
Hidden Stream Ciphers and TMTO
Attacks on TLS 1.3, DTLS 1.3, QUIC,

and Signal

John Preuß Mattsson(B)

Ericsson Research, Stockholm, Sweden
john.mattsson@ericsson.com

Abstract. Transport Layer Security (TLS) 1.3 and the Signal protocol
are very important and widely used security protocols. We show that the
key update function in TLS 1.3 and the symmetric key ratchet in Signal
can be modeled as non-additive synchronous stream ciphers. This means
that the efficient Time Memory Tradeoff Attacks for stream ciphers can
be applied. The implication is that TLS 1.3, QUIC, DTLS 1.3, and Signal
offer a lower security level against TMTO attacks than expected from the
key sizes. We provide detailed analyses of the key update mechanisms in
TLS 1.3 and Signal, illustrate the importance of ephemeral key exchange,
and show that the process that DTLS 1.3 and QUIC use to calculate
AEAD limits is flawed. We provide many concrete recommendations for
the analyzed protocols.

Keywords: TLS 1.3 · QUIC · DTLS 1.3 · Signal · Secret-key
Cryptography · Key Derivation · Ratchet · Key Chain · Stream
Cipher · Key Space · TMTO

1 Introduction

Transport Layer Security (TLS) is the single most important security protocol
in the information and communications technology industry. The latest version,
TLS 1.3 [26] is already widely deployed and is the default version on the Web and
in many other industries. Several other very important protocols such as QUIC
[16], EAP-TLS 1.3 [25], DTLS 1.3 [28], DTLS-SRTP [20], and DTLS/SCTP [32]
are based on the TLS 1.3 handshake. The US National Institute of Standards
and Technology (NIST) requires support for TLS 1.3 by January 1, 2024 [21].
Two nodes that support TLS 1.3 will never negotiate the obsolete TLS 1.2.

The Signal protocol [31] is very popular for end-to-end encryption of voice
calls and instant messaging conversations. In addition to the Signal messaging
service itself, the Signal protocol is used in WhatsApp, Meta Messenger, and
Android Messages. The Signal messaging service is approved for use by the U.S.
Senate and is recommended for the staff at the European Commission.

For efficient forward secure symmetric rekeying without Diffie-Hellman, TLS
1.3 and the Signal protocol use symmetric key ratchets in which a deterministic
Key Derivation Function (KDF) H() is frequently used to update and replace
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 251–267, 2023.
https://doi.org/10.1007/978-981-99-7563-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_12&domain=pdf
https://orcid.org/0009-0005-3807-7665
https://doi.org/10.1007/978-981-99-7563-1_12


252 J. Preuß Mattsson

the current key k = H(k). In Sect. 3 we show that the key update function
in TLS 1.3 and the symmetric key ratchet in Signal can be modeled as non-
additive synchronous stream ciphers. This means that the efficient Time Memory
Tradeoff Attacks for stream ciphers can be applied [3,8]. The implication is that
TLS 1.3, QUIC, DTLS 1.3, and Signal offer a lower security level against TMTO
attacks than expected from the key sizes. In Sects. 4 and 5 we provide detailed
analyses of the key update mechanisms in TLS 1.3 and Signal, illustrate the
importance of ephemeral key exchange, and show that the process that DTLS
1.3 and QUIC use to calculate AEAD limits is flawed. We provide many concrete
recommendations for the analyzed protocols. The upcoming revisions of the TLS
1.3 protocol [27] and DTLS/SCTP [33] have already been updated based on this
work, see Sect. 5.2.

2 Preliminaries

2.1 Signal Protocol and the Symmetric-Key Ratchet

The Signal protocol [7,9,31] consists of the Extended Triple Diffie-Hellman
(X3DH) key agreement protocol and the Double Ratchet algorithm. The Dou-
ble Ratchet algorithm consists of a symmetric-key ratchet and a Diffie-Hellman
ratchet. After the X3DH handshake is finished and at least one step of the Double
Ratchet has been performed, a 256-bit initial chain key k0 is derived (to sim-
plify things we only discuss one of the directions). A chain of keys k0, k1, k2 . . .
derived from the initial chain key k0 are used to protect all future messages
sent in one direction until the Diffie-Hellman ratchet is used again. Message i
is encrypted using a 256-bit message key Ki and an AEAD algorithm without
nonce. Each message key Ki is only used once. The associated data contains
identity information for both parties.

Before each message is sent, the message key and the next chain key are
computed using the symmetric-key ratchet [31]. The message key Ki and the
next chain key ki+1 are computed using a Key Derivation Function (KDF) as

Ki = H ′(ki) = KDF(ki, label1, n2) ,

ki+1 = H(ki) = KDF(ki, label2, n) .
(1)

Shortly after the symmetric-key ratchet, the old chain key ki is deleted, which
gives forward secrecy. Compromise of ki+1 does not allow an attacker to calcu-
late ki. The Signal Protocol does not mandate any specific KDF and labels but
recommends HMAC-SHA256 or HMAC-SHA512 and suggests 0x01 and 0x02.
The Signal Protocol does not mandate any specific AEAD algorithm but recom-
mends AES-256-CBC with HMAC-SHA256 or HMAC-SHA512. Irrespectively of
the used algorithms, the size n of the chain keys and the size n2 of the message
key are always 256 bits, i.e.,

n = n2 = 256 . (2)

Signal mandates that the symmetric-key ratchet is used for each message.
When to use the Diffie-Hellman ratchet to derive a new initial chain key k0 is



Hidden Stream Ciphers in TLS 1.3 and Signal 253

left for the implementation. The Signal technical specification [31] does not give
any recommendations or limits. Deriving a new initial chain key k0 for each
message or never deriving any new chain keys are both allowed according to the
specification but the Double Ratchet algorithm is designed for quite frequent use
of ephemeral Diffie-Hellman. Part of an example Double Ratchet key hierarchy
is shown in Fig. 1.

K0

K1

k0

k1

k2

...
k3K2

Fig. 1. Part of an example Double Ratchet key hierarchy.

2.2 TLS 1.3 and the Key Update Mechanism

TLS 1.3 [26] consists of a handshake protocol based on the theoretical SIGMA-I
protocol [18] and a record protocol. After the TLS handshake is finished an initial
traffic secret k0 = application_traffic_secret_0 is derived (to simplify things we
only discuss one of the directions). A chain of keys k0, k1, k2 . . . derived from
the initial traffic secret k0 are used by the record protocol to protect all future
messages sent in one direction over the connection including application data,
post-handshake messages, and alerts. The size of the traffic secrets depends on
the output size n of the hash function in the selected cipher suite. The five initial
TLS 1.3 cipher suites registered by the TLS 1.3 specification [26] are listed in
Table 1. As there are two senders (client and server) each connection has two
traffic secrets, one for each direction. For the rest of the connection, the keys in
the two directions are independent of each other and in the rest of the paper we
will only discuss one of the directions.

Once the handshake is complete, it is possible to update the traffic secret
using the key update mechanism. The next traffic secret ki+1 is computed using
a KDF based on HKDF-Expand [17] as

ki+1 = H(ki) = KDF(ki, "traffic upd", n) . (3)



254 J. Preuß Mattsson

Shortly after key update, the old traffic secret ki is deleted, which gives forward
secrecy. Compromise of ki+1 does not allow an attacker to calculate ki. The TLS
1.3 record protocol only uses ciphers with an Authenticated Encryption with
Associated Data (AEAD) interface. The AEAD key Ki and initialization vector
IVi are derived from ki as

Ki = KDF(ki, "key", n2) ,

IVi = KDF(ki, "iv", 96) .
(4)

The AEAD nonce for each record is calculated as IVi XOR S where S is the
record sequence number. The size of the key Ki depends on the AEAD key length
n2 in the selected cipher suite and is not equal to n as in the Signal Protocol.
The size of the nonce is 96 bits for all the cipher suites listed in Table 1. The
64-bit sequence number S is initially set to 0, increased for each message, and
then reset to 0 every time the key update mechanism is used.

Table 1. The five initial cipher suites in TLS 1.3 [26]

Cipher suite n n2

TLS_AES_128_GCM_SHA256 256 128
TLS_AES_256_GCM_SHA384 384 256
TLS_CHACHA20_POLY1305_SHA256 256 256
TLS_AES_128_CCM_SHA256 256 128
TLS_AES_128_CCM_8_SHA256 256 128

A single AEAD key Ki is typically used to protect many record protocol
messages. For each cipher suite, TLS 1.3 has a limit for the number of encryption
queries q. Key update is recommended before the limit is reached (every 224.5

records for AES-GCM), see Sect. 5.5 of [26]. Frequent use of the key update
mechanism is therefore expected in connections where a large amount of data is
transferred. TLS 1.3 does not restrict the number of key updates.

DTLS 1.3. Datagram Transport Layer Security (DTLS) 1.3 [28] is a datagram
security protocol that uses the TLS 1.3 handshake and cipher suites. The only
change to the key update mechanism is that DTLS 1.3 restricts the number of
key updates to 248. DTLS 1.3 also increases the requirements on key usage limits
to apply to both the sending and receiving side, i.e., key update is recommended
based on both the number of encryption queries q and the number of failed
decryption queries v.



Hidden Stream Ciphers in TLS 1.3 and Signal 255

QUIC. QUIC [16] is a general-purpose transport layer protocol with built in
security used in e.g., HTTP/3. QUIC uses the TLS 1.3 handshake and cipher
suites. Key update and key derivation are done in the same way as Eqs. (3)
and (4) but with the labels "quic ku", "quic key", and "quic iv" and that both
directions always do a key update at the same time instead of independently as
in TLS 1.3 and DTLS 1.3. QUIC does not restrict the number of key updates.
QUIC has similar key usage limits and requirements as DTLS 1.3.

3 Hidden Stream Ciphers and TMTO Attacks

3.1 Synchronous Stream Ciphers

As described in e.g., [19] the keystream zi in a synchronous stream cipher
depends only on the initial state σ0 and the position i but is independent of
the plaintexts p and the ciphertexts c. The output cycle of a synchronous stream
cipher can be described by the equations

σi+1 = f(σi) ,

zi = g(σi) , (5)
ci = h(zi, pi) ,

where σ0 is the initial state, f is the next-state (or update) function, g is the
output function, and h is the function used to combine the keystream with the
plaintext. In a binary additive stream cipher the function h is the exclusive or
function (XOR). The schematic can be seen in Fig. 2.

g zi

fσi
σi state = ki
zi keystream = (Ki, IVi)

σ0

Fig. 2. Initiation and output cycle of a synchronous stream cipher.

It turns out that the symmetric-key ratchet in Signal [31] and the key update
mechanism in TLS 1.3 [26] can be modeled as such (non-additive) synchronous
stream ciphers. The initial internal state is k0, the next-state function ki+1 =
H(ki) modifies the inner state, the output function zi = (Ki, IVi) = g(ki) uses



256 J. Preuß Mattsson

the inner state to produce “keystream” z0, z1, . . . , and the ciphertexts are a
function ci = h(zi, pi) of “keystream” and plaintext, where pi is all the application
data encrypted with the key Ki.

3.2 Time Memory Trade-Off Attacks

Stream ciphers with internal states are vulnerable to Time Memory Trade-
Off (TMTO) attacks. There are various TMTO attacks on synchronous stream
ciphers such as Babbage-Golić [3] and Biryukov-Shamir [8]. These attacks take
advantage of the internal state and apply to the Signal symmetric-key ratchet
and the TLS 1.3 key update as well. TMTO attacks allow an attacker to find
an internal state ki from a set of output strings y0, y1, . . . , yD−1. When the
state ki is found, the attacker can derive all the future states ki+1, ki+2, . . . , key
material (Ki, IVi), (Ki+1, IVi+1), . . . , and plaintexts pi, pi+1, . . . by running the
keystream generator forward from the known state ki. Both TMTO attacks are
summarized in [8].

Babbage-Golić. In Babbage-Golić [3], the attacker tries to find one of the
many internal states instead of the key. The attacker generates M random
states k0, k1, . . . , kM−1 from the total number of states N , calculates an out-
put string yj for each state kj , and stores the pairs (kj , yj) ordered by yj . In the
real-time phase the attacker collects D output strings y0, y1, . . . , yi, . . . , yD−1.
Requirements on the output strings are explained in Sect. 3.3. By the birthday
paradox the attacker can find a collision yi = yj and recover an inner state ki
in time T = N/M , memory M , data D, and preprocessing time P = M , where
1 ≤ T ≤ D. Example points on this tradeoff relation is P = T = M = D = N1/2,
as well as and T = D = N1/4 and P = M = N3/4. This is very similar to a
normal birthday attack where an attacker can recover a single key with the same
complexities. The difference is that in the Babbage-Golić attack, the attacker,
on average, recovers the last D/2 states ki, . . . , kD−2, kD−1 as well as any future
states. If D is limited, a reasonable assessment (given that the attacker recovers
≈ D states) is that the security is reduced by

min(d, n/2) , (6)

where d = log2 D and n = log2 N . If D is unlimited the security is reduced by
n/2 bits when the attacker uses the tradeoff P = T = M = D = N1/2.

Biryukov-Shamir. In Hellman’s attack on block ciphers [12], the attacker
generates tables covering the N possible keys, but only stores the leftmost
and rightmost columns in the table. Biryukov-Shamir [8] combines the Hell-
man and Babbage-Golić attacks. The attacker generates tables covering N/D
states instead of N keys in Hellman’s attack [12]. In the real-time phase the
attacker collects D output strings y0, y1, . . . , yi, . . . , yD−1 and can recover an
inner state ki in time T = N2/(M2D2) and preprocessing time P = N/D,



Hidden Stream Ciphers in TLS 1.3 and Signal 257

where D2 ≤ T ≤ N . Example points on this tradeoff relation is P = T = N2/3

and M = D = N1/3, as well as P = N3/4, D = N1/4, and M = T = N1/2.
Compared to Hellman’s attack on block ciphers [12], Biryukov-Shamir’s attack
on stream ciphers runs D2 times faster and the attacker, on average, recovers the
last D/2 states ki, . . . , kD−2, kD−1 as well as any future states. If D is unlimited
the security is reduced by n/2 bits.

3.3 TMTO Attacks on Signal and TLS 1.3

The effective stream cipher specific time memory trade-offs (TMTO) will be
possible as long as the state size is less than twice the security level. As the name
implies, the trade-off attacks give the attacker many possibilities. In addition to
the discussion above, an attacker might also launch attacks where the probability
of recovering a key is notably less than 1.

Based on these attacks, modern stream ciphers such as SNOW-V [10] follow
the design principle that the security level is at most n/2 and that the state size
in bits n should therefore be at least twice the security level. In his attack paper,
Babbage [3] states that this principle is desirable. Zenner [34] states that a state
size at least twice the security level is a necessary requirement for security. This
is a reasonable requirement, especially if the number of key updates is unlimited.

The requirements on the output strings y0, y1, . . . , yD−1 depend on the func-
tion h() used to combine the keystream with the plaintext ci = h(zi, pi). If
h() like AES-GCM, AES-CCM, and ChaCha20-Poly1305 is a combination of an
additive stream cipher and a MAC the attack can be done with partially known
and different plaintexts where yi is a substring of ci ⊕pi. If h() is AES-CBC, the
attack requires that all the plaintexts have the same known prefix and yi is a
prefix of the ciphertext ci. See Sect. 3.4 for a discussion on the practicality of the
equal plaintext prefix model. The standard requirement today is that protocols
should provide confidentiality against adaptive chosen ciphertext attacks.

TLS 1.3 and Signal do not explicitly state the intended security level, but
the key length of the AEAD key can typically be seen as the intended security
level. If we use the key length of the AEAD keys Ki as the security level, we
see that TLS 1.3 and Signal do not follow design principles for stream ciphers.
The reason for this is likely that the non-obvious stream cipher structure was
overseen. The state size in Signal is always equal to the security level and the
state size in TLS 1.3 is in some cases equal or 1.5 times the security level. As a
result, TLS 1.3 and Signal offer far less than the expected security against these
types of TMTO attacks.

3.4 Equal Plaintext Prefix

Being able to make stronger assumptions than that plaintexts are in English,
Italian, German, or some other language can significantly improve cryptanalysis.
The cryptanalysis of Enigma ciphertext was e.g., improved by the assumption
that certain German messages were likely to be the stereotypical phrase “Keine
besonderen Ereignisse” or begin with the stereotypical prefix “An die Gruppe”.



258 J. Preuß Mattsson

In the computer age we can almost always make such stronger assumptions.
The application data sent over TLS is almost always using some protocol, which
most likely has (known) fixed information fields such as headers. One of many
examples is HTTP/1.1 [11] where the header for each request and response might
begin with a lot of partly known data elements such as

GET /somewhere/fun/ HTTP/1.1
Host: www.example.com
User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l
Accept-Language: sv, tlh

HTTP/1.1 200 OK
Date: Thu, 12 August 2021 04:16:35 GMT
Server: Apache
Last-Modified: Mon, 5 August 2019 11:00:26 GMT
ETag: "34aa387-d-1568eb00"
Accept-Ranges: bytes
Content-Length: 51
Vary: Accept-Encoding
Content-Type: text/plain

Assuming partially known different plaintexts or that all the prefixes of the
plaintexts are the same are very reasonable assumptions that are likely to apply
in practice and can be used by an attacker. But note that protocols that do not
provide confidentiality against adaptive chosen ciphertext attacks are typically
to be considered broken.

4 Signal Protocol - Analysis and Recommendations

The Signal technical specification [31] does not aim for interoperability between
different implementations and therefore has fewer details than the TLS 1.3 spec-
ification [26]. As the Signal protocol documentation does not give any recom-
mendations or limits on how many times the symmetric-key ratchet can be used
before the Diffie-Hellman ratchet is used we have to assume that in the worst
case the symmetric-key ratchet can be used an unlimited number of times. We
have not analyzed any implementations but even if attempts are made to trans-
mit fresh ephemeral Diffie-Hellman keys as soon as possible, an attacker can
hinder Diffie-Hellman to happen by blocking communication in one direction. In
this case the Signal protocol gives a theoretical security level of 128 bits against
TMTO attacks irrespectively of the used algorithms. This aligns with some of
the recommended algorithms such as X25519 and SHA-256, but not other rec-
ommended algorithms such as X448, SHA-512, and AES-256, and not with the
256-bit key length of the message keys Ki.

A significant problem with the X3DH protocol [31] is that is does not mandate
ephemeral Diffie-Hellman (as stated in the specification, the server might be all
out of one-time Diffie-Hellman keys) and when ephemeral Diffie-Hellman is used



Hidden Stream Ciphers in TLS 1.3 and Signal 259

the ephemeral Diffie-Hellman keys might be quite old. The X3DH specification
[31] explains that this can be mitigated by quickly performing ephemeral Diffie-
Hellman post-X3DH, but this is not mandated or even clearly recommended.
The Double ratchet does not help as the initiating party can send messages
before receiving an ephemeral public key from the responding party. Such mes-
sages provide neither forward secrecy with respect to long-term keys nor replay
protection. Old ephemeral Diffie-Hellman keys are problematic as they are to
be considered long term-keys and therefore cannot be used to provide forward
secrecy with respect to long-term keys, which often is a desired property, promised
for example by the TLS 1.3 handshake, see Appendix E.1 of [26].

As a first step we recommend that the Signal protocol documentation man-
dates a low limit on the number of times the symmetric-key ratchet can be used
and gives clear security levels provided by the Signal protocol for different choices
of algorithms. A limit on the number of times the symmetric-key ratchet can be
used puts a limit on the data variable D, which following Eq. (6) improves the
security level against TMTO attacks. With a low limit, the Signal protocol would
provide a theoretical security level close to 256 bits when 256-bit algorithms are
used, see Table 2.

We recommends that the Signal protocol documentation mandates quickly
performing ephemeral Diffie-Hellman post-X3DH if the X3DH protocol did not
include ephemeral Diffie-Hellman with recently generated keys. Before ephemeral
Diffie-Hellman with fresh keys has been performed, the Initiator should restrict
the type of messages that can be sent similar to zero round-trip time (0-RTT)
data in TLS 1.3 [26], where HTTPS implementations typically only allow GET
requests with no query parameters.

Mandating frequent use of ephemeral Diffie-Hellman also limits the impact
of key compromise and forces an attacker to do dynamic exfiltration [5]. For
IPsec, ANSSI [1] recommends enforcing periodic rekeying with ephemeral Diffie-
Hellman every hour and every 100 GB of data, but we think that the Signal
Protocol can and should have much stricter requirements than so. The impact of
static key exfiltration with different rekeying mechanisms in TLS 1.3 is illustrated
in Fig. 3. The symmetric-key ratchet in Signal has similar properties as the TLS
1.3 key_update and the Diffie-Hellman ratchet has similar properties as the TLS
1.3 rekeying with (EC)DHE.

We also recommend that the Signal protocol allows and recommends use of
512-bit chain keys together with the 256-bit message keys.

5 TLS 1.3 Family - Analysis and Recommendations

5.1 Time Memory Trade-Off Attacks

As TLS 1.3 [26] and QUIC [16] do not give any recommendations or limits on
how many times key update can be used we have to assume that in the worst
case the symmetric-key ratchet can be used an unlimited number of times (we
have not analyzed any implementations). In this case TLS 1.3 and QUIC with
TLS_CHACHA20_POLY1305_SHA256 gives a theoretical security level of 128



260 J. Preuß Mattsson

Table 2. Security level as a function of D

N D Security level

2256 ∞ 128
2256 264 192
2256 232 224
2256 216 240
2256 20 256

bits against TMTO attacks and TLS_AES_256_GCM_SHA384 gives a maxi-
mum theoretical security level of 192 bits against TMTO attacks irrespectively
of the used key exchange algorithm. This does not align with the 256-bit key
length of the traffic secrets Ki. As stated in [24], the ChaCha20 cipher is designed
to provide 256-bit security.

As DTLS 1.3 [28] restricts the number of key updates to 248, DTLS 1.3 with
TLS_CHACHA20_POLY1305_SHA256 gives a theoretical security level of 208
bits, which does not align with the 256-bit key length of the traffic secrets Ki.
Due to the restricted number of key updates, we assert that DTLS 1.3 with
TLS_AES_256 _GCM_SHA384 gives 256 bits security if it is used with an
equally secure key exchange algorithm.

As a first step we recommend that TLS 1.3 [26] and QUIC [16] man-
date the same 248 limit as DTLS 1.3 on the number of times a key update
can be used and give clear security levels provided by different choices of
algorithms. A limit on the number of key updates puts a limit on the
data variable D, which following Eq. (6) improves the security level against
TMTO attacks. With a 248 limit, TLS 1.3 and QUIC would provide a the-
oretical security equal to the length of the traffic secrets Ki for all cipher
suites except TLS_CHACHA20_POLY1305_SHA256. Note that the cipher
CHACHA20_POLY1305_SHA256 does give 256-bit security in TLS 1.3 when
key update is not used. CHACHA20_POLY1305_SHA256 also provides 256-bit
security in TLS 1.2 when used with the rekeying mechanism renegotiation. We
recommend that a new cipher suite TLS_CHACHA20_POLY1305_SHA512 is
standardized for use with TLS 1.3.

TLS 1.3 should clearly state the intended security levels. We also recommend
that TLS 1.3 mandates traffic secrets twice the AEAD key size for new cipher
suites. As an alternative, the transcript hash could be used as context in the key
update instead of the empty context used today.

5.2 Key Exfiltration Attacks and Frequent Ephemeral
Diffie-Hellman

Instances of large-scale monitoring attacks involving key exfiltration have been
documented [15]. Moreover, it’s highly probable that numerous additional occur-
rences have transpired clandestinely, escaping public acknowledgment. The



Hidden Stream Ciphers in TLS 1.3 and Signal 261

avenues through which malicious entities can acquire keys are diverse, encom-
passing methods such as physical attacks, hacking, social engineering attacks,
espionage, or by simply demanding access to keying material with or without
a court order. Exfiltration attacks pose a significant and pressing cybersecurity
threat [2].

The impact of static key exfiltration [5] with different rekeying mechanisms
in TLS 1.3 is illustrated in Fig. 3. As can be seen the key update mechanism gives
significantly worse protection against key exfiltration attacks than ECDHE. An
attacker can perform a single static key exfiltration and then passively eavesdrop
on all information sent over the connection even if the key update mechanism
is used. With frequent ephemeral key exchange such as ECDHE, an attacker
is forced to do active man-in-the-middle attacks or to do dynamic key exfiltra-
tion, which significantly increases the risk of discovery for the attacker [5]. The
cost and risk associated with discovery is intricately tied to deployment specifics
and the nature of the employed attack. In instances of a compromised system,
automating key exfiltration could normalize costs between static and dynamic
approaches. However, an augmented risk still stems from increased amounts of
traffic volumes and log entries. Contrarily, in attack scenarios like side-channel
attacks on Internet of Things (IoT) devices mandating physical proximity, the
distinction between static and dynamic key exfiltration is substantial - encom-
passing both cost implications and the risk of discovery.

Fig. 3. TLS 1.3 - Impact of static key exfiltration in time period T3 when psk_ke,
key_update, and (EC)DHE are used.



262 J. Preuß Mattsson

Two essential zero trust principles are to assume that breach is inevitable or
has likely already occurred [23], and to minimize impact when breach occur [22].
One type of breach is key compromise or key exfiltration. As the key update
mechanism gives significantly worse protection against key exfiltration attacks
than ECDHE, TLS 1.3, DTLS 1.3, and QUIC should mandate frequent use of
ephemeral Diffie-Hellman. For IPsec, ANSSI [1] recommends enforcing periodic
rekeying with ephemeral Diffie-Hellman every hour and every 100 GB of data,
we recommend the TLS 1.3 handshake to recommend this for non-constrained
implementations. Constrained implementations should also mandate periodic
rekeying with ephemeral Diffie-Hellman but could have a maximum period of
1 day, 1week, or 1month depending on how constrained the device and the radio
is.

From what we can gather from IETF mailing lists, the standardization of
TLS 1.3 might have placed too much emphasis on forward secrecy, possibly
overlooking the significance of the additional security properties offered by fre-
quent ephemeral key exchanges. In addition to ephemeral key exchange during
a connection, TLS 1.3 also removed the possibility to perform post-handshake
server authentication. The implications are that TLS 1.3, DTLS 1.3, and QUIC
are unsuitable for long-lived connections and that protocols like DTLS/SCTP
have to be redesigned to be able to frequently set up new connections. The
upcoming revisions of the TLS 1.3 protocol and DTLS/SCTP have already been
updated with descriptions and recommendations for frequent use of ephemeral
Diffie-Hellman based on this work. See Appendix F.1 of [27] and Sects. 3.4 and
9.1 of [33].

5.3 Analysis of the Procedure Used to Calculate AEAD Limits

As specified in the TLS 1.3 and DTLS 1.3 specifications, implementations should
do a key update before reaching the limits given in Sect. 5.5 of [26] and Sect. 4.5.3
of [16]. In QUIC key update must be done before the limits in Sect. 6.6 of [16]
have been reached.

In TLS 1.3 the limits are just given without much further explanation. In
DTLS 1.3 and QUIC procedures used to calculate the rekeying limits given in
Appendix B of [16,28]. The DTLS 1.3 procedure specified in Appendix B of
[28] suggest rekeying when the single-key confidentiality advantage (IND-CPA)
is greater than 2−60 or when the single-key integrity advantage (IND-CTXT) is
greater than 2−57. QUIC has a similar procedure.

Our analysis is that these procedures are flawed both theoretical and in
practice. The procedures uses single-key advantages to suggest rekeying which
transform the problem to a multi-key problem and invalidates the single-key cal-
culation used to suggest the rekeying. Doing rekeying too early before the confi-
dentiality or integrity of the algorithm decreases significantly faster than linear
lowers the practical security and can create denial-of-service problems. The exact
multi-key advantage depends on the algorithm but could be as much as m times
its single-key advantage where m is the number of keys [6]. Multi-key advantages
for the use of AES-GCM in TLS 1.3 is given by [6,13], which concludes that



Hidden Stream Ciphers in TLS 1.3 and Signal 263

the nonce randomization do improve multi-key security for AES-GCM. We note
that the nonce randomization do not improve security for ChaCha20-Poly1305 as
n = n2 and the 256-bit key Ki and the 96-bit IV are both derived from a 256-bit
key ki without any additional entropy. CHACHA20_POLY1305_SHA256 was
suitable for TLS 1.2 but is not suitable for TLS 1.3. Requiring rekeying after
a low number of forgery attempts might be a denial-of-service problem as an
attacker can affect availability with a small number of forgeries.

In general, an algorithm with a confidentiality advantage that is linear in
the number of encryption queries q, e.g., CA = q/297, and with an integrity
advantage that is linear in the number of failed decryption queries v, e.g., IA =
v/2103, does not need rekeying because of the advantages. But as explained in
Sect. 5.2, rekeying is beneficial to limit the impact of a key compromise.

The confidentiality rekeying limits for AES-GCM [26] and AES-CCM [28]
and the integrity rekeying limit for AES-CCM [28] coincides pretty well with
when the confidentiality and integrity advantages starts to grow significantly
faster than linear. These rekeying limits do significantly improve security. We do
not know if this was luck or if the magic numbers 2−60 and 2−57 were chosen to
achieve this.

The integrity limits for AES-GCM and ChaCha20-Poly1305 do not improve
security as the single-key integrity advantages are bounded by a function lin-
ear in v, the number of forgery attempts. The forgery probability is therefore
independent of the rekeying. Rekeying likely lowers the multi-key security but is
unlikely to happen in practice as the limits are 236 forgery attempts.

For CCM_8 the procedure gives illogical results unsuitable for practical use.
Looking at the bound for the CCM_8 integrity advantage it is easy to see that
CCM_8 performs very close to an ideal MAC for quite large number of failed
decryption queries v. CCM_8 in itself is not a security problem for use cases
such as media encryption or the Internet of Things, but the recommendations
in [28] and [16] for CCM_8 are significant security problems as they introduce a
denial-of-service problem, lowers security against TMTO attacks, and likely low-
ers the multi-key security. The denial-of-service problem comes from the DTLS
1.3 procedure recommending rekeying after 128 forgery attempts instead of the
correct value v ≈ 236 when the CCM_8 integrity advantage starts to grow sig-
nificantly faster than linear. Applying the procedure on an ideal MAC with tag
length 64 bits, i.e., an algorithm with integrity advantage v/264, gives the same
illogical result, that the ideal MAC should be rekeyed extremely often.

While the rekeying recommendations for CCM_8 are illogical, we do agree
with the decision to make CCM_8 with its 64-bit tags not recommended for
general usage. For constrained IoT, we do however not see any practical problems
whatsoever. To have a 50% change of a single forgery, an attacker would need to
send one billion packets per second for 300 years. This is completely unfeasible
for constrained radio systems and the chance of this happening is negligible
compared to the risk of data corruption due to hardware failure or cosmic rays.

We suggest that the procedures in Appendix B of [28] and [16] are deprecated
in future versions. If any future procedure is needed it should be based on security



264 J. Preuß Mattsson

per packet/byte/time instead of the practically irrelevant measures security per
key/connection. Keeping some limit low per key or connection and then suggest
rekeying or setting up a new connection will not increase practical security. If no
good procedure can be found it is much better to just state limits as was done
in [26], that is at least not wrong.

6 Conclusions, Recommendations, and Future Work

While we do not believe that the TMTO attacks pose a practical attack vec-
tor today, the attacks points to a fundamental design flaw in the key update
mechanisms in TLS 1.3 and Signal, alternatively a lack of clearly stated security
levels.

We find the design of the Signal protocol with a symmetric-key ratchet
combined with a Diffie-Hellman ratchet very appealing as the protocol seems
designed for frequent use of ephemeral Diffie-Hellman. It is possible that actual
implementations already have hard limits on the number of times the symmetric-
key ratchet can be used, meaning that they do provide close to 256-bit security
and follows best practice when it comes to limit the impact of a key compromise.

We find several of the design choices in the TLS 1.3 handshake non-optimal
resulting in that TLS 1.3 is problematic to use as a drop-in replacement of TLS
1.2. The standardization of TLS 1.3 might have placed too much emphasis on
forward secrecy, possibly overlooking the significance of the additional security
properties offered by frequent ephemeral key exchanges. Renegotiation was essen-
tial for frequent re-authentication and rekeying with ECDHE in DTLS/SCTP
and the fourth flight in TLS 1.2 was essential for EAP-TLS. These problems can
be overcome by using application data as a fourth flight [25] and by setting up
new connections instead of using renegotiation [32].
Based on the analysis we recommend the Signal Protocol to:

– Introduce strict limits on the use of the symmetric-key ratchet.
– Mandate frequent use of the Diffie-Hellman ratchet based on time and data.
– Mandate ephemeral Diffie-Hellman with fresh keys before sending messages.
– Allow and recommend use of 512-bit chain keys.
– Clearly state the intended security level.

Based on the analysis we recommend TLS 1.3, DTLS 1.3, and QUIC to:

– Introduce strict limits on the use of the key update mechanism.
– Mandate frequent rekeying with EC(DHE) based on time and data.
– Standardize TLS_CHACHA20_POLY1305_SHA512.
– Mandate traffic secrets twice the AEAD key size for new cipher suites.
– Deprecate the procedure used for DTLS 1.3 and QUIC to calculate key limits.
– Clearly state the intended security levels.

Future work could evaluate the impact of this work on other protocols using
symmetric ratchets such as MLS [4], EDHOC [29], and Key Update for OSCORE



Hidden Stream Ciphers in TLS 1.3 and Signal 265

[14,30] which have recently been standardized or are currently undergoing stan-
dardization. Future work should also evaluate implementations and deployments
of the protocols. There is often significant differences between a specification,
implementations of the specification, and actual deployments. One important
aspect to investigate would be how often actual deployments perform symmetric
key update and ephemeral Diffie-Hellman and if an active attacker can influence
the frequency.

Acknowledgements. The authors would like to thank Patrik Ekdahl, Loïc Ferreira,
Alexander Maximov, Ben Smeets, Erik Thormarker, and other reviewers for their help-
ful comments and suggestions.

References

1. Agence nationale de la sécurité des systèmes d’information: Recommendations for
securing networks with IPsec (2015). https://www.ssi.gouv.fr/uploads/2015/09/
NT_IPsec_EN.pdf

2. APNIC: how to: detect and prevent common data exfiltration attacks. https://blog.
apnic.net/2022/03/31/how-to-detect-and-prevent-common-data-exfiltration-
attacks/

3. Babbage, S.: Improved “exhaustive search” attacks on stream ciphers. In: 1995
European Convention on Security and Detection, pp. 161–166 (1995). https://doi.
org/10.1049/cp:19950490

4. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon,
K.: The Messaging Layer Security (MLS) Protocol. RFC 9420 (2023). https://doi.
org/10.17487/RFC9420

5. Barnes, R., et al.: Confidentiality in the face of pervasive surveillance: a threat
model and problem statement. RFC 7624 (2015). https://doi.org/10.17487/
RFC7624

6. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 247–276. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4_10

7. Bienstock, A., Fairoze, J., Garg, S., Mukherjee, P., Raghuraman, S.: A more com-
plete analysis of the signal double ratchet algorithm. Cryptology ePrint Archive,
Report 2022/355 (2022). https://eprint.iacr.org/2022/355

8. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_1

9. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal secu-
rity analysis of the signal messaging protocol. Cryptology ePrint Archive, Report
2016/1013 (2016). https://eprint.iacr.org/2016/1013

10. Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: SNOW-Vi: an extreme per-
formance variant of SNOW-V for lower grade CPUs. Cryptology ePrint Archive,
Report 2021/236 (2021). https://eprint.iacr.org/2021/236

11. Fielding, R.T., Nottingham, M., Reschke, J.: HTTP Semantics. RFC 9110 (2022).
https://doi.org/10.17487/RFC9110

12. Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980). https://ee.stanford.edu/~hellman/publications/36.pdf

https://www.ssi.gouv.fr/uploads/2015/09/NT_IPsec_EN.pdf
https://www.ssi.gouv.fr/uploads/2015/09/NT_IPsec_EN.pdf
https://blog.apnic.net/2022/03/31/how-to-detect-and-prevent-common-data-exfiltration-attacks/
https://blog.apnic.net/2022/03/31/how-to-detect-and-prevent-common-data-exfiltration-attacks/
https://blog.apnic.net/2022/03/31/how-to-detect-and-prevent-common-data-exfiltration-attacks/
https://doi.org/10.1049/cp:19950490
https://doi.org/10.1049/cp:19950490
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC7624
https://doi.org/10.17487/RFC7624
https://doi.org/10.1007/978-3-662-53018-4_10
https://doi.org/10.1007/978-3-662-53018-4_10
https://eprint.iacr.org/2022/355
https://doi.org/10.1007/3-540-44448-3_1
https://eprint.iacr.org/2016/1013
https://eprint.iacr.org/2021/236
https://doi.org/10.17487/RFC9110
https://ee.stanford.edu/~hellman/publications/36.pdf


266 J. Preuß Mattsson

13. Hoang, V.T., Tessaro, S., Thiruvengadam, A.: The multi-user security of GCM,
revisited: tight bounds for nonce randomization. In: Lie, D., Mannan, M., Backes,
M., Wang, X. (eds.) ACM CCS 2018: 25th Conference on Computer and Com-
munications Security, pp. 1429–1440. ACM Press, Toronto, ON, Canada, 15–19
October 2018. https://doi.org/10.1145/3243734.3243816

14. Höglund, R., Tiloca, M.: Key update for OSCORE (KUDOS). Internet-Draft draft-
ietf-core-oscore-key-update-05, Internet Engineering Task Force (2023). https://
datatracker.ietf.org/doc/draft-ietf-core-oscore-key-update/05/, work in Progress

15. Intercept, T.: How spies stole the keys to the encryption castle. https://
theintercept.com/2015/02/19/great-sim-heist/

16. Iyengar, J., Thomson, M.: QUIC: a UDP-based multiplexed and secure transport.
RFC 9000 (2021). https://doi.org/10.17487/RFC9000

17. Krawczyk, D.H., Eronen, P.: HMAC-based extract-and-expand key derivation func-
tion (HKDF). RFC 5869 (2010). https://doi.org/10.17487/RFC5869

18. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4_24

19. Mattsson, J.: Stream cipher design - an evaluation of the eSTREAM candidate
Polar Bear. Master’s thesis, Royal Institute of Technology (2006). https://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.108.40

20. McGrew, D., Rescorla, E.: Datagram transport layer security (DTLS) extension
to establish keys for the secure real-time transport protocol (SRTP). RFC 5764
(2010). https://doi.org/10.17487/RFC5764

21. McKay, K., Cooper, D.: Guidelines for the selection, configuration, and use of
transport layer security (TLS) implementations (2019). https://doi.org/10.6028/
NIST.SP.800-52r2

22. National Institute of Standards and Technology: Implementing a zero trust
architecture (2023). https://www.nccoe.nist.gov/sites/default/files/2023-07/zta-
nist-sp-1800-35b-preliminary-draft-3.pdf

23. National Security Agency: Embracing a zero trust security model (2021). https://
media.defense.gov/2021/Feb/25/2002588479/-1/-1/0/CSI_EMBRACING_ZT_
SECURITY_MODEL_UOO115131-21.PDF

24. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF protocols. RFC 8439
(2018). https://doi.org/10.17487/RFC8439

25. Preuß Mattsson, J., Sethi, M.: EAP-TLS 1.3: using the extensible authentication
protocol with TLS 1.3. RFC 9190 (2022). https://doi.org/10.17487/RFC9190

26. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446
(2018). https://doi.org/10.17487/RFC8446

27. Rescorla, E.: The Transport layer security (TLS) protocol version 1.3. Internet-
Draft draft-ietf-tls-rfc8446bis-09, Internet Engineering Task Force (2023). https://
datatracker.ietf.org/doc/draft-ietf-tls-rfc8446bis/09/, work in Progress

28. Rescorla, E., Tschofenig, H., Modadugu, N.: The datagram transport layer secu-
rity (DTLS) protocol version 1.3. RFC 9147 (2022). https://doi.org/10.17487/
RFC9147

29. Selander, G., Preuß Mattsson, J., Palombini, F.: Ephemeral Diffie-Hellman
over COSE (EDHOC). Internet-Draft draft-ietf-lake-edhoc-22, Internet Engineer-
ing Task Force (2023). https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/22/,
work in Progress

https://doi.org/10.1145/3243734.3243816
https://datatracker.ietf.org/doc/draft-ietf-core-oscore-key-update/05/
https://datatracker.ietf.org/doc/draft-ietf-core-oscore-key-update/05/
https://theintercept.com/2015/02/19/great-sim-heist/
https://theintercept.com/2015/02/19/great-sim-heist/
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC5869
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.40
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.40
https://doi.org/10.17487/RFC5764
https://doi.org/10.6028/NIST.SP.800-52r2
https://doi.org/10.6028/NIST.SP.800-52r2
https://www.nccoe.nist.gov/sites/default/files/2023-07/zta-nist-sp-1800-35b-preliminary-draft-3.pdf
https://www.nccoe.nist.gov/sites/default/files/2023-07/zta-nist-sp-1800-35b-preliminary-draft-3.pdf
https://media.defense.gov/2021/Feb/25/2002588479/-1/-1/0/CSI_EMBRACING_ZT_SECURITY_MODEL_UOO115131-21.PDF
https://media.defense.gov/2021/Feb/25/2002588479/-1/-1/0/CSI_EMBRACING_ZT_SECURITY_MODEL_UOO115131-21.PDF
https://media.defense.gov/2021/Feb/25/2002588479/-1/-1/0/CSI_EMBRACING_ZT_SECURITY_MODEL_UOO115131-21.PDF
https://doi.org/10.17487/RFC8439
https://doi.org/10.17487/RFC9190
https://doi.org/10.17487/RFC8446
https://datatracker.ietf.org/doc/draft-ietf-tls-rfc8446bis/09/
https://datatracker.ietf.org/doc/draft-ietf-tls-rfc8446bis/09/
https://doi.org/10.17487/RFC9147
https://doi.org/10.17487/RFC9147
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/22/


Hidden Stream Ciphers in TLS 1.3 and Signal 267

30. Selander, G., Preuß Mattsson, J., Palombini, F., Seitz, L.: Object security for
constrained RESTful environments (OSCORE). RFC 8613 (2019). https://doi.
org/10.17487/RFC8613

31. Signal: signal technical documentation. https://signal.org/docs/
32. Tüxen, M., Rescorla, E., Seggelmann, R.: Datagram transport layer security

(DTLS) for stream control transmission protocol (SCTP). RFC 6083 (2011).
https://doi.org/10.17487/RFC6083

33. Westerlund, M., Preuß Mattsson, J., Porfiri, C.: Datagram transport layer security
(DTLS) over stream control transmission protocol (SCTP). Internet-Draft draft-
ietf-tsvwg-dtls-over-sctp-bis-06, Internet Engineering Task Force (2023). https://
datatracker.ietf.org/doc/draft-ietf-tsvwg-dtls-over-sctp-bis/06/, work in Progress

34. Zenner, E.: On the role of the inner state size in stream ciphers. Cryptology ePrint
Archive, Report 2004/003 (2004). https://eprint.iacr.org/2004/003

https://doi.org/10.17487/RFC8613
https://doi.org/10.17487/RFC8613
https://signal.org/docs/
https://doi.org/10.17487/RFC6083
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-dtls-over-sctp-bis/06/
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-dtls-over-sctp-bis/06/
https://eprint.iacr.org/2004/003

	Hidden Stream Ciphers and TMTO Attacks on TLS 1.3, DTLS 1.3, QUIC, and Signal
	1 Introduction
	2 Preliminaries
	2.1 Signal Protocol and the Symmetric-Key Ratchet
	2.2 TLS 1.3 and the Key Update Mechanism

	3 Hidden Stream Ciphers and TMTO Attacks
	3.1 Synchronous Stream Ciphers
	3.2 Time Memory Trade-Off Attacks
	3.3 TMTO Attacks on Signal and TLS 1.3
	3.4 Equal Plaintext Prefix

	4 Signal Protocol - Analysis and Recommendations
	5 TLS 1.3 Family - Analysis and Recommendations
	5.1 Time Memory Trade-Off Attacks
	5.2 Key Exfiltration Attacks and Frequent Ephemeral Diffie-Hellman
	5.3 Analysis of the Procedure Used to Calculate AEAD Limits

	6 Conclusions, Recommendations, and Future Work
	References


