, because poten-
tial interferences between different ASTDs must be taken into account. Future
work also includes considering the timed extension of ASTDs as defined on
basic ASTD operators in [2]. Finally, it would be important to formally prove
the correctness of our proof obligations. We intend to use the approach pro-
posed in [15], where the theory plugin of Rodin is used to build a meta-model
of a specification language (Event-B). We could follow a similar approach and
define the semantics of ASTDs in a Rodin Theory, and then show that our
proof obligations are sufficient to show that the invariants are preserved over
the traces of an ASTD. This is a quite challenging task, since the semantics of
ASTDs is more complex than the one illustrated in [15].

Proving Local Invariants in ASTDs 245

References

1. de Azevedo Oliveira, D., Frappier, M.: Modelling an automotive software sys-
tem with TASTD. In: Glässer, U., Creissac Campos, J., Méry, D., Palanque, P.
(eds.) Rigorous State-Based Methods (ABZ2023). LNCS, vol. 14010, pp. 124–141.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33163-3_10

2. de Azevedo Oliveira, D., Frappier, M.: TASTD: A real-time extension for ASTD. In:
Glässer, U., Campos, J.C., Méry, D., Palanque, P.A. (eds.) Rigorous State-Based
Methods (ABZ2023). LNCS, vol. 14010, pp. 142–159. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-33163-3_11

3. Cartellier, Q.: https://gitlab.com/QCartellier/icfem2023-poastd/-/tree/main/
(2023)

4. El Jabri, C., Frappier, M., Ecarot, T., Tardif, P.M.: Development of monitoring
systems for anomaly detection using ASTD specifications. In: Aït-Ameur, Y., Cră-
ciun, F. (eds.) TASE. LNCS, vol. 13299, pp. 274–289. Springer (2022). https://doi.
org/10.1007/978-3-031-10363-6_19

5. Fayolle, T.: Combinaison de méthodes formelles pour la spécification de sys-
tèmes industriels. Theses, Université Paris-Est; Université de Sherbrooke, Québec,
Canada, June 2017

6. Frappier, M., Gervais, F., Laleau, R., Fraikin, B., St-Denis, R.: Extending State-
charts with process algebra operators. ISSE 4(3), 285–292 (2008)

7. Khan, A.H., Rauf, I., Porres, I.: Consistency of UML class and Statechart diagrams
with state invariants. In: MODELSWARD, pp. 14–24. SciTePress (2013)

8. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B Method.
JSTTT 10(2), 185–203 (2008)

9. Mammar, A., Frappier, M.: Modeling of a speed control system using event-B.
In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp.
367–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48077-6_29

10. Mammar, A., Frappier, M., Laleau, R.: An event-B model of an automotive adap-
tive exterior light system. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020.
LNCS, vol. 12071, pp. 351–366. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-48077-6_28

11. Milhau, J., Frappier, M., Gervais, F., Laleau, R.: Systematic translation rules from
ASTD to event-B. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp.
245–259. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16265-
7_18

12. Nganyewou Tidjon, L., Frappier, M., Leuschel, M., Mammar, A.: Extended alge-
braic state-transition diagrams. In: 2018 23rd International Conference on Engi-
neering of Complex Computer Systems (ICECCS), pp. 146–155. IEEE Computer
Society (2018)

13. Porres, I., Rauf, I.: Generating class contracts from UML protocol statemachines.
In: Proceedings of the 6th International Workshop on Model-Driven Engineering,
Verification and Validation. MoDeVVa 2009, ACM, New York, USA (2009)

14. Porres, I., Rauf, I.: From nondeterministic UML protocol statemachines to class
contracts. In: 2010 Third International Conference on Software Testing, Verifica-
tion and Validation, pp. 107–116 (2010)

15. Riviere, P., Singh, N.K., Ameur, Y.A., Dupont, G.: Formalising liveness proper-
ties in event-b with the reflexive EB4EB framework. In: Rozier, K.Y., Chaudhuri,
S. (eds.) NASA Formal Methods - 15th International Symposium, NFM 2023,
Houston, TX, USA, May 16–18, 2023, Proceedings. Lecture Notes in Computer

https://doi.org/10.1007/978-3-031-33163-3_10
https://doi.org/10.1007/978-3-031-33163-3_11
https://gitlab.com/QCartellier/icfem2023-poastd/-/tree/main/
https://doi.org/10.1007/978-3-031-10363-6_19
https://doi.org/10.1007/978-3-031-10363-6_19
https://doi.org/10.1007/978-3-030-48077-6_29
https://doi.org/10.1007/978-3-030-48077-6_28
https://doi.org/10.1007/978-3-030-48077-6_28
https://doi.org/10.1007/978-3-642-16265-7_18
https://doi.org/10.1007/978-3-642-16265-7_18

246 Q. Cartellier et al.

Science, vol. 13903, pp. 312–331. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-33170-1_19

16. Said, M.Y., Butler, M.J., Snook, C.F.: A method of refinement in UML-B. Softw.
Syst. Model. 14(4), 1557–1580 (2015)

17. Sekerinski, E.: Verifying Statecharts with state invariants. In: 13th International
Conference on Engineering of Complex Computer Systems (ICECCS), pp. 7–14.
IEEE Computer Society (2008)

18. Tidjon, L.N., Frappier, M., Mammar, A.: Intrusion detection using ASTDs. In:
Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) AINA 2020.
AISC, vol. 1151, pp. 1397–1411. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-44041-1_118

https://doi.org/10.1007/978-3-031-33170-1_19
https://doi.org/10.1007/978-3-031-33170-1_19
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-030-44041-1_118

Doctoral Symposium Papers

Formal Verification of the Burn-to-Claim
Blockchain Interoperable Protocol

Babu Pillai1,2(B), Zhé Hóu1, Kamanashis Biswas1,3,
and Vallipuram Muthukkumarasamy1

1 Griffith University, Gold Coast, Australia
babu.pillai@outlook.com

2 Southern Cross University, Lismore, Australia
3 Australian Catholic University, Brisbane, Australia

Abstract. This paper introduces an abstract blockchain model that
employs the Burn-to-Claim cross-blockchain protocol [1]. This multi-
level simulator models a virtual environment of nodes running on the
Ethereum Virtual Machine (EVM). Developed using the CSP# lan-
guage [2], it has undergone formal verification with the model checker
PAT . Focusing on inter-network operations, our model (https://github.
com/b-pillai/Burn-to-Claim-formal-verification) examines the proper-
ties of correctness, security, and atomicity using PAT . Surprisingly,
atomicity, assumed to be inherent in the time-lock mechanism of the
Burn-to-Claim protocol, does not always hold. We establish its validity
under specific assumptions while confirming the protocol’s correctness
and security under the added assumptions.

Keywords: Burn-to-Claim · blockchain · interoperability · formal
verification

1 Introduction

Despite the recent surge in the number of proposed interoperable protocols,
there is a lack of formal guarantees for the properties of those protocols. This is
also a common issue in the field of (cyber)security, where much of the protocol
design is proved by hand, which is error-prone. Commercial developments of such
cyber and network systems are often validated by extensive software testing,
but testing can only show the presence of bugs, not their absence. In recent
years, formal verification has been used for verifying highly sensitive systems
and protocols.

In this paper, we employ a tool named Process Analysis Toolkit (PAT) [3],
which supports modelling, simulation and verification of many forms of systems.
The supported modelling languages include Hoare’s Communicating Sequential
Processes [4] extended with C# (CSP#), timed automata, real-time systems,
probabilistic systems and hierarchical systems.

The main contributions of this paper include:
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 249–254, 2023.
https://doi.org/10.1007/978-981-99-7584-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_15&domain=pdf
https://github.com/b-pillai/Burn-to-Claim-formal-verification
https://github.com/b-pillai/Burn-to-Claim-formal-verification
https://doi.org/10.1007/978-981-99-7584-6_15

250 B. Pillai et al.

– Modelling: We build a formal model for the Burn-to-Claim blockchain inter-
operable protocol [1] using CSP# that focused on inter-network operations
within a network.

– Verification: Using the developed models, we specify several correctness and
security properties using LTL and reachability and verify them using the PAT
system.

– Findings: We discuss the verification results. In particular, the atomicity prop-
erty, which contrary to the common understanding of the adopted time-lock
technique, does not hold in general. However, it holds under certain assump-
tions.

2 An Overview of the Burn-to-Claim Protocol

At the highest level, our objective is to construct a model encompassing a sce-
nario wherein a user intends to transfer an asset from one blockchain network to
another. The Burn-to-Claim protocol [1,5] facilitates this transfer, ensuring that
the asset is destroyed (or removed) from the originating blockchain network and
subsequently re-created on the destination network. Within this process, the net-
works from which the asset is removed are termed source networks, while those
to which the asset is transferred are labelled destination networks. This trans-
fer procedure is twofold: initially, the source network produces a self-verifiable
transfer-proof, and subsequently, upon verifying this proof, the destination net-
work reconstitutes the asset.

Workflow. Upon initiating the exitTransaction in the source network, nodes
within this network validate the transaction request. The primary objective is
to generate a proof, which allows verification of the specific transaction without
needing to reference the entire history of the associated asset. After this transac-
tion is committed in the source chain, the transfer-proof triggers an entryTrans-
action in the destination network, paving the way for the asset’s recreation in
the recipient network. Nodes within the destination network then validate the
transfer-proof and proceed to recreate the asset. We model the above system for
formal verification in different modules described below.

Module 1—exitTransaction. This transaction triggers a transfer request on the
source network, creating an exit point for an asset on the sender’s blockchain
through network consensus. The system’s generation of a transfer-proof ensures
security. Once the network agrees on the transaction’s authenticity, a transfer-
proof log is added to the next block, and the asset is locked to prevent further
extensions.

Module 2—entryTransaction. This transaction aims to replicate the asset in the
destination network. Executing the entryTransaction and transfer-proof func-
tions from the source chain, the network validates the transfer-proof and repro-
duces the asset.

Formal Verification of the Burn-to-Claim Blockchain Interoperable Protocol 251

Let us assume the exitTransaction log and timestamp on the sender network
created of t1 time will be delivered to the recipient network through a gateway
node with a time latency of t2.

Module 3—reclaimTransaction. If the recipient does not claim the asset within
the time-lock period t2, the sender can use reclaimTransaction to retrieve it.
The function verifies the signature and time-lock before returning the asset to
the sender.

3 Specifications of the Protocol

In order to perform verification and show that the system model satisfies a set
of desired requirements, we define a set of four scenarios to check the functional
security of the system. 1) A sender sends a transaction and the correct recipient
makes the claim. 2) A sender sends a transaction and after the time lock period
reclaims the asset. 3) A sender sends a transaction and a malicious recipient
tries to make the claim. 4) A malicious sender sends a transaction and tries to
reclaim it within the time-lock period. Based on the above four cases, we have
defined a set of properties that should hold in the Burn-to-Claim protocol [1,5].

Property 1 (Burn-Before-Claim). An asset that is transferred from the source
network must be burned on the source network before the recipient can claim it
on the recipient network.

Property 2 (No-Double-Spend). Double spending is not permitted in the Burn-
to-Claim protocol.

Property 3 (Correctness). The Burn-to-Claim protocol only transfers an asset
to the correct recipient.

Property 4 (Strong-Atomicity). The transfer operation should only obtain one of
the following outcomes: either the transfer succeeds, and the asset is transferred
to the recipient, or it fails, and the asset returns to the sender.

Property 5 (Weak-Atomicity). Under the assumption that either the recipient
or the sender is guaranteed to make the (re)claim, a transfer operation should
only have one of the following outcomes: either the transfer succeeds, and the
asset is transferred to the recipient, or it fails, and the asset returns to the sender.

4 The Model for Cross-Blockchain Interactions

In this model, we focus on the inter-network events, and we only consider high
level operations of transaction and mining, and leave the detailed intra-network
operations to a different model that will be discussed in the next section.

The two networks are defined as constants N1 and N2 representing the source
network as N1 and destination network as N2. A set of variables defined are

252 B. Pillai et al.

TxItems to hold the number of items in a transaction, MaxTx set the maximum
number of transactions, MaxMiners set the number of miners, TxAmount to hold
defaults value to transfer, InitAmount to hold initial wallet balance, MaxUsers
number of users and ChannelBufferSize for channel buffer size.

The structure of blockchain is not critical in this model; therefore, for sim-
plicity, we view blockchain data structure as a list of transactions as in tx[0], as
transactions in N1, tx[1] as transactions in N2.

Users. There are four types of users in the model: User1, User2, Sender and
Recipient. User1 and User2 are network specific participants. That is, User1
exists only in N1 and is able to send transactions within the same network.
Similarly, User2 exists and operates only within N2. We model the transac-
tion as a tuple of six items in the order of sender’s network, senders address,
recipient network, recipient address, beta, value, gamma, miner address. In refer-
ence to the transaction Tx defined in the Burn-to-Claim paper [1], we omitted
previous transaction Tx† as it is not important in this model. Based on the
role and requirement, the network participants send separate transactions. The
Sender and Recipient are participants that can send cross network transactions
to another network. The sender and recipient use separate channels to broadcast
the transaction.

Miners. We model two types of miners Miner1 and Miner2. Miner1 is a miner
on the network N1, listening to the channels of [trans1, exit and rec]. This miner
execute a relevant function based on the channel the message is coming from.
The Miner2 is mining on N2, listening to the channels of [trans2 and entry] and
executes a relevant function based on the channel the message is coming from.

The Mining Process. There are five processes defined which will be executed
by the miner based on the input request. The minerVerify1 process facilitates
value transfers within N1. It first verifies conditions like transfer networks and
user limits before executing the transfer. minerVerify2 serves a similar purpose
for N2. When exitTransaction is invoked, miners ensure the user has sufficient
funds. The exportVerifier process, in this model, is simplified, excluding signa-
ture verification. If conditions are met, tokens are transferred to a burn-address.
For the entryTransaction, miners validate time-lock, burn-address status, and
the provided security code. If verified, the recipient’s wallet increases. For the
reclaimTransaction, similar checks are made, and upon validation, the sender’s
wallet is refunded.

Process Execution. We model the execution of cross-blockchain transfer in a
blockchain as a CrossBlockchains() process. The process is structured such that
the mining, user, and BurnToClaim() processes run concurrently. The mining
process begins with miners mining on both N1 and N2. Meanwhile, users process
their transactions on their respective chains. The BurnToClaim() process then
executes the defined scenarios based on the user’s selection.

Formal Verification of the Burn-to-Claim Blockchain Interoperable Protocol 253

5 System Verification

In this section, we cover the model’s targeted assertions and properties, outline
the verification procedures and present results. An assertion examines system
behaviours. For a given process, it checks if a state meets a specific condition.
When process p runs, if e is true, then f remains true.

To verify Property 1 (Burn-Before-Claim), we define an assertion in PAT
as below. This assertion verifies that an asset is burned before the recipient’s
claim using [(pClaimed − > [](!pBurned))]. Results confirm the asset must be
burned prior to a claim. In our model, the sender commits the transfer to a burn
address, and once the network accepts it, the decision is deemed final.

#assert CrossChains |= [] (pClaimed −> [] (! pBurned)) ;

We define the three assertions given below to check Property 2, double spend-
ing. The initial assertion examines if an asset, once claimed by the recipient,
cannot be reclaimed by the sender using [(pClaimed− >)]. The next asser-
tion observes whether the recipient’s wallet increases, while the sender remains
unchanged using [(recipientClaimed & senderReclaimed)]. Lastly, an assertion
confirms against double spending scenarios, ensuring that both recipient claims
and sender reclaims cannot coexist, as evidenced by [(pReclaimed− >)]. Ver-
ification results from these three assertions confirm the impossibility of double
spending in this model’s configuration.

#assert CrossChains |= [] (pClaimed −> [] (! pReclaimed)) ;
#assert CrossChains |= [] ! (rClaimed && sReclaimed) ;
#assert CrossChains |= [] (pReclaimed −> [] (! pClaimed)) ;

To check the Property 3 (correctness), we define the assertion given below.
This assertion examines if a burned asset remains in the burn address, is claimed
by the recipient, or is reclaimed by the sender, represented by [(pBurned − >
[](burnValueExists || pClaimed || pReclaimed))]. Verification confirms that a
burned asset consistently stays in its burn address throughout the process.

#assert CrossChains |=
[] (pBurned −> [] (burnValueExists | | pClaimed | | pReclaimed)) ;

We define below two assertions to check strong atomicity (Property 4) and
week atomicity (Property 5) atomicity:

#assert CrossChains |= [] (rClaimed | | senderReclaimed)) ;
#assert CrossChains |= [] (protocolCompleted −>

(rClaimed | | senderReclaimed)) ;

The first assertion checks strong atomicity using (recipientClaimed || sender-
Reclaimed). The verification of Property 4 fails as PAT found a counterexample
event sequence, which we analyse the explain below.

254 B. Pillai et al.

5.1 Discussion

Why General Atomicity Not Hold? Strong atomicity requires all related oper-
ations to succeed. In cross-blockchain contexts, this means assets are burned
by the sender and claimed by the recipient. However, distributed environments
face potential network partitions or system crashes, preventing participants from
engaging. Apart from technical issues, intentional recipient inaction or incorrect
asset burns by the sender can also compromise strong atomicity.

Cross-blockchain operators facilitate transactions for multiple self-interested
parties. A single party’s actions can have intricate impacts on others. Given
the potential for malicious or irrational behaviour, the assumption is that both
sender and recipient act in mutual interest. The sender burns the asset, and
the recipient mints an equivalent asset. To validate weak atomicity, we use the
second assertion (Property 5).

Property 5 (weak atomicity) assumes that if the sender burns the asset, the
recipient must mint it. This is expressed using the second assertion (protocol-
Completed − > (RecipientClaimed || senderReclaimed)). We introduce protocol-
Completed to address network and node failures. This property holds.

6 Conclusion and Future Works

The current model focuses on verifying burn-before-claim (Property 1), double-
spending (Property 2), correctness (Property 3), and both strong (Property 4)
and weak atomicity (Property 5). While detailed transaction and block data
structures are not considered, we model transaction verification’s essential oper-
ations. Detailed transaction verification will be addressed in future work that
incorporates a merge mining process.

References

1. Pillai, B., Biswas, K., Hóu, Z., Muthukkumarasamy, V.: Burn-to-claim: an asset
transfer protocol for blockchain interoperability. Comput. Netw. 200, 108495 (2021)

2. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specification and programs for
system modeling and verification. In: Third IEEE International Symposium on The-
oretical Aspects of Software Engineering, pp. 127–135. IEEE (2009)

3. Sun, J., Liu, Y., Dong, J., Pang, J.: Towards flexible verification under fairness. In:
CAV ’09: 21th International Conference on Computer Aided Verification (2009)

4. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

5. Pillai, B., Biswas, K., Hóu, Z., Muthukkumarasamy, V.: The burn-to-claim cross-
blockchain asset transfer protocol. In: 2020 25th International Conference on Engi-
neering of Complex Computer Systems (ICECCS), pp. 119–124. IEEE (2020)

Early and Systematic Validation
of Formal Models

Sebastian Stock(B)

Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria

sebastian.stock@jku.at

Abstract. Verification and validation are equally important when cre-
ating and reasoning about formal models. Verification focuses on the
consistency of a model, while validation answers whether a model appro-
priately represents the requirements. However, compared to verification,
validation remains underrepresented in modeling activities, and one of
the reasons for this underrepresentation is that the modeler postpones
the validation till the end of the modeling process leading to the late
discovery of mistakes. Countering this, we present a framework that inte-
grates validation early and tightly in the modeling process.

Keywords: Validation · formal methods · formal modeling

1 Introduction

Creating a formal model can be a valuable tool in checking for the soundness
and completeness of a set of natural language requirements [1] and modelers
have sophisticated modeling languages like ASMs [3], Event-B [2] or TLA [10]
at their disposal to express even complex requirements.

However, creating a model is not enough, as the models need to be checked
for internal consistency and their ability to capture requirements adequately.
For this, there is respectively verification and validation. Verification is com-
monly understood as checking for the internal consistency of a model, which
also involves ruling out undesired states that violate predefined constraints. Over
the years, the formal model community developed a broad band of techniques
and tools to tackle the problem. One of the most commonly known verification
techniques are model checkers, e.g., SPIN [15] or provers like Isabelle [8].

As important as the idea of verification is the idea of validation, i.e., the
task of checking if the model represents the desired requirements. Validation is
an intricate task. On the one hand, there is an overlap with the idea of verifi-
cation, as ruling out undesired states and providing a consistent model is often

The research presented in this paper has been conducted within the IVOIRE project,
which is funded by “Deutsche Forschungsgemeinschaft” (DFG) and the Austrian Sci-
ence Fund (FWF) grant # I 4744-N and has been partly financed by the LIT Secure
and Correct Systems Lab sponsored by the province of Upper Austria.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 255–260, 2023.
https://doi.org/10.1007/978-981-99-7584-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_16&domain=pdf
http://orcid.org/0000-0002-2231-8656
https://doi.org/10.1007/978-981-99-7584-6_16

256 S. Stock

within the requirements initially stated. On the other hand, validation touches
upon subjects more known from the software engineering domain, e.g., checking
if the model shows the desired behavior, interacting with different stakehold-
ers, and transferring information about the requirements into the model (and
the other way around). Over the years, several tools made their appearance to
support the validation effort, e.g., ProB [11], however validation as a means to
ensure model quality remains underrepresented, which is acknowledged within
the communities publications [4,9,12].

One of the reasons for this phenomenon is that validation is typically applied
to check on the final product while being absent from the early stages of devel-
opment. The consequences are severe. Mistakes about the overall functionality
of the model are often spotted too late, increasing development time and thus
undermining the advantages of using a formal model in the first place. Overcom-
ing this, we propose a framework to establish validation as an integral part of
all modeling process stages. For this, we present contributions that (1) enhance
state of the art in regards to structuring the validation process of a formal mode,
thus enhancing reasoning about the state of the validation effort. (2) Deal with
the challenges that are raised when refining validation results to transfer them
between models, thus encouraging early validation as result can be kept. (3) Inte-
grating both previous contributions in the larger framework of Validation-Driven
Development (VDD) to ensure early and rigorous validation.

The rest of this paper is structured as follows: Sect. 2 will shortly introduce
the necessary terms. Section 3 layout the three individual challenges in more
details, and Sect. 4 will show the achievements while in Sect. 5 we conclude the
paper and give an outlook to future work.

2 Background

Proof Obligations. Some modeling languages structure their verification effort
and provide proof obligations (POs). POs, as the name suggests, are proofs that
we are obligated to discharge to establish certain properties. There are POs for
different purposes, e.g., well-definedness or deadlock freedom, of the model. In
languages like Event-B, tools like Rodin [2] manage the creation and discharging
of these POs.

The usage of POs is highly systematic which allows reasoning about the
model and together with the syntactical rules of POs debugging models is made
simple. The typical PO workflow can be described as: (1) We first model some-
thing, (2) the tool will generate POs, (3) we discharge the POs, and then we
move on to the next feature. Failing POs point to missing or wrong premises in
the model.

Validation Obligations. Validation Obligations (VOs) proposed by Mashkoor et
al. [13] and aim to be a counterpart to POs as being a way to structure the
validation effort and support the development workflow.

Early and Systematic Validation of Formal Models 257

Refinement. Formal refinement is a means to establish a connection between two
formal models. Different types and flavors are applicable under different circum-
stances as laid out by Derrick and Boiten [5]. Most of the time, when referring
to refinement, one means that an existing model is enhanced, i.e., extended so
that the refinement properties are not violated. The application of refinement is
deeply entangled within the correct-by-construction idea, and both techniques
are inherent to applying formal modeling languages. We start with an abstract
representation of the problem, and through rigorous refinement, we create more
and more concrete version representation until we capture the desired require-
ments in the model.

The idea of POs as a provider of structure and semantics also extends to the
domain of refinement. If we use our Rodin/Event-B example again, we can see
that POs cater to the Event-B refinement rules and ensure correct refinement.
Within these POs, the modeler ensures that the refining machine C does not
violate any POs successfully discharged in A.

3 Challenges

As stated back in Sect. 1, we have three challenges to overcome. In the following,
we elaborate on these challenges and describe how we want to overcome them.

3.1 Structuring the Validation Workflow

As pointed out in Sect. 2, verification is highly systematic and structured, thus
providing a range of advantages: Easy determination of whether the verification
fails or succeeds. Information about completeness and coverage. Support in the
development and debugging of formal models. The validation effort lacks these
abilities, thus rendering it less attractive.

Goal. We want to provide these missing features to the validation effort. First, we
provide a validation semantic enabling predictable behavior and easier reasoning
and debugging. Also, information about coverage, completeness, and consistency
is made readily available. Additionally, we want to provide tool support for
generating and managing validation efforts, thus establishing validation progress
as a measurement of success in the modeling process similar to verification.

3.2 Validation and Refinement

Verification is well supported by refinement as explained in Sect. 2. Once estab-
lished, verification properties only need additional refinement proofs, which are
often trivial and can be automatically discharged. Thus early adaptation in the
development process is encouraged, as a refinement of the model is not punished
by having to redo all verification efforts.

Validation, on the other hand, is missing a semantic for refinement, and
additionally, many tools and techniques lack the capabilities to transfer insights
between refinements. As validation can already be a cumbersome and tedious
endeavor, the outlook of doing it again for each refinement step is discouraging.

258 S. Stock

Goal. Therefore, we propose to extend the semantic foundations laid in Sect. 3.1
to cater to refinement. Additionally, we want to provide techniques and tools that
help transfer validation insights between refinement chains, thus encouraging
early validation.

3.3 Creating the VDD Framework

As the two previous challenges show, verification is well integrated into the over-
all development process. We have semantics and tools that are tightly integrated
into the workflow, thus delivering quick feedback on the matter. Furthermore,
verification also shapes the modeling and reasoning process, as the ability to
verify constructs shapes design and structuring decisions.

The goal stated for the previous two challenges is to provide the necessary
foundations for a tighter validation integration in the development process of
formal models. However, what is missing is a unifying rationale that lays out
what a modeling process with a tightly integrated validation effort looks like.

Goal. Drawing from the contributions of Sects. 3.1 and 3.2, we propose a valida-
tion based approach to create formal models. We call this framework Validation-
Driven Development (VDD) and its goal is to guide modelers to develop formal
models that are complete and consistent regarding their requirements. Aiming
at this, we investigate how we can integrate validation tightly into the general
development process.

4 Results and Planned Contributions

The development process of the contribution can be seen in Fig. 1. Starting from
semantics, we develop techniques and tools and apply them in practice. Later
we draw from these practical insights to formulate a general Validation-Driven
Development framework.

Validation Refinement and Domain Views. This contribution [18] focuses on
two things. First, on the ability to refine VOs and, in a broader sense, combine
refinement and the validation effort as laid out as a goal in Sect. 3.2. Second, it
provides a unique way to create domain-specific views, enabling better commu-
nication with domain experts.

Trace Refinement. The creation and evaluation of traces is an elemental vali-
dation task. Traces check whether a state is reachable or whether a sequence
of states or transitions is feasible. To encourage traces use early, this contribu-
tion [17] provides a refinement approach for traces. Thus contribution towards
the goal of Sect. 3.2.

Case Study. The implementation [6] of the AMAN case study [14] not only
provides valuable insides into the applicability of the VO approach but also
served as a base for testing and evaluating the primary contributions. From
here, we develop the VDD framework.

Early and Systematic Validation of Formal Models 259

Validation-Driven Development. Validation-Driven development [16] (VDD) uti-
lizes the insights gathered in the rest of the contributions to propose a complete
development framework. It utilizes VOs to structure the validation and addi-
tionally draws from the contributions toward validation refinement introduced
earlier. The insights are reapplied to the previously introduced case study.

Fig. 1. Overview of dependencies in the contributed and proposed research

5 Conclusion and Future Work

In this paper we presented the progress towards developing a framework for
integrating, rigorous and consistent validation into the development process of
formal model. We call this framework Validation-Driven Development (VDD). In
multiple contribution we lay out theoretical aspects, techniques for the transfer
of validation results in refinement chains and the overall VDD framework that
integrates these contributions into a bigger picture. For the future we want to
contribute to two aspects of VDD:

Foundation of Validation Obligations. Yet missing from Sect. 4 and shown in
Fig. 1 is a contribution that lays out all basic semantics and foundations of VOs.
This contribution is currently under review. It aims to tackle Sect. 3.1.

Trace Failure Refinement Checking. Trace failure refinement is a special form
of refinement. Initially, it is known from process languages like CSP [7]. The
idea is to transfer it to the state-based language Event-B to support the transfer
of validation results, as the standard Event-B refinement focuses on verification
tasks. This approach also is directed towards the goal formulated in Sect. 3.1 but
is more general than the trace refinement approach.

References

1. Abran, A., Moore, J.W., Bourque, P., Dupuis, R., Tripp, L.: Software Engineering
Body of Knowledge, vol. 25. IEEE Computer Society, Angela Burgess (2004)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Börger, E.: The ASM method for system design and analysis. A tutorial introduc-
tion. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 264–283.
Springer, Heidelberg (2005). https://doi.org/10.1007/11559306 15

https://doi.org/10.1007/11559306_15

260 S. Stock

4. Bowen, J., Hinchey, M.: Ten commandments of formal methods ...ten years later.
Computer 39(1), 40–48 (2006). https://doi.org/10.1109/MC.2006.35

5. Derrick, J., Boiten, E.: Refinement: Semantics, Languages and Applications, vol.
95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92711-4

6. Geleßus, D., Stock, S., Vu, F., Leuschel, M., Mashkoor, A.: Modeling and analysis
of a safety-critical interactive system through validation obligations. In: Glässer,
U., Campos, J.C., Méry, D., Palanque, P.A. (eds.) ABZ 2023. LNCS, vol. 14010, pp.
284–302. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33163-3 22

7. Hoare, C.A.R., et al.: Communicating Sequential Processes, vol. 178. Prentice-Hall,
Englewood Cliffs (1985)

8. Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

9. Jacquot, J., Mashkoor, A.: The role of validation in refinement-based formal soft-
ware development. In: Models: Concepts, Theory, Logic, Reasoning and Semantics
- Essays Dedicated to Klaus-Dieter Schewe on the Occasion of his 60th Birthday,
pp. 202–219 (2018)

10. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
(TOPLAS) 16(3), 872–923 (1994)

11. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008)

12. Mashkoor, A., Kossak, F., Egyed, A.: Evaluating the suitability of state-based
formal methods for industrial deployment. Softw. Pract. Exp. 48(12), 2350–2379
(2018)

13. Mashkoor, A., Leuschel, M., Egyed, A.: Validation obligations: a novel approach to
check compliance between requirements and their formal specification. In: ICSE’21
NIER, pp. 1–5 (2021)

14. Palanque, P., Campos, J.C.: Aman case study. In: Glässer, U., Creissac Campos, J.,
Méry, D., Palanque, P. (eds.) ABZ 2023. LNCS, vol. 14010, pp. 265–283. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-33163-3 21

15. Paulson, L.C.: Isabelle: A Generic Theorem Prover. Springer, Cham (1994).
https://doi.org/10.1007/BFb0030541

16. Stock, S., Mashkoor, A., Egyed, A.: Validation-driven development. In: Proceedings
ICFEM (2023, to appear)

17. Stock, S., Mashkoor, A., Leuschel, M., Egyed, A.: Trace Refinement in B and Event-
B. In: Riesco, A., Zhang, M. (eds.) ICFEM 2022. LNCS, vol. 13478, pp. 316–333.
LNCS. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17244-1 19

18. Stock, S., Vu, F., Geleßus, D., Leuschel, M., Mashkoor, A., Egyed, A.: Validation
by abstraction and refinement. In: Glässer, U., Creissac Campos, J., Méry, D.,
Palanque, P. (eds.) ABZ 2023. LNCS, vol. 14010, pp. 160–178. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-33163-3 12

https://doi.org/10.1109/MC.2006.35
https://doi.org/10.1007/978-3-319-92711-4
https://doi.org/10.1007/978-3-031-33163-3_22
https://doi.org/10.1007/978-3-031-33163-3_21
https://doi.org/10.1007/BFb0030541
https://doi.org/10.1007/978-3-031-17244-1_19
https://doi.org/10.1007/978-3-031-33163-3_12

Verifying Neural Networks
by Approximating Convex Hulls

Zhongkui Ma(B)

The University of Queensland, St Lucia, QLD, Australia

zhongkui.ma@uq.edu.au

Abstract. The increasing prevalence of neural networks necessitates
their verification in order to ensure security. Verifying neural networks
is a challenge due to the use of non-linear activation functions. This
work concentrates on approximating the convex hull of activation func-
tions. An approach is proposed to construct a convex polytope to over-
approximate the ReLU hull (the convex hull of the ReLU function) when
considering multi-variables. The key idea is to construct new faces based
on the known faces and vertices by uniqueness of the ReLU hull. Our
approach has been incorporated into the state-of-the-art PRIMA frame-
work, which takes into account multi-neuron constraints. The experimen-
tal evaluation demonstrates that our method is more efficient and precise
than existing ReLU hull exact/approximate approaches, and it makes a
significant contribution to the verification of neural networks. Our con-
cept can be applied to other non-linear functions in neural networks, and
this could be explored further in future research.

Keywords: Formal Verification · Neural Networks · Convex Hull ·
Robustness

1 Introduction

In recent years, neural networks have become the cornerstone of artificial intel-
ligence applications, ranging from image recognition and natural language pro-
cessing to autonomous vehicles and medical diagnosis [2,3,13]. Despite of the
remarkable performance, ensuring their reliability and safety is challenging [12].
Formal verification emerges to address these concerns and provide certifiable
guarantees [5]. It entails the application of mathematical reasoning and logical
analysis to ensure that the network’s behavior aligns with desired properties,
such as robustness. Unlike empirical testing, formal verification considers all
possible inputs with given conditions.

Traditional methods of formal verification struggle to scale up to neural net-
works in high-dimensional cases. Researchers have proposed a number of suc-
cessful verification frameworks for neural networks. They can be divided into two
categories, complete [1,4,6,8] and incomplete [7,9,10,14,15], based on their capa-
bility. Both of these approaches are sound, i.e., they are an over-approximation
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 261–266, 2023.
https://doi.org/10.1007/978-981-99-7584-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_17&domain=pdf
http://orcid.org/0000-0002-2392-3751
https://doi.org/10.1007/978-981-99-7584-6_17

262 Z. Ma

to the behavior of neural networks. The fundamental idea is to build a convex
polytope to encompass all potential actions of the neural network.

This work aims to construct a convex polytope to over-approximate the non-
linear functions in input-output space. We have achieved or are in the process
of achieving the following objectives.

– We have formalized the ReLU hull and developed an approximate app-
roach, WraLU (Wrap ReLU), with high efficiency and precision, to over-
approximate a ReLU hull. This approach detects potential constraints by
known faces and vertices of the ReLU hull. We have integrated it with the
state-of-the-art PRIMA framework [7] and achieved a higher efficiency and
precision than the previous ones.

– We intend to extend the ReLU hull to other functions employed in neural
networks, such as convex and piece-wise linear functions like max-pool or
leaky ReLU, as well as S-shaped functions like sigmoid and tanh.

2 Related Work

2.1 Complete and Incomplete Approaches

Complete approaches give an exact satisfiability to the verification of neural net-
works solely having piece-wise linear functions, e.g. restricted linear unit (ReLU)
and max-pool functions. They are based on exact approaches such as SMT [8],
MILP [6], and the extended simplex method [4]. However, the NP-hardness of
complete verification and these exact approaches makes the verification appli-
cable only to decades of neurons [4]. Alternatively, a complete verification can
be efficiently realized by combining fast incomplete approaches and branch-and-
bound (BaB) [1].

Incomplete methods are approximate, but can be applied to large-scale net-
works. They are usually based on two basic techniques, optimization [7,9] and
bound propagation [10,14,15]. The combination of incomplete approaches and
the branch-and-bound (BaB) framework has been the main-stream advanta-
geous approach for verification, which seeks to find a high-efficient bounding
and branching strategy.

2.2 Single-Neuron and Multi-neuron Constraints

LP-based approaches verify neural networks by constructing linear constraints
and solving a linear programming problem with a specified objective. Then, the
focus of LP-based approaches is how to construct constraints. Single-neuron con-
straints can be naively determined with the lower and upper bounds of the input
to the activation function, which is equal to construct a convex polyhedron that
over-approximate the image of activation function in the input-output space [4].
Multi-neuron constraints consider potential dependencies that are ignored by
single-neuron constraints [7,9]. Constructing multi-neuron constraints reduces
to the construction of the convex hull or its over-approximation of the non-linear
function in a space of multiple inputs and outputs.

Verifying Neural Networks by Approximating Convex Hulls 263

3 Methodology

3.1 Formalization of Neural Network

Neural Network. Our research focuses on feedback neural networks with only
fully-connected layers. We particularly discuss the neural network y = f(x),
which is composed of successive linear and non-linear functions, with the input
vector x and the output vector y as follows. y = WL+1yL + bL+1, yL = σ(ŷL),
ŷL = WLyL−1 + bL, · · · , y1 = σ(ŷ1), ŷ1 = W1x+ b1, where L is the number of
hidden layers and σ is the activation function. ŷh (1 ≤ h ≤ L) and yh are the
pre-activate and post-activated variables, respectively.

Local robustness is a commonly checked property that asserts that a per-
turbed input will still produce the desired output. In this work, we will only
discuss the local robustness of classification tasks. The perturbation of a given
input x0 is defined by a ball lp-normal B(x0, ε) = {x | ||x − x0||p ≤ ε, ε ∈ R},
where ε is the radius of the perturbation. Local robustness holds for a sample
x0 if ∀x ∈ B(x0, ε) , y ∈ {y | argmaxi(y) = argmaxi(y0),y = f(x),y0 =
f(x0)} holds, which means that the perturbed input x leads to the same label
argmaxi(y0) with the maximum logit.

3.2 Approximation of Neural Network

The verification of neural network is often transformed into an optimization
problem to obtain the bounds of each output yi (yi is the i-th element of y). For
simplicity, we only consider the case of the l∞-norm ball for the inputs.

Maximize: yi or − yi

Subject to: − ε ≤ xj ≤ ε, ∀1 ≤ j ≤ N

y = WL+1yL + bL+1,

ŷh = Wh+1yh + bh+1, ∀1 < h < L

ŷ1 = W1x + b1,

lhk ≤ ŷhk ≤ uhk, ∀1 ≤ h ≤ L, 1 ≤ k ≤ Nh

yl = σ(ŷl), ∀1 ≤ l ≤ L

where N is the number of inputs, Nh is the number of neurons in the h-th hidden
layer. The neural network’s linear transformation can be exactly handled, yet
the non-linear activation function must be over-approximated. lhk, uhk ∈ R are
the lower and upper bounds of the intermediate variable ŷhk, and they are used
to impose constraints on the activation functions. This process can be repeated
iteratively for each variable until the bounds of the outputs are determined. The
core of various strategies lies in the procedure for forming the constraints for
this optimization problem.

264 Z. Ma

Single-Neuron Constraints. One popular solution is to construct a set of
linear constraints for the activation function only considering a pair of ŷhk and
yhk. For example, for y = ReLU(ŷ) (subscripts are omitted for simplicity), its
triangle relaxation consists of three constraints y ≥ 0, y ≥ ŷ, and y ≤ u

u−l (ŷ− l),
when l ≤ y ≤ u and l < 0 < u. For naive cases, y = ŷ when l ≥ 0 and y = 0
when u ≤ 0. A similar procedure is applicable to other activation functions, and
a set of linear restrictions will be formed.

Multi-neuron Constraints. To consider the potential dependency of different
ŷhks, the state-of-the-art frameworks construct an over-approximation ̂Yh of ŷh

and a convex over-approximation to (̂Yh,Yh) = (̂Yh, σ(̂Yh)) = {(ŷhk, yhk) | yhk =
σ(ŷhk)}. The constraints defining the over-approximation will be used in the opti-
mization problem. Calculating the minimum convex over-approximation, i.e.,
convex hull, is unpractical for the high-dimensional case. Alternatively, calculat-
ing an approximation with fewer constraints is efficient.

4 Approach

The ReLU function is distinguished by its piecewise linearity. Our work defines
that the corresponding convex hull with the ReLU function is called ReLU Hull.
A ReLU hull must satisfy the constraints of yhk ≥ 0 and yhk ≥ ŷhk, which give
the lower bound of each yhk and define the faces that we call lower faces. With
the hyperplanes determined by the constraints of ̂Yh, we can find the boundaries
of these lower faces. A group of upper faces crossing the boundaries of lower faces
can be constructed using the following parametric function.

ahmŷh + dhm ≥
Nh
∑

k=1

βhk1yhk + βhk2(yhk − ŷhk),

where ahmŷh + dhm is a constraints from ̂Yh. We designed an algorithm to
iteratively determine the parameters βhk1 and βhk2 for each dimension k by the
vertices of the ReLU hull.

Our algorithm is efficient, because we iteratively determine the parameters
and maintain the number of constraints the same as the number of constraints of
̂Yh. It is precise, because it contain the coherent lower faces and the constructed
upper faces are identified by the boundaries of lower faces and vertices of the
ReLU hull.

5 Evaluation

We have integrate our method in to the state-of-the-art PRIMA framework.
Neuron grouping is used in PRIMA to group the neurons in one layer to lower-
dimensional group for fast approximation of the ReLU hull. Two parameters are
used, ns denoting the size of each partition and k determine the neurons number

Verifying Neural Networks by Approximating Convex Hulls 265

in each group [7]. All reported experiments are conducted on a workstation
equipped with one AMD EPYC 7702P 64-core 2.00 GHz CPU with 100 G of
main memory. Main results are shown in Table 1. Our approach achieves an
competitive number of verified samples (up to 4 more) and shorter runtime (up
to 1.2X faster).

Table 1. Verifiable samples number and total runtime of different methods using
multi-neuron constraints (ERAN benchmarks)

Dataset Network ε PRIMA PRIMA+WraLU

(ns = 20, k = 3) (ns = 100, k = 4) (ns = 20, k = 3) (ns = 100, k = 4)

MNIST FCTiny 0.03 44 + 12(111.85 s)a 44 + 16(258.15 s) 44 +14(70.19 s) 44 +18(145.26 s)

FCSmall 0.019 53 + 7(510.56 s) 53 + 8(2649.36 s) 53 + 7(465.81 s) 53 +10(2149.3 s)

FCBig 0.012 53 + 5(1799.22 s) 53 + 6(13587.90 s) 53 + 5(1337.65 s) 53 + 6(11086.70 s)

ConvSmall 0.1 45 + 18(388.52 s) 45 + 20(1072.8 s) 45 + 18(375.34 s) 45 +21(1055.21 s)

ConvBigb 0.305 49 + 6(4254.30 s) 46 + 7(4380.95 s) 46 + 5(3575.15 s) 45 + 1(3779.91 s)

CIFAR10 FCTiny 0.001 45 + 4(411.50 s) 45 + 4(528.23 s) 45 + 4(305.33 s) 45 + 4(402.28 s)

FCSmall 0.0007 51 + 14(579.29 s) 51 + 14(791.62 s) 51 + 13(433.64 s) 51 + 13(603.78 s)

FCBig 0.0008 53 + 5(3531.99 s) 53 + 6(15404.19 s) 53 + 4(3183.01 s) 53 +9(13176.7 s)

ConvSmall 0.004 49 + 8(821.59 s) 49 + 10(2131.12 s) 49 + 8(856.66 s) 49 + 10(2220.91 s)

ConvBig 0.007 48 + 3(11029.75 s) 48 + 3(11724.91 s) 48 + 3(9865.48 s) 48 + 3(9738.36 s)
a m + n stands for n more networks are verified besides m verified by DeepPoly [11].
Numbers in brackets refer to the total runtime. Numbers in bold refer to those cases
where our methods outperform PRIMA.

6 Discussion and Conclusion

6.1 Discussion

Exploring the convex approximation of other functions used in neural networks
is a future research. A similar approach can be applied to leaky ReLU and max-
pool functions, which are also piece-wise linear and convex. For functions that
are not piece-wise linear, we construct a piece-wise linear convex or concave
function as an upper or lower bound, which will enable constructing a convex
polytope to over-approximate them.

Exploring the potential of our approach to scale to high-dimensional cases
is another future goal. Taking advantage of the characteristics of certain special
polytopes, our method can prevent exponential computation.

6.2 Conclusion

We have designed a method to give an over-approximation of the ReLU hull.
The key point is to construct the adjacent faces based on the already known
faces and vertices of the convex hull. This technique is both efficient and precise,
and it has the potential to be extended to other functions.

266 Z. Ma

References

1. Bunel, R., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: A unified view of piece-
wise linear neural network verification. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pp. 4795–4804 (2018)

2. Cao, Y., et al.: Invisible for both camera and lidar: security of multi-sensor fusion
based perception in autonomous driving under physical-world attacks. In: 2021
IEEE Symposium on Security and Privacy (SP), pp. 176–194. IEEE (2021)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

4. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

5. Li, L., Xie, T., Li, B.: SoK: certified robustness for deep neural networks. In: 2023
IEEE Symposium on Security and Privacy (SP), pp. 94–115. IEEE Computer
Society (2022)

6. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. arXiv preprint: arXiv:1706.07351 (2017)

7. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: PRIMA: general
and precise neural network certification via scalable convex hull approximations.
Proc. ACM Programm. Lang. 6(POPL), 1–33 (2022)

8. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

9. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron con-
vex barrier for neural network certification. In: Advances in Neural Information
Processing Systems, vol. 32 (2019)

10. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems,
vol. 31 (2018)

11. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proce. ACM Programm. Lang. 3(POPL), 1–30 (2019)

12. Szegedy, C., et al.: Intriguing properties of neural networks. In: 2nd International
Conference on Learning Representations, ICLR 2014 (2014)

13. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

14. Weng, L., et al.: Towards fast computation of certified robustness for ReLU net-
works. In: International Conference on Machine Learning, pp. 5276–5285. PMLR
(2018)

15. Zhang, H., et al.: General cutting planes for bound-propagation-based neural net-
work verification. In: Advances in Neural Information Processing Systems, vol. 35,
pp. 1656–1670 (2022)

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/1706.07351
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24

Eager to Stop: Efficient Falsification
of Deep Neural Networks

Guanqin Zhang1,2(B)

1 University of New South Wales, Kensington, Australia
Guanqin.zhang@unsw.edu.au

2 CSIRO, Data61, Sydney, Australia

Abstract. Deep Neural Networks (DNNs), extensively used in safety-
critical domains, require methods to detect misbehavior and ensure prov-
able specifications. DNN testing encounters limitations in time and cov-
erage, affecting effectiveness. DNN verification divides into exact and
approximated approaches. Due to scalability challenges, exact methods
yield precise outcomes but are suitable for smaller networks. Approxi-
mated techniques using abstractions tend to be over-approximated for
soundness. Over-approximated verifiers might produce more misleading
counterexamples than actual violations, impacting the identification of
flaws. This paper proposes a falsifier to efficiently identify counterexam-
ples for DNN robustness by refuting specifications. The proposed app-
roach gradient information to fast approach local optima against speci-
fications, collecting relevant counterexamples effectively.

Keywords: Robustness · Verification · Falsification

1 Introduction

DNNs are widely implemented and impressively deployed in the safety-critical
domains, such as autonomous vehicles [1], program analysis [2,18], and airborne
collision avoidance systems [9]. Although DNNs possess remarkable abilities, the
growing apprehension surrounding their potentials, such as adversarial perturba-
tions [7,12] for misclassification and unforeseeable decisions. This motivates the
understanding of the reliability and quality assurance of the underlying models.

There has been a notable upsurge in the exploration and development
of analysis and verification techniques for neural network robustness. Exist-
ing approaches can be mainly categorized as testing and verification. Test-
ing [7,14,21,23] is usually providing counterexamples, such as adversaries, to
reject the robustness of the DNNs. During the testing, the evaluation is based
on specific test inputs and criteria, which may still lead to unforeseen issues.
On the other hand, verification [5,6,8,16,20] can mathematically certify models
with provably guaranteed robustness or supply a counterexample that violates
the expected behaviors of models.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 267–272, 2023.
https://doi.org/10.1007/978-981-99-7584-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_18&domain=pdf
https://doi.org/10.1007/978-981-99-7584-6_18

268 G. Zhang

2 Problem Statement and Related Work

A network model N : Rn → R
m maps an n-dimensional input vector to an m-

dimensional output vector. The model N takes an input x and outputs N(x).
The typical verification problem for the network model N with a specification
φ : Rn+m → {T,F} is a decidable problem whether there existing x ∈ R

n,y ∈
R

m holds (N(x) = y) ∧ φ(x,y). φ represents the desired property that model
behaviors followed human expectation. In this context, we use (lp, ε)-adversary
to denote a perturbed input region centered at x0 with ε radius, i.e., {x′ | ‖x′ −
x0‖p ≤ ε} measured by lp norm. The satisfied results indicate the specification
holds, whereas the unsatisfiability expresses the existence of a counterexample
x within the (lp, ε)-adversary, violates the specification.

Adversarial Examples. Adversarial robustness responds to the ML models’ reli-
ability, which has recently attracted significant attention. Some adversaries gen-
erated by attack methods can indicate the existence of a violation of the speci-
fication. Szegedy et al. [19] first proposed the generation method for adversarial
perturbations and leveraged a hybrid loss to approximate the solution of inner
maximization. Furthermore, Goodfellow et al. [7] introduced an efficient FGSM
method to generate the adversarial inputs for misleading the model behavior.
However, the efficiency property comes from the linear loss function, which leads
to the vulnerability to iteration attacks. In response to this problem, Madry et
al. [12] pushed this method into the multi-iteration attack and released their
gradient-based PGD method for inner maximization solving. Following that, a
line of works emerged and boosted the development of adversarial attacks [13].

Neural Network Testing. Neuron coverage [14] is utilized to count each neuron’s
activation status, and Ma et al. [11] extend with a set of test criteria for deep
learning systems. Xie et al. [21] detect potential defects of neural networks by
coverage-guided fuzzing framework with metamorphic testing. However, test-
based approaches suffer from the limited number of crafted testing samples, such
that they cannot enumerate all possible inputs to denote erroneous behavior of
the network.

Neural Network Verification. Formal verification techniques [10] can certify neu-
ral networks based on specifications to ensure proof or identify violations. One
important aspect of verification is gauging the robustness of the neural net-
work model against input adversarial perturbations. Verification approaches fall
into two main categories: (1) Exact verification typically utilizes mixed integer
linear programming (MILP) solver [20] or satisfiability modulo theories (SMT)
solvers [8], which suffers low scalability due to solving such an ‘NP-hard’ problem.
(2) Approximated verification often reduces the non-linear properties into linear
inequalities, such as instantiated neural network properties into the abstract
domain, such as polytope [17], zonotope [16].

Eager to Stop: Efficient Falsification of Deep Neural Networks 269

3 Proposed Solution

Verification to Falsification. Verifying the robustness of a model is akin to prov-
ing a theorem, which poses a significant challenge in accurately assessing a neu-
ral network. Specifically, acquiring proof for the network’s robustness can be
difficult, leading to the possibility of overestimating its robustness. Ideally, a
proven robust model is necessarily reasoning all possible perturbation proper-
ties on a given input and indicating non-existence of violation. This verification is
impossible when the networks are becoming larger and deeper. Consequently, the
majority of verification methods that have been published either choose a subset
of properties to analyze or utilize approximations of the model. We propose a fal-
sification scheme to eagerly find the counterexample within the (lp, ε)-adversary
for the network model. Formally, the falsification problem keeps searching for a
falsifying x that violates the specification φ. Falsification shortcuts the verifica-
tion processes and only supplies the rejected violations.

Fig. 1. Comparison between verification and falsification. We depict a threat model
(threat model refers to a specification of the potential threats by some errors) suspected
of containing positive feature space, including some false alarm samples. The false alarm
samples can fool the model into making erroneous predictions.

Figure 1 demonstrates the comparison between verification and falsification
of DNN. We construct a binary classification problem for a clean sample, which
contains a false alarm sample within a feasible set of a threat model, as shown in
(lp, ε)-adversary. Verification can be described as a constraint of specifications in
a green dashed-line octagon on the left-hand side. The octagon expresses spec-
ification constraints, which cover the ample feature space for the threat model.
In practice, most of the existing exact verification methods borrowed SMT or
MILP solvers scale poorly when the size of the network is growing larger. On the
other hand, the approximated methods do not directly verify the property of the
network but reduce it to a relaxation problem. So the designed/expected specifi-
cations do not precisely formalize the threat model behaviors. As shown in Fig. 1
(A), the green octagon shape may overly cover the actual target specification
from the model and cover most of the feature space.

270 G. Zhang

Falsification attempts to reject the violations by eagerly falsifying the non-
robust counterexamples beyond DNN models in a smaller search space. From
this perspective, we here argue for falsifying the properties of the designed spec-
ification. The falsification aims to provide a convincing optimal point that helps
counterfeit the verification specification in a smaller region contoured with the
red line in Fig. 1 (B). For a perturbation within (lp, ε)-adversary to claim as a
false alarm violated to a robust model specification, it is necessary to actually find
a perturbed example x′ that causes the model to make an error. This is similar
to composing an adversary by using adversarial attack approaches. FGSM claims
that linear behavior in high-dimensional spaces is sufficient to cause adversaries.
However, adversarial attack approaches cannot assemble theoretic proof results
to certify the model.

Falsification spreads across different domains [22], which refers to the concept
that requirements (specifications) are falsified (not true). Guided by human-
designed specifications, falsifiers can reach violations faster than verifiers when
processing with a non-robust model. Dohmatob [4] finds robustness is impossible
to achieve under some assumptions with the data. DNNF [15] reduces the neural
network input and output property to an equivalent set of correctness problems.

Proposed Approach. Our approach aims to search the counterexample and fal-
sify the non-robust DNN model diligently. Based on the model, we process the
differential activation function, as they are differentiable and continuous. Firstly,
we define a specification to the network behavior:

∀x∈{x′ | ‖x′ − x0‖p≤ε}, Ns0(x) − Ns1(x) > 0, (1)

where p is normalization, usually taken as ∞-norm, and s0 is the original label
for x0. Then, the model behaviour requires that for any of x within the (lp, ε)-
adversary should always be larger than the label value for s1. We aim to deter-
mine whether the direction violates the specification. To decide the gradient,
we use a vector Δ, that has the same dimension as the input domain, to iden-
tify the direction, namely, given an input x, it holds the objective function
Ns0(x + Δ) > Ns1(x). The problem remains to decide Δ.

We use the line search method to start from the given direction of Δxk

to move with a step length t > 0 to modulate how far along this direction
we proceed. The direct aim would satisfy: f(xk + tΔxk) < f(xk). Armijo [3]
step size constraint is a method used in optimization algorithms to determine
the step size. We use the Armijo condition to search for a sufficient decrease
to our objectives. The constraint states that if the step size is small enough,
the value of the objective function will decrease in gradient descent or other
optimization algorithms. The Armijo step size constraint restricts the step size
at each iteration to ensure the algorithm’s convergence. Specifically, the Armijo
step size constraint requires that the step size at each iteration satisfies the
following inequality:

f(xk + tΔxk) ≤ f(xk) + c1t∇fT
k Δxk (2)

Eager to Stop: Efficient Falsification of Deep Neural Networks 271

Here, xk is the current value of the optimization variable, Δxk is the search
direction, t is the step size, f(x) is the objective function, ∇fk is the gradient
of the objective function at the current point, and c1 is a constant typically
chosen between 0 and 1. If the step size t satisfies the above inequality, it is
considered acceptable; otherwise, the step size needs to be reduced, and the
search is restarted. When we repeat and collect enough points, we can falsify the
model as it is not robust.

4 Conclusion and Future Work

We propose a new falsification approach to complement the existing neural net-
work verification approaches in searching and identifying counterexamples to
prove the existence of violations in a non-robust model. We propose utilizing the
Armijo line search method to iteratively reach the counterexample. Armijo bor-
rows the gradient information from the network model, of which the advantage
is the falsification of the specification in the smaller search space.

In our upcoming research endeavors, we intend to incorporate and examine
additional elements of the network model. In our current study, we exclusively
focused on the differentiable activation function. An eminent obstacle lies in
dealing with piece-wise activation functions like ReLU, wherein the output lacks
continuity. Addressing this challenge can facilitate the analysis of a broader range
of network models.

An additional aspect involves utilizing the falsification findings for the pur-
pose of enhancing the network model’s integrity. Falsification provides prompt
identification of cases where violations occur during the initial stages. Armed
with these instances of violation, we can effectively identify shortcomings, sub-
sequently enhancing both the performance and robustness of the model.

References

1. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint:
arXiv:1604.07316 (2016)

2. Cheng, X., Zhang, G., Wang, H., Sui, Y.: Path-sensitive code embedding via con-
trastive learning for software vulnerability detection. In: ISSTA, pp. 519–531 (2022)

3. Dai, Y.H.: On the nonmonotone line search. J. Optim. Theory Appl. 112, 315–330
(2002)

4. Dohmatob, E.: Generalized no free lunch theorem for adversarial robustness. In:
International Conference on Machine Learning, pp. 1646–1654. PMLR (2019)

5. Fischer, M., Sprecher, C., Dimitrov, D.I., Singh, G., Vechev, M.: Shared certificates
for neural network verification. In: Shoham, S., Vizel, Y. (eds.) CAV 2022. Lec-
ture Notes in Computer Science, vol. 13371, pp. 127–148. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-13185-1 7

6. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: safety and robustness certification of neural networks with abstract inter-
pretation. In: SP, pp. 3–18. IEEE (2018)

http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-031-13185-1_7

272 G. Zhang

7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint: arXiv:1412.6572 (2014)

8. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

9. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

10. Liu, C., et al.: Algorithms for verifying deep neural networks. Found. Trends R©
Optim. 4(3–4), 244–404 (2021)

11. Ma, L., et al.: DeepGauge: multi-granularity testing criteria for deep learning sys-
tems. In: Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pp. 120–131 (2018)

12. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint: arXiv:1706.06083 (2017)

13. Nicolae, M.I., et al.: Adversarial robustness toolbox v1.0.0. arXiv:1807.01069
(2018)

14. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated Whitebox testing
of deep learning systems. In: Proceedings of the 26th Symposium on Operating
Systems Principles, pp. 1–18 (2017)

15. Shriver, D., Elbaum, S., Dwyer, M.B.: Reducing DNN properties to enable falsifica-
tion with adversarial attacks. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), pp. 275–287. IEEE (2021)

16. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems,
vol. 31 (2018)

17. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Programm. Lang. 3(POPL), 1–30 (2019)

18. Sui, Y., Cheng, X., Zhang, G., Wang, H.: Flow2vec: value-flow-based precise code
embedding. ACM 4(OOPSLA), 1–27 (2020)

19. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint:
arXiv:1312.6199 (2013)

20. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. arXiv preprint: arXiv:1711.07356 (2017)

21. Xie, X., et al.: DeepHunter: a coverage-guided fuzz testing framework for deep neu-
ral networks. In: Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 146–157 (2019)

22. Zhang, Z., Arcaini, P., Hasuo, I.: Constraining counterexamples in hybrid system
falsification: penalty-based approaches. In: Lee, R., Jha, S., Mavridou, A., Gian-
nakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 401–419. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-55754-6 24

23. Zhao, Z., Chen, G., Wang, J., Yang, Y., Song, F., Sun, J.: Attack as defense:
Characterizing adversarial examples using robustness. In: Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis, pp.
42–55 (2021)

http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1807.01069
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.07356
https://doi.org/10.1007/978-3-030-55754-6_24

A Runtime Verification Framework
for Cyber-Physical Systems Based

on Data Analytics and LTL Formula
Learning

Ayodeji James Akande(B), Zhe Hou, Ernest Foo, and Qinyi Li

Griffith University, Brisbane, Australia
ayodeji.akande@griffithuni.edu.au,

{z.hou,e.foo,qinyi.li}@griffith.edu.au
Abstract. Safeguarding individuals and valuable resources from cyber
threats stands as a paramount concern in the digital landscape, encom-
passing realms like cyber-physical systems and IoT systems. The safe-
guarding of cyber-physical systems (CPS) is particularly challenging
given their intricate infrastructure, necessitating ongoing real-time anal-
ysis and swift responses to potential threats. Our proposition introduces
a digital twin framework built upon runtime verification, effectively har-
nessing the capabilities of data analytics and the acquisition of Linear
Temporal Logic (LTL) formulas. We demonstrate the efficacy of our app-
roach through an application to water distribution systems.

Keywords: Runtime verification · Linear temporal logic · Digital
twins · Formal Modeling · Cyber-physical systems · Cyber-security

1 Introduction

Safeguarding users and assets from cyber-attacks within the digital realm has
grown into an essential concern. This realm encompasses components such as
cyber-physical systems (CPS), the metaverse, satellite communication systems,
and the Internet of Things (IoT), all of which hold substantial importance in
both industrial operations and the intricate tapestry of human existence. This
research explores the realm of enhancing the security of cyber-physical systems,
the next generation of systems combining computational and physical capa-
bilities, enabling interaction with humans through various new modalities [1].
In Cyber-physical systems (CPS), the physical and software components are
closely intertwined, capable of operating on different spatial and temporal scales,
demonstrating diverse behavioural modes, and interacting with each other in
context-dependent ways [5].

Incidents targeting cyber-physical systems, encompassing domains like indus-
trial automation, smart grids, smart cities, autonomous vehicles, and agricultural
precision, have the potential to result in devastating outcomes for both individu-
als and assets. This paper centers on attacks targeting engineering and network
data, emphasizing the need to confront and counteract this threat to guarantee
the safety and security of cyber-physical systems.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 273–278, 2023.
https://doi.org/10.1007/978-981-99-7584-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_19&domain=pdf
https://doi.org/10.1007/978-981-99-7584-6_19

274 A. James Akande et al.

Securing cyber-physical systems (CPS), due to the intricate nature of their
infrastructure, requires continuous real-time analysis and swift action against
potential attacks. Despite the proposal of methods such as intrusion detec-
tion/prevention systems and network mapping, these approaches frequently
prove insufficient or encounter constraints in effectively accessing assets. Debug-
ging and testing CPS is widely recognized as challenging, with various techniques
being questioned for their effectiveness [9].

To provide a framework capable of real-time analysis, prompt mitigation, and
minimal computational burden, this paper introduces a digital twin framework
based on runtime verification. This framework seamlessly integrates data analyt-
ics with the learning of Linear Temporal Logic (LTL) formulas. The framework
integrates machine learning algorithms to acquire LTL formulas from past data
(training data). The paper’s contribution lies in designing a process to gener-
ate system-specific LTL formulas using machine learning and implementing an
LTL-based runtime verification cybersecurity framework for digital twin cyber-
physical systems. This framework is applicable for tackling engineering/network
data-related attacks where patterns can be identified in time series. The objec-
tive of this framework is to anticipate events that precede an adverse occurrence
before it actually takes place.

2 The Proposed Approach

This section presents our Linear Temporal Logic (LTL) based runtime verifica-
tion digital twin framework. The systematic approach is divided into five phases;
Phase I (Data Pre-processing), Phase II (Data Clustering), Phase III (Domain
Expert Analysis), Phase IV (LTL Formula Learning), and Phase V (Runtime
Monitoring).

Phase I: Data Pre-processing. Our framework begins with the collection of his-
torical datasets and their pre-processing. In the process of learning Linear Tem-
poral Logic (LTL) formulas from historical datasets, it is anticipated that the
dataset encompasses both regular and anomalous events. The dataset is split
into training and testing datasets. During this stage, the training dataset is used
to train a model while to evaluate the model’s performance after it has been
trained, a testing dataset is used. With the aid of machine learning, we build a
system model based on sample data, known as training data, to learn the LTL
formula for the system.

First, the dataset is pre-processed which involves data cleaning, data trans-
formation, feature selection or data reduction, handling missing data and data
encoding. The data pre-processing depends on the data classification. To ini-
tiate the data pre-processing phase, we create a Python algorithm named
‘LTL Formula Learner.py’ for learning Linear Temporal Logic (LTL) formulas.

Phase II: Data Clustering. The next phase of our methodology is data clus-
tering, an artificial intelligence process that ‘learns’, that is, leverages data for

A Runtime Verification Framework for Cyber-Physical Systems 275

improvement of performance on some set of tasks. During this stage, the goal
is to recognize and categorize data into distinct clusters or groups. This pro-
cess aims to distinguish clusters that correspond to favourable and unfavourable
events, essential for the subsequent learning of patterns that will translate into
Linear Temporal Logic (LTL) formulas.

In the case where the dataset is already labelled, the clustering algorithm
may only be used to group column values into two variables 1 and 0 which is
required for the generation of the LTL formula using the learning algorithm. For
our research purpose, the K-means algorithm is used for data clustering.

Phase III: Domain Knowledge Expert Analysis. The third phase of our method-
ology is domain expert analysis. Incorporating domain-specific knowledge and
expertise to select features that are known to be significant for cyber security
analysis is important and crucial. Subject matter experts can offer valuable
insights into pivotal system components susceptible to data modifications or
anomalies. These insights aid in selecting the most informative features. For
our framework, a domain knowledge expert assists in identifying which of the
clusters present normal and abnormal behaviour of the system.

Phase IV: LTL Formula Learning. The next phase of our approach is the LTL
formula learning. At this phase, an LTL formula is generated based on the histor-
ical data set. In order to learn the LTL formulae, we implement the samples2LTL
algorithm [6]. The objective of the algorithm is to acquire an LTL formula that
distinguishes between two sets of traces: positive (P) and negative (N). The
resultant formula should accurately represent every trace in the positive set (P)
while not being applicable to any trace within the negative set (N).

The samples2LTL algorithm takes in an input file termed as traces separated
as positives (P) and negatives (N) by − − −. Each trace is a sequence of states
separated by ‘;’ and each state represents the truth value of atomic propositions.
An example of a trace is 1, 0, 1; 0, 0, 0; 0, 1, 1 which consists of two states each of
which defines the values of three propositions and by default considered to be
x0, x1, x2.

For our framework, we learn patterns by analysing rows leading to bad events
to predict events before happening, therefore, the samples2LTL algorithm takes
in the trace file which contains the ‘n’ rows leading to bad events as a set of
positives (P), and ‘m’ rows indicative of good events as a set of negatives (N).
This is stored in the samples2LTL folder as ‘example’ with the extension ‘.trace’.

Phase V: Runtime Monitoring. Runtime monitoring is the last phase of our
approach. This is the process where the runtime checker verifies the real-time
data against security properties for runtime checking. In runtime verification,
the LTL formula is used to define a system property to verify the execution of
the system.

In our previous work [4], we presented a runtime verification engine for the
digital twin that can verify properties in multiple temporal logic languages. The
runtime verification supports both FLTL and PTLTL in one package and is

276 A. James Akande et al.

driven by the model checker Process Analysis Toolkit (PAT). In this paper,
we implement the runtime verification engine with the declaration of the LTL
formula as the property. This paper adopts LTL on finite trace (FLTL) with
strong next, that is, X A is true when the next state exists and makes A true;
otherwise, X A is false. In this semantics, F A is only true when there is a
future state that makes A true; otherwise, it is false. FLTL looks into the future.
Also adopted in the paper is Past-time LTL (PTLTL), another useful language
for specifying security-related properties [2] which has two distinct temporal
operators called previously (P) and since (S). Their semantics are defined on
past state traces, which are symmetric to FLTL. In PTLTL, P A is true when
the previous state exists and makes A true; this is symmetric to X A in FLTL.
A S B is true if 1) the current state makes B true, or if 2) B was true sometime
in the past, and since then, A has been true. The semantics of A S B in PTLTL
is symmetric to A U B in FLTL.

We incorporate our runtime validation through an algorithm called exe-
cute runtime.py, which builds upon the foundation of our previous work’s
runtime-monitor script. The runtime monitoring process consists of three dis-
tinct phases; the digital twin modelling, property definition and the runtime
verification.

Digital Twin Modelling: We model the system using the testing dataset initially
set aside to evaluate the model’s performance. This serves as our digital twin
model which is modelled using PAT. In our approach, we are mainly interested in
verifying properties over the state variables of the system. Let us name the state
variables var1, var2, · · ·. A state S is simply a snapshot of the values of state
variables, i.e., S ::= {var1 = val1, var2 = val2, · · · }. In PAT, we model a state
via a process in Communicating Sequential Processes [3] with C# (CSP#) [7].
The process performs variable assignments as below.

S() = {svar1 = val1; svar2 = val2; ...} → Skip;

A final trace T is a sequence of states, modelled as below.

T () = S1();S2(); ...

Property Definition: The user can define properties over state variables. For
example, the below code defines a proposition that states “var1 is not 0.”

#define v1Safe (var1! = 0);

We can then use PAT to check a safety property that “var1 should never be 0”
using the temporal modality G, which is written as [].

#assert Trace() |= []v1Safe;

Verification: Given the generated LTL formula from the historical data, the
property is defined for the runtime verification as the safety property in Process
Analysis Toolkit (PAT) language. The foundation of our runtime verification

A Runtime Verification Framework for Cyber-Physical Systems 277

framework is based on the observation that verifying LTL with finite traces in
PAT language corresponds to verifying FLTL with strong next/future.

Utilizing this framework, we can identify data-related attacks that exhibit
transient patterns in time series. This approach can be deployed in various
domains, including cyber-physical systems (CPS), the metaverse, satellite com-
munication systems, and the Internet of Things (IoT). Due to limited space, this
paper focuses on a single case study related to a water distribution system.

3 Case Study: Water Distribution System

This is a main water distribution system operator of C-Town and the dataset was
created and published by the BATADAL team [8]. C-Town consists of 388 nodes
linked with 429 pipes and is divided into 5 district-metered areas (DMAs). The
SCADA data include the water level at all 7 tanks of the network (T1-T7), the
status and flow of all 11 pumps (PU1-PU11) and the one actuated valve (V2) of
the network, and pressure at 24 pipes of the network that correspond to the inlet
and outlet pressure of the pumps and the actuated valve. Three distinct datasets
from the system generated. However, for our specific application, we focused
our analysis on “training dataset 2.csv”. This dataset, which includes partially
labeled data, was made available on November 28, 2016. It spans approximately
six months and encompasses several attacks, some of which have approximate
labels.

In the dataset are 43 columns, attack labelled using a column named
‘ATT FLAG’ with a 1/0 label column, with 1 meaning that the system is under
attack and 0 meaning that the system is in normal operation. After collating
the dataset [8], we implement our framework to learn a pattern from the dataset
indicative of the attack carried on the system. Using the observed pattern, we
learn the LTL formula for the system.

The LTL runtime verification-based digital twin framework algorithm devel-
oped for this work can be accessed at the following link: https://github.com/
deejay2206/LTL-based-Runtime-Verification. For further references on the LTL
formula learning algorithm used in our work, see samples2LTL.

LTL-Formula Learning: Using the samples2LTL algorithm, we generate a list
of the LTL formula as shown below. The LTL formula is inputted as the LTL
property which is used in the runtime checker. We define the LTL formula in
PAT as property.csp.

(x20 U x37) , X(x39) , ! (x10) , ! (x5) , F(x28) ;

Conducting runtime verification involved generating a digital twin model of
the system using the testing dataset. This dataset was divided into distinct
traces, each of which represented a model. These models were then fed into the
runtime checker, as described in Sect. 2, to validate the adherence of the learned
LTL formula set as a system property.

https://github.com/deejay2206/LTL-based-Runtime-Verification
https://github.com/deejay2206/LTL-based-Runtime-Verification
https://github.com/ivan-gavran/samples2LTL

278 A. James Akande et al.

Result Analysis. To access the performance of our framework, we use eval-
uation metrics and to achieve this, we use the confusion matrix which is the
calculation of number of true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN) based on the predictions and the actual
outcomes. In our data analysis, we considered each row within the dataset as
an individual event. There were a total of 263 positive traces and 989 negative
traces, resulting in a combined count of 1252 events or instances. We calculate
the accuracy and precision. The result revealed TP = 242, TN = 901, FP =
54, FN = 55. The outcome demonstrated a 91% percent accuracy rate and the
positive predictive value is 82% for the predictive capabilities of our framework.

4 Conclusion

Engineering or network data related attack leading to the temporal pattern of
behaviour of a real critical infrastructure can cause great harm to a human being.
With the concept of a runtime-based digital twin system, this temporal pattern
of behaviour can be detected. In this paper, we investigated how to learn the
LTL formula from historical data and evaluated our approach using a case study
in cyber-physical systems.

References

1. Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12(1), 161–
166 (2011)

2. Du, X., Tiu, A., Cheng, K., Liu, Y.: Trace-length independent runtime monitoring
of quantitative policies. IEEE Trans. Dependable Secure Comput. 18(3), 1489–1510
(2019)

3. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

4. Hou, Z., Li, Q., Foo, E., Song, J., Souza, P.: A digital twin runtime verification
framework for protecting satellites systems from cyber attacks. In: 2022 26th Inter-
national Conference on Engineering of Complex Computer Systems (ICECCS), pp.
117–122. IEEE (2022)

5. Hu, J., Lennox, B., Arvin, F.: Robust formation control for networked robotic sys-
tems using negative imaginary dynamics. Automatica 140, 110235 (2022)

6. Neider, D., Gavran, I.: Learning linear temporal properties. In: 2018 Formal Meth-
ods in Computer-Aided Design (FMCAD), pp. 1–10. IEEE (2018)

7. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under fair-
ness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 59

8. Taormina, R., et al.: Battle of the attack detection algorithms: disclosing cyber
attacks on water distribution networks. J. Water Resour. Plan. Manag. 144(8),
04018048 (2018)

9. Zheng, X., Julien, C., Kim, M., Khurshid, S.: Perceptions on the state of the art
in verification and validation in cyber-physical systems. IEEE Syst. J. 11(4), 2614–
2627 (2015)

https://doi.org/10.1007/978-3-642-02658-4_59

Unified Verification of Neural Networks’
Robustness and Privacy in Computer

Vision

Feng Xu1,2(B)

1 UNSW Sydney, Sydney, Australia
feng.xu2@unsw.edu.au

2 CSIRO’s Data61, Marsfield, Australia

Abstract. In recent years, extensive research efforts have delved into
neural network verification, resulting in widespread deployment. Con-
cerns have arisen regarding the robustness of neural networks and the
privacy of the data they process. To address these concerns, advance-
ments have been made in robust training, robust verification, and pre-
serving privacy while utilizing neural networks for utility tasks. While
numerous verifiers are available for verifying neural network robustness,
there is still a lack of verification approaches for privacy-related proper-
ties. This paper will introduce the problem of formally verifying proper-
ties concerning the robustness and privacy of neural networks, and it will
explore how existing works in robustness verification can contribute to
unified verification work. Ultimately, this paper will outline a roadmap
for achieving a unified verification approach encompassing both robust-
ness and privacy concerns.

Keywords: Formal Verification · Formal Analysis · Computer Aid
Verification · Neural Network

1 Introduction

The recent advancements in neural networks have led to their widespread adoption
acrossvariousdomains, includingself-drivingsystems [3],medicaldiagnose [1,2,11,
12], security systems [13]andsoftware securityanalysis [4,5].Theseneuralnetworks
have significantly enhanced the performance of tasks within these domains. Nev-
ertheless, recent studies have unveiled two significant shortcomings. Firstly, neural
networks are vulnerable to adversarial attacks, as evidencedby instanceswhere sys-
temsmisclassifytrafficsigns[7]orfailtodetectobjects[22].Suchmisclassificationsor
misdetectionscanleadtosevereaccidentsinreal-worldscenarios.Secondly,theinput
data processed by these neural network systems is susceptible to intrusion, raising
concerns about privacy breaches [14]. This vulnerability arises when data is trans-
mitted over public networks and can be compromised through unauthorized server
access. Moreover, privacy protection regulations [18] further highlight the impor-
tance of safeguarding privacy.

Various existing studies [8,24] have focused on mitigating the impact of
adversarial attacks. However, these efforts typically lack a formal guarantee of
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 279–284, 2023.
https://doi.org/10.1007/978-981-99-7584-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_20&domain=pdf
http://orcid.org/0000-0002-3932-1093
https://doi.org/10.1007/978-981-99-7584-6_20

280 F. Xu

neural network robustness. Consequently, researchers have focused on providing
robustness verification for neural networks [9,16].

Many scholars have proposed privacy-preserving techniques [19,20] in
response to concerns about privacy leakage, which involve safeguarding sensitive
data while allowing for utility tasks like classification and segmentation. Notably,
there is a gap in research regarding establishing privacy-preserving boundaries
or certification of privacy-preserved neural networks. In exploring these areas, an
opportunity arises to build upon existing robustness verification methodologies
to certify these privacy-preserved neural networks. This paper aims to showcase
the potential research avenues in this domain. To accomplish this objective, I
will introduce definitions and their formulations to outline the problem state-
ments in Sect. 2. Section 2 will also underscore the interrelation between these
two problem domains and demonstrate current findings. Combining efforts to
verify neural networks’ robustness and privacy preservation is a viable direction.
In Sect. 3, the proposed solutions and prospects for future research endeavors
will be outlined.

2 Preliminaries and Problem Statement

Let R denote the set of real numbers. The function f(·) denotes a neural network,
while xinput ∈ X → R

n signifies the input to the neural network, which is an n-
dimensional vector. Here, X encompasses the entire set of inputs, and yout ∈ R

m

stands for the output of the neural network, an m-dimensional vector before
applying the argmax function to the input xinput. In classification tasks, c ∈ C
is the true label of xinput, where C forms the set of labels for all inputs within X .
When the neural network accurately predicts a label, we have f(xinput) = c and
c = argmax(yout). The symbol ε denotes the distance metric determined by the
lp-norm function ‖·‖p, where p ∈ {1, 2,+∞}. Bε,p(xinput) := {x : ‖x−xinput‖p ≤
ε} designates the ball-shaped region around the point xinput, with ε representing
the radius of the ball.

2.1 Robustness Verification

Building upon the preceding definitions, xptb ∈ Bε,p(xinput) denotes the per-
turbed input within the ball region that xinput is the center.

Definition 1 ((ε, lp) attack). Given an input xinput and the true label c ∈ C
of xinput, the (ε, lp) adversarial attack can generate a perturbed input xptb, where
f(xptb) �= c. Such an xptb is called (ε, lp) attack.

Definition 2 (Local Robustness). Given an input xinput, the true label c and
the ball area Bε,p(xinput) , for all xptb ∈ Bε,p(xinput), satisfy f(xptb) = c or there
is no such an xptb that f(xinput) �= c, we call the network is local robust to the
(ε, lp) attack.

Robustness verification aims to establish lower boundaries for the neural network
model f(·) when subjected to (ε, lp) attacks.

Unified Verification of NNs Robustness and Privacy in CV 281

Definition 3 (Robustness Verification). Given any input xinput ∈ X and
output label c, the robustness verification V (f(·),xinput, c, ε) is to check if there
exists an xptb such that f(xptb) �= c. Ignoring the error and timeout condition,
if V (·) finds such an xptb, f(·) is not robust. If V (·) cannot find such an xptb,
the model is robust that V (·) can certify f(·) on (ε, lp) attack to the input xinput

and its true label c.

In recent research, different V (·) has different performance on finding such an
xptb because neural network verification is a NP-complete problem [9]. They
pre-define a threshold, θ. Pr(V (f(·),xinput, c, ε) = False) ≥ 1 − θ denotes the
probability of non-robust of the neural network is more than 1 − θ. If the verifi-
cation approach can ensure θ = 0, such an approach will not produce any false
positives.

2.2 Privacy-Preserved Utility Task

Expanding upon the previous subsection, consider an input dataset X along-
side a privacy budget δ and a privacy leakage function M. Let A(·) symbolize
the optimal anonymization function that anonymizes the dataset X , denoted
as A(X ,M, δ). The resulting privacy-preserved data is X ′ = A(X ,M, δ). A(·)
ensures that the privacy loss is less than the given privacy budget, M(X ′) ≤ δ.
The utility task f(·) processes X ′, which might involve tasks such as image clas-
sification and object detection. Within the realm of privacy-preserved utility
tasks, there exists a dual loss, encompassing privacy loss LA and utility task
loss LT , with an inversely proportional relationship. Keeping privacy requires
reducing the data features. The utility tasks require sufficient data features
to maintain performance. Current efforts aim to minimize the cumulative loss
Sum(LA,LT). However, achieving privacy preservation necessitates robust neu-
ral networks in utility tasks. This introduces a concern within the optimization
target minimize(sum(LA,LT)): it remains unclear how to precisely gauge the
performance of both A(·) and f(·), alongside their interconnection, when com-
bined in this optimization framework.

Drawing inspiration from robustness verification, I present a novel approach:
integrating privacy-preserving and robustness verification for privacy-preserved
utility tasks. The primary objective is establishing a lower boundary for privacy
loss and performance within the existing framework. This innovative approach
comprehensively assesses the privacy-preserved utility task by considering both
privacy concerns and robustness.

Definition 4 (Privacy-preserving and Robustness Verification). Given
an input xinput ∈ X containing privacy information and its ground true label
c, any other label c′ ∈ C, an optimal anonymization function A, a privacy bud-
get δ, the utility task neural networks function f(·), The privacy-preserving and
robustness verification problem is defined as a multi-objective optimization prob-
lem V (·) in Eq. (1):

V (xinput,A, δ,M) = min

{
f1
f2

(1)

282 F. Xu

where f1 := f(xinput)c − f(A(xinput,M, δ))c − δ, f2 := f(A(xinput,M, δ))c −
f(A(xinput,M, δ))c′ , f(·)c denotes the probability of label c produced by neural
network for the input ·. f1 describes the privacy-preserving level, and f2 describes
the robustness of the utility task. The verification result has four conditions sum-
marized in Table 1.

Table 1. Privacy-preserving and Robustness Verification result

Condition Result and meaning

f1 ≥ 0, f2 ≥ 0 Data privacy is preserved, and the utility task
is robust under the preserving function

f1 ≥ 0, f2 ≤ 0 Data privacy is preserved, and the utility task
is not robust under the preserving function

f1 ≤ 0, f2 ≥ 0 Data privacy does not achieve the required preserved level,
and the utility task is robust under the preserving function

f1 ≤ 0, f2 ≤ 0 Data privacy does not achieve the required preserved level,
and the utility task is not robust under the preserving function

The core objective of this problem statement is to ascertain the effectiveness
of the privacy-preserving approach and its utility task concerning data privacy
preservation. Addressing this challenge will solve an optimization problem, deriv-
ing a lower performance bound for both the privacy-preserving approach and the
utility task. This optimization-based approach enables the verifier to provide
reliable assurance for the efficacy of these privacy-preserving utility tasks. As
far as my knowledge extends, I am the originator of this research inquiry. This
investigation can build upon established research methodologies in the realm of
robustness verification, such as α, β-CROWN [17,21,23,25], Marabou [10] and
MN-BaB [6].

3 Proposed Solutions and Future Work

To address the aforementioned research question, I have planned five coher-
ent works. The first one was a study of existing neural network verification
approaches focusing on the verification performance on accuracy and efficiency
of producing xptb. A new evaluation framework of state-of-the-art verification
approaches was proposed on various datasets, perturbations and neural networks
with different structures and complexity. Compared with the newest Interna-
tional Verification of Neural Networks Competition (VNN-COMP) report [15],
the study generated a slightly different ranking result1. The second job was inves-
tigating how the data and configuration impacted the neural network’s robust-
ness. These two studies are the ablation study of the verification approach.
1 Not include VeriNet and CGDTest, as they either did not release their code or delete

their repository.

Unified Verification of NNs Robustness and Privacy in CV 283

In the future, my third work will propose a state-of-the-art approach to
preserve the privacy of video datasets, followed by utility tasks for the privacy-
preserved data. In this work, I will utilize existing (ε, lp) attack approaches to
propose the privacy-preserving approach with selected utility tasks and compare
it with the latest related works. The fourth work will create a benchmark for the
coming VNN-COMP that utilizes the data and network from the third work.
Accepting the benchmark will demonstrate the effectiveness of the unified ver-
ification problem. The fifth work will draw attention to proposing verification
approaches to verify the unified verification problem.

References

1. Ahmedt-Aristizabal, D., Armin, M.A., Denman, S., Fookes, C., Petersson, L.:
Graph-based deep learning for medical diagnosis and analysis: past, present and
future. Sensors 21(14), 4758 (2021)

2. Alam, M.S., Wang, D., Liao, Q., Sowmya, A.: A multi-scale context aware attention
model for medical image segmentation. IEEE J. Biomed. Health Inf. (2022)

3. Badue, C., et al.: Self-driving cars: a survey. Expert Syst. Appl. 165, 113816 (2021)
4. Cheng, X., Wang, H., Hua, J., Xu, G., Sui, Y.: DeepWukong: statically detecting

software vulnerabilities using deep graph neural network. ACM Trans. Softw. Eng.
Methodol. (2021). https://doi.org/10.1145/3436877

5. Cheng, X., Zhang, G., Wang, H., Sui, Y.: Path-sensitive code embedding via
contrastive learning for software vulnerability detection. In: Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2022. ACM (2022)

6. Ferrari, C., Müller, M.N., Jovanovic, N., Vechev, M.T.: Complete verification via
multi-neuron relaxation guided branch-and-bound. In: The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, 25–29 April
2022. OpenReview.net (2022). https://openreview.net/forum?id=l amHf1oaK

7. Gnanasambandam, A., Sherman, A.M., Chan, S.H.: Optical adversarial attack. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
92–101 (2021)

8. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information
Processing Systems, vol. 27. Curran Associates, Inc. (2014)

9. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

10. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

11. Li, X., de Belen, R.A., Sowmya, A., Onie, S., Larsen, M.: Region-based trajectory
analysis for abnormal behaviour detection: a trial study for suicide detection and
prevention. In: Rousseau, J.J., Kapralos, B. (eds.) International Conference on
Pattern Recognition, vol. 13643, pp. 178–192. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-37660-3 13

https://doi.org/10.1145/3436877
https://openreview.net/forum?id=l_amHf1oaK
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-031-37660-3_13
https://doi.org/10.1007/978-3-031-37660-3_13

284 F. Xu

12. Li, X., Onie, S., Liang, M., Larsen, M., Sowmya, A.: Towards building a visual
behaviour analysis pipeline for suicide detection and prevention. Sensors 22(12),
4488 (2022)

13. Liang, M., Li, X., Onie, S., Larsen, M., Sowmya, A.: Improved spatio-temporal
action localization for surveillance videos. In: 2021 Digital Image Computing: Tech-
niques and Applications (DICTA), pp. 01–08. IEEE (2021)

14. Lu, D.: How abusers are exploiting smart home devices. https://www.vice.com/
en/article/d3akpk/smart-home-technology-stalking-harassment

15. Müller, M.N., Brix, C., Bak, S., Liu, C., Johnson, T.T.: The third international
verification of neural networks competition (VNN-COMP 2022): summary and
results. arXiv preprint arXiv:2212.10376 (2022)

16. Wang, S., et al.: Beta-CROWN: efficient bound propagation with per-neuron split
constraints for complete and incomplete neural network verification. In: Advances
in Neural Information Processing Systems, vol. 34 (2021)

17. Wang, S., et al.: Beta-CROWN: efficient bound propagation with per-neuron split
constraints for complete and incomplete neural network verification. arXiv preprint
arXiv:2103.06624 (2021)

18. Weiss, M.A., Archick, K.: US-EU data privacy: from safe harbor to privacy shield
(2016)

19. Wen, Y., Liu, B., Ding, M., Xie, R., Song, L.: IdentityDP: differential private
identification protection for face images. Neurocomputing 501, 197–211 (2022)

20. Wu, Z., Wang, H., Wang, Z., Jin, H., Wang, Z.: Privacy-preserving deep action
recognition: an adversarial learning framework and a new dataset. IEEE Trans.
Pattern Anal. Mach. Intell. 44(4), 2126–2139 (2020)

21. Xu, K., et al.: Automatic perturbation analysis for scalable certified robustness and
beyond. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

22. Xu, K., et al.: Adversarial T-shirt! evading person detectors in a physical world.
In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12350, pp. 665–681. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58558-7 39

23. Xu, K., et al.: Fast and complete: enabling complete neural network verifi-
cation with rapid and massively parallel incomplete verifiers. In: International
Conference on Learning Representations (2021). https://openreview.net/forum?
id=nVZtXBI6LNn

24. Zhang, G., et al.: A tale of two cities: data and configuration variances in robust
deep learning. arXiv preprint arXiv:2211.10012 (2022)

25. Zhang, H., et al.: General cutting planes for bound-propagation-based neural net-
work verification. In: Advances in Neural Information Processing Systems
(NeurIPS) (2022)

https://www.vice.com/en/article/d3akpk/smart-home-technology-stalking-harassment
https://www.vice.com/en/article/d3akpk/smart-home-technology-stalking-harassment
http://arxiv.org/abs/2212.10376
http://arxiv.org/abs/2103.06624
https://doi.org/10.1007/978-3-030-58558-7_39
https://doi.org/10.1007/978-3-030-58558-7_39
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
http://arxiv.org/abs/2211.10012

IoT Software Vulnerability Detection
Techniques through Large Language Model

Yilin Yang(B)

School of Computer Science and Engineering, UNSW Sydney, Sydney, Australia
Yilin1001@outlook.com

Abstract. The explosion of IoT usage provides efficiency and convenience in
various fields including daily life, business and information technology. However,
there are potential risks in large-scale IoT systems and vulnerability detection
plays a significant role in the application of IoT. Besides, traditional approaches
like routine security audits are expensive. Thus, substitution methods with lower
costs are needed to achieve IoT systemvulnerability detection. LLMs, as new tools,
show exceptional natural language processing capabilities, meanwhile, static code
analysis offers low-cost software analysis avenues. The paper aims at the com-
bination of LLMs and static code analysis, implemented by prompt engineering,
which not only expands the application of LLMs but also provides a probability
of accomplishing cost-effective IoT vulnerability software detection.

Keywords: Vulnerability Detection · Large Language Model · Prompt
Engineering

1 Introduction

The Internet of Things (IoT) has a proliferation of usage as an emerging technology due
to its convenience and efficiency in theworld, such as smart homes, industrial automation
and infrastructure. However, the connectivity between devices and systems may have
vulnerabilities that can be used by malicious actors, threatening personal privacy, data
security and business benefits. Therefore, it is a significant problem that improves the
security of IoT through the timely and accurate detection of vulnerabilities.

The traditional methods of detecting vulnerabilities are regular security audits and
testing by security experts, which cost a lot and may not prompt enough when facing the
increasing scale and complexity of IoT systems. Thus, it is necessary to find automatic
approaches with lower costs as a substitute to detect IoT vulnerabilities.

Among detection approaches, static code analysis, which can reduce the cost of time
and resources without the execution of the program [1], has the potential to detect vul-
nerabilities before manifesting as actual threats, minimizing the security risk. Besides,
it is valuable to consider emerging tools. Large Language Models (LLMs), demon-
strate outperforming capabilities. There are numerous kinds of research showing LLM-
Integrated applications in different domains [2, 3]. Therefore, the combination of static
code analysis and LLMs holds the potential in the field of IoT vulnerability detection.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 285–290, 2023.
https://doi.org/10.1007/978-981-99-7584-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_21&domain=pdf
https://doi.org/10.1007/978-981-99-7584-6_21

286 Y. Yang

This research discusses the necessity of IoT vulnerability detection, explores the
potential of LLM in IoT vulnerability detection through experiments and expects to
provide an innovative method. The approach demonstrates more possibilities in applica-
tions of LLM and provides potential cost-effective tools for IoT vulnerability software
detection.

2 Literature Review

2.1 Large Language Model

Large Language Models (LLMs) are one type of artificial intelligence language model,
usually based on deep learning models and pre-trained on immense size of text data,
which aim at processing and generating natural language. LLMs have become a hot
topic in recent years due to their remarkable progress.

The language models in the early stage are based on statistical principles, such as
n-gram models, which can just deal with short dependencies. Then with the develop-
ment ofRecurrentNeuralNetworks (RNNs), SimpleRecurrentNetworks (SRNs),which
have the context layer to record the information in the previous timestep, are capable
of learning medium-range dependencies. However, not until the introduction of gating
mechanisms, the problems with long-range dependencies can be analyzed. Furthermore,
Ashish Vaswani et al. proposed Transformer architecture in 2017 [4], an RNN archi-
tecture with attention mechanisms, greatly decreasing training time [5]. It positively
impacts the development of LLMs since LLMs require pre-training on vast amounts of
data.

On the other hand, the interpretation of LLMs remains disputation since it just
predicts the next word repeatedly according to the mask of input text [6]. For specific
tasks, LLMs use fine-tuning methods to get results. However, LLMs are still similar
to “black boxes” when considering whether they have acquired knowledge to solve
problems. There are several research discussing themechanistic interpretability of LLMs
such as analysing the approximate used algorithms for inference of LLMs [7].

2.2 Prompt Engineering

As mentioned before, LLMs get results in specific tasks through fine-tuning with high
cost, however, the method can be substituted by prompt engineering in some larger-size
models such as the GPT series. The prompt is text containing task descriptions in natural
language, which can be commands, queries, feedback or statements including data or
code, to provide keywords and additional information to LLMs. Prompt engineering is to
develop and optimize prompts,which builds connections between tasks to results through
in-context learning. Prompt engineering can significantly augment LLMs as tools. For
example, ReAct can generate verbal reasoning and task actions by Chain-of-Thought
prompting to improve the efficiency of LLMs [8].

IoT Software Vulnerability Detection Techniques through Large Language Model 287

2.3 Challenges

Although LLMs have an increasingly integrated usage in various applications, there exist
challenges in the robustness of LLMs. Since LLM-integrated applications may blur the
boundary between data and prompts, LLMs can be impacted by targeted adversarial
prompting. According to Kai Greshake et al., adversaries can attack LLM-integrated
applications without a direct interface by using Indirect Prompt Injection [9]. For this,
defence systems are necessary to improve the robustness ofLLM-integrated applications.

3 Proposed Approach

The research aims to develop a method with practical viability to detect potential IoT
vulnerabilities through static analysis of code snippets by LLMs. The expected approach
is prompt engineering built on ChatGPT-4.0 based on the principle of chain of thought
[10]. The prompts can be generated by a deep-learning model automatically, which is
inspired by valid experiments and based on the analysis of keywords, following a similar
logical process of experiments. This prompt engineering should have a certain degree
of capability of detecting potential IoT vulnerability types and related code lines when
inputting code snippets.

4 Current Work

4.1 Experiments

The experiments are manually input code snippets and prompts based on the Chain-
of-Thought principle, trying to get actual vulnerability types and related code lines in
responses byChatGPT using fewer prompts, which explore the potential of LLMs on IoT
vulnerability detection and build the foundation of prompt engineering development. The
basic logic is that constraining the scope of prompts and providing necessary additional
information will get more accurate responses. The dataset used in the experiments is 60
vulnerabilities crawled from the Zephyr project, one real-world IoT system in GitHub,
including the vulnerability type and related code snippets.

Constraining Vulnerability Types. The first kind of experiment constraints vulnera-
bility types in prompts, Fig. 1 demonstrates the flow process of the experiment. Firstly,
input the code snippets andChatGPTwill provide a code analysis as the default response.
Then the prompt will require potential vulnerability types and the response will list sev-
eral possibilities. Thirdly, inquire which line of code can cause the specific vulnerabil-
ity type listed above sequentially by separate prompts and record the response to the
most possible vulnerability. Finally, analyse the response and record whether the true
vulnerabilities are listed and the number of used prompts.

Constraining Code Lines. The second kind of experiment constrains code lines in
prompts and provides additional code by analysing the keywords in the response. The
process of the experiment is shown in Fig. 2, similar to the first kind of experiment.
Differently, the prompts will ask for the code relevant to vulnerabilities and if it requires

288 Y. Yang

Fig. 1. Flowchart of experiments which constrain vulnerability types in prompts.

other useful additional codes. The responses will list the potential code and may include
keywords that indicate the requirements of other additional code. If the responses contain
keywords, search the code on the repository and input it as additional code if exists.
Finally, inquire about the potential vulnerability type basedon all provided codes, analyse
and record the responses.

Fig. 2. Flowchart of experiments which constrain code lines in prompts.

4.2 Results and Analysis

The followingTable 1Gives a summary of the results of the first two kinds of experiments
including success rate (accurate to two decimal places), where success means the true
vulnerability type and related code line are included in the responses by ChatGPT, and
the average number of prompts, which is the average number (integer) of used prompts
in the successful experiments. It is inevitable that the results have a certain margin of
error due to the slight randomness of responses by LLM.

IoT Software Vulnerability Detection Techniques through Large Language Model 289

Table 1. Results for above two experiments

Experiment Success rate Average number of prompts

Constraining Vulnerability Types 66.67% 9

Constraining Code Lines 83.33% 4

The results demonstrate that the experiment constraining code lines in prompts per-
forms better than the experiment constraining vulnerability types in prompts with fewer
used prompts and a higher success rate.

In the development of prompt engineering, it will be more efficient to constrain the
code line and the experiments provide the reference to the process based on the chain
of thought. Moreover, the identification of keywords to provide additional code will
benefit the task. On the other hand, the experiments show that prompts with the same
meaning in different wordings may get different responses, while the same prompts in
different steps may get different responses. The facts indicate that it is necessary to use
data augment such as synonyms expansion in the pre-training in prompt engineering due
to the stochastic of LLMs. Besides, there exist limitations due to the small dataset, but
the results still demonstrate the potential of LLM for vulnerability detection.

5 Future Work

5.1 Dataset and Experiments

As far as the dataset is concerned, it requires a larger size of data for experiments and
training models of prompt engineering. Thus, future work includes gathering real-world
IoT vulnerabilities.Moreover, formultiple potential vulnerabilities, ranking the result by
possibility will assist in deeper analysis. Besides, repeating experiments is necessary to
decrease the randomness of responses by LLM and increase the reliability of the results.
These will contribute to evaluating the performance of the prompt engineering model.

5.2 Prompt Engineering

To develop prompt engineering, it is necessary to evaluate different proper deep-learning
architectures andmake ablation experiments on different data augment techniques. Then
choose proper deep-learning architectures and data augment techniques to build mod-
els and split datasets into training data and validation data to train and evaluate the
performance of the built model. Prompt engineering can achieve the aim through these
works. Furthermore, it is also important to compare with other existing IoT vulnerability
detection methods.

6 Conclusion

The paper demonstrates the significance of new approaches for IoT vulnerability detec-
tion and as current work, explores the potential of LLMs for detecting IoT vulnerability
through static code snippet analysis. For future work, the paper first analyses the via-
bility of prompt engineering to achieve the aim and then discusses the main techniques

290 Y. Yang

and steps to develop and evaluate prompt engineering. In summary, the combination of
prompt engineering based on LLMs and static code analysis can benefit IoT software
vulnerability detection at a lower cost.

References

1. Sözer, H.: Integrated static code analysis and runtime verification. Softw.: Pract. Exp. 45(10),
1359–1373 (2014). https://doi.org/10.1002/spe.2287

2. Spataro, J.: IntroducingMicrosoft 365Copilot – your copilot forwork - TheOfficialMicrosoft
Blog. The Official Microsoft Blog (2023). https://blogs.microsoft.com/blog/2023/03/16/int
roducing-microsoft-365-copilot-your-copilot-for-work/

3. Mehdi, Y.: Reinventing search with a new AI-powered Microsoft Bing and Edge,
your copilot for the web - The Official Microsoft Blog. The Official Microsoft Blog
(2023). https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-pow
ered-microsoft-bing-and-edge-your-copilot-for-the-web/

4. Vaswani, A., et al: Attention is All you Need. arXiv (Cornell University), 30, 5998–6008
(2017). https://arxiv.org/pdf/1706.03762v5

5. Merritt, R.: What Is a Transformer Model? | NVIDIA Blogs. NVIDIA Blog (2022). https://
blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

6. Bowman, Samuel R.: Eight Things to Know about Large Language Models (2023). arXiv:
2304.00612

7. Nanda, N., Chan, L., Lieberum, T., Smith, J. L., Steinhardt, J.: Progressmeasures for grokking
via mechanistic interpretability. arXiv (Cornell University) (2023). https://doi.org/10.48550/
arxiv.2301.05217

8. Yao, S., et al.: ReAct: Synergizing Reasoning and Acting in LanguageModels (2022). https://
doi.org/10.48550/arxiv.2210.03629

9. Liu, Y., et al.: Prompt Injection attack against LLM-integrated Applications (2023). https://
doi.org/10.48550/arxiv.2306.05499

10. Cheung, K.S.: Real estate insights unleashing the potential of ChatGPT in property valuation
reports: the “Red Book” compliance Chain-of-thought (CoT) prompt engineering. J. Property
Invest. Finance (2023). https://doi.org/10.1108/JPIF-06-2023-0053

https://doi.org/10.1002/spe.2287
https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-your-copilot-for-work/
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://arxiv.org/pdf/1706.03762v5
https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/
http://arxiv.org/abs/2304.00612
https://doi.org/10.48550/arxiv.2301.05217
https://doi.org/10.48550/arxiv.2210.03629
https://doi.org/10.48550/arxiv.2306.05499
https://doi.org/10.1108/JPIF-06-2023-0053

Vulnerability Detection
via Typestate-Guided Code
Representation Learning

Xiao Cheng(B)

UNSW, Kensington, Australia

xiao.cheng@unsw.edu.au

Abstract. Machine learning, including deep learning, has found success
in various domains. Recently, the focus has shifted to using deep learn-
ing, like graph neural networks, for static vulnerability detection. Exist-
ing methods represent code as an embedding vector and train models
on safe and vulnerable code patterns to predict vulnerabilities. However,
these models lack precise bug detection, as they prioritize coarse-grained
classification over understanding vulnerability semantics, such as type-
state properties. This paper introduces an innovative typestate-guided
code embedding technique for accurate static vulnerability detection. We
select and retain feasible typestate sequences extracted from typestate
analysis using self-supervised contrastive learning in a pretrained path
embedding model. This reduces the need for labeled data in training
downstream models for vulnerability detection. Evaluation on real-world
projects showcases our approach’s superiority over recent learning-based
approaches. It outperforms them by substantial margins across various
metrics like precision, recall and F1 Score.

Keywords: Typestate · code embedding · vulnerabilities

1 Introduction

Despite efforts to enhance software security, vulnerabilities persist as a signif-
icant concern in modern software development. Current static bug detectors
(e.g., Checkmarx, RATs, ITS4, CoBOT, Coverity, SVF, Infer) rely heavily on
user-defined rules and domain knowledge, making them labor-intensive and lim-
ited in their effectiveness. These detectors struggle to detect a broader range of
vulnerabilities, often leading to false positives/negatives [2–4].

Deep learning has shown promise in learning vulnerability patterns by cor-
relating vulnerable programs with their code features. Existing code embed-
ding techniques aim to capture code semantics but fall short in understand-
ing the semantics of vulnerability detection. They lack the ability to distin-
guish typestate properties and preserve fine-grained vulnerable paths essential
for precise bug detection. To address these limitations, we propose TSVD, a

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 291–297, 2023.
https://doi.org/10.1007/978-981-99-7584-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_22&domain=pdf
http://orcid.org/0000-0001-5456-3827
https://doi.org/10.1007/978-981-99-7584-6_22

292 X. Cheng

novel typestate-guided code embedding technique for pinpointing vulnerabilities
based on typestate sequences. TSVD uses self-supervised contrastive learning to
train a typestate sequence encoder that retains semantically similar sequences
while discarding irrelevant ones. This pretrained encoder is used to represent
the semantics of typestate sequences in the compact embedding space, which is
further used for precise vulnerability detection.

Our contributions include introducing TSVD, a typestate-guided code
embedding technique that employs pretrained typestate sequence encoders and
self-supervised learning. We formulate embedding as a reachability problem over
a guarded sparse value flow graph. Experimental results demonstrate TSVD’s
superiority over state-of-the-art methods in terms of detecting vulnerabilities
and locating buggy statements.

2 Related Work

Static Vulnerability Detection. The realm of static vulnerability detection
has witnessed the development of various tools (Clang Static Analyzer,
Infer, Checkmarx, SVF [15]) aimed at identifying faulty paths within source
code. Many of these tools [7–9,17,18,20] target specific vulnerabilities like mem-
ory errors, relying on traditional program analysis techniques such as abstract
interpretation and symbolic execution. However, they often necessitate manual
rule definitions for detecting a wider range of vulnerabilities.
Learning-Based Vulnerability Detection. Recent efforts have harnessed
machine learning for automated vulnerability detection. These approaches
employ diverse code representations (lexical tokens, textual slices, abstract
syntax trees, control flow graphs [2], program dependence graphs [4,14]) to
learn vulnerability patterns across different levels of granularity (method [2],
slice [4]). Approaches like VulDeeLocator and IVDetect enhance detection
outcomes through post-processing techniques, interpreting the trained detec-
tion model using attention and edge-masking strategies. Despite their successes,
these approaches lack path awareness, which is crucial for effective path-based
vulnerability detection.

3 TSVD Approach

This section outlines our approach, which consists of three phases: Typestate
Sequence Generation (Sect. 3.1), Contrastive Typestate Sequence Embedding
(Sect. 3.2), Typestate Sequence Selection (Sect. 3.3), and Detection Model Train-
ing (Sect. 3.4).

3.1 Typestate Sequence Generation

Typestate represents an extension of conventional immutable types, designed to
encompass the potential variability in states that can occur. This augmentation

Vulnerability Detection via Typestate-Guided Code Representation Learning 293

is accomplished by presenting a comprehensive depiction of the manifold states
and behaviors inherent to a specific type, all within the framework of a finite-
state automaton.

In the realm of typestate theory, a typestate sequence denoted as τ assumes
the form of an ordered series of operations. The peculiarity of this sequence
lies in its propensity to culminate in an undesirable or erroneous typestate. As
each constituent instruction within τ is executed consecutively, the initial type-
state under consideration undertakes a series of transitions ultimately leading
to an error state. This construct enables a comprehensive study of the potential
deviations from desired behaviors within the context of mutable states.

A pertinent facet of the utilization of typestate sequences pertains to the
realm of analysis tools, where diverse methodologies, including but not lim-
ited to API protocol analysis, yield valuable outcomes. These outcomes func-
tion as informative artifacts, which when interpreted adeptly, can illuminate the
structural patterns and potential progression paths within complex typestate
sequences. Consequently, these analytical findings provide a vantage point from
which the underlying typestate sequences can be inferred and subsequently har-
nessed for improved software design, error mitigation, and program reliability
enhancement.

3.2 Contrastive Typestate Sequence Embedding

In this phase, we aim to pretrain a typestate sequence encoder (TSE) using
contrastive learning. This encoder generates discriminative vector representa-
tions for typestate sequences extracted from code fragments. The embeddings
are learned using a contrastive loss function that encourages similar typestate
sequences to have close vector representations.

Contrastive Typestate Sequence Embedding Algorithm. The con-
trastive typestate sequence embedding process involves generating contrastive
vector representations for typestate sequences and computing the contrastive
loss. This loss is based on the similarity between embeddings of similar sequences
and serves as a self-supervised objective for training the TSE.

Contrastive Typestate Sequence Representations. To create con-
trastive embeddings, we employ minimal data augmentation. By using inde-
pendently sampled dropout masks during encoding, we generate pairs of embed-
dings (vτ ,v+

τ) for each typestate sequence τ . Pairs from the same sequence are
considered positive, while pairs from different paths are negative.

Contrastive Typestate Sequence Embedding Loss. The Noise Con-
trastive Estimate (NCE) loss is used to maximize the agreement between posi-
tive typestate sequence representations. This involves measuring cosine similarity
between embeddings and formulating a loss function that pushes positive pairs
closer and negative pairs apart:

cos sim(vτi ,vτj) =
v�

τivτj

||vτi || · ||vτj ||
(1)

294 X. Cheng

The loss of τi is defined as :

loss(τi) = −log
exp(cos sim(vτi ,v

+
τi))

∑Batch
k=1 exp(cos sim(vτi ,v

+
τk))

(2)

where Batch is the batch size of typestate sequences.
The total typestate sequence contrastive loss can be computed as:

L =
1

Batch

Batch∑

i=1

loss(τi) (3)

Typestate Sequence Encoder. The Typestate Sequence Encoder (TSE) pro-
cesses typestate sequences by first locally encoding statements using a statement
encoder [5]. The local encodings are then globally encoded using Bidirectional
Gated Recurrent Unit (BGRU) to capture the temporal typestate transforma-
tions. The resulting vectors represent the typestate sequence’s semantics.

3.3 Typestate Sequence Selection

In this phase, we perform feasibility analysis on the selected paths by check-
ing the reachability of control-flow paths between consecutive statements using
annotated guards.

Feasibility analysis is performed on selected typestate sequences. Using
guards annotated on the control-flow graph, we determine the reachability
of paths between consecutive statements [16]. This is achieved by evaluating
Boolean functions that consider control-flow transfer conditions. For a typestate
sequence τ consisting of s0, s1, . . . , sN , we establish the feasibility as a Boolean
function that encodes the ability to traverse control-flow paths between consec-
utive pairs along the path within the program, from s0 to sN . Thus, τ is consid-
ered feasible when the feasibility function yields a true outcome, and unfeasible
otherwise.

3.4 Detection Model Training

In this phase, a detection model is trained using labeled code fragments and
their selected feasible typestate sequences. The paths are encoded using the pre-
viously trained TSE and passed through a multi-head self-attention layer. A soft
attention mechanism aggregates these embeddings, which are then used for vul-
nerability prediction. The resulting code vector is used to predict vulnerabilities
using a softmax function. The top-k indexing method is employed to interpret
vulnerabilities at the statement level.

Vulnerability Detection via Typestate-Guided Code Representation Learning 295

4 Evaluation

Datasets. We conducted an assessment of the performance of TSVD using
a dataset comprised of 288 real-world open-source projects. These projects
were drawn from three distinct datasets: D2A [19], Fan [6], and the combined
FFMpeg+Qemu (FQ) [21] dataset. This dataset collectively encompassed 275,000
programs with a cumulative codebase of 30 million lines.

Table 1 compares the results with the state-of-the-art vulnerability detectors.
It is clear that TSVD outperforms both our baselines under the existing metrics,
including F1, precision and recall.

Table 1. Comparison with the state-of-the-art under F1 Score (F1), Precision (P) and
Recall (R).

Model Name F1 (%) P (%) R (%)

VGDetector [2] 56.7 52.6 61.4

Devign [21] 58.7 54.6 63.4

Reveal [1] 63.4 61.5 65.5

VulDeePecker [13] 52.3 52.2 52.4

SySeVR [12] 55.0 54.5 55.4

DeepWukong [4] 67.0 67.4 66.5

VulDeeLocator [11] 62.0 61.4 62.5

IVDetect [10] 64.1 64.0 64.6

TSVD 83.3 80.4 86.5

As shown in Table 1, TSVD outperforms all our baselines with the highest
F1 Score at 83.3%, indicating an overall better effectiveness for vulnerability
detection. The precision of TSVD is the largest at 80.4%, which is more than
IVDetect at 64.0% and VulDeePecker at 52.2%. TSVD also has a signif-
icantly higher recall at 86.5% compared to 64.6% for IVDetect and merely
52.4% for VulDeePecker. The reason for the better performance of TSVD
is that it can preserve more comprehensive features of the input program by
considering path-sensitive typestate sequences, which approximate the program
runtime behaviour and bug semantics.

5 Conclusion and Future Work

We introduce TSVD, a novel typestate-guided code embedding method that
captures path-sensitive typestate sequences in the embedding space for pre-
cise software vulnerability detection. The approach utilizes an attention-based
structure-aware encoder trained with contrastive learning to retain both local
and global typestate sequence semantics. The pre-trained path encoder is then

296 X. Cheng

employed in vulnerability detection using attention-based neural networks. The
tool was assessed on a benchmark from popular open-source projects. Results
demonstrate TSVD’s superior performance over eight recent vulnerability detec-
tion approaches, achieving substantial improvements across various metrics. In
the future, we aim to investigate code embedding on different types of program
paths and produce more readable bug reports to facilitate bug fixing.

References

1. Chakraborty, S., Krishna, R., Ding, Y., Ray, B.: Deep learning based vulnerability
detection: Are we there yet? CoRR (2020)

2. Cheng, X., et al.: Static detection of control-flow-related vulnerabilities using graph
embedding. In: ICECCS (2019)

3. Cheng, X., Nie, X., Li, N., Wang, H., Zheng, Z., Sui, Y.: How about bug-triggering
paths? - understanding and characterizing learning-based vulnerability detectors.
In: TDSC (2022)

4. Cheng, X., Wang, H., Hua, J., Xu, G., Sui, Y.: Deepwukong: Statically detecting
software vulnerabilities using deep graph neural network. In: TOSEM (2021)

5. Cheng, X., Zhang, G., Wang, H., Sui, Y.: Path-sensitive code embedding via
contrastive learning for software vulnerability detection. In: Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
ISSTA ’22, ACM (2022)

6. Fan, J., Li, Y., Wang, S., Nguyen, T.N.: A c/c++ code vulnerability dataset with
code changes and cve summaries. In: MSR (2020)

7. Lei, Y., Sui, Y., Ding, S., Zhang, Q.: Taming transitive redundancy for context-free
language reachability. In: OOPSLA (2022)

8. Lei, Y., Sui, Y., Tan, S.H., Zhang, Q.: Recursive state machine guided graph folding
for context-free language reachability. In: PLDI (2023)

9. Li, T., Bai, J.J., Sui, Y., Hu, S.M.: Path-sensitive and alias-aware typestate analysis
for detecting os bugs. In: ASPLOS (2022)

10. Li, Y., Wang, S., Nguyen, T.N.: Vulnerability detection with fine-grained interpre-
tations. In: FSE (2021)

11. Li, Z., Zou, D., Xu, S., Chen, Z., Zhu, Y., Jin, H.: Vuldeelocator: A deep learning-
based fine-grained vulnerability detector. In: TDSC (2021)

12. Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z.: Sysevr: A framework for using
deep learning to detect software vulnerabilities. In: TDSC (2018)

13. Li, Z., et al.: Vuldeepecker: A deep learning-based system for vulnerability detec-
tion. In: NDSS (2018)

14. Sui, Y., Cheng, X., Zhang, G., Wang, H.: Flow2vec: Value-flow-based precise code
embedding. In: OOPSLA (2020)

15. Sui, Y., Xue, J.: SVF: Interprocedural static value-flow analysis in LLVM. In: CC
(2016)

16. Sui, Y., Ye, D., Xue, J.: Static memory leak detection using full-sparse value-flow
analysis. In: ISSTA (2012)

17. Sui, Y., Ye, D., Xue, J.: Detecting memory leaks statically with full-sparse value-
flow analysis. In: TSE (2014)

18. Yan, H., Sui, Y., Chen, S., Xue, J.: Spatio-temporal context reduction: A pointer-
analysis-based static approach for detecting use-after-free vulnerabilities. In: ICSE
(2018)

Vulnerability Detection via Typestate-Guided Code Representation Learning 297

19. Zheng, Y., et al.: D2a: A dataset built for AI-based vulnerability detection methods
using differential analysis. In: ICSE-SEIP (2021)

20. Zhong, Z., et al.: Scalable compositional static taint analysis for sensitive data
tracing on industrial micro-services. In: ICSE-SEIP (2023)

21. Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: effective vulnerability identi-
fication by learning comprehensive program semantics via graph neural networks.
In: NIPS (2019)

Correction to: Learning Mealy Machines
with Local Timers

Paul Kogel, Verena Klös, and Sabine Glesner

Correction to:
Chapter 4 in: Y. Li and S. Tahar (Eds.): Formal Methods
and Software Engineering, LNCS 14308,
https://doi.org/10.1007/978-981-99-7584-6_4

In the original version of this paper the text in Section 4.1 and the Figure 4 has been
displayed incorrectly. This has been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-981-99-7584-6_4

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, p. C1, 2024.
https://doi.org/10.1007/978-981-99-7584-6_23

https://doi.org/10.1007/978-981-99-7584-6_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7584-6_23&domain=pdf
https://doi.org/10.1007/978-981-99-7584-6_4
https://doi.org/10.1007/978-981-99-7584-6_23

Author Index

B
Bannister, Callum 118
Biswas, Kamanashis 249
Blankestijn, Max 208

C
Cartellier, Quelen 228
Cheng, Xiao 291

D
Denney, Ewen 172

E
Egyed, Alexander 191
Ernst, Gidon 65
Evangelou-Oost, Naso 118

F
Feng, Xinguo 100
Foo, Ernest 273
Foster, Michael 29
Frappier, Marc 228

G
Glesner, Sabine 47
Groz, Roland 29
Guan, Hao 100

H
Hayes, Ian J. 3, 118
Hóu, Zhé 249, 273

J
James Akande, Ayodeji 273
Jensen, Nicolaj Ø. 83
Jensen, Peter G. 83

K
Klös, Verena 47
Kogel, Paul 47

L
Laarman, Alfons 208
Larsen, Kim G. 83
Le, Quang Loc 11
Li, Qinyi 273
Liu, Shuofeng 100

M
Ma, Mengyao 100
Ma, Zhongkui 100, 261
Mammar, Amel 228
Mashkoor, Atif 191
Meinicke, Larissa 118
Meng, Mark Huasong 100
Menzies, Jonathan 172
Murray, Toby 65
Muthukkumarasamy, Vallipuram 249

N
Nguyen, Tai D. 11

O
Oriat, Catherine 29

P
Pham, Long H. 11
Pillai, Babu 249

S
Simao, Adenilso 29
Sljivo, Irfan 172
Stock, Sebastian 191, 255
Sun, Jun 11
Sun, Meng 137

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2023
Y. Li and S. Tahar (Eds.): ICFEM 2023, LNCS 14308, pp. 299–300, 2023.
https://doi.org/10.1007/978-981-99-7584-6

https://doi.org/10.1007/978-981-99-7584-6

300 Author Index

U
Utting, Mark 3

V
Vega, Germán 29

W
Walkinshaw, Neil 29
Wang, Zihan 100
Webb, Brae J. 3
Wu, Huan 156

X
Xie, Fei 156
Xu, Feng 279
Xue, Xiaoyong 137

Y
Yan, Pengbo 65
Yang, Yilin 285
Yang, Zhenkun 156

Z
Zhang, Guanqin 267

	 Preface
	 Organization
	Abstracts of Invited Talks
	 Compositional Reasoning at The Software/Hardware Interface
	 Separation of Concerns for Complexity Mitigation in System and Domain Formal Modelling – A Dive into Algebraic Event-B Theories
	 A Foundation for Interaction
	 Practical Verified Concurrent Program Security
	 On Analysing Weak Memory Concurrency
	 Certified Proof and Non-Provability
	 Verifying Compiler Optimisations
	 Contents

	Invited Paper
	Verifying Compiler Optimisations
	1 Introduction
	2 Data-Flow Sub-graphs
	3 Term Rewriting Rules
	4 Verifying Term Rewriting Rules
	5 Generating Code for Optimisations
	6 Conclusions
	References

	Regular Papers
	An Idealist's Approach for Smart Contract Correctness
	1 Introduction
	2 Overview
	2.1 Smart Contracts
	2.2 Vulnerability and Correctness
	2.3 An Illustrative Example

	3 Specification Language
	3.1 High-Level Overview
	3.2 Formalization

	4 Verification
	4.1 Function Validation
	4.2 Generating Proof Obligations

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Experimental Evaluation

	6 Related Work and Conclusion
	References

	Active Inference of EFSMs Without Reset
	1 Introduction
	2 Background and Related Work
	2.1 Running Example
	2.2 Related Work
	2.3 Definitions
	2.4 Inferring Functions with Genetic Programming

	3 The ehW-Inference Algorithm
	3.1 Assumptions
	3.2 Homing and Characterizing
	3.3 Inputs and Data Structures
	3.4 ehW-Inference Backbone
	3.5 Generalisation
	3.6 Oracle Procedure

	4 Inferring a Vending Machine Controller
	5 Conclusions and Future Work
	References

	Learning Mealy Machines with Local Timers
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Mealy Machines
	3.2 The Rivest-Schapire Algorithm

	4 Mealy Machines with Local Timers
	4.1 Syntax and Semantics
	4.2 Expanded Forms and Equivalence

	5 Learning MMLTs Efficiently
	5.1 Timer Queries
	5.2 Timed Counterexample Analysis
	5.3 Hypothesis Refinement
	5.4 Hypothesis Completion
	5.5 Output Query Complexity

	6 Practical Evaluation
	7 Conclusion and Future Work
	References

	Compositional Vulnerability Detection with Insecurity Separation Logic
	1 Introduction
	2 Motivation
	3 Attacker Model
	4 Insecurity Separation Logic (InsecSL)
	5 Symbolic Execution
	6 Implementation
	7 Evaluation
	8 Related Work and Conclusion
	References

	Dynamic Extrapolation in Extended Timed Automata
	1 Introduction
	2 Preliminary
	2.1 Extended Timed Automata
	2.2 Symbolic Semantics
	2.3 M-Extrapolation in XTA

	3 Dynamic Extrapolation
	3.1 Reducing Relevant Paths
	3.2 Dynamic LU-Extrapolation
	3.3 A Note on Timed Automata Networks

	4 Experiments and Results
	5 Conclusion
	References

	Formalizing Robustness Against Character-Level Perturbations for Neural Network Language Models
	1 Introduction
	2 Related Work
	2.1 Adversarial Manipulations in NLP Tasks
	2.2 Robustness of Neural Networks

	3 Formalization
	3.1 Formalizing Perturbations to General Inputs
	3.2 Formalizing Language Models
	3.3 Character-Level Perturbation

	4 Experiments
	4.1 Experiment Setup
	4.2 Evaluation

	5 Discussion
	6 Conclusion
	References

	Trace Models of Concurrent Valuation Algebras
	1 Introduction
	2 Ordered Valuation Algebras
	2.1 Extension of Local Operators

	3 Concurrent Valuation Algebras
	3.1 Reasoning in a CVA

	4 Tuple Systems
	5 Action Trace Model
	5.1 Interleaving Product
	5.2 Concatenating Product

	6 State Trace Model
	6.1 Gluing Product
	6.2 Strong Morphisms Between and

	7 Relative State Trace Model
	7.1 Colax Morphism from to rel

	8 Local Computation
	9 Conclusion
	References

	Branch and Bound for Sigmoid-Like Neural Network Verification
	1 Introduction
	2 Preliminaries
	2.1 Neural Networks
	2.2 Robustness Property
	2.3 Linear Relaxation of Sigmoid-Like Functions

	3 Branch and Bound for Sigmoid-Like Neural Networks
	4 Neuron Splitting
	5 Branching Strategy
	6 Experiments
	6.1 Experimental Setup
	6.2 Experimental Results
	6.3 Experiments on Branching Strategy

	7 Conclusion
	References

	Certifying Sequential Consistency of Machine Learning Accelerators
	1 Introduction
	2 Background
	2.1 Control Data Flow Graph
	2.2 Versatile Tensor Accelerator
	2.3 NVIDIA Deep Learning Accelerator

	3 Formalization
	4 Proof Sketch
	5 Case Studies
	5.1 Case Study 1: VTA
	5.2 Case Study 2: NVDLA

	6 Related Work
	7 Conclusions and Future Work
	References

	Guided Integration of Formal Verification in Assurance Cases
	1 Introduction
	2 Background
	2.1 AdvoCATE

	3 Tool-Supported Methodology for Integration of Formal Verification in Assurance Cases
	3.1 Methodology
	3.2 Tool Support in AdvoCATE

	4 Application Examples
	4.1 Application Example 1: Venus for Object Detection
	4.2 Application Example 2: VerifAI for NN Testing

	5 Conclusions
	References

	Validation-Driven Development
	1 Introduction
	2 Background
	2.1 Event-B
	2.2 Validation Obligations

	3 Validation-Driven Development
	3.1 Workflow
	3.2 Specification Structuring and Refinement

	4 Case Study
	4.1 System Description
	4.2 Problem Structuring
	4.3 Specification and Validation

	5 Related Work
	5.1 BDD Usage in Formal Requirement Specification
	5.2 Bridging the Gap Between Natural Language Requirements and Formal Specification
	5.3 Requirements Tracing

	6 Conclusion and Future Work
	References

	Incremental Property Directed Reachability
	1 Introduction
	2 Preliminaries
	3 Incremental Property Directed Reachability
	3.1 Extending PDR with an Internal State
	3.2 Incremental Property Directed Reachability (IPDR)

	4 Related Work
	5 Implementation and Experimental Evaluation
	6 Conclusions
	References

	Proving Local Invariants in ASTDs
	1 Introduction and Related Work
	2 Overview of the ASTD Notation
	2.1 Automaton
	2.2 Kleene Closure
	2.3 Sequence
	2.4 Guard

	3 Proof Obligations for Invariant Satisfaction
	3.1 Definitions
	3.2 Proof Obligation Generation
	3.3 Proof Obligations for Initialisations
	3.4 Proof Obligations for Local Transitions
	3.5 Proving Proof Obligations and Strengthening Invariants

	4 Conclusion
	References

	Doctoral Symposium Papers
	Formal Verification of the Burn-to-Claim Blockchain Interoperable Protocol
	1 Introduction
	2 An Overview of the Burn-to-Claim Protocol
	3 Specifications of the Protocol
	4 The Model for Cross-Blockchain Interactions
	5 System Verification
	5.1 Discussion

	6 Conclusion and Future Works
	References

	Early and Systematic Validation of Formal Models
	1 Introduction
	2 Background
	3 Challenges
	3.1 Structuring the Validation Workflow
	3.2 Validation and Refinement
	3.3 Creating the VDD Framework

	4 Results and Planned Contributions
	5 Conclusion and Future Work
	References

	Verifying Neural Networks by Approximating Convex Hulls
	1 Introduction
	2 Related Work
	2.1 Complete and Incomplete Approaches
	2.2 Single-Neuron and Multi-neuron Constraints

	3 Methodology
	3.1 Formalization of Neural Network
	3.2 Approximation of Neural Network

	4 Approach
	5 Evaluation
	6 Discussion and Conclusion
	6.1 Discussion
	6.2 Conclusion

	References

	Eager to Stop: Efficient Falsification of Deep Neural Networks
	1 Introduction
	2 Problem Statement and Related Work
	3 Proposed Solution
	4 Conclusion and Future Work
	References

	A Runtime Verification Framework for Cyber-Physical Systems Based on Data Analytics and LTL Formula Learning
	1 Introduction
	2 The Proposed Approach
	3 Case Study: Water Distribution System
	4 Conclusion
	References

	Unified Verification of Neural Networks' Robustness and Privacy in Computer Vision
	1 Introduction
	2 Preliminaries and Problem Statement
	2.1 Robustness Verification
	2.2 Privacy-Preserved Utility Task

	3 Proposed Solutions and Future Work
	References

	IoT Software Vulnerability Detection Techniques through Large Language Model
	1 Introduction
	2 Literature Review
	2.1 Large Language Model
	2.2 Prompt Engineering
	2.3 Challenges

	3 Proposed Approach
	4 Current Work
	4.1 Experiments
	4.2 Results and Analysis

	5 Future Work
	5.1 Dataset and Experiments
	5.2 Prompt Engineering

	6 Conclusion
	References

	Vulnerability Detection via Typestate-Guided Code Representation Learning
	1 Introduction
	2 Related Work
	3 TSVD Approach
	3.1 Typestate Sequence Generation
	3.2 Contrastive Typestate Sequence Embedding
	3.3 Typestate Sequence Selection
	3.4 Detection Model Training

	4 Evaluation
	5 Conclusion and Future Work
	References

	Correction to: Learning Mealy Machines with Local Timers
	Correction to: Chapter 4 in: Y. Li and S. Tahar (Eds.): Formal Methods and Software Engineering, LNCS 14308, https://doi.org/10.1007/978-981-99-7584-6_4

	Author Index

