
Jing Deng
Vladimir Kolesnikov
Alexander A. Schwarzmann (Eds.)

LN
CS

 1
43

42

22nd International Conference, CANS 2023
Augusta, GA, USA, October 31 – November 2, 2023
Proceedings

Cryptology and
Network Security

Lecture Notes in Computer Science 14342
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Jing Deng · Vladimir Kolesnikov ·
Alexander A. Schwarzmann
Editors

Cryptology and
Network Security
22nd International Conference, CANS 2023
Augusta, GA, USA, October 31 – November 2, 2023
Proceedings

Editors
Jing Deng
University of North Carolina
Greensboro, NC, USA

Alexander A. Schwarzmann
Augusta University
Augusta, GA, USA

Vladimir Kolesnikov
Georgia Institute of Technology
Atlanta, GA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-99-7562-4 ISBN 978-981-99-7563-1 (eBook)
https://doi.org/10.1007/978-981-99-7563-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2023, corrected publication 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

https://orcid.org/0000-0002-2508-1420
https://orcid.org/0000-0003-3041-1006
https://orcid.org/0000-0002-0211-1244
https://doi.org/10.1007/978-981-99-7563-1

Preface

The International Conference on Cryptology and Network Security (CANS) is a premier
forum for presenting research in the field of cryptology and network security. The confer-
ence includes in its scopeoriginal contributions fromacademic, industry, andgovernment
institutions on all theoretical and practical cryptology and network security aspects.

This volume contains the papers presented at the 22nd International Conference on
Cryptology and Network Security (CANS), which was held in Augusta, Georgia, USA
fromOctober 31st through November 2nd, 2023. The conference was run in cooperation
with the International Association for Cryptologic Research (IACR).

The conference received 54 submissions, reviewed by the Program Committee of
43 cryptography and security experts, including the two Program Chairs. The commit-
tee’s work was complemented by the contributions of 27 external reviewers. Out of
these 54 submissions, 25 papers were accepted for presentation at the conference and
publication in the proceedings. Papers were reviewed in the usual double-blind fashion.
Program committee members were limited to two submissions, and their submissions
were scrutinized more closely. The two program chairs were not allowed to submit
papers.

The program also included two keynote addresses by Eric Toler, the Director of
Georgia Cyber Center, and Vitaly Shmatikov, a Professor at Cornell Tech working on
security of ML and censorship resistance.

CANS is relatively unique in that it aims to bring together researchers in both cryp-
tography and security. While the PC’s expertise evenly covered areas of both security
and cryptography, we saw notably more crypto submissions, which is reflected in the
final program. We would like to encourage more security submissions in future years.

Co-located with CANS, an International Workshop on Challenges in Cybersecu-
rity Education was held on October 30th, 2023. The program included several invited
presentations and a panel.

We express our sincere gratitude to all authors who submitted their work to the
conference. We gratefully acknowledge the substantial effort of the track chairs and
the Program Committee members invested in paper selection. Thanks are also due to
the external reviewers for their valuable and insightful comments. We also thank the
Steering Committee members for their valuable advice and guidance. Special thanks
go to the Organizing Committee members for their work in ensuring a successful and
pleasant meeting, including Caroline Eaker, Luca Mariot, Michelle McMolin, Michael
Nowatkowski, Reza Rahaeimehr, Joanne Sexton, Edward Tremel, and Regina White.

We acknowledge with gratitude the highly professional editors and staff at Springer
who have guided us in the production of these proceedings.

We also thank our sponsors: Augusta University, Georgia Cyber Center, and the
National Science Foundation. Their generous support covered several student travel
stipends and helped minimize registration fees, including reduced registration for all
students.

vi Preface

Lastly, a big thanks to everyone who attended CANS 2023 and explored the slightly
less beaten path, Augusta, Georgia – we hope you enjoyed the conference and your stay.
The choice of this location is not entirely accidental: in addition to being one of the golf
capitals of the world, Augusta was listed in recent years by Fortune magazine and CSO
Online among 10 cities that could become the world’s next Cybersecurity Capital due
to the substantial momentum in cybersecurity in the area.

November 2023 Jing Deng
Vladimir Kolesnikov

Alexander A. Schwarzmann

Organization

General Chair

Alex Schwarzmann Augusta University, USA

Program Committee Chairs

Jing Deng UNC Greensboro, USA
Vlad Kolesnikov Georgia Tech, USA

Steering Committee

Yvo G. Desmedt (Chair) University of Texas, USA
Sara Foresti Università degli Studi di Milano, Italy
Amir Herzberg University of Connecticut, USA
Juan A. Garay Texas A&M University, USA
Atsuko Miyaji Osaka University, Japan
Panos Papadimitratos KTH, Sweden
David Pointcheval ENS, France
Huaxiong Wang Nanyang Technological University, Singapore

Organizing Committee

Caroline Eaker Augusta University, USA
Luca Mariot (Publicity Chair) University of Twente, The Netherlands
Michelle McMolin Augusta University, USA
Jeff Morris Augusta University, USA
Michael Nowatkowski Augusta University, USA
Meikang Qiu Augusta University, USA
Reza Rahaeimehr (Web) Augusta University, USA
Alex Schwarzmann (Chair) Augusta University, USA
Joanne Sexton Augusta University, USA
Edward Tremel Augusta University, USA
Zi Wang Augusta University, USA
Regina White Augusta University, USA
Shungeng Zhang Augusta University, USA

viii Organization

Program Committee

Cristina Alcaraz University of Malaga, Spain
Subhadeep Banik University of Lugano, Switzerland
Carlo Blundo Università degli Studi di Salerno, Italy
Bo Chen Michigan Technological University, USA
Arka Rai Choudhuri Johns Hopkins University, USA
Sherman S. M. Chow Chinese University of Hong Kong, China
Bei-Tseng Chu UNC Charlotte, USA
Michele Ciampi University of Edinburgh, UK
Bernardo David IT University of Copenhagen, Denmark
Jing Deng UNC Greensboro, USA
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Pooya Farshim Durham University, UK
Satrajit Ghosh IIT Kharagpur, India
Yong Guan Iowa State University, USA
Zhou Haifeng Zhejiang University, China
David Heath UIUC, USA
Ashwin Jha CISPA Helmholtz Center for Information

Security, Germany
Elif Bilge Kavun University of Passau, Germany
Vladimir Kolesnikov Georgia Institute of Technology, USA
Ranjit Kumaresan Visa Inc, USA
Shangqi Lai Monash University, Australia
Riccardo Lazzeretti Sapienza University of Rome, Italy
David Mohaisen University of Central Florida, USA
Sergio Pastrana Universidad Carlos III de Madrid, Spain
Sikhar Patranabis IBM Research India, India
Constantinos Patsakis University of Piraeus, Greece
Giuseppe Persiano Università degli Studi di Salerno, Italy
Josef Pieprzyk CSIRO/Data61, Australia
Lawrence Roy Aarhus University, Denmark
Somitra Sanadhya IIT Jodhpur, India
Dominique Schroeder Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Alberto Sonnino Mysten Labs, UK
Angelo Spognardi Sapienza Università di Roma, Italy
Christoph Striecks AIT Austria, Austria
Ajith Suresh Technology Innovation Institute, UAE
Willy Susilo University of Wollongong, Australia
Ni Trieu Arizona State University, USA

Organization ix

Giorgos Vasiliadis Hellenic Mediterranean University and
FORTH-ICS, Greece

Daniele Venturi Sapienza University of Rome, Italy
Ivan Visconti University of Salerno, Italy
Isabel Wagner University of Basel, Switzerland
Edgar Weippl University of Vienna, Austria
Yibin Yang Georgia Institute of Technology, USA

Additional Reviewers

Avitabile, Gennaro
Botta, Vincenzo
Chauhan, Amit Kumar
Chen, Niusen
Choi, Gwangbae
Chu, Hien Thi Thu
Collins, Daniel
Dodd, Charles
Dutta, Priyanka
Fu, Huirong
Gerhart, Paul
Harasser, Patrick
Huguenin-Dumittan, Loïs
Kondi, Yashvanth

Neisarian, Shekoufeh
Pan, Ying-Yu
Ronge, Viktoria
Roy, Partha Sarathi
Sato, Shingo
Siniscalchi, Luisa
Slamanig, Daniel
Spyrakou, Marianna
Talayhan, Abdullah
Volkhov, Mikhail
Wu, Huangting
Xu, Depeng
Zecchini, Marco

Keynote Abstracts

Building Covert Communication Systems That Resist
Traffic Analysis

Vitaly Shmatikov

Cornell Tech, USA
shmat@cs.cornell.edu

Covert, censorship-resistant communication in the presence of nation-state adversaries
requires unobservable channels whose operation is difficult to detect via network-
traffic analysis. One promising approach is traffic substitution: use an already-existing
encrypted channel established by some application and replace that application’s data
with covert content.

In this talk, I will explain the challenges of traffic substitution and show how substi-
tution channels can fail even against simple network adversaries. I will then discuss our
experience designing and implementing Telepath, a new Minecraft-based covert com-
munication system. Finally, I will present general principles for building covert channels
that resist traffic analysis.

Cultivating a National Culture of Cybersecurity

Eric Toler

Georgia Cyber Center, USA
TTOLER@augusta.edu

Global cyber threats are outpacing the ability of Western democracies to mitigate or
defeat those threats. The cyber capabilities of adversarial nation states have vastly
improved in the last decade while cybercrime is set to become the third largest economy
in the world by 2025. At the same time, the global cyber workforce gap continues to
grow at an alarming pace. These trends, coupled with sluggish bureaucratic reaction
speed, will nullify the U.S. and its ally’s dominance in the information environment in
the next few years – unless we do things differently. This presentation will highlight
why the status quo has led to many national shortcomings in cybersecurity and discuss
why it is an existential imperative to start cultivating a national culture of cybersecurity
today.

Contents

Schemes I

Forward Security Under Leakage Resilience, Revisited . 3
Suvradip Chakraborty, Harish Karthikeyan, Adam O’Neill,
and C. Pandu Rangan

Anonymous Broadcast Authentication with Logarithmic-Order
Ciphertexts from LWE . 28

Yoshinori Aono and Junji Shikata

Traceable Policy-Based Signatures with Delegation . 51
Ismail Afia and Riham AlTawy

Basic Primitives

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 75
Timo Glaser and Alexander May

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks . . . 101
Yuqing Zhao, Chun Guo, and Weijia Wang

Hardness of Learning AES with Gradient-Based Methods 126
Kanat Alimanov and Zhenisbek Assylbekov

Security

Privacy-Preserving Digital Vaccine Passport . 137
Thai Duong, Jiahui Gao, Duong Hieu Phan, and Ni Trieu

Exploiting Android Browser . 162
Animesh Kar and Natalia Stakhanova

Are Current CCPA Compliant Banners Conveying User’s Desired Opt-Out
Decisions? An Empirical Study of Cookie Consent Banners 186

Torsha Mazumdar, Daniel Timko, and Muhammad Lutfor Rahman

xviii Contents

MPC with Cards

Upper Bounds on the Number of Shuffles for Two-Helping-Card
Multi-Input AND Protocols . 211

Takuto Yoshida, Kodai Tanaka, Keisuke Nakabayashi, Eikoh Chida,
and Takaaki Mizuki

Free-XOR in Card-Based Garbled Circuits . 232
Yoshifumi Manabe and Kazumasa Shinagawa

Cryptanalysis

Hidden Stream Ciphers and TMTO Attacks on TLS 1.3, DTLS 1.3, QUIC,
and Signal . 251

John Preuß Mattsson

Differential Cryptanalysis with SAT, SMT, MILP, and CP: A Detailed
Comparison for Bit-Oriented Primitives . 268

Emanuele Bellini, Alessandro De Piccoli, Mattia Formenti,
David Gerault, Paul Huynh, Simone Pelizzola, Sergio Polese,
and Andrea Visconti

Key Filtering in Cube Attacks from the Implementation Aspect 293
Hao Fan, Yonglin Hao, Qingju Wang, Xinxin Gong, and Lin Jiao

New Techniques for Modeling SBoxes: An MILP Approach 318
Debranjan Pal, Vishal Pankaj Chandratreya,
and Dipanwita Roy Chowdhury

Blockchain

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 343
Sivanarayana Gaddam, Ranjit Kumaresan, Srinivasan Raghuraman,
and Rohit Sinha

Improving Privacy of Anonymous Proof-of-Stake Protocols 368
Shichen Wu, Zhiying Song, Puwen Wei, Peng Tang, and Quan Yuan

Compact Stateful Deterministic Wallet from Isogeny-Based Signature
Featuring Uniquely Rerandomizable Public Keys . 392

Surbhi Shaw and Ratna Dutta

CTA: Confidential Transactions Protocol with State Accumulator 414
Shumin Si, Puwen Wei, Xiuhan Lin, and Li Liu

Contents xix

MPC and Secret Sharing

A Plug-n-Play Framework for Scaling Private Set Intersection
to Billion-Sized Sets . 443

Saikrishna Badrinarayanan, Ranjit Kumaresan, Mihai Christodorescu,
Vinjith Nagaraja, Karan Patel, Srinivasan Raghuraman, Peter Rindal,
Wei Sun, and Minghua Xu

Lower Bounds on the Share Size of Leakage Resilient Cheating Detectable
Secret Sharing . 468

Sabyasachi Dutta, Shaoquan Jiang, and Reihaneh Safavi-Naini

Schemes II

Lattice-Based Key-Value Commitment Scheme with Key-Binding
and Key-Hiding Properties . 497

Hideaki Miyaji and Atsuko Miyaji

A Practical Forward-Secure DualRing . 516
Nan Li, Yingjiu Li, Atsuko Miyaji, Yangguang Tian, and Tsz Hon Yuen

Dually Computable Cryptographic Accumulators and Their Application
to Attribute Based Encryption . 538

Anaïs Barthoulot, Olivier Blazy, and Sébastien Canard

A Minor Note on Obtaining Simpler iO Constructions via Depleted
Obfuscators . 563

Răzvan Roşie

Correction to: Upper Bounds on the Number of Shuffles
for Two-Helping-Card Multi-Input AND Protocols . C1

Takuto Yoshida, Kodai Tanaka, Keisuke Nakabayashi, Eikoh Chida,
and Takaaki Mizuki

Author Index . 589

Schemes I

Forward Security Under Leakage
Resilience, Revisited

Suvradip Chakraborty1(B), Harish Karthikeyan2, Adam O’Neill3,
and C. Pandu Rangan4

1 Visa Research, Palo Alto, CA, USA
suvchakr@visa.com

2 J.P. Morgan AI Research, New York, USA
harish.karthikeyan@jpmchase.com

3 Manning College of Information and Computer Sciences,
University of Massachusetts Amherst, Amherst, USA

adamo@cs.umass.edu
4 Kotak Mahindra, IISc Bangalore, Bengaluru, India

Abstract. As both notions employ the same key-evolution paradigm,
Bellare et al. (CANS 2017) study combining forward security with leak-
age resilience. The idea is for forward security to serve as a hedge in
case at some point the full key gets exposed from the leakage. In par-
ticular, Bellare et al. combine forward security with continual leakage
resilience, dubbed FS+CL. Our first result improves on Bellare et al.’s
FS+CL secure PKE scheme by building one from any continuous leakage-
resilient binary-tree encryption (BTE) scheme; in contrast, Bellare et al.
require extractable witness encryption. Our construction also preserves
leakage rate of the underlying BTE scheme and hence, in combination
with existing CL-secure BTE, yields the first FS+CL secure encryption
scheme with optimal leakage rate from standard assumptions.

We next explore combining forward security with other notions of
leakage resilience. Indeed, as argued by Dziembowski et al. (CRYPTO
2011), it is desirable to have a deterministic key-update procedure, which
FS+CL does not allow for arguably pathological reasons. To address this,
we combine forward security with entropy-bounded leakage (FS+EBL).
We construct FS+EBL non-interactive key exchange (NIKE) with deter-
ministic key update based on indistinguishability obfuscation (iO), and
DDH or LWE. To make the public keys constant size, we rely on the
Superfluous Padding Assumption (SuPA) of Brzuska and Mittelbach
(ePrint 2015) without auxiliary information, making it more plausible.
SuPA notwithstanding, the scheme is also the first FS-secure NIKE from
iO rather than multilinear maps. We advocate a future research agenda
that uses FS+EBL as a hedge for FS+CL, whereby a scheme achieves
the latter if key-update randomness is good and the former if not.

H. Karthikeyan—Work done while at New York University, New York, USA.
C. P. Rangan—Research partially supported by KIAC research grant.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 3–27, 2023.
https://doi.org/10.1007/978-981-99-7563-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_1&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_1

4 S. Chakraborty et al.

1 Introduction

1.1 Background and Motivation

Leakage Resilience. When a cryptographic algorithm is implemented and run,
it must be done on some physical system. This introduces side channel attacks
where the adversary obtains some leakage about secrets, via execution time,
power consumption, and even sound waves [23,30,31]. The cryptographic com-
munity responded by extending the attack model so that the adversary gets
some “bounded” leakage about the secrets [2,9,29,36]. Works further extended
this new model to consider “continual” leakage (CL) attacks [10,14]. In that
model, the life of a secret key is divided into time periods, and in time period
t + 1 one runs an update algorithm on the secret key of time period t to derive
the new secret key for time period t + 1. (The old secret key is erased.) In each
time period, the adversary queries for a function with a bounded output length
applied to the current secret key.

Forward Security. Forward security (FS) [5] employs the same key-evolution
paradigm as CL to address the threat of exposure of the secret key in whole.
This can happen due to too much leakage. If a break-in happens during time
period i, it is required that security still holds relative to keys in time periods
1 ≤ i′ < i. Initial work on forward security has been extended and optimized in
numerous works, e.g. [1,7,8,21,22,27,32,35].

Combining Leakage Resilience and Forward Security. As advocated by
Bellare et al. [6], one ought to use FS as a hedge in the context of leakage
resilience. Specifically, one would like to “fall back” to forward security if the
secret key at every time period up to some i′ is partially leaked, but then in time
period i′ the leakage happens to be so much that this time period’s entire key is
revealed. This combination of forward security and continual leakage resilience
was dubbed FS+CL by Bellare et al. [6]. For constructions, Bellare et al. start by
examining tree-based constructs as in [5] and give such a construction of FS+CL
signatures based on CL-signatures. They also provide a generic approach to con-
struct FS+CL encryption and signature schemes by combining what they call
a key-evolution scheme (KE) that is forward one-way under continual-leakage
(FOWCL KE) with witness primitives, namely (extractable) witness encryp-
tion [20] and witness signatures [4,13] respectively.

1.2 Our Contributions in Brief

Our Goals. Extractable witness encryption is a suspect assumption [19] that
we would like to eliminate. We would also like to improve the leakage rates
of the Bellare et al.’s schemes. Finally, we would like to study complementary
notions of leakage resilience in this context. In this paper, we focus on asymptotic
efficiency and feasibility rather than practical efficiency. The design of more
practical constructions is an interesting question for future work.

Improved FS+CL Encryption Scheme. We improve upon Bellare et al.’s
FS+CL PKE scheme by carefully re-examining tree-based constructs. In partic-
ular, in their effort to construct FS+CL PKE, Bellare et al. explicitly dismissed

Forward Security Under Leakage Resilience, Revisited 5

the idea of using a CL-secure binary-tree encryption (BTE) [12], because the
underlying hierarchical identity-based encryption scheme (HIBE) scheme must
tolerate joint leakage on multiple keys, whereas CL-security only allows leakage
on each such key individually. We show this intuition is false and construct an
FS+CL-secure PKE scheme from any CL-secure BTE scheme. This, in turn, can
be realized from any CL-secure HIBE. CL-secure HIBE is known from simple
assumptions on composite-order bilinear groups [10].

We also show that our construction preserves the leakage rate of the base
scheme. Hence, we obtain FS+CL encryption enjoying optimal leakage rate from
standard assumptions.

Alternative Models: FS+(C)EBL. Dziembowski et al. [17] argue it is desir-
able to have a deterministic key-update procedure. Indeed, randomness generation
in practice can be buggy, either subverted or by poor implementation. CL does not
guarantee any security in such a case, as there is a trivial attack under it if key-
update is deterministic: the adversary just leaks some future key bit-by-bit across
time periods. Yet this attack is arguably contrived; if the key-update procedure
is a complicated cryptographic operation, it’s unlikely real-world leakage would
compute it, let alone a non-noisy version of it. Accordingly, we seek meaningful
security notion that can be achieved when key-update is deterministic.

At a high-level, we combine forward security with entropic bounded leakage
(EBL) [36] instead of CL. To this end, we introduce a model called FS+EBL
(pronounced ee-bull). The FS+EBL model is defined with respect to any key
evolving scheme equipped with an update function. Our definition requires for-
ward security in the presence of leakage such that the current key always meets an
entropy bound. In particular, we require that the secret key in each time period
prior to the period of exposure retain enough residual entropy conditioned on
the leakage from each of the keys.

Such a restriction on key entropy seems overly severe, however, and moti-
vates additional consideration of computational entropy. The point is that if
considering information-theoretic entropy, leakage on the current key necessar-
ily reduces the entropy of all other keys. But consider leaking (noisy) hamming
weight or physical bits of the current key, or even some one-way function of
the key. After an appropriate update function is applied, it is plausible that
the computational entropy of the new key is restored. To profit in such a case,
we introduce the FS+CEBL (pronounced see-bull—‘C’ for computational) that
parallels FS+EBL but uses computational entropy.

FS+EBL and FS+CEBL NIKE. Broadening our set of primitives consid-
ered, we study non-interactive key exchange (NIKE) in the FS+(C)EBL model.
We give an FS+EBL-secure NIKE in the common reference string (CRS) model
from indistinguishability obfuscation (iO), either DDH or LWE and a relaxed
variant of the Superfluous Padding Assumption (SuPA) on iO introduced in [11].

We remark that, before this work, even FS -NIKE was not known from iO.
Similar to the prior FS-NIKE construction from multilinear maps [37], our con-
struction of FS+EBL NIKE supports an a-priori bounded (but an arbitrary
polynomial) number of time periods. However, our construction achieves much
better parameters than the construction of [37]. In particular, the size of the

6 S. Chakraborty et al.

public parameter in [37] is O(T), the secret key size is O(log T), and the public
key size is constant (here T denotes the maximum number of time periods sup-
ported by the scheme). In contrast, our FS+EBL NIKE achieves constant-size
secret keys and public parameters, and the size of our public keys is O(log T).
Ours also enjoys an optimal leakage rate. Hence, relaxed SuPA notwithstanding,
our construction improves on [37].

NIKE in FS+CEBL Model. A nice feature of our FS+EBL NIKE construc-
tion is that the key update function can be instantiated by any entropic-leakage
resilient one-way function [9]. In the FS+CEBL setting, we suggest using the
PRG of Zhandry [39], because it is secure for any computationally unpredictable
seed. The issue is that leakage from time period i could leak from secret key i+1
which is the output of the PRG. Existing results do not explore the case where
the output of the PRG is also susceptible to leakage. We leave constructing
FS+CEBL NIKE for future work.

Discussion. A drawback of FS+EBL and FS+CEBL is that they are scheme-
dependent. This is because the entropy bound is required to hold with respect
to the specific update function of the underlying key evolving primitive. Thus,
the meaning of these security models in practice remains somewehat unclear.
Therefore, we raise the open question of devising a notion combining forward
security and leakage resilience that (1) admits schemes with deterministic key
update, and (2) is not scheme dependent. We leave this for future work. Impor-
tantly, we conjecture that such a model would not deem our FS+EBL NIKE
scheme insecure, but rather admit an improved security proof for it. We view
our result as a step towards resolution of the above question. Another direction
we suggest for future work is to design FS+CL schemes that simultaneously
meet FS+(C)EBL or another notion as a hedge when key-update randomness is
subverted or buggy.

2 Technical Overview

High-Level Idea of the FS+CL PKE. Recall that a binary-tree encryption
(BTE) has a master public key (MPK) associated with the root node of a binary
tree and all the nodes have an associated secret key. Moreover, the secret key
of any node can be used to derive the secret keys for the children of that node.
To encrypt a message for a particular node, one uses MPK and the identity
of that node. The security notion requires the attacker to commit to a target
node w∗ in advance (i.e., before seeing MPK) and it gets the secret keys of
all nodes except for those which lie on the path from the root to the “target”
node (including both). Under CL, the adversary can also leak continuously from
the secrets keys of all these nodes. The goal of the adversary is then to win the
indistinguishability game with respect to the target node w∗.

To construct a FS+CL PKE scheme for T ≤ 2� − 1 time period, we use a
continuous leakage-resilient BTE (CLR-BTE) scheme of depth � and associate
the time periods with all nodes of the tree according to a pre-order traversal.

Forward Security Under Leakage Resilience, Revisited 7

Let wi denote the node corresponding to time period i. The public key of the
FS+CL PKE scheme consists of the root public key MPK and the secret key
for time period i consists of skwi (the secret key of wi) and the secret keys of
all right siblings of the nodes on the path from the root to wi. At the end of
time period i the secret key is updated as follows: If wi is an internal node,
then the secret keys of node wi+1 (the next node according to the pre-order
traversal) and its sibling (i.e., the two children of wi) are derived; otherwise the
secret key for wi+1 is already stored as part of the secret key. In either case,
skwi is erased. The secret keys of the all the nodes corresponding to time period
i + 1 are then refreshed by running the key update algorithm of the underlying
CLR-BTE scheme.

Proof Strategy. In our proof, the reduction (which is an adversary Aclr-bte of the
underlying CLR-BTE scheme) simply guesses the time period i∗ in which the
FS+CL adversary Akee will attack.1 This corresponds to a challenge node wi∗

which Aclr-bte forwards to its own challenger. If the guess is incorrect, the reduc-
tion aborts outputting a random bit. Aclr-bte then receives the secret keys of all
the nodes that are right siblings of the nodes that lie in the path Pwi∗ from the
root node to wi∗

(the target node) and also the secret keys of both the children
of wi∗

. Using the knowledge of these keys Aclr-bte can simulate the update queries
of Akee. Now, let us see how to simulate the leakage queries of Akee. Note that,
the secret key corresponding to some time period i in the FS+CL scheme is of the
form SKi = (skwi , {skrs(Pwi)}), where skwi and {skrs(Pwi)} denote the (possibly
refreshed versions of the) secret keys corresponding to the node wi and the right
siblings of all the nodes that lie on the path Pwi respectively. Now, either of the
following two cases arise: (i) either the node wi lies in the path Pwi∗ (the path from
root to the target node wi∗

) or (ii) wi does not lie in the path Pwi∗ . In the first case,
Aclr-bte already knows all the keys {skrs(Pwi)} and hence it can translate the leak-
age function f (queried by Akee) to a related leakage function f ′ only on the key
skwi (by hard-wiring the keys {skrs(Pwi)} into f ′). For the later case, Aclr-bte knows
the key skwi and all the keys {skrs(Pwi)}, except exactly one key corresponding to
a node w that lies in the path Pwi∗ . So, Aclr-bte can again translate the joint leakage
function f to leakage just on the secret key of node w.

To summarize, the key observation is that: in either case, the reduction knows
the secret keys of all nodes except one, and hence it can simulate the joint leakage
by leaking only on one node at a time. However, the adversary may also get
multiple (continuous) leakages on the secret key of a node. For e.g., consider the
secret key sk1 (corresponding to the right child of the root node). The secret
key sk1 is included in each secret key sk0w for any suffix w. However, note that,
when the secret keys from one time period are updated to the next time period
they are also refreshed by running the underlying key refresh algorithm of the
CLR-BTE scheme. Hence the CLR property of the BTE scheme allows us to
tolerate multiple leakages on the same node by making use of its leakage oracle.
1 We stress that our scheme supports an exponential number of time periods; however,

the adversary can only run for a polynomial number of them. Hence we incur a poly-
nomial security loss in making this guess.

8 S. Chakraborty et al.

Constructing NIKE in the FS+EBL Model. The starting point of our
NIKE construction is the bounded leakage-resilient NIKE construction of [34]
(henceforth called the LMQW protocol) from indistinguishability obfuscation
(iO) and other standard assumptions (DDH/LWE) in the CRS model.

The main idea of the LMQW construction is as follows: Each user samples a
random string s as its secret key and sets its public key as x = G(s), where G is
a function whose description is a part of the CRS and can be indistinguishably
created in either lossy or in injective mode. In the real construction, the function
G is set to be injective. To generate a shared key with an user j, user i inputs its
own key pair (xi, si) and the public key xj of user j to an obfuscated program
̂C (which is also included as part of the CRS) which works as follows: The
circuit C (which is obfuscated) simply checks if si is a valid pre-image of either
xi or xj under G, i.e., it checks if either xi = G(si) or xj = G(si). If so, it
returns PRFK(xi, xj) (where the PRF key K is embedded inside the obfuscated
program); else it outputs ⊥.

Lifting the LMQW Protocol to the FS Setting. It is easy to see that the LMQW
protocol is not forward-secure. This is because, each public key is an injective
function of its corresponding secret key, and hence if a secret key s is updated to
s′, the public key no longer stays the same. We now describe how to modify the
above construction to achieve security in the FS+EBL setting. Similarly to the
LMQW protocol, the (initial) secret key of each user i in our construction is also
a random string s

(1)
i . The CRS also contains the description of the obfuscated

program ̂C and the function G (as described above). However, the public key of
each party i is now an obfuscated circuit ̂Ci (corresponding to a circuit Ci, whose
size is determined later) which has the initial/root secret key s

(1)
i (corresponding

to base time period 1) of party i embedded in it. It takes as input a key s
(t)
j of

user j (corresponding to some time period t) and works as follows: (a) First, it
updates the secret key s

(1)
i of user i (hard-coded in it) to s

(t)
i by running the

(deterministic) NIKE update function (to be defined shortly) t − 1 times, (b)
computes x

(t)
i = G(s(t)i) and x

(t)
j = G(s(t)j), and finally (c) internally invokes the

obfuscated circuit ̂C (included as part of CRS) on input the tuple (s(t)j , x
(t)
i , x

(t)
j).

To generate the shared key with an user i corresponding to time period t, user
j runs ̂Ci with input its secret key s

(t)
j corresponding to time period t to obtain

the shared key PRFK(x(t)
i , x

(t)
j). It is easy to see that user i also derives the same

shared key for time period t by running the program ̂Cj (public key of user j)
on input its own s

(t)
i corresponding to time period t. The key update function

for our FS+EBL NIKE can be any entropic-leakage resilient OWF [9]. This is
so that it remains hard to compute the prior key even given entropic leakage on
the pre-image of the OWF.

Security Proof. The security proof of our construction follows the proof tech-
nique of the LMQW protocol with some major differences as explained below.
The main idea of the proof of the LMQW protocol follows the punctured pro-

Forward Security Under Leakage Resilience, Revisited 9

gramming paradigm [38], where they puncture the PRF key K at the point
(xi, xj) and program a random output y. However, instead of hard-coding y
directly they hard-core y ⊕ si and y ⊕ sj , i.e., the one-time pad encryption of y
under si and sj respectively. This allows the obfuscated program to decrypt y
given either si or sj as input. At this point, they switch the function G to be
in lossy mode and argue that the shared key y retain high min-entropy, even
given the obfuscated program with hard-coded ciphertexts, the public keys and
leakages on the secret keys si and sj . The entropic key k is then converted into
a uniformly random string by using an appropriate extractor.

However, for our construction, we cannot argue the last step of the above
proof, i.e., the shared key y (for time period t) retains enough entropy given all
the public information (CRS and public keys) and entropic leakage on the keys.
This is because the public keys Ĉi and Ĉj completely determine the keys s

(t)
i

and s
(t)
j respectively, even after switching the function G to be in lossy mode.

Indeed, the obfuscated programs Ĉi and Ĉj contains the base secret keys s
(1)
i

and s
(1)
j hard-coded in them, and hence, given the public keys, the secret keys

have no entropy left. To this end, we switch the public key Ĉi to an obfuscation
of a program that, instead of embedding the base secret key s

(1)
i embeds all

possible public keys (x(1)
i , · · · , x

(T)
i) in it, where T is the total number of time

period supported by our scheme and x
(j)
i = G(s(j)i) for j ∈ [T]. Note that this

program is functionally equivalent but we need to pad Ci up to its size. Now,
since, the function G is lossy the shared key y still retains enough entropy,
even given the public key. A similar argument can be made for party j. By
setting the parameters appropriately, we can prove FS+EBL security of our
NIKE construction with optimal leakage rate.

Compressing the Size of the Public Key Using Relaxed SuPA. Note that, in the
above proof step we needed to embed T values and hence the public key of
each user (which consists of the above obfuscated and padded circuit) scales lin-
early with T . With linear public key size, FS is trivial. However, what makes our
scheme different from the trivial one is that for us this issue is a proof problem for-
mally captured via the Superfluous Padding (SuP) Assumption [11]. Intuitively
the SuP assumption (SuPA) states that if two distributions are indistinguishable
relative to an obfuscated circuit C which was padded before obfuscation, then
the two distributions are also indistinguishable relative to the obfuscated circuit
C without padding. Or in other words, if an obfuscation of a padded circuit
hides something, then so does an obfuscation of the unpadded circuit.

Although non-standard, it is shown in [11] that SuPA holds for virtual black-
box obfuscation (VBB) as evidence it holds for iO. Unfortunately, as shown
in [25], assuming iO and one-way functions SuPA does not hold for iO if the
distinguisher is given auxiliary information. Crucially, we get around this by
using a relaxed variant of SuPA that does not give the distinguisher auxiliary
information. This relaxed SuPA is enough to prove the security of our NIKE
construction. We stress the impossibility result of [25] does not apply to this
relaxed SuPA, and in fact, we conjecture that, in the absence of any auxiliary

10 S. Chakraborty et al.

information SuPA does hold for iO. In this case, the size of the public keys in
our NIKE scheme is not linear in T, but is only O(log T). This is because the
obfuscated circuit just needs to know the maximum number of times it will need
to update its keys.

3 Preliminaries

3.1 Notations

Let x ∈ X denote an element x in the support of X . For a probability distribution
X , let |X | denote the size of the support of X , i.e., |X | =| {x |Pr[X = x] > 0} |.
If x is a string , we denote |x| as the length of x. Let x ← X be the process
of sampling x from the distribution X . For n ∈ N, we write [n] = {1, 2, · · · , n}.
When A is an algorithm, we write y ← A(x) to denote a run of A on input
x and output y; if A is randomized, then y is a random variable and A(x; r)
denotes a run of A on input x and randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗, the
computation of A(x; r) terminates in at most poly(|x|) steps. For a set S, we let
US denote the uniform distribution over S. For an integer α ∈ N, let Uα denote
the uniform distribution over {0, 1}α, the bit strings of length α. Throughout this
paper, we denote the security parameter by κ, which is implicitly taken as input
by all the algorithms. For two random variables X and Y drawn from a finite
set X , let δ(X,Y) = 1

2 |
∑

x∈X Pr(X = x) − Pr(Y = x)| denote the statistical
distance between them. Given a circuit D, define the computational distance δD

between X and Y as δD(X,Y) = |E[D(X)] − E[D(Y)]|.

3.2 Different Notions of Entropy

In this section, we recall some the definitions of information-theoretic and com-
putational notions of entropy that are relevant to this work and also state the
results related to them.

Unconditional (Information-Theoretic) Entropy

Definition 1 (Min-entropy). The min-entropy of a random variable X,
denoted as H∞(X) is defined as H∞(X) def= − log

(

maxx Pr[X = x]
)

.

Definition 2 (Conditional Min-entropy [16]). The average-conditional
min-entropy of a random variable X conditioned on a (possibly) correlated vari-
able Z, denoted as ˜H∞(X|Z) is defined as

˜H∞(X|Z) = - log
(

Ez←Z [maxx Pr[X = x|Z = z]
)

= - log
(

Ez←Z [2−H∞(X|Z=z)]
)

.

Lemma 1 (Chain Rule for min-entropy [16]). For any random variable X,
Y and Z, if Y takes on values in {0, 1}�, then

˜H∞(X|Y,Z) ≥ ˜H∞(X|Z) − � and ˜H∞(X|Y) ≥ ˜H∞(X) − �.

One may also define a more general notion of conditional min-entropy
˜H∞(X|E), where the conditioning happens over an arbitrary experiment E , and
not just a “one-time” random variable Y [3].

Forward Security Under Leakage Resilience, Revisited 11

Computational Entropy a.k.a Pseudo-entropy
Computational entropy or pseudo-entropy is quantified with two parameters-
quality (i.e., how much distinguishable a random variable is from a source with
true min-entropy to a size-bounded (poly-time) distinguisher)) and quantity (i.e.,
number of bits of entropy).

Definition 3 (Hill Entropy [24,26]). A distribution X has HILL entropy
at least k, denoted by HHILL

ε,s (X) ≥ k, if there exists a distribution Y, where

H∞(Y) ≥ k, such that ∀D ∈ Drand,{0,1}
s , δD(X ,Y) ≤ ε. By, Drand,{0,1}

s we refer
to the set of all probabilistic circuits without {0, 1}.

Let (X ,Y) be a pair of random variables. Then, we say that X has condi-
tional HILL entropy at least k conditioned on Y, denoted HHILL

ε,s (X|Y) ≥ k,
if there exists a collection of distributions Zy for each y ∈ Y, yielding a
joint distribution (Z,Y) such that ˜H∞(Z|Y) ≥ k, and ∀D ∈ Drand,{0,1}

s ,
δD(

(X ,Y), (Z,Y)
)

≤ ε.

3.3 Primitives Required for Our Constructions.

In this section, we briefly outline the primitives required for our constructions.
A puncturable PRF (pPRF) allows one to evaluate the PRF on all but a subset
of points (on which the master key is punctured). We require pseudorandomness
to hold on the punctured points, even given the punctured key. We also require
indistinguishability obfuscation (iO), and lossy functions for our construction
of the NIKE protocol in the FS + EBL model. We refer the reader to the full
version of our paper for the definitions of pPRF, iO, and lossy functions. For
our construction of FS + EBL-secure NIKE protocol, we also require an entropic
leakage-resilient one-way function (ELR-OWF) to instantiate the update func-
tion. We also require the Superfluous padding assumption to hold for iO. Below
we present their formal definitions.

Entropic Leakage-Resilient OWF. In this section, we recall the definition
of leakage-resilient one-way functions (LR-OWF) from [9]. Informally, a one-way
function (OWF) g : {0, 1}n → {0, 1}m is leakage-resilient if it remains one-way,
even in the presence of some leakage about pre-image. In entropy-bounded leak-
age model, instead of bounding the length of the output of leakage functions (as
in bounded leakage model), we bound the entropy loss that happens due to seeing
the output of the leakage functions. We follow the definition of [14] to consider the
entropy loss over the uniform distribution as a measure of leakiness. We follow this
definition since it has nice composability properties as stated below.

Definition 4 [14]. A (probabilistic) function h : {0, 1}∗ → {0, 1}∗ is �-leaky, if
for all n ∈ N, we have ˜H∞(Un|h(Un)) ≥ n − �, where Un denote the uniform
distribution over {0, 1}n.

As observed in [14], if a function is �-leaky, i.e., it decreases the entropy of
uniform distribution by at most � bits, then it decreases the entropy of every

12 S. Chakraborty et al.

distribution by at most � bits. Moreover, this definition composes nicely in the
sense that, if the adversary adaptively chooses different �i-leaky functions, it
learns only

∑

i �i bits of information. We now define the security model for weak
PRFs in this entropy-bounded leakage model.

Definition 5 (Entropic leakage-resilient one-wayness). Let A be an
adversary against g : {0, 1}n → {0, 1}m. We define the advantage of the

adversary A as AdvLR-OWF
A (κ) = Pr[g(x) = y |x∗ $←− {0, 1}n, y∗ = g(x∗);x ←

AOLeak(·)(y∗)].

Here OLeak is an oracle that on input h : {0, 1}n → {0, 1}∗ returns f(x∗),
subject to the restriction that h is λ-entropy leaky. We say that g is λ-entropic
leakage-resilient one-way function (λ-ELR-OWF) if not any PPT adversary A
its advantage defined as above is negligible in κ.

As shown in [15], a second-preimage resistant (SPR) function with n(κ) bits
input and m(κ) bits output is also a λ(κ)-entropy leaky OWF for λ(κ) = n(κ)−
m(κ) − ω(log κ).

The Superfluous Padding Assumption. Following [11], we present the
Superfluous Padding Assumption (SuPA). Intuitively SuPA states that if two
distributions are indistinguishable relative to an obfuscated circuit C which was
padded before obfuscation, then the two distributions are also indistinguishable
relative to the obfuscated circuit C without padding. In other words, if an obfus-
cation of a padded circuit hides something, then so does an obfuscation of the
unpadded circuit. Unfortunately, as shown in [25] assuming iO and one-way
functions SuPA does not hold for iO if the distinguisher is given arbitrary auxil-
iary information. We present a relaxed version of the SuP assumption where the
distinguisher is not given access to any auxiliary input and we observe that this
relaxed variant of SuPA is enough to prove the security of our NIKE construction.

Following [11], we state the assumption in two steps: First, we define admis-
sible sampler and then define the SuP assumption with respect to such an admis-
sible sampler.

Definition 6 (Relaxed SuPA-admissible Samplers). Let Obf be an obfus-
cation scheme and let PAD : N × {0, 1}∗ → {0, 1}∗ be a deterministic padding
algorithm that takes as input an integer s and and a description of a circuit C
and outputs a functionally equivalent circuit of size s + |C|. We say that a pair
of PPT samplers (Samp0,Samp1) is SuP-admissible for obfuscator Obf , if there
exists a polynomial s such that for any PPT distinguisher D its advantage in
the SuP[s] game (see Fig. 1) is negligible:

Adv
SuP[s]
Obf,Samp0,Samp1,D(κ) = 2 · Pr

[

SuP[s]DObf,Samp0,Samp1
(κ)

]

− 1 ≤ negl(κ).

Definition 7 (The Relaxed SuPA assumption). Let Obf be an obfuscation
scheme and let Samp0 and Samp1 be two SuP-admissible samplers. Then, the
relaxed Superfluous Padding Assumption states that no efficient distinguisher D
has a non-negligible advantage in the SuP[0] game without padding:

Forward Security Under Leakage Resilience, Revisited 13

Game SuP

Samp
If , then return Obf
Else, return Obf

Return (

Fig. 1. The SuP game parameterized by a polynomial s(κ). According to s, the circuit
C is padded (if s = 0 the original circuit C is used) before it is obfuscated and given
to distinguisher D, who additionally gets s as well as the size of the original circuit C.

Adv
SuP[0]
Obf,Samp0,Samp1,D(κ) = 2 · Pr

[

SuP[0]DObf,Samp0,Samp1
(κ)

]

− 1 ≤ negl(κ).

4 Our Results in the FS+CL Model

4.1 Encryption in the FS+CL Model

In this section, following [6] we recall the syntax and security definition of encryp-
tion schemes in the FS+CL Model.

Encryption in the FS+CL Model. A key-evolving encryption scheme KEE speci-
fies the following PPT algorithms KEE.Kg, KEE.Upd, KEE.Enc, and KEE.Dec,
where KEE.Dec is deterministic. The encryption scheme KEE is associated
with the maximum number of time periods T = T (κ). Here, KEE.Kg(1κ)
is used to generate the initial key pair (sk1,pk). The key update algorithm
KEE.Upd(1κ,pk, i, ski) is used to evolve/update the key from time period i to
i + 1, outputting ski+1 in the process. KEE.Enc is used to encrypt a message m
in time period i using the public key pk. KEE.Dec is used to decrypt a ciphertext
c, produced in time i, with the help of secret key ski. We require the standard
correctness condition from KEE. The security game is presented in Fig. 2. In this
game defining forward indistinguishability of key-evolving encryption scheme
KEE under continual leakage (FINDCL), an attacker is given access to three
oracles: Up (which it uses to update the key), Leak (which it uses to leak on the
key with its choice of leakage function L, and a one-time access to Exp which
gives the entire secret key skt∗ . One additional constraint is that the attacker
A is δ-bounded, i.e., A is allowed to leak at most δ(κ) bits from the secret keys
per time period. The attacker provides challenge messages i,m0,m1 and a time
period i. It receives an encryption of mb for a randomly chosen bit b. A wins
the game if it correctly guesses the bit b and if i < t∗. An encryption scheme is
FINDCL-secure if the advantage of A in winning the above game is negligible.

4.2 Our Construction

In this section, we provide the details of our FS+CL encryption scheme. To this
end, we first abstract out a notion of continuous leakage-resilient binary tree
encryption (CLR-BTE) and use it to construct our FS+CL encryption scheme
achieving optimal leakage rate, i.e., 1 − o(1).

14 S. Chakraborty et al.

Game FINDCL

KEE.Kg
state

If not then return false
If then return false

KEE.Enc
state

Return

Up

If then
KEE.Upd

Else return

Leak

Return

Exp

Return

Fig. 2. Game defining forward indistinguishability of key-evolving encryption scheme
KEE under continual leakage.

Continuous Leakage-Resilient Binary Tree Encryption. We now intro-
duce our notion of binary tree encryption in the continuous leakage model. Our
security model of the CLR-BTE scheme generalizes the definition of binary tree
encryption (BTE) (proposed by Canetti et al. [12]) in the setting of continuous
leakage. A BTE can be seen as a restricted version of HIBE, where the identity
tree is represented as a binary tree.2 In particular, as in HIBE, a BTE is also
associated with a “master” public key MPK corresponding to a tree, and each
node in the tree has its respective secret keys. To encrypt a message for a node,
one specifies the identity of the node and the public key MPK. The resulting
ciphertext can be decrypted using the secret key of the target node.

Definition 8 (Continuous leakage-resilient BTE). A continuous leakage-
resilient binary tree encryption scheme (CLR-BTE) consists of a tuple of the
PPT algorithms (Gen,Der,Upd,Enc,Dec) such that:

1. Gen(1κ, 1�): The key generation algorithm Gen takes as input the security
parameter κ and a value � for the depth of the tree. It returns a master
public key MPK and an initial (root) secret key SKε.

2. Der(MPK,w, Skw): The key derivation algorithm Der takes as input MPK,
the identity of a node w ∈ {0, 1}≤�, and its secret key SKw. It returns secret
keys SKw0 , SKw1 for the two children of w.

3. Upd(w,Skw): The key update algorithm Upd takes as input the secret key
SKw of a node w and outputs a re-randomized key SK ′

w for the same node
w, such that |SK ′

w| = |SKw|.
4. Enc(MPK,w,M): The encryption algorithm Enc takes as input MPK, the

identity of a node w ∈ {0, 1}≤� and a message M to return a ciphertext C.
5. Dec(MPK,w, Skw, C): The decryption algorithm Dec takes as input MPK,

the identity of a node w ∈ {0, 1}≤�, its secret key SKw, and a ciphertext C.
It returns a message M or ⊥ (to denote decryption failure).

2 Recall that in HIBE the tree can have an arbitrary degree.

Forward Security Under Leakage Resilience, Revisited 15

Correctness: For all (MPK,SKε) output by Gen, any node w ∈ {0, 1}≤�, any
secret key SKw correctly generated for this node (which can be the output of
(multiple invocations of) Upd also), and any message M , we have

Dec(MPK,w, SKw,Enc(MPK,w,M)) = M.

Security Model for CLR-BTE. Our security model for CLR-BTE generalizes
the notion of selection-node chosen-plaintext attacks (SN-CPA) put forward by
Canetti et al. [12] to define the security of BTE. In our model, the adversary first
specifies the identity of the target node3 w∗ ∈ {0, 1}≤�. The adversary receives
the public key MPK and the secret keys of all the nodes that do not trivially
allow him/her to derive the secret key of w∗4. Besides, the adversary is also
allowed to continuously leak from the secret keys of all the nodes that lie on the
path from the root node and w∗ (including both). The goal of the adversary is
then to win the indistinguishability game with respect to the target node w∗.

Definition 9. A CLR-BTE scheme is secure against continuous leakage selective-
node, chosen-plaintext attacks (λ(κ)-CLR-SN-CPA) if for all polynomially-
bounded functions �(·), and leakage bound λ(κ), the advantage of any PPT adver-
sary A in the following game is negligible in the security parameter κ:

1. The adversary A(1κ, �) outputs the name of a node w∗ ∈ {0, 1}≤�. We will
denote the path from the root node to the target node w∗ by Pw∗ .

2. The challenger runs the algorithm Gen(1κ, �) and outputs (MPK,SKε). In
addition, it runs Der(·, ·, ·) to generate the secret keys of all the nodes on
the path Pw∗ , and also the secret keys for the two children w∗

0 and w∗
1 . The

adversary is given MPK and the secret keys {SKw} for all nodes w of the
following form:

– w = w′b̄, where w′b is a prefix of w∗ and b ∈ {0, 1} (i.e., w is a sibling of
some node in Pw∗).

– w = w∗
0 or w = w∗

1 (i.e., w is a child of w∗; this is only when |w∗| < �).
The challenger also creates a set T that holds tuples of all the (node) identi-
ties, secret keys and the number of leaked bits from each key so far.

3. The adversary Aclr-bte may also ask leakage queries. The adversary runs for
arbitrarily many leakage rounds. In each round:

– The adversary provides the description of a probabilistic leakage function
h : {0, 1}∗ → {0, 1}λ(κ), and an identity of a node w in the path Pw∗

3 Note that, this model where the adversary specifies the target node w∗ ahead of
time is weaker than the model where the adversary may choose the target adaptively
(analogous to the adaptive security of HIBE schemes). However, as we will show,
this model already suffices to construct of a FS+CL encryption scheme.

4 In particular, the adversary receives the secret keys of all the nodes that are siblings
of all the nodes that are on the path from the root node to the target node w∗.

16 S. Chakraborty et al.

(that may also include both the root note and the target node w∗).5 The
challenger scans T to find the tuple with identity w. It should be of the
form (w,SKw, Lw). The challenger then checks if Lw + |h(SKw)| ≤ λ(κ).
If this is true, it responds with h(SKw) and updates Lw = Lw+|h(SKw)|.
If the check fails, it returns ⊥ to the adversary.

– At the end of each round, the challenger computes SK ′
w ← Upd(w,SKw)

and updates SKw = SK ′
w.

4. The adversary A then sends two messages M0 and M1 to the challenger such
that |M0| = |M1|. The challenger samples a random bit b

$←− {0, 1}, and
computes C∗ ← Enc(MPK,w∗,Mb). It then returns C∗ to the adversary A.
The adversary is not allowed to ask any further leakage queries after receiving
the challenge ciphertext C∗.6

At the end of this game, the adversary outputs a bit b′ ∈ {0, 1}; it succeeds
if b′ = b. The advantage of the adversary is the absolute value of the difference
between its success probability and 1/2.

Construction of CLR-BTE Scheme. Our construction of the CLR-BTE
scheme can be instantiated in a straightforward manner from the continuous
leakage-resilient HIBE (CLR-HIBE) construction of Lewko et al. [33], tuned to
the setting of a binary tree. The resulting CLR-BTE is adaptively secure, since
the CLR-HIBE of [33] enjoys security against adaptive adversaries employing the
dual-system encryption technique. The security of the CLR-BTE scheme can be
proven under static assumptions over composite-order bilinear groups. We refer
the reader to [33] for the details of the CLR-HIBE construction and its proof.
As shown in [33], for appropriate choice of parameters, their CLR-HIBE scheme
achieves the optimal leakage rate of 1 − o(1).

FINDCL Encryption from CLR-BTE Scheme. We now show a generic
construction of a FINDCL-secure encryption scheme starting from any CLR-
BTE scheme. The main idea of our construction is very simple: use the Canetti-
Halevi-Katz (CHK) transform [12] to the underlying CLR-BTE scheme to con-
struct a FINDCL encryption scheme. In particular, we show the applicability of
the CHK transform7 even in the setting of continuous leakage. However, as we
show later, the analysis of the CHK transform in the setting of leakage turns out
to be quite tricky.

5 This is equivalent to a definition where, in each round, the adversary asks for multiple
leakage functions adaptively, such that the output length of all these functions sum
up to λ(κ).

6 If the adversary is allowed to ask leakage queries after receiving the challenge cipher-
text, it can encode the entire decryption algorithm of C∗ as a function on a secret
key, and thus win the game trivially.

7 The original CHK transform [12] is used to construct a forward-secure PKE scheme
starting from a BTE scheme.

Forward Security Under Leakage Resilience, Revisited 17

Let (Gen,Der,Upd,Enc,Dec) be a CLR-BTE scheme. We construct our
FINDCL PKE scheme (KEE.Kg, KEE.Upd, KEE.Enc, KEE.Dec) as shown below.
The construction is identical to the CHK transform, with the underlying building
blocks appropriately changed.

Some Additional Notation: To obtain a FINDCL-secure encryption scheme with
T = 2� − 1, time periods (labeled through 1 to T), we use a CLR-BTE of
depth �. We associate the time periods with all nodes of the tree according to
a pre-order traversal. The node associated with time period i is denoted by wi.
In a pre-order traversal, w1 = ε (the root node), if wi is an internal node then
wi+1 = wi0 (i.e., left child of wi). If wi is a leaf node and i < T − 1 then
wi+1 = w′1, where w′ is the longest string such that w′0 is a prefix of wi.

1. KEE.Kg(1κ, T): Run Gen(1κ, �), where T ≤ 2� − 1, and obtain (MPK,SKε).
Set pk = (MPK,T), and sk1 = SKε.

2. KEE.Upd(1κ, pk, i, ski): The secret key ski is organized as a stack of node keys,
with the secret key SK ′

wi on top, where SK ′
wi is obtained by running Upd of

the CLR-BTE scheme (potentially multiple times) on the key SKwi . We first
pop this key off the stack. If wi is a leaf node, the next node key on top of the
stack is SK ′

wi+1 (a refreshed version of the key SKwi+1). If wi is an internal
node, compute (SKwi0, SKwi1) ← Der(pk,wi, SKwi) Ṫhen for b ∈ {0, 1},
compute SK ′

wib ← Upd(w,SKwib). Further, for all other node keys SKw

remaining in the stack (corresponding to ski+1), run SK ′
w ← Upd(w,SKw).

Then push SK ′
wi1 and then SK ′

wi0 onto the stack. In either case, the node
key SK ′

wi is erased.
3. KEE.Enc(pk, i,m): Run Enc(pk,wi,m). Note that wi is publicly computable

given i and T .
4. KEE.Dec(1κ, pki, ski, ci) : Run Dec(pk,w, SK ′

wi , ci). Note that, SK ′
wi is stored

as part of ski.

Theorem 1. Let λ : N → [0, 1]. Let Π = (Gen,Der,Upd,Enc,Dec) be a
λ(κ)-CLR-SN-CPA continuous leakage-resilient binary-tree encryption (CLR-
BTE) scheme. Let � : N → N be a polynomial such that T ≤ 2� − 1. Then
Π ′ = (KEE.Kg,KEE.Upd,KEE.Enc,KEE.Dec) is a λ(κ)-FINDCL secure encryp-
tion scheme supporting up to T time periods.

Proof. Our proof follows the template of the CHK transformation for converting
a BTE scheme to forward-secure encryption scheme, with the crucial difference
in simulating the leakage queries.

Assume that we have an adversary Akee with advantage ε(κ) in an λ(κ)-
FINDCL security game of Π ′ = (KEE.Kg,KEE.Upd,KEE.Enc,KEE.Dec). We
construct an adversary Aclr-bte that obtains an advantage ε(κ)/T in the
corresponding attack against the underlying the CLR-BTE scheme Π =
(Gen,Der,Upd,Enc,Dec). The leakage rate tolerated by Π is exactly the same
as Π ′. We now describe how Aclr-bte simulates the environment for Akee:

18 S. Chakraborty et al.

1. Aclr-bte chooses uniformly at random a time period i∗ ∈ [T]. This define the
node wi∗

(the identity of the node corresponding to i∗). Aclr-bte then forwards
wi∗

to its challenger and obtains MPK and {SKw} for all the appropriate
nodes w8 from its challenger. Aclr-bte then sets pk = (MPK,T), and forwards
the public key pk to the adversary Akee.

2. When Akee decides to break into the system, it provides the time period,
say j. If j ≤ i∗, then Aclr-bte outputs a random bit and halts. Otherwise,
Aclr-bte computes the appropriate secret key skj and gives it to Akee. Note
that, Aclr-bte can efficiently compute the secret keys skj for any j > i∗ from
the knowledge of {SKw} (the set of secret keys received in Step 1).

3. Akee may ask leakage queries on the secret key corresponding to any time
period, say i. The node associated with time period i is wi. The secret key
ski can be seen as a stack of node keys (derived using the underlying CLR-
BTE scheme) with the key SK ′

wi on top of the stack. The other node keys in
the stack are secret keys corresponding to the right siblings of all the nodes
in the path Pwi from the root node to wi. Let us denote the secret key as
ski = (SK ′

wi , {SK}′
rs(Pwi)

), where {SK}′
rs(Pwi)

denote the (refreshed) secret
keys of the right siblings of all nodes in path from the root to the node wi

(we denote this path by Pwi). Now, either one of the two cases must be true:
(1) wi ∈ Pwi∗ or (2) wi /∈ Pwi∗ , where Pwi∗ is the path containing the nodes
from the root node to the target node wi∗

(including both).
For the first case, Aclr-bte already knows all the keys {SK}rs(Pwi)) and it does
the following:

– Receive as input the leakage function f from Akee. Next, it calls Upd
on all the node keys {SK}rs(Pwi) and receive the set of refreshed keys
{SK}′

rs(Pwi)
. It then modifies the description of the function as h =

f{SK}′
rs(P

wi)
(·) = f

(

·, {SK}′
rs(Pwi)

)

. In other words, Aclr-bte hardwires the

secret keys {SK}′
rs(Pwi)

in the function f , and forwards h as the leakage
function to its challenger.

– On input the answer h(SK ′
wi , {SK}′

rs(Pwi)
) from its challenger, Aclr-bte

forwards this answer as the output of the leakage function f to Akee.
For the second case (i.e., when wi /∈ Pwi∗), there exists at most one node
w ∈ Pwi∗ whose secret key is included {SK}′

rs(Pwi)
. Apart from the secret key

of w, Aclr-bte knows the secret key of wi, SKwi , and the keys {SK}rs(Pwi)).
Thus, similar to above it can transform the joint leakage function f to a
leakage function h on SK ′

w. It then returns the result to Akee.
It is clear that in both cases, Aclr-bte perfectly simulates the answers to the
leakage queries of the adversary Akee.

4. When Akee asks an update query KEE.Upd(i), Ablr-bte can easily compute the
key for the next time period using the knowledge of the keys {SKw} received
from its challenger in the beginning.

8 Recall that Aclr-bte receives the secret keys of all the nodes that are right siblings of
the nodes that lie on the path P from the root node to wi∗

.

Forward Security Under Leakage Resilience, Revisited 19

5. When Akee asks a challenge query with input (i,m0,m1), if i
= i∗ then Aclr-bte

outputs a random bit and halts. Otherwise, it forwards the tuple (m0,m1)
to its challenger and obtains the challenge ciphertext C∗. It then gives C∗ to
Akee.

6. When Akee outputs b′, A outputs b′ and halts.

It is easy to see that, if i = i∗, the above simulation by Aclr-bte is perfect. Since,
Aclr-bte guesses i∗ with probability 1/T , we have that Aclr-bte correctly predicts
the bit b with advantage ε(κ)/T . ��

5 Our Results in the FS+(C)EBL Model

In this section we present the FS+(C)EBL model and present a construction of
NIKE in the FS+EBL model.

5.1 The FS+EBL Model

The Entropy Bounded Leakage (EBL) model was designed to capture security
against adversary who leaked on the secret key. However, to make the attack non-
trivial, it defines the legitimacy of the adversary. An adversary is legitimate if the
secret key sk still contains enough min-entropy, parametrized by α, even after
the leakage. This is a generalization of length-bounded leakage model where a
leakage function can leak at most, say, δ bits. Implicitly, the EBL model is defined
in the setting of a single time period (as there is only the one secret key). The
notion of length bounded leakage model was extended to the setting of multiple
time periods and this was called continual leakage model. In this setting, the
secret key is updated (using a randomized update function) across time periods
and an adversary can leak at most δ bits in every time period. In this section,
we consider deterministic key update functions and take the idea of entropic
bounded leakage model and extend it to the setting of multiple time periods. We
consider the combined problem of FS+EBL, i.e., schemes that are forward secure
and which are resilient to entropic bounded leakage. Specifically, we consider the
Forward Secure + Entropic Bounded Leakage Model, abbreviated as FS+EBL.
It is parametrized by T and α, where T is the maximum number of time periods
and α is the minimum residual entropy required. As before, one can define the
legitimacy of the attacker in this model.

Definition 10 (Definition of Legitimacy - FS+EBL Model). Let Π be
any key-evolving scheme with a deterministic key update algorithm. Let SKi

denote the random variable produced by the key update algorithm for time period
i. Then, any PPT adversary A making leakage queries denoted by Li(SKi) for
i = 1, . . . , T , is legitimate in the (T, α)-FS+EBL model if:

∀j ∈ [t∗],H∞
(

SKj |L1, · · · ,LT , RL1 , · · · , RLT

)

≥ α (1)

where RLi
denote the random coins of the adversary corresponding to the leakage

function Li, t∗ ≤ T is the time period at which A is given skt∗ in full.

20 S. Chakraborty et al.

5.2 NIKE in FS + EBL Model

Non-interactive key exchange (NIKE) protocols allow two (or more) parties to
establish a shared key between them, without any interaction. It is assumed that
the public keys of all the parties are pre-distributed and known to each other.
In this work, we consider two-party NIKE protocols and extend them to the
setting of forward-security under entropy-bounded leakage model (FS + EBL).
We provide the definition of NIKE in this model (we will often call such a
NIKE scheme as FS-EBLR-NIKE). To bypass the black-box impossibility result of
constructing leakage-resilient NIKE protocol in the plain model [34], we consider
the NIKE protocols in the common reference string (CRS) model, where we
rely on leak-free randomness to generate the CRS. Our security model for FS-
EBLR-NIKE scheme can be seen as a leakage-resilient adaptation of the model
of forward-secure NIKE (FS-NIKE) of Pointcheval and Sanders (dubbed as PS
model) [37]. Hence, we call our model of NIKE as the EBL-PS model.

5.3 Syntax of FS-EBLR NIKE

A NIKE scheme NIKE in the FS + EBL model consists of the tuple of algorithms
(NIKE.Setup, NIKE.Gen, NIKE.Upd, NIKE.Key). We associate to NIKE a public
parameter space PP, public key space PK, secret key space SK, shared key space
SHK, and an identity space IDS. Identities are used to track which public keys
are associated with which users; we are not in the identity-based setting.

• NIKE.Setup(1κ, (α, T)): This is a randomized algorithm that takes as input
the security parameter κ (expressed in unary), parameters α and T of the
(T, α)-FS + EBL model (where α is the leakage parameter and T denotes the
maximum number of time period supported by the system9) and outputs
public parameters params ∈ PP.

• NIKE.Gen(1κ, ID): On input an identity ID ∈ IDS, the key generation out-
puts a public-secret key pair (pk, skt) for the current time period t. We assume
that the secret keys implicitly contain the time periods. The current time
period t is initially set to 1.

• NIKE.Upd(skt): The (deterministic) update algorithm takes as input the
secret key skt at time period t and outputs the updated secret key skt+1

for the next time period t + 1, if t < T . We require that the updated key
skt+1
= skt. The key skt is then securely erased from memory. If t = T , then
the secret key is erased and there is no new key.

• NIKE.Key(IDA, pkA, IDB , skB
t): On input an identity IDA ∈ IDS associated

with public key pkA, and another identity IDB ∈ IDS with secret key skB
t

corresponding to the current time period t, output the shared key shkAB
t ∈

SHK or a failure symbol ⊥. If IDA = IDB , the algorithm outputs ⊥. Since
the secret key skB

t is associated with time period t, the shared key shkAB
t

between the two users IDA and IDB also corresponds to the same time
period t.

9 Our construction will achieve security for arbitrary polynomial T .

Forward Security Under Leakage Resilience, Revisited 21

Game EBL-PS

NIKE.Setup S, C and Q maintains the list of
honest, corrupt and exposed users respectively.

RegHon,RegCor,CorrReveal,Leak,Exp(params) // The descriptions of the
oracles RegHon, RegCor, CorrReveal, Leak and Exp are provided below the description
of this game.

If b = 0 then Return NIKE.Key
Else Return

If corrupt corrupt , then return
If and , then return
If and , then return
Return

Fig. 3. Game defining security of NIKE scheme NIKE in the FS + EBL model.

Correctness: The correctness requirement states that the shared keys computed
by any two users IDA and IDB in the same time period are identical. In other
words, for any time period t ≥ 1, and any pair (IDA, IDB) of users having key
pairs (pkA, skA

t) and (pkB , skB
t) respectively, it holds that:

NIKE.Key(IDA, pkB , IDB , skA
t) = NIKE.Key(IDB , pkA, IDA, skB

t).

5.4 Security Model for FS-EBLR NIKE

Our security model for NIKE generalizes the model of forward-secure NIKE of
[37] (often referred to as the PS model). We refer to our model as the EBL-PS
model. Security of a NIKE protocol NIKE in the EBL-PS model is defined by
a game EBL-PS between an adversary Anike = (A1,A2) and a challenger C (see
Fig. 3). Before the beginning of the game, the challenger C also initializes three
sets S, C and Q to be empty sets. The adversary Anike can query the following
oracles:

1. RegHon(ID): This oracle is used by Anike to register a new honest user ID
at the initial time period. The challenger runs the NIKE.Gen algorithm with
the current time period as 1, and returns the public key pk to Anike. It also
adds the tuple (ID, sk1, pk, honest) to the set S. This implicitly defines all
the future keys sk2, · · · , skT (since the update function is deterministic). This
query may be asked at most twice by Anike. Users registered by this query are
called “honest”.

2. RegCor(ID, pk): This oracle allows the adversary to register a new cor-
rupted user ID with public key pk. The challenger adds the tuple
(ID,−−, pk, corrupt) to the set C. We call the users registered by this query
as “corrupt”.

22 S. Chakraborty et al.

3. CorrReveal(IDA, IDB , t): Anike supplies two indices where IDA was registered
as corrupt and IDB was registered as honest. The challenger looks up the
secret key skB

1 (corresponding to IDB) and computes the updated key skB
t

corresponding to time period t. Then it runs NIKE.Key(IDA, pkA, IDB , skB
t)

to get the shared key shkAB
t for time period t and returns shkAB

t to Anike.
4. Leak(L, ID, t): The adversary Anike submits a leakage function L : PP×SK →

{0, 1}∗ to leak on the secret key of user ID for time period t, provided that
Anike belongs to the class of legitimate adversaries (see Definition 10).

5. Exp(ID, t∗): This query is used by Anike to get the secret key of an honestly
registered user ID corresponding to time period t∗. The challenger looks for a
tuple (ID, sk1, pk, honest). If there is a match, it computes skt∗ corresponding
to t∗ and returns skt∗ to Anike. Else, it returns ⊥. The challenger adds (ID, t∗)
to the set Q.

The formal details of our EBL-PS game is given in Fig. 3.

Definition 11 (FS + EBL-secure NIKE). A NIKE protocol NIKE is (T, α)-
forward-secure under computational-entropy-bounded leakage model ((T, α) -
FS + EBL) with respect to any legitimate adversary Anike playing the above
EBL-PS game (see Fig. 3), if the advantage defined below is negligible in κ.

Advfs-eblAnike
(κ) = |Pr[EBL-PSAnike

NIKE(κ, α, T)) = 1] − 1/2|

.

In other words, the adversary Anike succeeds in the above experiment if it is
able to distinguish a valid shared key between two users from a random session
key. To avoid trivial win, some restrictions are enforced, namely: (i) both the
targeted (or test) users needs to be honestly registered (ii) the adversary Anike

is not allowed to obtain the secret keys corresponding to any of the test users
prior to the challenge time period t̃, (iii) Anike is allowed to leak on the secret
keys of both the target users IDA and IDB , as long as it satisfies the legitimacy
condition (see Definition 10). We emphasize that the adversary can still obtain
the secret keys of the target users IDA and IDB for time periods t∗ > t̃, which
models forward security.

Variants of NIKE. Similar to [34], we consider different variants of NIKE
depending on whether the setup algorithm just outputs a uniformly random
coins or sample from some structured distributions. In particular, we say a NIKE
scheme is:

• a plain NIKE, if NIKE.Setup(1κ) just outputs (some specified number of)
uniform random coins. In particular, NIKE.Setup(1κ; r) = r.

• a NIKE in the common reference string model, if NIKE.Setup(1κ) can be
arbitrary (i.e., sample from an arbitrary distribution). In this case, we rely
on leak-free randomness to run the setup algorithm.

Remark 1. We note that, in the original PS model of forward secure NIKE,
there can be multiple honest users, and the adversary is allowed to obtain the

Forward Security Under Leakage Resilience, Revisited 23

secret keys of the honest users other than the target users (even prior to the
challenge time period t̃). In this work, we consider a simplified version where
there are only two honest users. The above simplified model can be shown to
be polynomially equivalent to the full-fledged PS model by following the same
reduction strategy as in [18] [Theorem 8, Appendix B], where they show that
the CKS-light model (with two honest users) is polynomially equivalent to the
CKS-heavy model (where they can be multiple honest users). We emphasize that,
in our application of constructing FS + EBL-secure PKE scheme from FS-EBLR
NIKE, we only require the above simplified model.

5.5 Construction of NIKE Scheme in the FS + EBL Model

In this section, we present our construction of forward-secure NIKE protocol
resilient to entropy-bounded leakage in the common reference string model.

Let iO be an indistinguishability obfuscator for circuits, pPRF =
(pPRF.keygen, pPRF.puncture, pPRF.eval) be a puncturable PRF with image
space Y = {0, 1}y, LF = (Inj, Lossy, f) be a (κ, k,m)10-lossy function, and
LF′ = (Inj′, Lossy′, f ′) be a (κ′, k′,m′)-lossy function, where κ′ ≥ m.

• NIKE.Setup(1κ, T): Choose a random key K ← pPRF.keygen(1κ). Sample two
injective evaluation keys ek ← Inj(1κ), ek′ ← Inj′(1κ). Consider the circuit
C(r,Xi,Xj) that has the key K hard-coded (see Fig. 4) and compute ̂C =
iO(C). Set params = (̂C, ek, ek′).

Inputs: r,Xi, Xj .

Constant: K, ek, ek

If fek(r) = Xi or fek(r) = Xj , output pPRF.eval(K, (fek (Xi), fek (Xj));

Else output .

Fig. 4. The Circuit C(r, Xi, Xj)

• NIKE.Gen(1κ, params, IDi): To compute the key pair of an user IDi, sample

ski
1

$←− {0, 1}κ. Consider the circuit Ci(skt, t) that has the keys ek, ek′, the
base secret key ski

1, and the obfuscated circuit ̂C (which is part of params)
hard-coded (See Fig. 5) and compute ̂Ci = iO(Ci). Set the public key as
pki = ̂Ci.

• NIKE.Upd(1κ, ski
t): On input of the user ID′

is secret key ski
t at time period

t, computes ski
t+1, the secret key for the next time period t + 1. The instan-

tiation of the update function is mentioned below.
• NIKE.Key(IDi, pki = ̂Ci, IDj , sk

j
t): The user IDj runs the obfuscated circuit

̂Ci = iO(Ci) on inputs the secret key skj
t corresponding to time period t to

obtain the shared key shkij
t at time period t.

10 A (κ, k, m)-lossy function maps an input from x ∈ {0, 1}κ to an output y ∈ {0, 1}m.
In the lossy mode, the image size of the function is at most 2κ−k with high proba-
bility.

24 S. Chakraborty et al.

Inputs: skt, t.

Constants: ski
1, ek, ek , Ĉ, T .

1. Check if t ≤ T . If not, output ⊥.

2. Update ski
t = NIKE.Updt−1(ski

1).

3. Compute Xi
t = fek(ski

t) and Xj
t = fek(skt).

Output the shared key shkij
t = C(skt, Xi

t , X
j
t).

Fig. 5. Circuit Ci(skt, t)

Note on Update Function: The update function NIKE.Upd is one which takes a
secret key of the current period and produces a new secret key. As defined in
the security model, the adversary can issue leakage queries provided the keys
are α-entropic conditioned on the set of all leakage queries. It is not hard to
see that the update function should necessarily satisfy the one-wayness prop-
erty, essentially guaranteeing the non-invertibility of the earlier keys once the
secret key is exposed. Interestingly, for the above construction, we can abstract
away the update function to any entropic leakage resilient one-way function,
i.e., NIKE.Upd(·) = g(·), where g : {0, 1}κ → {0, 1}κ be a α-entropic leakage-
resilient one-way function (α-ELR-OWF). The definition of entropic leakage-
resilient OWF is given in Sect. 3.3.

Correctness. It is not hard to see that both the parties IDi and IDj end up
with the same shared key.

Shared key computation by party Pi: Party Pi computes the shared key as:

shkij
t = NIKE.Key(IDj , pkj = ̂Cj , IDi, sk

i
t)

= ̂Cj(ski
t, (X

i
t ,X

j
t))

= pPRF.eval
(

K, f ′
ek′(Xi

t), f
′
ek′(Xj

t)
)

= pPRF.eval
(

K, f ′
ek′(fek(ski

t)), f
′
ek′(fek(NIKE.Updt−1(skj

1)))
)

= pPRF.eval
(

K, f ′
ek′(fek(NIKE.Updt−1(ski

1))), f
′
ek′(fek(NIKE.Updt−1(skj

1)))
)

Shared key computation by party Pj: Party Pj computes the shared key as:

shkij′
t = NIKE.Key(IDi, pki = ̂Ci, IDj , sk

j
t)

= ̂Ci(sk
j
t , (X

i
t ,X

j
t))

= pPRF.eval
(

K, f ′
ek′(Xi

t), f
′
ek′(Xj

t)
)

= pPRF.eval
(

K, f ′
ek′(fek(NIKE.Updt−1(ski

1))), f
′
ek′(fek(sk

j
t))

)

= pPRF.eval
(

K, f ′
ek′(fek(NIKE.Updt−1(ski

1))), f
′
ek′(fek(NIKE.Updt−1(skj

1)))
)

Hence, we can see that shared keys computed by both parties Pi and Pj

corresponding to time period t are same, i.e., shkij
t = shkij′

t .

Forward Security Under Leakage Resilience, Revisited 25

Instantiations. Our FS-EBLR NIKE construction from above can be instantiated
based on the recent construction of iO from well-founded assumptions [28]. One
can construct lossy functions from DDH or LWE [34]. Besides, we need to rely on
the relaxed variant of the Superfluous Padding Assumption (SuPA). In particular
we obtain FS+ECL NIKE from either DDH or LWE along with sub-exponential
SXDH on asymmetric bilinear groups, sub-exponential LPN, Boolean PRGs in
NC0 and relaxed SuPA.

5.6 Security Proof

Theorem 2. Let κ be the security parameter, and T = T (κ) be an arbitrary
but fixed polynomial. Assume that iO is an indistinguishability obfuscator for
circuits, and the superfluous padding assumption holds for iO. Let LF is an
(κ, k,m)-lossy function, LF′ is an (κ′, k′,m′)-lossy function where κ′ ≥ m, pPRF
is a family of puncturable PRFs with image size Y = {0, 1}y. Then, Construc-
tion 5.5 is a (α, T)-forward-secure entropy-bounded leakage-resilient NIKE in the
EBL-PS model with α ≥ y + rT + r′ − 2κ, where r = (κ− k), r′ = (κ′ − k′), and
T denote the total number of time periods supported by the scheme.

The proof of the above theorem is presented in the full version of our paper.
The high level idea of the proof strategy is presented in the introduction.

References

1. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 10

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00457-5 28

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 3

4. Bellare, M., Meiklejohn, S., Thomson, S.: Key-versatile signatures and applications:
RKA, KDM and joint Enc/Sig. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 496–513. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-55220-5 28

5. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

6. Bellare, M., O’Neill, A., Stepanovs, I.: Forward-security under continual leakage.
In: Capkun, S., Chow, S.S.M. (eds.) CANS 2017. LNCS, vol. 11261, pp. 3–26.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02641-7 1

7. Boyd, C., Gellert, K.: A modern view on forward security. Cryptology ePrint
Archive, Report 2019/1362 (2019). http://eprint.iacr.org/2019/1362

https://doi.org/10.1007/3-540-44448-3_10
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-03356-8_3
https://doi.org/10.1007/978-3-642-55220-5_28
https://doi.org/10.1007/978-3-642-55220-5_28
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/978-3-030-02641-7_1
http://eprint.iacr.org/2019/1362

26 S. Chakraborty et al.

8. Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-secure signatures with
untrusted update. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS
2006, pp. 191–200. ACM Press (2006)

9. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 7

10. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in
the bucket: public-key cryptography resilient to continual memory leakage. In: 51st
FOCS, pp. 501–510. IEEE Computer Society Press (2010)

11. Brzuska, C., Mittelbach, A.: Universal computational extractors and the super-
fluous padding assumption for indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2015/581 (2015). http://eprint.iacr.org/2015/581

12. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

13. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

14. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: 51st FOCS, pp. 511–520. IEEE Computer Society
Press (2010)

15. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 35

16. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

17. Dziembowski, S., Kazana, T., Wichs, D.: Key-evolution schemes resilient to space-
bounded leakage. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 335–
353. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 19

18. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7 17

19. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. Algorithmica
79(4), 1353–1373 (2017)

20. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of
Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013, pp.
467–476. ACM (2013)

21. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy, pp. 305–320. IEEE
Computer Society Press (2015)

22. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 18

https://doi.org/10.1007/978-3-642-20465-4_7
http://eprint.iacr.org/2015/581
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1007/978-3-642-22792-9_19
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18

Forward Security Under Leakage Resilience, Revisited 27

23. Halderman, J.A., et al.: Lest we remember: cold-boot attacks on encryption keys.
Commun. ACM 52(5), 91–98 (2009)

24. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

25. Holmgren, J.: On necessary padding with IO. Cryptology ePrint Archive (2015)
26. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional computational entropy, or toward

separating pseudoentropy from compressibility. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72540-4 10

27. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 20

28. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pp. 60–73 (2021)

29. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 41

30. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

31. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

32. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In:
Jajodia, S., Samarati, P. (eds.) ACM CCS 2000, pp. 108–115. ACM Press (2000)

33. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 6

34. Li, X., Ma, F., Quach, W., Wichs, D.: Leakage-resilient key exchange and two-seed
extractors. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12170, pp. 401–429. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56784-2 14

35. Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7 27

36. Naor, M., Segev, G.: Public-Key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 2

37. Pointcheval, D., Sanders, O.: Forward secure non-interactive key exchange. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 21–39. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 2

38. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press
(2014)

39. Zhandry, M.: The Magic of ELFs. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 479–508. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53018-4 18

https://doi.org/10.1007/978-3-540-72540-4_10
https://doi.org/10.1007/978-3-540-72540-4_10
https://doi.org/10.1007/3-540-44647-8_20
https://doi.org/10.1007/978-3-642-10366-7_41
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-19571-6_6
https://doi.org/10.1007/978-3-030-56784-2_14
https://doi.org/10.1007/978-3-030-56784-2_14
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/978-3-642-03356-8_2
https://doi.org/10.1007/978-3-319-10879-7_2
https://doi.org/10.1007/978-3-662-53018-4_18
https://doi.org/10.1007/978-3-662-53018-4_18

Anonymous Broadcast Authentication
with Logarithmic-Order Ciphertexts

from LWE

Yoshinori Aono1,2(B) and Junji Shikata1,3

1 Institute of Advanced Sciences, Yokohama National University,
79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

aono-yoshinori-xf@ynu.ac.jp
2 National Institute of Information and Communications Technology,

4-2-1, Nukui-Kitamachi, Koganei, Tokyo, Japan
3 Graduate School of Environment and Information Sciences, Yokohama National

University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

Abstract. We propose an anonymous broadcast authentication (ABA)
scheme to simultaneously control massive numbers of devices within
practical resources. As a theoretical foundation, we find a barrier to
construct an ABA working with a larger number of devices: there is a
trilemma between (i) security, (ii) ciphertext length, and (iii) freedom in
the target devices selection. For practical use, we propose ABAs with a
ciphertext size of O(logN) where N is the number of target devices while
we impose a certain restriction on (iii). We provide an ABA template and
instantiate it into a specific scheme from the learning with errors (LWE)
problem. Then, we give estimation of size and timing resources.

Keywords: Anonymous broadcast authentication · IoT Network ·
Learning with errors problem

1 Introduction

The ABA [25] is a one-way communication from a central server to multiple
resource-limited devices. The server broadcasts a command to control a subset of
devices. The following conditions (1) (2) are the minimum desired specifications
for correctness. (1) A message from the server includes information on the IDs of
the target devices and control commands. Each device that receives the message
either executes the command if the device is included in the target devices or does
nothing if otherwise. (2) The received message has integrity and authenticity.

Also, it should satisfy two additional security notions (3) (4). (3) Unforgeabil-
ity: In a situation where secret information of some devices are leaked, an entity
with the information cannot forge a legitimate command. (4) Anonymity: Each
device can detect whether or not it is a target, but cannot determine whether
another device is a target.

An application that we envision is sending emergency signals to reboot or shut
down malware-infected devices. Thus, we assume that the space of commands is
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 28–50, 2023.
https://doi.org/10.1007/978-981-99-7563-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_2&domain=pdf
http://orcid.org/0000-0003-1538-7220
http://orcid.org/0000-0003-2861-359X
https://doi.org/10.1007/978-981-99-7563-1_2

ABA with Logarithmic-Order Ciphertexts from LWE 29

small (a few bits) to send reboot, shutdown, or other optional flags. We expect
the number of devices to be about 106–109 to control all the devices within
a wireless area (several square kilometers) simultaneously in the 5G IoT or the
network beyond it. The entire process of command generation in a central server,
communication, and authentication in target devices must also be completed
within a few seconds for a fast response to an emergency.

For the application, the command should be encrypted to satisfy the above
(3) and (4). However, several barriers are known regarding the ciphertext length.
Assuming the atomic model [14,15], an ABA that has anonymity must have the
ciphertext Ω(n), where n is the number of target or joined devices; it depends on
the security requirement of anonymity. A similar bound is derived simply from
Shannon’s coding theorem because the condition (1) requires that the informa-
tion amount contained in the ciphertext should exceed N under the assumption
that the target device set is randomly selected from a family of any subset of N
devices.

These observations deduce the following trilemma: In ABA, the three con-
ditions (i) security (anonymity), (ii) ciphertext length, and (iii) freedom in the
target devices selection are not simultaneously satisfied. For practical use, we
propose an ABA with a ciphertext size of O(logN) while we impose a certain
restriction on (iii). Concretely, our ABA protocol has the device IDs represented
by a vector (id1, . . . , idK) where idj ∈ [Nj] := {1, 2, . . . , Nj} and ciphertext
length O(

∑
Nj). It can control

∏
Nj devices, which is an exponential number

to the ciphertext length.
We first construct an ABA template and provide instantiations from the LWE

problem. With a parameter set controlling 109 devices with 128-bit security, the
ciphertext length is about 1 MBytes and the expected processing timing of the
verification in target devices is in a few seconds in ARM Cortex-M4 processors.

1.1 Related Work

Atomic model assumes that the server broadcasts a sequence of ciphertexts
ct1, . . . , ct� that encrypts a control command. Each device j then tries to decrypt
each cti using its key dkj . The length � of the sequence in this model is well-
studied in the private key broadcast encryption (prBE) by Kiaias-Samari [14]
and by Kobayashi et al. [15] including ABA. They showed that � ≥ N if an ABA
controlling N devices has anonymity and it deduces the total bit-lengths of the
ciphertexts is Ω(N · λ) where λ is the security parameter. The bounds can be
relaxed to � ≥ |S| and Ω(|S| · λ) respectively if it considers the weak-anonymity
instead of the anonymity where S ⊂ [N] is the set of target devices. In both
cases, concrete constructions achieving the bounds are given by [15,25].

Broadcast encryption (BE) is considerably similar to ABA. At the formal
definition level, the notion of ABA is equivalent to prBE in [21, Def. 3.1]. On
the other hand, security notions are slightly changed whose reasons are mainly
from the application. It is an authentication-oriented analog of anonymous BE
(ANOBE).

The anonymity notion in the BE framework was first proposed by Barth et
al. [2], which corresponds to the weak anonymity in the ABA framework. After,

30 Y. Aono and J. Shikata

an efficient scheme from the DDH assumption over groups is given by Benoît
et al. [18] with the notion of ANOBE, and its lattice interpretation is given in
[12]. They keep the freedom in the choice of target devices and thus requires
linear-sized ciphertexts, concretely, O(N − r), where N and r are the numbers
of joined and revoked devices. Fazio et al. [9] proposes a public key BE with
outsider anonymity and CPA/CCA security with their notions. They achieved
the log-order ciphertext size O(r log(N/r)), but it is still linear in r.

For practical use on IoT devices, we have to consider the decryption timing.
Efficient implementations of BE have been considered in many existing works.
[5] reported a survey of several pairing-based BE systems and implementation
results in the same environment on a standard laptop. In particular, sublinear
ciphertext size BEs with some functionalities [4,11] can decrypt less than one
second even for N = 106.

Following the existing works, we mention two issues when we import the
techniques in BE to our ABA. First, constructing a practical scheme with short,
i.e., o(N) [bit] ciphertext with keeping reasonable anonymity has been one of the
challenging problems in BE and its variants. It is not trivial to import an existing
scheme and to prove an anonymity of ABA. On the other hand, a transformation
technique to add the unforgeability is useful as explained in the next paragraph.

Interpreting the authentication result as the transmission of a one bit mes-
sage, the framework of ABA can be considered as a prBE with additional func-
tionalities. Our scheme in this paper can be considered as a new result of short
ciphertext prBE, besides the context of ABA.

Transformation to add unforgeability can be done by a technique that con-
verts a weak-security prBE to a CCA1 secure prBE. The simplest transformation
should be adding a signature to the broadcasting ciphertext as in [17]. The proof
of anonymity in our ABA is straightforward by considering similarity between
the unforgeability of ABA and the CCA1 security of prBE.

Infeasibility of Naïve Atomic ABA Systems: Consider a size of an atomic
type ABA constructed from a standard encryption and a signature scheme. For
example, a standard (resp. structured) lattice-based encryption needs tens of
kilobytes (resp. half a kilobyte) length ciphertexts; FrodoKEM [10] and FALCON
[8] provide good examples of sizes after optimization. This implies that a system
for controlling N = 106 devices requires a command ciphertext presented in
gigabytes, which is too large to process on a low-resource device. Thus, an ABA
with short ciphertexts is necessary to control millions of devices in the real world.

Anonymous multicast or anonymous message delivery invented in [3,6] is a
similar terminology but is a different notion. It can broadcast a message to all
the devices in a network whose connectivity is limited and represented by an
undirected graph, and can hide who sends the message.

1.2 Our Contributions and Paper Organization

Trilemma in ABA Construction: Relations among considered limitations
and the linear lower bound of the ciphertext length are organized as follows.

ABA with Logarithmic-Order Ciphertexts from LWE 31

We use At and An to represent that an ABA is in the atomic model and has
anonymity, respectively. LB represents that an ABA has ciphertext longer than
N or |S| on average over the selection of target sets and messages. Then, the
result of Kobayashi et al. [15] can be described as [At AND An] ⇒ LB .

In addition, we denote F as the freedom in the choice of target devices, i.e.,
any S ⊂ [N] can be selected as a target device set, and assume it is randomly
chosen from 2[N]. According to Shannon’s coding theorem, the ciphertext must
be longer than N bits on average because the broadcasting ciphertext entropy
exceeds N bits. Thus, we have F ⇒ LB and deduce the following relation

¬LB ⇒ ¬F AND [¬At OR ¬An].

It shows that the short ciphertext (¬LB), anonymity (An) and the freedom
in the choice of targets (F) are not satisfied simultaneously. In particular, an
ABA with short ciphertexts must restrict conditions among F , At , and An.

Design Rationale: From the viewpoint of the aforementioned limitations, our
construction satisfies ¬F , ¬At , and a nearly anonymity. We emphasize that it
is on the borderline of the feasible area.

We explain why we restrict the strength of anonymity by introducing a new
notion of anonymity which we named it single anonymity (Sect. 5.1), or shortly

SA. It is a notion about information leakage on id′ ?
∈ S, i.e., a binary information

whether id′ is contained in S or not, from other patterns {id
?
∈ S}. We proved

that ¬F ⇒ ¬SA. Thus, combining with F ⇒ LB , we can conclude any short
ciphertext ABA inherently lacks the single anonymity, and this is the reason
that we do not investigate the complete anonymity.

Base atomic type ABA is constructed from a Vernam-styled multirecipient
encryption (MRE) which is a fundamental gadget with information-theoretic
security. Technically, the Vernam-styled gadget cannot be secure if the server
sends ciphertexts with the same secret key many times. To address this problem,
we transformed MRE to a computationally secure ABA with a template function
fprm using the technique of Kurosawa et al. [16]. Then, we instantiate it to a
practical protocol by using an LWE-styled function. This template construction
was within the atomic model that sends M ≥ N ciphertexts to N devices.

ABA with logarithmic-order ciphertext length is constructed by the con-
catenation of the base ABAs. However, it is easily seen that the concatenated
ABA does not have anonymity. We propose a modification using the idea of
Agrawal et al.’s inner-product encryption [1] to add anonymity in a limited
sense. Finally, we add the unforgeability by adding a signature.

Each device is indexed by a vector (i1, . . . , iK) where ij ∈ [Nj] :=
{1, 2, . . . , Nj} and each Nj is the size of each coordinate set as public parameters.
The target set is defined by a sequence of sets Sj ⊂ [Nj] and a device is a target
if ij ∈ Sj for all j. A trade-off between the ciphertext length and the flexibility of
target sets can be considered by changing Nj . For instance, K = 1 corresponds
to an atomic ABA that can control N1 devices. On the other hand, for K ≥ 2

32 Y. Aono and J. Shikata

and setting all Nj equivalent, it derives an ABA controlling N = NK
1 devices

by O(K · N1) = O(K · N1/K) [bit] ciphertext. In particular, taking Nj = 2 for
all j, it provides an ABA to control N = 2K devices by O(K) = O(logN) [bit]
ciphertext.

We remark that the above setting of indexes and selecting method assume
a realistic situation. For instance, the vector-style index can be recognized as
an avatar of ID = (company,model, serialnumber, . . .). Assume company is
one of {cA, cB, cC, . . .} and model is one of {mA,mB,mC, . . .}. Then, suppose
devices with model mA produced by cA found to be infected by malware, one
can broadcast a shutdown command to the devices indicated by the wildcard
(mA, cA, ∗, ∗, . . .).

Data sizes and expected timings to control 220 to 230 devices are given
in Table 1. Besides the basic parameters, we give the sizes of a verification key
and a control command and expected consuming cycles in verification in each
target device assuming to include an ARM Cortex-M4 processor. In particular,
assuming a processor working with 100MHz, it takes a few seconds in the setting
of K = 30 and 128-bit security.

We remark that the verification process is dominated by the computation of
SHA-3 in signature verification that requires 213 cycles/Byte [23]. It is possible to
speed up the verification dramatically by employing a lightweight hash function.
For instance, Chaskey [20] can work with 7 cycles/Byte in ARM Cortex-M4.

Table 1. Sizes of a verification key ((4Kn)�log2 q�/8+pksize) and command ciphertext
((1 + 8Kn)�log2 q�/8 + sigsize) in Bytes in our lattice based ABA. K is the number of
concatenated base ABAs, which makes it possible to control 2K devices. n and q are
the LWE dimension and modulus, respectively. L and Q are the variety of messages
and the buffers to prevent overflow, respectively. (pksize, sigsize) is the size of public
key and signature of a strongly and existentially unforgeable signature assumed to be
(897, 666) and (1793, 1280) from 128 and 256 bit security FALCON signature [8] where
the unit is in Bytes. The last two columns contain expected timings in the million
clocks of signature verification and canceling computation to recover m in each target
device with ARM Cortex-M4 processors. Other details will be given in Sect. 6.

Sec.
Lev.

(K, L) n (q, Q) Size(vkid)
+ pksize [Byte]

Size(cmdS)
+sigsize [Byte]

mil. cyc.
(Σ.Vrfy)

mil. cyc.
(Cancel)

128 (20,4) 926 (68588467, 428678) 250020 + 897 500052 + 666 107.1 0.1
(20, 256) 1164 (4921551113, 480621) 384120 + 897 768245 + 666 164.2 0.4
(30, 4) 961 (128364259, 534852) 389205 + 897 778414 + 666 166.4 0.2
(30, 256) 1119 (9176392691, 597422) 611490 + 897 1222985 + 666 261.0 0.6

256 (20, 4) 1799 (95600731, 597505) 485730 + 1793 971464 + 1280 208.0 0.2
(20, 256) 2238 (6824259821, 666432) 738540 + 1793 1477085 +

1280
315.7 0.8

(30, 4) 1863 (178726489, 744694) 782460 + 1793 1564924 +
1280

334.3 0.3

(30, 256) 2302 (12714961717, 827797) 1174020 + 1793 2348045 +
1280

501.2 1.2

ABA with Logarithmic-Order Ciphertexts from LWE 33

Comparisons with existing works from the viewpoint on the performance
and security are given as follows. Kobayashi et al. [15] provided the MAC-based
constructions satisfying the anonymity (resp. weak-anonymity) whose command
sizes are exactly (N + 2)λ (resp. (|S|+ 2)λ) that hits the non-asymptotic linear
lower bound where λ is the security parameter. Watanabe et al. [26] proposed
shorter command ABAs by relaxing the anonymity condition and employing
improved Bloom filters whereas command size is still linear O(N · log2(1/μ)) to
the number of devices. Here, μ is the false-positive rate, for which they assume
2−10 to 2−20. For reference, to control N = 106 devices within the rate μ = 2−10,
the size is about 1.8 MBytes. Our logarithmic-order constructions achieve much
shorter commands than the previous construction by sacrificing anonymity.

Paper Organization: Section 2 introduces basic definitions, notations, LWE,
and ABA. In Sect. 3, we provide a Vernam-styled multirecipient encryption
(MRE) that broadcasts an encrypted message only for target devices with
information-theoretic security. In Sect. 4, we convert the MRE to a template
of computationally secure ABA. In Sect. 5, we propose an ABA of short com-
mand ciphertext by a concatenation of ABAs. Section 6 provides a lattice based
protocol with concrete parameters, sizes of ciphertexts, and expected timings.
Finally, in Sect. 7 we discuss future works.

2 Preliminaries

Z and N are the set of integers and natural numbers. For N ∈ N, denote the
set [N] := {1, . . . , N}. Define Zq := {0, 1, . . . , q − 1} and q is assumed to be an

odd prime. Z
×
q := Zq \ {0}. For a finite set A, let the notation a

$←− A be the
uniform sampling. Bold letters such as c represent a row vector and its transpose
notation cT represents a column vector. We use ui to denote the i-th unit vector
(0, . . . , 1, . . . , 0) whereas the dimension is omitted if it is clear from the context.
For vectors and matrices, the notation || denotes the concatenation. For two sets
S0,S1 of target devices, S0�S1 is the symmetric difference (S0 \ S1)∪ (S1 \ S0).

The LWE problem [22] is a fundamental toolkit for constructing lattice based
schemes. For a dimension parameter n, a modulo q, and an error distribution
χ, the decision LWE is defined by the problem to distinguish the polynomial
number of samples {(ai,ais

T +ei)}i=1,...,m and {(ai, ui)}i=1,...,m where sT ∈ Z
n
q

is a random secret vector fixed at all the samples. ai, ei, ui are random vectors
from Z

n
q , random errors from χ, and random elements from Zq respectively. χ is

typically the discrete Gaussian distribution DZ,σ whose density function defined
over Z is Pr[X = x] ∝ exp(−x2/2σ2). The goal of the search version of LWE is
to recover s from legitimate samples {ai,ai · sT + ei}i=1,...,m. The polynomial
time equivalence between decision and search is known [22]. We set the lattice
parameter using Albrecht et al.’s lattice estimator [7] as of May 2022.

2.1 Anonymous Broadcast Authentication (ABA)

We introduce the notion of ABA, and its correctness, unforgeability, and
anonymity by Watanabe et al. [25]. They are essentially the same as in the

34 Y. Aono and J. Shikata

original work whereas we explicitly mention t the number of colluded devices in
the security notions.

Definition 1. An ABA is formally defined by the tuple of four functions Π =
(Setup, Join,Auth,Vrfy).

• Setup(1λ, N,D) → ak: An algorithm that outputs the authorization key ak. 1λ

is a security parameter, N is the maximum number of joined devices, and D
is a family of sets S ⊂ [N] allowed to use as a set of the target device.

• Join(ak, id) → vkid: An algorithm that outputs a verification key vkid embedded
to the device id.

• Auth(ak,m,S) → cmdS : It outputs a command ciphertext that encrypts the
information of the message m and the set S of the target devices.

• Vrfy(vki, cmdS) → m/reject: It verifies the command ciphertext cmdS using
the verification key vkid. It returns the message or reject if it was accepted or
rejected, respectively.

The abovementioned algorithms, except for Vrfy are assumed to be proba-
bilistic polynomials. The family D is typically set as 2[N] in several early works
whereas we restrict the freedom in the choice of a subset in [N] to construct a
short ciphertext ABA.

Definition 2. We say an ABA Π has correctness if for any fixed (1λ, N,D), ak
that are allowed to input, S ∈ D, and any m, id ∈ [N], it holds that

Pr[Vrfy(Join(ak, id),Auth(ak,m,S)) → m] = 1 − negl(λ) if id ∈ S, and
Pr[Vrfy(Join(ak, id),Auth(ak,m,S)) → reject] = 1 − negl(λ) if id �∈ S.

The probability is over the random coins in Join and Auth (and possibly Vrfy).

Below are the game-based formal definitions of unforgeability and anonymity
within the situation where the receiver devices are colluded and can share their
verification keys. We remark that a message security, i.e., whether an adversary
can extract information on m, is not considered as in [25].

Definition 3 (t-unforgeability [25]). Consider the game between a challenger C
and an adversary A.

0: C and A share (1λ, N,D) and C runs Setup(1λ, N,D) → ak. Let Ma = Mv = φ
be the messages used in the authentication and verification queries. Also, let
D ⊂ [N] and W ⊂ D be the set of considered devices during the game, and
the set of colluded devices. flag ∈ {0, 1} is a variable that indicates whether
the adversary gets the success forging.

1: (Key generation) A selects a set of considered devices D ⊂ [N] and send it to
C. C runs Join(ak, id) → vkid for all id ∈ D.

2: (Collusion query) A selects id ∈ D and send it to C. C adds id to W and send
back vkid to A. A can repeat this step until |W | < t.

3: (Authentication query) A sends (m,S) to C where the selection is limited
within S ⊂ D and m �∈ Mv. Then, C runs Auth(ak,m,S) → cmdS and returns
it to A.

ABA with Logarithmic-Order Ciphertexts from LWE 35

4: (Verification query) A generates a set (m, id, cmdS) and send them to C. C
runs Vrfy(vkid, cmdS) and returns the output to A. If Vrfy(vkid, cmdS) = m,
id �∈ W and m �∈ Ma, set flag = 1 else set flag = 0. Add m to Mv.

After repeating Steps 3 and 4, if there exists a verification trial such that
flag = 1, we define the output of the experiment ExpCMA

Π,A (λ,N, �) is 1, and oth-
erwise it is 0. The advantage of A on the protocol Π is

AdvCMA
Π,A (λ,N, �) := Pr[ExpCMA

Π,A (λ,N, �) → 1].

We say the ABA protocol Π has t-unforgeability if the advantage is a negligible
function of λ.

The above formal definition can be interpreted as follows. Suppose t devices
are taken over and colluded. Under a situation where an attacker collects secret
information in these devices, it cannot forge a legitimate command ciphertext
that an uncolluded device accepts. We will construct our unforgeable ABA from
a base ABA by adding a signature.

We deal with the following passive attack rather than the above active attack.

Definition 4 [25] (t-anonymity). Consider the game between a challenger C
and an adversary A. As the definition of unforgeability, t indicates the number
of colluded devices.

0: C and A share (1λ, N,D) and C runs Setup(1λ, N,D) → ak. Let Ma = φ
be the set of the command used in the authentication. Also, let D ⊂ [N]
and W ⊂ D be the set of considered devices during the game, and the set
of colluded devices.

1, 2: The same as the Steps 1, 2 in the unforgeability game (Definition 3).
3: (Authentication query) A selects a pair (m,S),S ⊂ D,m �∈ Ma and send it

to C. C runs Auth(ak,m,S) → cmdS and return the output and adds m to
Ma.

4: (Challenge query) A selects a command m �∈ Ma and two sets of devices
S0,S1 and send them to C. C runs Auth(ak,m,Sb) → cmdSb

where b ∈
{0, 1} is a random bit. Return the ciphertext to A. A guesses b′ for the
random bit.

We define the output of the game is 1 if b = b′, i.e., the adversary succeeds
in guessing, and the output is 0 if otherwise. The advantage is

AdvANOΠ,A (λ,N, �) :=
∣
∣
∣2Pr

[
ExpANO

Π,A (λ,N, �)
]

− 1
∣
∣
∣ .

In Step 4, the considered sets S0 and S1 must satisfy

Sd := (S0�S1) ∩ W = φ (1)

to prevent a trivial distinguishing; if Sd �= φ, A can check whether some id ∈ Sd

is in S0 or not via the decryption oracle.

36 Y. Aono and J. Shikata

We pointed out that the condition (1) does not hide the size of sets. The
notion of weak anonymity is defined by adding the condition |S0| = |S1| besides
(1) in Step 4. Also, the outsider anonymity is defined by replacing (1) with
(S0 ∪ S1) ∩ W = φ in Step 4. It is slightly weaker than the weak anonymity,
though it has no restriction on the size of sets [25].

3 Vernam-Styled Multirecipient Encryption
with Information-Theoretic Security

As a base gadget to construct our ABA, we introduce a simple multirecipient
secret key encryption. It is a one-way protocol from a central server to N par-
ticipant devices. The server packs a set of messages into one ciphertext and
broadcasts it to the devices. Each device decrypts the ciphertext with its key.
It has the information-theoretic security on messages; that is, each device i can
recover the i-th message mi whereas it can gain no information on the messages
mj (j �= i) to the other devices.

Definition 5. A multirecipient encryption (MRE) is formally defined by a tuple
of three functions MRE = (KeyGen,Enc,Dec).

• MRE.KeyGen(N, pp) → (ek, dk1, . . . , dkN): It outputs an encryption key ek
and decryption keys {dki}i∈[N].

• MRE.Enc(ek, {mi}i∈S) → ct: S is the set of target devices to which messages
are sent. mi is a message sent to the i-th device and the server can take
different mi for each i. An encryption algorithm outputs ct to be broadcasted.

• MRE.Dec(dki, ct) → m′
i: A decryption algorithm that recovers a message in

the i-th device from ct by using one’s secret key dki.

Construction: The public parameter pp = (M, q) is the pair of a vector
dimension and a prime modulus. The decryption keys are randomly gener-
ated independent column vectors dkT

i ∈ Z
M
q . The encryption key is the set

ek = {dkT
1 , . . . , dkT

N}. Each participant device i has pp and dkT
i . For a set of tar-

get devices S ⊂ [N] and a set of messages {mi}i∈S where mi ∈ Z
×
q , the cipher-

text ct is a randomly chosen vector in Z
M
q that satisfies ct · dkT

i ≡ mi (mod q)
for all i ∈ S. The decryption at device i is the computation of inner-product
ct · dkT

i (mod q). Thus, the correctness is immediate.
Since each coordinate is of Z

M
q , the sizes of the encryption key, decryption

key, and ciphertext are NM log2 q, M log2 q, and M log2 q in bits, respectively.
This construction can be regarded as a generalization of the concatenation

of the Vernam cipher since under the situation where N = M and all dkT
i ’s

are a multiple of i-th unit vector uT
i , the ciphertext ct = (c1, . . . , cN) is the

concatenation of ci by which the i-th device can decrypt. We note the reason
for setting dkT

i independent vectors instead of ki · uT
i where kis are multiples.

Consider a chosen plaintext attack that an attacker can obtain a pair (mi, ct)
for an index i. Then, the decryption key can be easily found by a simple division

ABA with Logarithmic-Order Ciphertexts from LWE 37

where dkT
i = ki · uT

i . However, in the case where dki’s are independent, the
information-theoretic security can be ensured using vectors until M pairs of
(mi, ct) are obtained by the attacker. Using the M pairs, one can recover all the
dkT

i ’s via the solution of simultaneous equations.

Information-Theoretic Security: Suppose the situation where the devices
1, 2, . . . , t are colluded, and an attacker wants to recover the message mt+1 of
the device t + 1 from ct using the leaked keys dkT

1 , . . . , dkT
t . In this case, the

attacker can know only the fact that dkt+1 is independent to dkT
1 , . . . , dkT

t .
Suppose that the attacker guesses a vector vT and m′

t+1 = ct · vT as can-
didates of dkT

t+1 and mt+1, respectively. Then, all the vectors vT , 2vT , . . . , (q −
1)vT mod q can also be candidates for the secret keys with equal possibility.
Thus, {m′

t+1, 2m
′
t+1, . . . , (q − 1)m′

t+1} = Z
×
q , are also the set of candidates of

the message with equal possibility. It means that the attacker gains no informa-
tion about mt+1 from ct and colluded keys. A similar argument can prove the
impossibility of forging ct that embeds a message to the device t + 1.

Therefore, this MRE can be used as an ABA with information-theoretic
security in one-time broadcasting whereas any security under chosen-plaintext
attacks and key reusing situations does not hold. Specifically, suppose the sit-
uation where the attacker can obtain ct corresponding to any chosen {mi}i∈S

and any S with fixed decryption keys. The attacker can recover dkT
i s by solving

linear equations from a sufficient number of pairs of messages and ciphertexts.

4 Template Construction of Base ABA

We transform the above information-theoretic MRE to ABA by adding a repeat-
able property. The main differences over the base MRE are: (1) it broadcasts the
same message to a selected subset of participant devices, and (2) its security base
is from a computational problem assumption. We give a template construction
and discuss its security. Also, we will instantiate it to our lattice ABA.

4.1 A Template

We give a template of our base ABA using a function fprm(cT) defined over an
r-dimensional column vector with a parameter prm. We assume the function has
the following “linear-like homomorphic” properties. For scalars a, b and vectors
x,y, fprm(axT + byT) = a ◦ fprm(xT)⊗ b ◦ fprm(yT) holds with operations (◦,⊗)
to compute a linear combination of vectors fprm(

∑M
i=1 viy

T
i) in verification. We

also assume that an inverse fprm(xT)−1 of fprm(xT) that satisfies fprm(xT) ⊗
fprm(xT)−1 = I (an unit) is easily computable.

We will instantiate our LWE construction by setting prm = p ∈ Z
r
q and

fp(xT) = pxT . The homomorphic property holds with defining a◦x = ax mod q
and x ⊗ y = x+ y mod q for an integer a and vectors x,y. The above property
holds for any vector p whereas we use a small p of which each coordinate is from
a discrete Gaussian.

38 Y. Aono and J. Shikata

We remark that other functions can produce other schemes. For example, for
a generator g of a finite group, taking r = 1, prm = g and fprm(x) = gx produces
an ElGamal construction. The anonymity is from the DDH problem in the group.
With the elliptic curve (Curve25519) group, it can construct an ABA controlling
230 devices by a 10KBytes command while it is not quantum-resilient.

Definition 6 (MRE-based ABA template). Assume the function fprm(·) has the
above homomorphic property. A template of our ABA is defined as follows.
Assume that pp = (M, q) in MRE is fixed from the security parameter λ.

• Setup(1λ, N,D) → ak: Run MRE.Setup(N, pp = (M, q)) → (ek, {dkT
i }) =: ak

• Join(ak, id) → vkid: vkid := dkT
id

• Auth(ak,m,S) → cmdS : Randomly choose an r-dimensional column vector
xT from the domain of fprm. Generate random small vectors e1, . . . ,eN from
some distribution. Randomly choose a matrix CT ∈ Z

r×M
q that satisfies CT ·

dkT
i = xT + eT

i for i ∈ S and CT · dkT
i is far from xT for i �∈ S. Parse CT

into the column vectors ctT1 , . . . , ctTM , encode them by Fi = fprm(ctT
i) and the

command is cmdS = (m ⊗ fprm(x), F1, . . . , FM).
• Vrfy(vkid, cmdS) → m/reject: For the device’s key dki := (di,1, . . . , di,M), com-

pute f = di,1 ◦ F1 ⊗ · · · ⊗ di,M ◦ FM , and m′ = m ⊗ fprm(x) ⊗ f−1.

For correctness, it is necessary to have some condition in fprm and error
vectors. For a legitimate command and decryption key

di,1 ◦ F1 ⊗ · · · ⊗ di,M ◦ FM

= fprm(di,1ctT
1 + · · · + di,MctT

M) = fprm(CT · dki) = fprm(xT + eT
i)

(2)

holds. Thus, by the homomorphic property, (m⊗fprm(xT))⊗fprm(xT +eT
i)

−1 =
m ⊗ f(eT

i)
−1. An optional decoding mechanism is required to recover m.

Note that an efficient sampling of matrix CT is possible via the precomputa-
tion. Let c1, . . . , cM−N be independent vectors and each cj satisfies cj · dkT

i = 0
for all i ∈ [N]. Define the matrix C by CT = (cT

1 , . . . , cT
M−N). For any

matrix R ∈ Z
(M−N)×M
q , RC · dkT

i = 0T holds. Then, fixing target vectors
yT

i = (yi,1, . . . , yi,r)T , which are set as xT +eT
i or a vector far from xT , compute

initial vectors bj so that bj · dkT
i = yi,j by solving simultaneous equations. Let

B = (bT
1 , . . . , bT

r)
T and then CT = B + RC is the desired random matrix.

4.2 Anonymity

In the Step 4 of anonymity game (Definition 4), the adversary can select m,S,S ′.
Due to the homomorphic property of fprm, the adversary can remove m from the
first coordinate, which is m⊗fprm(xT) or m⊗fprm((x′)T), of a returned command
ciphertext.

Thus, in the context of our template construction, breaking anonymity is the
same as distinguishing the tuples

cmdS = (fprm(xT), fprm(ctT
1), . . . , fprm(ctT

M)) and
cmdS′ = (fprm((x′)T), fprm((ct′

1)
T), . . . , fprm((ct′

M)T))

ABA with Logarithmic-Order Ciphertexts from LWE 39

under the situation where the adversary knows there exists an index id ∈ S \ S ′

such that dkid can recover fprm(xT + eT
i) via the relation (2).

We transform the above problem into a distinguishing problem between legit-
imate sequences and random sequences.

Definition 7 ((fprm, χ,M)-linear distinguishing problem). For a function
fprm(·) used in the template construction, consider the computational problem
to distinguish the sequence

(fprm(xT), fprm(cT
1), . . . , fprm(c

T
M)) and (fprm(rT), fprm(cT

1), . . . , fprm(c
T
M))

where cT
1 , . . . , cT

M are randomly drawn from the domain of fprm.
In the former case, xT is computed (cT

1 ||cT
2 || · · · ||cT

M)dT +eT = cT
1 d1+ · · ·+

cT
MdM + eT by a fixed secret vector dT = (d1, . . . , dM)T and a small random

error eT from χr. In the latter situation, rT is random.

Theorem 1. Using an adversary A that can win the anonymity game (Defini-
tion 4) with fprm, noise distribution χ and dimension 2M , it can solve the above
distinguishing problem with parameters (fprm, χ,M) with high probability.

Proof. Fix the parameters fprm, χ and M , and suppose the existence of an
adversary A. After the game setup of the anonymity game with 2M dimensions,
the challenger generates a (2M) × (2M) random invertible matrix U .

In the collusion query phase, suppose the adversary requires t verification
keys; we can name them dk1, . . . , dkt without loss of generality. Upon the queries,
generate random M -dimensional vectors r1, . . . , rt and set the fake verification
keys to the adversary by dkT

i = [(ri||ui)U]T ∈ V 2M , i = 1, . . . , t.
Also, using the virtual secret vector d of the linear distinguishing problem,

define tentative decryption keys dkT
i = [(d||ui)U]T for i = t + 1, . . . , M , that

are unknown by both the challenger and adversary. Upon requests from the
adversary, the challenger sends the keys dkT

1 , . . . , dkT
t .

In the authentication query phase, the challenger generates the command
ciphertext of a query (m,S) as follows. Call the problem oracle and get an
instance (fprm(yT), fprm(cT

1), . . . , fprm(c
T
M)) where yT is legitimate xT or random

rT . Denote C = [cT
1 || · · · ||cT

M]. Fi = fprm(cT
i) for i = 1, . . . , M . Then, for i =

M + 1, . . . , M + t, compute

fprm(CrT
i) = F1 ◦ ri,1 ⊗ · · · ⊗ FM ◦ ri,M

and
FM+i :=

{
fprm(CrT

i)
−1 ⊗ fprm(yT) ⊗ fprm(ηT

i) (i ∈ S)
fprm(rand) (i �∈ S)

where rand means a random sampling from the domain of fprm. ηi is a random
noise sampled from χr.

For i = M + t + 1, . . . , 2M , compute

FM+i :=
{

fprm(yT)−1 (i ∈ S)
fprm(rand) (i �∈ S)

40 Y. Aono and J. Shikata

and let (V1, . . . , V2M) := (F1, . . . , F2M)U−1. Here, the vector-matrix operations
are performed with the operations (◦,⊗), i.e., Vj = F1 ◦ u1,j ⊗ · · · ⊗ F2M ◦ u2M,j

where ui,j is the (i, j)-element of U−1. The command to the adversary is cmdS =
(m ◦ fprm(yT), V1, . . . , V2M).

It is easy to see that

Vrfy(vki, cmdS) = m ⊗ fprm(yT) ⊗ f−1
prm(y

T) = m ⊗
{

fprm(ηT
i) i = 1, . . . , t

fprm(eT) i = t + 1, . . . , M

for i ∈ S if problem instance is legitimate. On the other hand, if the problem
instance is random, the relations on i = t + 1, . . . , M do not hold.

In the challenge query phase, for (m,S0,S1), the challenger returns cmdSb
for

b = 0 or 1 in the same manner and checks the adversary’s response. Checking
the adversary’s advantage, the challenger distinguishes the problem instance. ��

With the lattice setting prm = p ∈ Z
r
q and fp(xT) = pxT , the problem is

to distinguish (pxT ,pcT
1 , . . . ,pcT

M) and (prT ,pcT
1 , . . . ,pcT

M) where xT is com-
puted by

∑M
i=1 dic

T
i +eT by a secret vector d = (d1, . . . , dM) and an error vector

eT , and rT is a random vector. This is the decision LWE problem.

4.3 Unforgeability

A simple transformation technique has been known from a CPA-secure public-
key BE to a CCA1-secure one [17]. Following these notions and techniques, we
construct our version of the transformation method from our template ABA to
an unforgeable ABA.

Definition 8 (Transformation). For an ABA scheme ABA = (Setup, Join,
Auth,Vrfy) and a strongly and existentially unforgeable signature Σ = (KeyGen,
Sign,Vrfy), the transformation of ABA, which we denote ABAΣ is defined as
follows.

• ABAΣ .Setup(1λ, N,D) → (ak, pk, sk): Run ABA.Setup(1λ, N,D) → ak and
Σ.KeyGen(1λ) → (pk, sk).

• ABAΣ .Join(ak, id) → vkid: Run ABA.Join(ak, id) and let vkid = (ABA.vkid,
pk).

• ABAΣ .Auth(ak,m,S) → (cmdS , σ): Execute ABA.Auth(ak,m,S) → cmdS .
Generate the signature for the base command Σ.Sign(sk, cmdS) → σ.

• ABAΣ .Vrfy(vki, (cmdS , σ)) → m/reject: Check the signature Σ.Vrfy(pk, σ,
cmdS). If the check fails, return reject. Passing the verifications, execute
ABA.Vrfy(vkid, cmdS) and return the result.

Security proof is straightforward. In the security game (Definition 3),
an adversary can get verification keys and {(cmdS , σ)} upon one’s queries.
Suppose one can forge a command pair (cmd′

S′ , σ′) with (m′, id′) such that
Σ.Vrfy(pk, σ′, cmd′

S′) returns accept and ABA.Vrfy(vkid′ , cmd′
S′) returns m′.

ABA with Logarithmic-Order Ciphertexts from LWE 41

The forging is splitting into two situations. If cmd′
S′ is not equal to any com-

mands returned from the challenger in the authentication query step, (cmd′
S′ , σ′)

is a valid pair to break the strong unforgeability of the signature game, which is
assumed to be hard.

On the other hand, consider the situation where cmd′
S′ is equal to cmdSa

,
one of returned commands in the authentication queries. We show this situation
is impossible. Recall that the corresponding message m′ and ma in the com-
mands cannot be equal by the requirement m �∈ Mv in Step 3. Thus, the first
element of cmd′

S′ = cmdSa
is m′ ⊗ fprm(x′T) = ma ⊗ fprm(xT

a) which are differ-
ent representations of different messages. Thus, the verification results by vkid′

must satisfy ABA.Vrfy(vkid′ , cmd′
S′) = m′ and ABA.Vrfy(vkid′ , cmdSa

) = ma.
This contradicts to the requirement m′ �= ma and cmd′

S′ = cmdSa
.

Therefore, forging a command ciphertext is hard due to the strong unforge-
ability of the signature.

5 Concatenation of ABAs

The sequential concatenation of small-size ABAs is a simple way to reduce the
length of ciphertexts by restricting the choice of target devices. The plain con-
struction which is immediately found to be insecure is described as follows.

Consider j base ABAs named ABAj = (Setupj , Joinj ,Authj ,Vrfyj) for j ∈
[K]. Let Nj be the maximum number of devices controlled by the j-th ABA.
Execute ABAj .Setup(1λ, N,D) for all j and get all the authentication keys akj .
These keys are used to generate components of verification keys vkj,i for i ∈ [Nj].
For each device indexed by a vector id = (i1, . . . , iK), its verification key is
defined by vkid = (vk1,i1 , . . . , vkK,iK). The set of target devices is indicated by
S = S1 × · · · × SK where Sj ⊂ [Nj]. The command ciphertext cmdS is the
concatenation of cmdSj

= Auth(akj ,m,Sj) for j ∈ [K]. After the broadcast,
each device executes Vrfy(vkj,ij , cmdSj

) for all j ∈ [K]. If all the verifications
have been accepted, output m, if otherwise, output reject.

Assuming the anonymity of the base ABA, we can see that the concatenated
ABA also has anonymity on two sets of limited forms. For instance, consider
two sets S1 × · · · × SK and S ′

1 × · · · × SK that are only the first coordinate are
different. Then, messages that encode the sets are indistinguishable. However,
one can break the anonymity in other situations as in the next section.

5.1 Anonymity in the Restricted Device Selection

Rearranging Attack: Consider the concatenation of K = 2 ABAs with N1 =
N2 = 2. The composed ABA can control N1N2 = 4 devices and we name them
by id = (1, 1), (1, 2), (2, 1) and (2, 2). Suppose that (1, 1) and (2, 2) are colluded
and an attacker have vk1,1 = (vk1,1, vk2,1) and vk2,2 = (vk1,2, vk2,2). Then, it can
generate other verification keys vk1,2 = (vk1,1, vk2,2) and vk2,1 = (vk1,2, vk2,1) via
the recombination of components. Thus, it can recover any legitimate ciphertext
and know which devices are in the target set. For instance, in the anonymity

42 Y. Aono and J. Shikata

game, it can select S0 = {(1, 2)} and S1 = {(2, 1)} that satisfies the condition
by the Eq. (1). Then cmdSb

can be easily verified to distinguish.

Non-cryptographic Attack: Another situation where one can break the
anonymity from only the results of verification on the colluded devices. Denote
the target indication by (d1, d2) ∈ {0, 1, ∗}2 where ∗ is the wild-card; for example
(1, ∗) is the set {1} × {1, 2} = {(1, 1), (1, 2)}. 9 patterns are possible as the rows
in the table below.

(d1, d2) (1, 1) (1, 2) (2, 1) (2, 2)
(1, 1) •
(1, 2) •
(2, 1) •
(2, 2) •

(d1, d2) (1, 1) (1, 2) (2, 1) (2, 2)
(1, *) • •
(2, *) • •
(*, 1) • •
(*, 2) • •
(*, *) • • • •

Consider the situation where id = (1, 2) and (2, 1) are colluded and the
attacker can know vk1,2 and vk2,1. Suppose the attacker decrypts a command
ciphertext and knows that it targets both id = (1, 2) and (2, 1). Then, from
the table d1d2 = (∗, ∗) is revealed and it can know id = (1, 1) and (2, 2) are
also target devices. We emphasize that such an attack is possible even if one
cannot recover the other verification keys. It is independent of the cryptographic
security of primitives.

The above examples illustrate how we consider anonymity in a situation
where the freedom in the choice of targets is limited. In the notion of standard
anonymity (Definition 4), the situation where no information leakage except
for the colluded devices is considered via the indistinguishability property. We
think the validity of this definition is based on the assumption that the target
set is uniformly chosen from 2[N] and information leakage is always caused by
cryptographic vulnerability.

In our limited-freedom situation, information can be leaked regardless of the
cryptographic vulnerability. To formulate this kind of anonymity, we introduce
the notion of single anonymity.

Definition 9. We say it has a single anonymity if for any W � [N] a pattern

of {Vrfy(vkid, cmdS)}id∈W does not reveal whether id′ ?
∈ S for some id′ �∈ W .

This condition is very tight so that it must be any subset of [N] is selectable
by the following proposition. We think one of our future works is to investigate
the relationship between the restriction of target devices choice (that bounds
ciphertext length) and the strength of anonymity.

Proposition 1. If the freedom in the target devices selection is limited, it does
not have the single anonymity.

Proof. Let D ⊂ 2[N] be a family of sets that can be specified as a target. We
say S ⊂ [N] is selectable (resp. unselectable) if S ∈ D (resp. S �∈ D.)

We separate the situation. First, assume there are an unselectable S and
selectable S ′ such that S ′ ⊃ S. Take the minimum such S ′, i.e., any proper

ABA with Logarithmic-Order Ciphertexts from LWE 43

subset of S ′ is unselectable. Then, suppose all the devices in S ∪ ([N] \ S ′)
has been colluded and the server broadcasts a command cmdS′ that targets all
devices in S ′. The adversary can verify the commands in the infected devices and
can know for id ∈ S (resp. id ∈ [N] \ S ′), they are in target (resp. non-target.)
With the restriction of the choice of S, the adversary also obtain that the devices
in S ′ \ S are in the target without using any cryptographic attacks.

Consider the other situation where for any selectable set S, its subset is
selectable. This condition derives that [N] is divided into T1 ∪ · · · ∪ Tk such that
Ti ∩ Tj = φ and any subsets of Ti are selectable. Thus, if one can know a device
id ∈ Ti is a target, it deduces all the devices in Tj , (j �= i) are not selected. ��

We remark that t-anonymity (Definition 4) and single anonymity do not
imply each other. Also, even we construct a t-anonymity ABA for high t, infor-
mation leakage from a pattern is possible. This is a motivation for our construc-
tion strategy in the next section; using a simple known technique and algebraic
analysis.

5.2 Modification Against Recombination Attack

The anonymity and unforgeability of the concatenated ABA are broken by rear-
ranging colluded keys. Also, a non-target device can recover the message. To
prevent the attacks, we employ two methods. The first idea is to distribute m
into K shares and recover it in a target device via the homomorphic property of
fprm. The other idea is from Agrawal et al.’s inner product encryption [1].

Definition 10 (A modified concatenated template construction).

• Setup(1λ,K,D) → ak: Fix a prime field Zq and a dimension M of base MREs.
Execute MREj .KeyGen(pp) → (ekj , {dkT

j,i}i∈[Nj]}) for j ∈ [K], where ekj :=

{dkT
j,i}. Generate random matrices Aj,i

$←− Z
r×M
q for j ∈ [K], i ∈ [Nj], a

random invertible matrix W ∈ Z
2M×2M
q and a random vector uT ∈ Z

r
q. The

key is ak = ({dkT
j,i}, {ekj}, {Aj,i},W,uT).

• Join(ak, id) → vkid: For a device id = (i1, i2, . . . , iK), generate a random vector
ukid such that

∑K
j=1 Aj,ijuk

T
id = uT (mod q). The verification key is vkid =

(W (dk1,i1 ||ukid)T , . . . , W (dkK,iK ||ukid)T).
• Auth(ak,m,S) → cmdS : Suppose the target devices are indicated by S1 ×· · ·×

SK ⊂
∏
[Nj]. Pick random vectors tT

j ∈ Z
r
q and let xT := tT

1 + · · · + tT
K .

Generate random matrices CTj,i (j ∈ [K], i ∈ [Nj]) such that

CTj,i · dkj,� =
{

tT
j + eT

j,i (i = � and i ∈ Sj)
rand (i �∈ Sj)

where rand represents a random element far from tT
j . Define the matrix

Cj,i := (CTj,i||Aj,i)W−1 and split it into the 2M column vectors by Cj,i =
(cT

j,i,1|| · · · ||cT
j,i,2M). Then, the command ciphertext cmdS is m⊗fprm(xT +uT)

and the sequence {fprm(cT
j,i,�)}.

44 Y. Aono and J. Shikata

• Vrfy(vkid, cmdS): For id = (i1, . . . , iK), denote vkid = (v1, . . . ,vK) and let the
�-th element of vj be vj,�. For the command (m ⊗ fprm(xT + uT), {Fj,i,�}),
compute the sum Tj =

∑2M
�=1 vj,� ⊗Fj,ij ,� and m⊗fprm(xT +uT)⊗ (T1 ⊗· · ·⊗

TK)−1.

The correctness is as follows. For a target id = (i1, . . . , iK), each Tj and the
sum in the sense of ⊗ are

Tj =
2M∑

�=1

vj,� ⊗ fprm(cT
j,ij ,�) = fprm

(
2M∑

�=1

cT
j,ij ,�vj,�

)

= fprm((CTj,ij ||Aj,ij)W
−1 · W (dkj,ij ||ukid)) = fprm(tT

j + eT
j,i + Aj,ijukid),

and T1 ⊗ · · · ⊗ TK = fprm

(∑K
j=1 tT

j + uT +
∑K

j=1 ej,ij

)
.

Therefore, it recovers m ⊗ fprm

(∑K
j=1 eT

j,ij

)
.

For parameters K and Ni, rough estimations of key size and ciphertext length
are given as follows. Each vkid for id = (i1, i2, . . . , iK) consists of K vectors in
Zq and each vector has dimension 2M . Thus, each verification key is exactly
2MK elements in Zq and represented by O(MK log q) [bits]. cmdS consists of
the masked message m ⊗ fprm(xT + uT) and fprm(cT

j,i,�) for all j ∈ [K], i ∈ [Nj]
and � ∈ [2M]. Thus, a command consists exactly one masked message and
(N1 + · · · + NK) · 2M elements in the range space of fprm.

In the next section, we give a lattice instantiation with extreme parameter
sets Nj = 2 for all j ∈ [K] and a function fprm maps to an element of Zq. The
size of a verification key and a command are represented by 2KM and 1+4KM
elements in Zq, respectively.

5.3 Anonymity from the Dependency of Algebraic Systems

We discuss the necessary number of colluded keys and authentication queries to
distinguish two commands cmdS0 and cmdS1 in the anonymity game. Assume
that the attacker’s strategy is to recover vkid for some id ∈ S0�S1 and try to
verify cmdSb

. Let id = (1, 1, . . . , 1) without loss of generality.
Split the matrix W into the upper and lower matrices with M × 2M dimen-

sions: W =
[

W1

W2

]

. Denote wT
j,i = W1dk

T
j,i and uT

id = W2uk
T
id. Then, the verifica-

tion key that one wants to recover is written as vkT
id = (wT

1,1+uT
id, . . . ,w

T
K,1+uT

id).
ukT

id also satisfies
∑K

j=1 Aj,1uk
T
id = uT for unknown matrices Aj,1 and unknown

vector uT . Then, consider simultaneous equations to recover vkid.
The number of variables to fix is KM for wj,1 (j = 1, . . . , K), K ·rM for Aj,i,

2M2 for W2 and r for u. Also, the number of unknown variables in ukid is r since
the other M − r variables can be random, i.e., have freedom, by construction.
With a new colluded key vkT

id′ , MK equations can be obtained and it introduces
new variables on wT

j,i and Aj,i. An authentication query does not introduce new
equations due to the random variables tj in construction.

ABA with Logarithmic-Order Ciphertexts from LWE 45

To minimize the number of unknown variables, when an attacker gets a new
vkT

id′ , one can minimize the range of indexes. For id = (i1, . . . , iN) that satisfies
ij ∈ [2] for j = 1, . . . , s and ij = 1 for i = s + 1, . . . , K, t = 2s − 1 colluded keys
are possible. Here, the number of variables is 2(K+s)M for wT

j,ij
, 2(K+s) ·rM

for Aj,ij , 2M2 for W2, tr for ukT
id, r for uT . The total number of variables from the

public key and t colluded key is V = 2M2 + 2(K + s)rM + 2(K + s)M + tr + r,
and the attacker has to solve it by tKM simultaneous equations. To fix the
unique solution and vkT

id, it is necessary to satisfy

2M2 + 2(K + s)rM + 2(K + s)M + tr + r < tKM

⇔ t >
2M2 + 2(K + s)rM + 2(K + s)M + r

KM − r
.

The last fraction is bounded by M/K + 2r + 2. Therefore, it has evidence of
anonymity against 2 + 2r colluded devices. In the lattice instantiation, r is the
number of samples in LWE which is greater than 900. We think the security
against collusion of 2r = 1800 devices is practically secure.

6 Concrete Scheme and Security Parameters

This section gives the concrete scheme, security parameters, and rough estima-
tions of costs. Below we assume Nj = 2 for all j.

We discuss a relationship between the space of an ABA command and a cryp-
tographic message. Each target device can recover m whereas a non-target device
gets a random number which is possibly interpreted as a legitimate command.
To prevent such accidents, we employ a gimmick in commands.

Recall that the LWE-based ABA is instantiated by setting fp(x) =
xpT mod q to Definition 8 and 10. M,K, r are parameters. Also, we use Q
to the multiple of plaintext to avoid the effect of noises. Concretely, plaintext m
is an integer such that 0 ≤ m < q/Q and embed it in the form of m = m · Q in
the command ciphertext. In verification, the device rounds the decoded message
m′ to m′ = �m′/Q�. Also, we use an integer L to distinguish a legitimate and a
nonlegitimate command. If the verification function returns m′ < L, it is inter-
preted as a legitimate command and executes it. If otherwise, return the reject
symbol. In our construction, we assume q > 2KLQ to separate m.

Definition 11 (LWE-based Construction).

• Setup(1λ,K,D) → ak: Fix a prime field Zq and a dimension M of base MREs.
Execute MREj .KeyGen(pp) → (ekj , {dkT

j,i}i∈[2]) for j ∈ [K], where ekj :=

{dkT
j,i}. Generate random matrices Aj,i

$←− Z
r×M
q for j ∈ [K], i ∈ [2], a

random invertible matrix W ∈ Z
2M×2M
q and a vector uT ∈ Z

r
q. Execute

the key generation of signature Σ.KeyGen(1λ) → (pk, sk). The key is ak =
({dkT

j,i}, {ekj}, {Aj,i},W,uT , pk, sk).

46 Y. Aono and J. Shikata

• Join(ak, id) → vkid: For a device id = (i1, . . . , iK), generate a random vector
ukT

id ∈ Z
M
q such that

∑K
j=1 Aj,ijuk

T
id = uT (mod q). The verification key is

vkT
id = {(W (dkT

1,i1 ||uk
T
id)

T , . . . , W (dkT
K,iK ||ukT

id)
T), pk}.

• Auth(ak,m ∈ M,S) → cmdS : Suppose the target devices are indicated by S1×
· · ·×SK ⊂

∏
[2]. Pick random vectors tT

j ∈ Z
r
q so that ptT

j ∈ {LQ, . . . , 2LQ−
1} and let xT := tT

1 + · · · + tT
K . Here, pxT is greater than KLQ since there

is no overflow in Zq by the condition q > 2KLQ. Then, generate random
matrices CTj,i ∈ Z

r×M
q (j ∈ [K], i ∈ [2]) such that

CTj,i · dkT
j,� =

{
tT
j + eT

j,i (i = � and i ∈ Sj)
zT

j,i (i �∈ Sj)
(3)

where zT
j,i is a random vector such that pzT

j,i is less than LQ.
For each i, j, define the 2M column vectors cT

j,i,1 by Cj,i :=
(CTj,i||Aj,i)W−1 = Cj,i = (cT

j,i,1|| · · · ||cT
j,i,2M). The command cmdS is the

pair of vector vec := (m · Q + p(xT + uT), {pcT
j,i,�}) and its signature σ.

• Vrfy(vkid, cmdS = (vec, σ)): Check the signature by Σ.Vrfy(pk, σ, vec) and if it
is not valid, it stops with returning reject. If otherwise, execute the decryption
process as follows. For id = (i1, . . . , iK), denote the vector part of vkid be
(v1, . . . ,vK) and let the �-th element of vj be vj,�. For a command (m +
p(xT + uT), {p · cT

j,i,�} := {Fj,i,�}), compute

Tj =
2M∑

�=1

vj,�Fj,ij ,� and m′ = m+ p(xT + uT) − (T1 + · · · + TK). (4)

Decode the message by m′ = �m′/Q�. If it is greater than L, return reject and
if otherwise, return m′.

The correctness and securities are already discussed. We give detail on the
separation of legitimate commands. In the computation of m′, we have

p(xT + uT) − (T1 + · · · TK) = pxT −
K∑

j=1

p(CTj,ij · dkT
j,ij). (5)

after cancelling uT . Here, each factor is p(tT
j + eT

j,i) or pzT
j,i by (3). By the

conditions pxT ≥ KLQ and pzT
j,i < LQ, if there is a factor from pzT

j,i, the sum
is greater than LQ and the resulting m′ is greater than L.

Example Parameter Sets: Assume Nj = 2 for all j and K is about 20 – 30.
From Theorem 1 (with the lattice instantiation), the hardness of the decision
LWE problem with parameters (n,m, q, σ) is the security base of the anonymity
of lattice-based ABA with parameters M = 2n, modulus q, and the error param-
eter σ. We take such (M = 2n, q, σ) for our ABA.

Besides the security, it needs to reduce the probability of decoding errors by
changing q and Q. Following (5), the noise in the verification in a target device is

ABA with Logarithmic-Order Ciphertexts from LWE 47

∑K
j=1 p·eT

j,ij
. Approximating each coordinate of eT

j,ij
by the continuous Gaussian

N(0, σ2), the distribution of the error is N(0,K||p||2σ2). The approximation
Pr[|N(0, s2)| ≥ β] = 1−erf (β/s) < exp

(
−β2/s2

)
is accurate for low probability

situations. Taking β so that the bound is very small, it derives a bound of the
error in practice. For example, take the error bound by the inverse of 109 · 232 ·
264 ≈ e87.3, whose factors are the number of controlled devices, the number of
seconds in 100 years, and safety margins, respectively. This derives β >

√
87.3 s.

Therefore, we can assume the absolute value of the noise (5) is smaller than√
87.3 ·

√
2K||p||σ in practice. Since p works as a secret vector of LWE in the

security proof, it should be a discrete Gaussian [19] and its derivation is σ. As
the same argument, we can assume ||p|| <

√
87.3

√
Mσ = 2

√
2 · 87.3nσ and thus

we take Q so that
√
87.3 ·

√
2Kσ · 2

√
2 · 87.3nσ ≈ 350

√
Knσ2 < Q.

Communication Cost: As an example situation, we set K = 20 for controlling
a million devices and set σ = 3. Let the space of legitimate message space be
4 (two bits). Then, q is a prime larger than 2KLQ > 2LK · 350

√
Knσ2 ≈

2253956
√

n. To achieve 128-bit security in ABA. We use Albrecht et al.’s lattice
estimator [7] as of May 2022, and obtain the dimension 926.

For another set, we summarize the parameter in Table 1. As explained in
the end of Sect. 5.2, one verification key and a command ciphertext consists
of 2KM = 4Kn and 1 + 4KM = 1 + 8Kn elements of Zq respectively, the
sizes in Bytes are the smallest integers greater than (4Kn)�log2 q�/8 and (1 +
8Kn)�log2 q�/8.
Expected Timings in a Cortex-M4 Processor: The timing of signature
verification is dominated by the computation of the SHA-3 hash function that
requires 213 cycles/Byte [23] while FALCON-512 and 1024 for a short message
takes less than 0.5M and 1M cycles in Cortex-M4, respectively [13].

The canceling-out computation (4) requires 2MK = 4nK additions and
multiplications in Zq. For small q, this can be done by a sequence of the UMLAL
instructions. For two 32bit unsigned numbers r0, r1 and one 64bit unsigned
number r2, it computes r0 × r1 + r2 and stores to a 64 bit register in 1 cycle
[24]. Modular computations are not necessary after the addition. Theoretically,
it is enough to compute the modulo in every 264/q2 term. Hence, about 4nK
cycles are spent for the total computation. For a moderate q, divide the numbers
in each 32bits, and we can use the schoolbook methods for multiplication and
addition. Assume q is less than 64bit the total computing time would be 4 times
the cost of small q and it would be about 16nK cycles. In Table 1, we assume
the computation spends 4nK and 16nK cycles for L = 4 and 256, respectively.

7 Concluding Remarks

We proposed a template and its lattice instantiation of ABA that can control
N devices with short length O(logN) ciphertext. Due to the trilemma on ABA
construction, we imposed the restriction on the freedom in the target selec-
tion. It deduces the lack of single anonymity. However, we found that the single

48 Y. Aono and J. Shikata

anonymity requires complete freedom in the target selection and thus, the cipher-
text length has Ω(N). Throughout this study on ABA, we have clarified that
the following problems are still open.

The initial motivation was to control millions to billions of IoT devices. Shan-
non’s coding theorem (and also the lower bound discussions in [14,15]) bounds
the ciphertext length from lower, which makes difficult to construct efficient
protocols. To avoid the barrier, restrictions on the freedom in the target devices
selection and anonymity are needed described as in Sect. 1.2. We think the set of
restrictions that we choose is one possibility and we can investigate the relation
among the ciphertext length and other properties for the practical use in the real
world. For example, a lower bound of ABA that allows false-positive [26] should
be expressed by an entropy function. Also, an information-theoretic-styled bound
of outsider anonymity setting is not known.

In the lattice instanciation, the proposed LWE parameters have large mar-
gins to prevent accidents. However, the factor

√
87.3, which comes from e87.3 ≈

109 · 232 · 264, may be unnecessarily large in some real situations. For instance,
replacing it to 232 ≈ e22.2, the necessary size of Q if reduced by factor 4 and
necessary dimension is reduced by about 10%. Setting appropriate margins for
realistic situation would be jobs by collaborating the application and theoretical
layers.

Acknowledgement. This research was in part conducted under a contract of
“Research and development on IoT malware removal/make it non-functional technolo-
gies for effective use of the radio spectrum” among “Research and Development for
Expansion of Radio Wave Resources (JPJ000254)”, which was supported by the Min-
istry of Internal Affairs and Communications, Japan. This work was in part supported
by JSPS KAKENHI Grant Number JP22H03590.

We thank the anonymous reviewers for their careful readings and insightful com-
ments that improve the quality of the manuscript.

References

1. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional Encryption for Inner
Product Predicates from Learning with Errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0_2

2. Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using
private broadcast encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006.
LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006). https://doi.org/10.1007/
11889663_4

3. Beimel, A., Dolev, S.: Buses for anonymous message delivery. J. Cryptol. 16(1),
25–39 (2003). https://doi.org/10.1007/s00145-002-0128-6

4. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218_16

https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/11889663_4
https://doi.org/10.1007/11889663_4
https://doi.org/10.1007/s00145-002-0128-6
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16

ABA with Logarithmic-Order Ciphertexts from LWE 49

5. Chhatrapati, A., Hohenberger, S., Trombo, J., Vusirikala, S.: A performance eval-
uation of pairing-based broadcast encryption systems. In: Ateniese, G., Venturi, D.
(eds.) ACNS 2022. LNCS, vol. 13269, pp. 24–44. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-09234-3_2

6. Dolev, S., Ostrobsky, R.: XOR-trees for efficient anonymous multicast and recep-
tion. ACM Trans. Inf. Syst. Secur. 3(2), 63–84 (2000). https://doi.org/10.1145/
354876.354877

7. Estimate all the LWE, NTRU schemes!
8. Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU Specification

v1.2 - 01/10/2020
9. Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with sublinear

ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 225–242. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8_14

10. FrodoKEM Learning With Errors Key Encapsulation Algorithm Specifications
And Supporting Documentation (2021)

11. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In: Proceedings of CCS
2010, New York, NY, USA, pp. 121–130 (2010)

12. Georgescu, A.: Anonymous lattice-based broadcast encryption. In: Mustofa, K.,
Neuhold, E.J., Tjoa, A.M., Weippl, E., You, I. (eds.) ICT-EurAsia 2013. LNCS,
vol. 7804, pp. 353–362. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36818-9_39

13. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: testing and
benchmarking NIST PQC on ARM Cortex-M4 (2019)

14. Kiayias, A., Samari, K.: Lower bounds for private broadcast encryption. In: Kirch-
ner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp. 176–190. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36373-3_12

15. Kobayashi, H., Watanabe, Y., Minematsu, K., Shikata, J.: Tight lower bounds
and optimal constructions of anonymous broadcast encryption and authentication.
Designs Codes Cryptogr. 91, 2523–2562 (2023)

16. Kurosawa, K., Yoshida, T., Desmedt, Y., Burmester, M.: Some bounds and a con-
struction for secure broadcast encryption. In: Ohta, K., Pei, D. (eds.) ASIACRYPT
1998. LNCS, vol. 1514, pp. 420–433. Springer, Heidelberg (1998). https://doi.org/
10.1007/3-540-49649-1_33

17. Lee, J., Lee, S., Kim, J., Oh, H.: Combinatorial subset difference - IoT-friendly
subset representation and broadcast encryption. Sensors 20(11), 3140 (2020)

18. Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption: adap-
tive security and efficient constructions in the standard model. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 206–224.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_13

19. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

20. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In:
Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_19

21. Nuttapong, A.: Unified frameworks for practical broadcast encryption and public
key encryption with high functionalities. Ph.D. thesis (2007)

https://doi.org/10.1007/978-3-031-09234-3_2
https://doi.org/10.1007/978-3-031-09234-3_2
https://doi.org/10.1145/354876.354877
https://doi.org/10.1145/354876.354877
https://doi.org/10.1007/978-3-642-30057-8_14
https://doi.org/10.1007/978-3-642-30057-8_14
https://doi.org/10.1007/978-3-642-36818-9_39
https://doi.org/10.1007/978-3-642-36818-9_39
https://doi.org/10.1007/978-3-642-36373-3_12
https://doi.org/10.1007/3-540-49649-1_33
https://doi.org/10.1007/3-540-49649-1_33
https://doi.org/10.1007/978-3-642-30057-8_13
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-319-13051-4_19

50 Y. Aono and J. Shikata

22. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of STOC 2005, pp. 84–93 (2005)

23. Sobti, R., Ganesan, G.: Performance evaluation of SHA-3 final round candidate
algorithms on ARM Cortex-M4 processor. Int. J. Inf. Secur. Priv. (IJISP) 12(1),
63–73 (2018)

24. https://developer.arm.com/documentation/ddi0439/b/CHDDIGAC
25. Watanabe, Y., Yanai, N., Shikata, J.: Anonymous broadcast authentication for

securely remote-controlling IoT devices. In: Barolli, L., Woungang, I., Enokido, T.
(eds.) AINA 2021. LNNS, vol. 226, pp. 679–690. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-75075-6_56

26. Watanabe, Y., Yanai, N., Shikata, J.: IoT-REX: a secure remote-control system for
IoT devices from centralized multi-designated verifier signatures. In: Proceedings
of ISPEC 2023. Springer, Cham (2023, to appear)

https://developer.arm.com/documentation/ddi0439/b/CHDDIGAC
https://doi.org/10.1007/978-3-030-75075-6_56
https://doi.org/10.1007/978-3-030-75075-6_56

Traceable Policy-Based Signatures
with Delegation

Ismail Afia(B) and Riham AlTawy

University of Victoria, Victoria, BC, Canada
{iafia,raltawy}@uvic.ca

Abstract. In PKC 2014, a policy-based signature (PBS) scheme was
proposed by Bellare and Fuchsbauer in which a signer can only sign mes-
sages conforming to some policy specified by an issuing authority and
the produced signatures are verified under the issuer’s public key. PBS
construction supports the delegation of signing policy keys with possible
restrictions to the original policy. Although the PBS scheme is meant
to limit the signing privileges of the scheme’s users, singers could eas-
ily abuse their signing rights without being held accountable since PBS
does not have a tracing capability, and a signing policy key defines a pol-
icy that should be satisfied by the message only. In this work, we build
on PBS and propose a traceable policy-based signature scheme (TPBS)
where we employ a rerandomizable signature scheme, a digital signa-
ture scheme, and a zero-knowledge proof system as its building blocks.
TPBS introduces the notion of identity keys that are used with the policy
keys for signing. Thus it achieves traceability without compromising the
delegatability feature of the PBS scheme. Additionally, TPBS ensures
non-frameability under the assumption of a corrupted tracing author-
ity. We define and formally prove the security notions of the generic
TPBS scheme. Finally, we propose an instantiation of TPBS utilizing
the Pointcheval-Sanders rerandomizable signature scheme, Abe et al.’s
structure-preserving signature scheme, and Groth-Sahai NIZK system,
and analyze its efficiency.

Keywords: policy-based signatures · attribute-based signatures ·
rerandomizable signatures · group signatures

1 Introduction

In policy-based signature (PBS) schemes, a signer can produce a valid signature
of a message only if the message satisfies a specific hidden policy [5]. PBS schemes
allow an issuer to delegate signing rights to specific signers under a particular
policy (by sharing a signing policy key). Yet, the produced signature is verifiable
under the issuer’s public key. Besides unforgeability, the standard security notion
for signature schemes, the privacy of the PBS scheme ensures that signatures do
not reveal the policy under which they were created. Generally speaking, PBS
schemes aim to extend the functionality of digital signature schemes by offering
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 51–72, 2023.
https://doi.org/10.1007/978-981-99-7563-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_3&domain=pdf
http://orcid.org/0000-0002-7669-8762
http://orcid.org/0000-0002-4734-3700
https://doi.org/10.1007/978-981-99-7563-1_3

52 I. Afia and R. AlTawy

some form of delegation of signing rights under the issuer’s policy signing key.
Although there exist some primitives that offer signing rights delegation, such
as group signatures (GS) [6] and attribute-based signatures (ABS) [4,15], PBS
introduces some distinct features that other primitives do not fulfill. For instance,
in GS schemes, a member signs any message on behalf of the whole group.
However, PBS schemes give the issuer fine-grained control over who is allowed
to sign which messages. On the other hand, in ABS schemes, the produced
signature attests to a specific claim predicate (public policy) regarding certified
attributes that the signer possesses. Additionally, ABS schemes do not impose
any restrictions on the messages to be signed. PBS fulfills these gaps by hiding
the policy under which the signature is created and requiring that the signed
message conforms to the hidden policy.

Bellare and Fuchsbauer show that the PBS framework allows delegation,
where a signer holding a key for some policy can delegate such a key to another
signer with possible restrictions on the associated policy. Delegation enables the
signing of messages that satisfy both the original and restricted policies which
suites applications in hierarchical settings. For instance, if an issuer in a certain
organization granted one of the managers the signing rights of contracts with
clients X, Y, and Z, such a manager can delegate these signing rights to a team
leader in his unit. Furthermore, the manager may restrict such rights and limit
the team leader to signing contracts with client Z only.

The standard security requirements of PBS schemes are unforgeability and
privacy [5]. Unforgeability ensures that an adversary cannot create a valid sig-
nature without having a policy key where the signed message conforms to such
a policy. Privacy guarantees that a signature does not reveal the policy associ-
ated with the key. Privacy also implies unlinkability, where an adversary cannot
decide whether two signatures were created using the same policy key. Although
the PBS privacy definition ensures full signer anonymity, it permits key misuse
without accountability. For instance, a signer of a given message may deny their
responsibility for such a signature, especially in a delegatable setting where sign-
ers delegate their signing keys to others, signing accountability becomes of a vital
value. Furthermore, policy key holders (delegated or not) may share their keys
with anyone which authorizes them to sign messages under the issuer’s name
without any sort of liability over the signed message. Note, a straightforward
way to overcome the latter problem could be by defining very restrictive policies
and the issuer can keep track of all the generated policy keys, messages to be
signed, and the identities of users who receive such keys. In case of a dispute,
the issuer uses such information to determine who received the keys used in the
signature generation of such a specific message. However, in this approach, the
issuer can only identify the policy key receiver and not the signer. Also, the
issuer is not able to prove such a claim, thus, unframeability is not ensured.

In an attempt to tackle the aforementioned problem, Xu et al. have proposed
a traceable policy-based signature scheme [18]. In their proposal, the user’s iden-
tity is attached to the policy. More precisely, the issuer generates signing keys
for the user ensuring that the user’s identity is part of the key, i.e. generating the

Traceable Policy-Based Signatures with Delegation 53

signing keys for id||p, where id denotes the user identity and p, denotes the policy
under which the signer is allowed to sign a specific message. To sign a message,
the signer first encrypts their identity under the public key of an opener and
provides a Non-Interactive Zero Knowledge (NIZK) proof of the issuer signature
on id||p such that p permits the message and id has been correctly encrypted to
the given ciphertext. The generated signature contains the ciphertext in addition
to the resulting NIZK proof. To trace a message to its original signer, the opener
decrypts the ciphertext using its decryption key to reveal the signer’s identity.
Although Xu et al.’s proposal provides traceability, it does not protect against
frameability because the issuer generates the signing keys of the scheme users.
Moreover, attaching user identities to the policy seems counter-intuitive to the
original goal of PBS schemes, where the signing rights are granted to users who
have access to a policy key which allows them to sign messages that conform to
the policy. Consequently, the issuer has to issue multiple signing keys to each
scheme user to include their identities for the same policy. According to Xu et
al. [18], a direct consequence of such an approach for traceability, is that the
proposed scheme does not support policy key delegation because the policy is
tied to a specific identity. More precisely, if a key holder delegates their key in
the form p′ = id||p1||p2 the signature generated with p′ will always be traced
back to the original key holder id.

Our Contributions. We propose a Traceable Policy-Based Signature (TPBS)
scheme that supports delegation. TPBS extends the functionality of the orig-
inal PBS scheme by adding a tracing mechanism to enforce accountability. We
design TPBS where the generated signature of a given message does not reveal
the policy nor the identity used in the signing process. The user’s signing key in
TPBS consists of an identity key and a policy key which are generated indepen-
dently; thus, TPBS supports policy key delegation similar to the PBS scheme. In
TPBS, each user generates a secret key which is used in an interactive protocol
with the TA to generate the user’s identity key. However, the user’s secret key is
never exchanged with the TA preventing a misbehaving tracing authority or any
party intercepting the user’s communication with the TA from framing such a
user. We formally define the extractability, simulatability, non-framability, and
traceability security notions for TPBS. Moreover, we propose a generic construc-
tion for TPBS employing a rerandomizable digital signature (RDS) scheme and
a simulation-sound extractable non-interactive zero-knowledge (SE-NIZK) proof
system. Then we prove that the generic construction achieves the defined secu-
rity notions. Finally, we give a concrete instantiation for TPBS with Pointcheval-
Sanders rerandomizable signature scheme and Groth-Sahai zero-knowledge proof
system and analyze its efficiency.

2 Preliminaries and Building Blocks

Sampling x uniformly at random from Zq is denoted by x
$← Zp. We denote by

i an identity from the identity universe I, i ∈ I. Let λ ∈ N denotes our security
parameter, then a function ε(λ) : N → [0, 1] denotes the negligible function if
for any c ∈ N, c > 0 there exists λc ∈ N s.t. ε(λ) < λ−c for all λ > λc. We

54 I. Afia and R. AlTawy

use f(.) to denote a one-way function with a domain denoted by F , and we
use PoK(x : C = f(x)) to denote an interactive perfect zero-knowledge proof of
knowledge of x such that C = f(x) [12]. Let a policy checker (PC) denote an
NP-relation PC : {0, 1}∗ × {0, 1}∗ ← {0, 1}, where the first input is a pair (p,m)
representing a policy p ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, while the second
input is a witness wp ∈ {0, 1}∗. The signing of m is permitted under policy p if
(p,m,wp) is PC-valid such that PC((p,m), wp) = 1 [5].

2.1 Rerandomizable Digital Signature Scheme (RDS)

RDS schemes are digital signature algorithms that allow rerandomizing a sig-
nature such that the rerandomized version of the signature is still verifiable
under the verification key of the signer [11,16,17,19]. An RDS scheme is a
tuple of five polynomial-time algorithms, RDS = {ppRDS ← ppGenRDS(1λ),
(skRDS , pkRDS) ← KeyGenRDS(ppRDS), σRDS ← SignRDS(skRDS ,m), σ′

RDS ←
RandomizeRDS(σRDS), {�,⊥} ← VerifyRDS(pkRDS ,m, σRDS)}. Some RDS
schemes include a σRDS ← SignComRDS(skRDS , C) procedure that enables the
signing of a commitment C of a hidden message m such that the resulting σRDS

is verifiable for m. Note that if σRDS is generated using SignComRDS, it could
not be verified without the knowledge of m or some trapdoor information gener-
ated from m [10,16]. RDS schemes ensure existential unforgeability under chosen
message attacks (EUF-CMA) and unlinkability where it is infeasible for adver-
saries to link a rereandomized version of a signature to its original one. RDS
unlinkability also implies the indistinguishability of rereandomized signatures.
The formal definition of such security notions and their associated experiments
are given in [16,19] and in the full version of this paper [3].

2.2 Simulation-Sound Extractable NIZK (SE-NIZK)

A SE-NIZK system enables a prover with a witness w to prove non-interactively
the truthfulness of a statement x to a verifier without conveying why [13].
For x in an NP-language L such that (x, w) in a relation R associated
with L, a SE-NIZK is a tuple of six polynomial-time algorithms, NIZK
= {crs ← SetupNIZK(1λ), (crs, trNIZK) ← SimSetupNIZK(1λ), πNIZK ←
ProveNIZK(crs, x, w), πNIZK ← SimProveNIZK(crs, x, trNIZK), {�,⊥} ←
VerifyNIZK(crs, x, πNIZK), w ← ExtrNIZK(crs, x, πNIZK)}. SE-NIZK schemes
ensure zero-knowledge which ensures a negligible success of an adversary that
can distinguish between a proof for a statement x using a witness w from a
simulated one. They also provide simulation-extractability which implies that it
is hard for an adversary to output a verifiable proof for a statement x using a
witness w such that R(x,w) = 0. The formal definitions of such security notions
are given in [5] and in the full version of this paper [3].

2.3 Digital Signature Schemes

A digital signature scheme is a tuple of four polynomial-time algorithms,
Sig = {ppSig ← ppGenSig(1λ), (pkSig, skSig) ← KeyGenSig(ppSig), σSig ←

Traceable Policy-Based Signatures with Delegation 55

SignSig(skSig,m), {�,⊥} ← VerifySig(pkSig,m, σSig)}. The standard security
notion of a digital signature scheme is EUF-CMA [1] (see the full version of this
paper [3]).

3 Traceable Policy-Based Signatures (TPBS)

We build on PBS and present a Traceable Policy-Based Signatures (TPBS)
scheme. The main idea of our scheme is that in addition to the PBS issuer’s
policy key, we require the use of an identity key for signing a message that sat-
isfies the policy defined by the issuer in the policy key. Hence, we introduce a
Tracing Authority (TA) where every scheme user registers with to generate an
identity key. The user then uses the identity key in addition to the policy key
to sign a message that conforms to the policy set by the issuer. The produced
signature allows the TA to trace it to the registration information acquired from
the user during identity key generation. Note that contrary to the issuer’s policy
key, which could be shared among users allowed by the issuer to sign a specific
message, the identity key is generated by individual users and is not shared with
any other entity in the system. In what follows, we give the black box definitions
of the proposed construction.

TPBS is a tuple of ten polynomial-time algorithms, TPBS = {ppGen,
TASetup, IssuerSetup, UserKeyGen, IDKeyGen, PolicyKeyGen, Sign, Verify, Trace,
Judge} which are defined as follows.

– ppGen. This algorithm outputs the public parameters of the scheme, which
become an implicit input to all the other algorithms, ppTPBS ← ppGen(1λ)

– TASetup. This algorithm generates the TA’s public secret key pair
(pkTA

TPBS, sk
TA
TPBS), initializes a private empty registry Reg, and defines

the identity universe I such that |I|= |Reg|, (pkTA
TPBS, sk

TA
TPBS, Reg) ←

TASetup(ppTPBS)

– IssuerSetup. This algorithm generates the issuer’s public key secret key pair,
(pkIssuer

TPBS , skIssuer
TPBS) ← IssuerSetup(ppTPBS)

– UserKeyGen. For user identity i ∈ I, this algorithm generates the user’s
secret public key pair (ski, pki). We assume that pki is authentically asso-
ciated with i in a public registry D such that D[i] = pki, a PKI sys-
tem may be used for such a purpose. Moreover, this algorithm outputs the
registration information IDi generated from ski using a one-way function,
(pki, ski, IDi) ← UserKeyGen(ppTPBS, i)

– IDKeyGen. This two-party interactive procedure runs between a scheme user
and the TA to generate the user’s identity key. The inputs of the user’s routine
are (i, (ski)), and the inputs to the TA’s routine are ((skTA

TPBS), i, IDi), where i
and IDi are sent to the TA by the user. At the end of the interaction, the user
obtains the TA’s signature σi

ID over their hidden secret ski. Finally, the user

56 I. Afia and R. AlTawy

sets ski
TPBS = (ski, σ

i
ID) whereas the TA obtains some registration informa-

tion Reg[i] = IDi, ((Reg[i]), (ski
TPBS)) ← IDKeyGen((skTA

TPBS)
(i,IDi)←−−−→

σi
ID

(ski))

where the first (resp. second) (.) in the input and output of IDKeyGen con-
tains values that are only known to the TA (resp. user).

– PolicyKeyGen. The issuer runs this procedure to generate a secret key for a
specific policy p ∈ {0, 1}∗, skp

TPBS ← PolicyKeyGen(skIssuer
TPBS , p)

– Sign. On input of a message m, a witness wp ∈ {0, 1}∗ that m con-
forms to a specific policy p, the secret signing key skp

TPBS, the user
identity key ski

TPBS, this procedure generates a signature σm, σm ←
Sign(pkTA

TPBS, pkIssuer
TPBS , skp

TPBS, sk
i
TPBS,m, p, wp)

– Verify. This algorithm verifies the signature σm over m using the issuer’s and
TA’s public keys, {�,⊥} ← Verify(pkTA

TPBS, pkIssuer
TPBS ,m, σm)

– Trace. This algorithm is run by the TA to trace a signature σm over m to
its original signer and returns the signer identity along with proof confirming
such a claim, (i, πTrace) ← Trace(pkTA

TPBS, pkIssuer
TPBS , skTA

TPBS, Reg,m, σm)

– Judge. This algorithm verifies the output of the tracing algorithm, {�,⊥} ←
Judge(pkTA

TPBS, pkIssuer
TPBS ,m, σm, i, πTrace)

TPBS Correctness for the correctness of TPBS, we require that for
all λ ∈ N, all ppTPBS ← ppGen(1λ), for all (pkTA

TPBS, (skTA
TPBS, Reg)) ←

TASetup(ppTPBS), for all (pkIssuer
TPBS , skIssuer

TPBS) ← IssuerSetup(ppTPBS), for all
i ∈ I, for all (pki, ski, IDi) ← UserKeyGen(ppTPBS), for all ((Reg[i]),(ski

TPBS)) ←
IDKeyGen((skTA

TPBS)
(i,IDi)←−−−→

σi
ID

(ski)), for all skp
TPBS ← PolicyKeyGen(skIssuer

TPBS ,

p), and for all (m, p,wp) ∈ {0, 1}∗ s.t PC((p,m), wp) = 1, we have σm ←
Sign(pkTA

TPBS, pkIssuer
TPBS , skp

TPBS, ski
TPBS, m, p, wp) such that � ← Verify(pkTA

TPBS,
pkIssuer

TPBS , m, σm). Moreover, we have (i, πTrace) ← Trace(pkTA
TPBS, pkIssuer

TPBS , Reg,
m, σm) such that � ← Judge(pkTA

TPBS, pkIssuer
TPBS , m, σm, i, πTrace).

To prevent a misbehaving TA or any party who has access to the policy
key skp

TPBS from framing a user, we ensure that ski
TPBS contains ski which is

generated by individual users and not shared with any entity in the scheme.
Moreover, since our scheme segregates the identity keys from the policy keys,
the delegatability of policy keys becomes a natural extension for our scheme
and could be achieved seamlessly by applying the same technique of Bellare and
Fuchsbauer [5]. Moreover, segregating the issuer and TA rules make our scheme
a perfect fit for decentralized environments where multiple issuers may coexist.

3.1 TPBS Security Definitions

The security notions of PBS are privacy (policy-indistinguishability) and
unforgeability [5]. Privacy of the policy ensures that a signature reveals nei-

Traceable Policy-Based Signatures with Delegation 57

Fig. 1. TPBS Security Oracles

ther the policy associated with the policy key nor the witness that was used in
creating such a signature. Unforgeability is defined as the infeasibility of creating
a valid signature for a message m without holding a policy key for some policy p
and a witness wp such that PC((p,m), wp) = 1. In the same context, Bellare and
Fuchsbauer have defined simulatability and extractability as stronger versions
of the aforementioned security notions [5]. The main reason behind introduc-
ing such stronger notions is that the traditional notions of policy privacy and
unforgeability are insufficient for all applications. For instance, a PBS scheme
with a policy checker PC such that for every message m, there is only one policy

58 I. Afia and R. AlTawy

p where PC((p,mi), wi) = 1 for i ∈ {0, . . . , n}, such a scheme does not hide the
policy, yet still satisfies indistinguishability.

Since TPBS signing requires the user’s identity key and the produced signa-
tures are traceable by the TA, we extend the definition of privacy to include user
anonymity in addition to policy-privacy. Moreover, we define non-frameability
and traceability to capture the newly introduced traceability feature. We also
define simulatability and extractability as the stronger notions of privacy and
unforgeability. Note that our definition of simulatability and extractability dif-
fers from those in PBS in that they include the newly introduced signer identity
and tracing feature. In what follows, we give the formal definitions of the TPBS
security notions. The oracles used in the security experiments are defined in
Fig. 1 in which the lists, U contains all the honest users’ identities in the system,
T tracks all dishonest users in the system where the adversary has access to their
identity secret key, and L tracks all the policies that the adversary has access
to their policy keys. Qi is a key-value pair matrix that contains the honestly
generated identity keys defined by the user identity i. Qp is a key-value pair
matrix that contains the honestly generated policy keys defined by the policy p.
M and M′ are used to track signatures generated by the signing oracles.

Note that OKeyGen is set up to generate the signer identity key from scratch
and return it to the adversary along with the policy key. Such a setup allows
the adversary to corrupt as many users as it wants without engaging with the
oracle interactively.

3.2 Privacy

TPBS ensures privacy if it guarantees signer anonymity and policy-privacy, which
are defined as follows.

Signer Anonymity. Anonymity is modeled by the indistinguishability exper-
iment in Fig. 2, where the adversary has access to OKeyGen(.), OUSign(.),
OIdLoRSign, and OTrace(.) oracles. The challenge oracle OIdLoRSign is ini-
tialized with a random bit b ∈ {0, 1}. The adversary inputs to OIdLoRSign
are (i0, i1,m, p, wp) where the adversary chooses i0, i1 from a predefined list
of users U that it has no access to their signing keys. After verifying that
PC((p,m), wp) = 1 and i0, i1 ∈ U , the oracle generates σmb

for the message
m using (skp

TPBS, skib
TPBS). Finally, the oracle returns σmb

to the adversary.
The adversary wins if it can determine the bit b with more than the negligi-
ble probability. The adversary has access to OUSign(.) oracle, which on input
(i ∈ U ,m, p, wp), it obtains a signature on message m under the identity key
of i ∈ U and any policy of its choice. Furthermore, OUSign(.) returns the TA
signature σi

ID of the user i to simulate the case where σi
ID is leaked without

the knowledge of ski. Furthermore, we give the adversary access to skIssuer
TPBS to

simulate the case of a corrupt issuer. Note, to prevent trivial attacks, the queries
to OKeyGen(.) are limited to users’ identities not in U which models the set of
honest users. Also, the adversary cannot query the OTrace with the output of
OIdLoRSign.

Traceable Policy-Based Signatures with Delegation 59

Anonymity is defined in a selfless setting where we do not provide the adver-
sary with access to the identity keys of the two signers, ski0

TPBS and ski1
TPBS,

involved in the query to OIdLoRSign [9]. This models the case where an inter-
nal adversary should not be able to distinguish between two signatures generated
under two identities different than its own, even if both signatures are generated
using the same policy key. Such a restriction is essential to construct a signifi-
cantly more efficient scheme [7].

Definition 1 (TPBS Anonymity). The TPBS scheme is anonymous if for any
PPT adversary A, |Pr[ExpAnonymity

A,TPBS (λ) = �]− 1
2 |≤ ε(λ), where ExpAnonymity

A,TPBS

is defined in Fig. 2.

Fig. 2. TPBS Anonymity Experiment

Policy-Privacy. Policy-privacy is modeled by the indistinguishability experi-
ment in Fig. 3, where the adversary has access to OKeyGen(.) and OPLoRSign
oracles. The challenge oracle OPLoRSign is initialized with a random bit b ∈
{0, 1}. The adversary inputs to OPLoRSign oracle are (i,m, p0, wp0 , p1, wp1).
After verifying that PC((p0,m), wp0) = 1, and PC((p1,m), wp1) = 1, the ora-
cle generates ski

TPBS and skpb

TPBS for b ∈ {0, 1}. It then signs m using (skpb

TPBS,
ski

TPBS) and returns σmb
. The adversary wins if it can determine the bit b with a

probability better than the random guess. Note that we give the adversary access
to skTA

TPBS and skIssuer
TPBS to simulate the case of a corrupt TA and\or issuer.

Definition 2 (TPBS Policy-privacy). The TPBS scheme is policy-private if
for any PPT adversary A, |Pr[ExpPolicy−privacy

A,TPBS (λ) = �] − 1
2 |≤ ε(λ), where

ExpPolicy−privacy
A,TPBS is defined in Fig. 3.

Consider a PBS scheme where for every message m there is only one policy p
such that PC((p,m), wp) = 1; then the aforementioned policy-privacy definition

60 I. Afia and R. AlTawy

Fig. 3. TPBS Policy-privacy Experiment

can not hide the associated policy. It has been proven that simulatability is a
stronger notion of policy-privacy that remedies the aforementioned limitation [5].
Since the same limitation is inherited in TPBS, thus, we also define simulatability,
and we prove that our definition implies the privacy of TPBS, which is defined
as both anonymity and policy-privacy.

Simulatability. This security notion requires the existence of a simulator that
can create simulated signatures without having access to any of the users’ sign-
ing keys or witnesses. Yet, such signatures are indistinguishable from real sig-
natures. Thus, we assume that for every TPBS procedure, there exists a simu-
lated procedure whose output is indistinguishable from the non-simulated one.
We denote such a procedure with the Sim prefix. More precisely, we require
the following algorithms, SimppGen, SimTASetup, SimIssuerSetup, SimUserKey-
GenTPBS, SimIDKeyGen, SimPolicyKeyGen, SimSign, and SimTraceTPBS. Note
that SimppGen, SimTASetup, and SimIssuerSetup also output the trapdoor infor-
mation trTPBS, trTA, and trIssuer, respectively. Such trapdoor outputs are used
as inputs to the other relevant simulated procedures instead of the secret inputs.
We give the definitions of the simulated procedures in Fig. 9 after we present
the generic construction

We formally define simulatability in a selfless setting by the experiment in
Fig. 4, in which the adversary has access to OKeyGen(.), OUSign(.), OTrace(.),
and OSim-or-Sign(.) oracles. OSim-or-Sign(.) is its challenge oracle which on the
input of some ij from a predefined list of honest users identities U , a message m,
a policy p, and a witness wp that m conforms to p, the oracle outputs a signature
σm. The adversary wins if it can determine whether σm is generated using ij
identity key and p policy key or it is a simulated signature. To prevent trivial
attacks, the adversary cannot query the OTrace(.) with the signatures generated
by the challenging oracle.

Definition 3 (TPBS Simulatability). The TPBS scheme is simulatable if for
any PPT adversary A, |Pr[ExpSIM

A,TPBS(λ) = �] − 1
2 |≤ ε(λ), where the

ExpSIM
A,TPBS is defined in Fig. 4.

Traceable Policy-Based Signatures with Delegation 61

Fig. 4. TPBS Simulatability Experiment

3.3 Unforgeability

Intuitively unforgeability is the infeasibility of creating a valid signature on a
message m without holding the policy key for policy p to which m conforms. To
model users’ corruption and collusion attacks where users could combine their
policy keys to sign messages non of them is authorized to, Bellare and Fuchsbauer
have defined the unforgeability of the PBS scheme by an experiment where the
adversary is allowed to query a key generation oracle to generate user keys and
gain access to some of them. However, in their definition, it becomes hard to
efficiently determine if an adversary has won the unforgeability experiment by
producing a valid signature such that PC((p,m), wp) = 1 using a queried policy
key or not since policy-privacy requires hiding the policy and witness used in
generating a specific signature. To overcome the aforementioned limitation, they
defined extractability as a strengthened version of unforgeability and proved that
extractability implies unforgeability [5]. Since TPBS privacy requires hiding the
policy, witness, and signer’s identity used in generating signatures over m, we
define extractability and adapt it to imply the unforgeability for TPBS.

Extractability. We formally define TPBS extractability by the experiment in
Fig. 5, where we assume the existence of an extractor algorithm Extr which upon
inputting a valid message signature pair (m,σm) in addition to trapdoor infor-
mation trTPBS, it outputs the tuple (p, ski, sk

p
TPBS, wp). An adversary A who has

access to OKeyGen and OSign oracles (Fig. 1) wins ExpExt
A,TPBS if it outputs a

valid message signature pair (m∗, σm∗) such that either i) it does not hold some
ski∗

TPBS that is obtained from OKeyGen oracle or for all p, it obtained skp
TPBS by

querying OKeyGen oracle, ii) it does not hold an skp∗
TPBS corresponds to p∗ such

that PC((p∗,m∗), w∗
p) = 1 or iii) PC((p∗,m∗), w∗

p) = 0. Note that since trTPBS
is required by Extr algorithm, the extractability experiment is initialized using

62 I. Afia and R. AlTawy

SimppGen(1λ) algorithm rather than ppGen(1λ), and all other algorithms are
kept the same.

Definition 4 (TPBS Extractability) a TPBS scheme is extractable if for any
PPT adversary A, Pr[ExpExt

A,TPBS(λ) = �] ≤ ε(λ), where ExpExt
A,TPBS is defined

in Fig. 5.

3.4 Non-frameability

This property ensures that even if the tracing authority, issuer, and all corrupt
users in the scheme collude together, they cannot produce a valid signature that
is traced back to an honest user. TPBS non-frameability is modeled by the exper-
iment defined in Fig. 6, in which the adversary has access to both TA and issuer
secret keys (skTA

TPBS, sk
Issuer
TPBS), in addition to OKeyGen, OUSign, and OTrace ora-

cles. The adversary wins if it outputs a verifiable (m∗, σm∗) that has not been
queried to OUSign and when (m∗, σm∗) is traced back to its signer, the tracing
algorithm outputs an identity of one of the honest users in U . Additionally, the
output of OTrace oracle should be verifiable using the Judge algorithm.

Fig. 5. TPBS Extractability Experiment

Definition 5 (TPBS Non-frameability) a TPBS scheme is non-frameable if for
any PPT adversary A, Pr[ExpNon−frameability

A,TPBS (λ) = �] ≤ ε(λ), where the non-
frameability experiment is defined in Fig. 6.

Traceable Policy-Based Signatures with Delegation 63

Fig. 6. TPBS Non-Frameability Experiment

3.5 Traceability

Traceability requires that even if all scheme users collude together, they cannot
produce a signature that cannot be traced. We require the tracing authority to
be honest, as knowing the secret key of the tracing authority would allow the
adversary to sign a dummy ski under the tracing authority’s secret key resulting
in an untraceable signature. TPBS traceability is modeled by the experiment
defined in Fig. 7, in which the adversary has access to OKeyGen and OTrace
procedures. We omit the adversarial access to OSign oracle since the adversary
could corrupt as many users as it wants and get access to their keys. Hence
it could use the signing algorithm directly Sign(.) to produce signatures. The
Adversary wins if it outputs a verifiable (m∗, σm∗), which when traced, the
tracing algorithm Trace outputs ⊥.

Fig. 7. TPBS Traceability Experiment

64 I. Afia and R. AlTawy

Definition 6 (TPBS Traceability) a TPBS scheme is traceable if for any PPT
adversary A, Pr[ExpTraceability

A,TPBS (λ) = �] ≤ ε(λ), where the traceability experi-
ment is defined in Fig. 7.

4 TPBS Generic Construction

The main building blocks of the new construction are a EUF-CMA RDS scheme
capable of signing a commitment on a secret message, a SE-NIZK proof system,
and a digital signature scheme. Figure 8 depicts the complete generic construc-
tion of TPBS.

User Setup. The general idea of the new scheme is that in addition to the policy
key skp

TPBS that is generated by the issuer using PolicyKeyGen and shared with
any user who is allowed to sign a message m conforming to p, each user has to run
an interactive algorithm IDKeyGen with the TA to obtain an identity key ski

TPBS.
Prior to engaging in IDKeyGen, the user runs the algorithm UserKeyGen where
it selects some ski

$← F and generates the user’s registration information IDi.
More precisely, IDi contains Ci = f(ski) and the user’s digital signature τi over
Ci. During the execution of IDKeyGen, the user obtains the TA’s RDS signature
σi

ID on the user-chosen secret value ski. However, to ensure non-framability,
the TA uses the special form of RDS signing scheme SignComRDS to generate
σi

ID ← SignComRDS(skTA
RDS , C) where the generated RDS signature is verifiable

over ski without being shared with the TA. At the end of the interaction, the
user stores σi

ID along with ski as the user’s identity key ski
TPBS and the TA

keeps track of users’ registration information IDi in a secret registry Reg.

Signing. To sign a message m, the user generates a rerandomized version of the
TA signature σ′i

ID along with a SE-NIZK proof πm for the relation R
′
NP

that is
given by

((pkTA
TPBS, σ

′i
ID, pkIssuer

TPBS ,m), (ski, p, skp
TPBS, wp)) ∈ R

′
NP

⇔
VerifyRDS(pkTA

TPBS, ski, σ
′i
ID) = 1 (1a)

∧ VerifySig(pkIssuer
TPBS , p, skp

TPBS) = 1 (1b)
∧ PC((p,m), wp) = 1 (1c)

whose statements X = (pkTA
TPBS, σ

′i
ID, pkIssuer

TPBS ,m) with witnesses W = (ski, p,
skp

TPBS, wp). Intuitively, πm proves that a) σ′i
ID is the TA signature over some

signer-generated secret value ski, b) the user holds the issuer’s signature over
some policy p, and c) the message m conforms the policy p under some witness
wp, i.e. PC((p,m), w) = 1.

Verifying and Tracing. Signature verification is done by verifying πm over the
statements X. To trace a signature to its signer, the TA associates σ′i

ID in the
signature to the original signer registration information in Reg. However, since
the user’s secret chosen value ski is never shared with the TA, the TA uses a
tracing trapdoor C ′

i for f(ski) which is generated during the execution of the

Traceable Policy-Based Signatures with Delegation 65

UserKeyGen algorithm and shared with the TA as part of IDi which is held
secretly in Reg by the TA. To prove successful tracing, the TA produces a NIZK
proof π for the relation TNP given by:

((pkTA
RDS , σ′i

ID, Ci), (C ′
i)) ∈ TNP ⇔
VerifyRDS(pkTA

RDS , C ′
i, σ

′i
ID) = 1 (2a)

∧ Ci
→ C ′
i (2b)

whose statements X ′ = (pkTA
RDS , σ′i

ID, Ci) with witnesses W ′ = C ′
i. Intuitively,

π proves that a) σ′i
ID is verifiable under the TA public key using the trapdoor

information C ′
i, and b) Ci and C ′

i are generated using the same secret value
ski i.e., Ci
→ C ′

i. One advantage of using a sign-rerandomize-proof paradigm

Fig. 8. Generic Construction of TPBS

66 I. Afia and R. AlTawy

rather than a sign-encrypt-proof paradigm is that the former paradigm produces
a significantly more efficient signature than the latter [7,16]. On the other hand,
the tracing algorithm becomes a linear operation in the number of scheme users
and requires a memory size linear in the number of scheme users as well, which
is considered an affordable price since tracing is an infrequent operation and is
run by a computationally powerful TA [7].

Note that in Fig. 8, we use two different instances of the digital signature
scheme. The issuer uses one to sign a policy p in PolicyKeyGen, and the scheme
users use the other to sign the output of the one-way function to generate
IDi in UserKeyGen. We label the latter with the subscript Σ. We also need
different CRSs for each relation, R

′
NP

(1) and TNP (2), However, we keep the
description short, thus, we do not make it explicit. In Fig. 9, we show how
SimppGen(.), SimSign(.), Extr(.) are constructed in accordance with the con-
crete construction in Fig. 8. Since trTA, and trIssuer is equal to skTA

TPBS and
skIssuer

TPBS , respectively, we omit the details of SimTASetup(.), SimIssuerSetup(.),
SimUserKeyGenTPBS(.), SimIDKeyGen(.), SimPolicyKeyGen(.), and SimTrace(.)
which are defined in the same way as TASetup(.), IssuerSetup(.), IDKeyGen(.),
PolicyKeyGen(.), and Trace(.), respectively.

Fig. 9. TPBS Simulated algorithms

5 TPBS Security

The definition of extractability of TPBS (see Definition 4) implies its unforgeabil-
ity. The privacy of TPBS includes policy privacy and anonymity. Accordingly, we
first prove that simulatability implies both anonymity and policy-privacy. Then
we present a security proof for simulatability (implies privacy), extractability
(implies unforgeability), non-frameability, and traceability. Note that due to the
page limit, we only give proof sketch for Theorem 2. The corresponding formal
proof is provided in the full version of the paper [3].

Theorem 1. Simulatability implies both anonymity and policy-privacy

Proof. Assuming an adversary A against TPBS anonymity in ExpAnonymity
A,TPBS

in Fig. 2 (resp. policy-privacy in ExpPolicy−privacy
A,TPBS in Fig. 3), we can con-

struct an adversary B (resp. B′) against the simulatability of TPBS. B receives

Traceable Policy-Based Signatures with Delegation 67

(U , ppTPBSb
, pkTA

TPBSb
, skTA

TPBSb
, pkIssuer

TPBSb
, skIssuer

TPBSb
) from its challenger in the

ExpSIM
A,TPBS in Fig. 4, chooses d

$← {0, 1}, and runs A on (U , ppTPBSb
, pkTA

TPBSb
,

pkIssuer
TPBSb

, skIssuer
TPBSb

). Whenever A queries its challenging oracle OIdLoRSign with
(ij0 , ij1 ,m, p, wp), if PC((p,m), wp) = 0 or ij0 , ij1 /∈ U , B returns ⊥, otherwise it
queries its challenger in the simulatability game with (ijd ,m, p, wp) and returns
σmb

to A. When A outputs b′, B outputs 0 if (b′ = d), indicating that A returned
the identity B queried OSim-or-Sign with; thus σmb

is not a simulated signature.
B outputs 1 otherwise. B′ could be constructed similarly as follows. It receives (U ,
ppTPBSb

, pkTA
TPBSb

, skTA
TPBSb

, pkIssuer
TPBSb

, skIssuer
TPBSb

) its challenger in the simulatability

game in Fig. 4, chooses d
$← {0, 1}, and runs A on (ppTPBSb

, pkTA
TPBSb

, skTA
TPBSb

,
pkIssuer

TPBSb
, skIssuer

TPBSb
). Whenever A queries its challenge oracle OPLoRSign with

(i,m, p0, wp0 , p1, wp1), if PC((p0,m), wp0) = 0 or PC((p1,m), wp1) = 0 or i /∈ U ,
B′ returns ⊥, otherwise it queries its challenger in the simulatability game with
(i,m, pd, wpd

) and returns σmb
to A. When A outputs b′, B′ outputs 0 if (b′ = d)

and 1 otherwise. In either case, if in ExpSIM
B,TPBS(λ) (resp. ExpSIM

B′,TPBS(λ)) the
challenger’s bit is 0 indicating a signed signature, then B (resp. B′) perfectly
simulates ExpAnonymity

A,TPBS (λ) (resp. ExpPolicy−privacy
A,TPBS (λ)) for A. However, if the

bit is 1 indicating a simulated signature, then the bit d chosen by B (resp. B′) has
no relation to A’s response. Hence, B outputs 1 with probability 1

2 . Therefore,
the success probability of B (resp. B′) is half that of A in the anonymity (resp.
policy-privacy) experiment.

Theorem 2. Given a zero-knowledge simulation-sound extractable NIZK sys-
tem, an unlinkable RDS scheme, an unforgeable RDS scheme, an unforgeable
digital signature scheme, a one-way function, and an interactive perfect zero-
knowledge proof of knowledge, the traceable policy-based signature scheme in
Fig. 8 is simulatable, extractable, non-frameable, and traceable.

Proof (Sketch). Simulatability follows from the zero-knowledge property of the
underlying SE-NIZK proof system, and the unlinkability of the used RDS
scheme. Extractability directly follows from the unforgeability of both the used
RDS scheme and digital signature scheme and the simulation-extractability of
the underlying SE-NIZK proof system. Likewise, non-frameability follows from
the unforgeability of the used digital signature scheme, and the zero-knowledge
property of the underlying SE-NIZK proof system given a one-way function
f(.), and an interactive perfect zero-knowledge proof of knowledge PoK. Finally,
traceability follows from the unforgeability of the used RDS scheme and the
simulation-extractability of the underlying SE-NIZK proof system.

6 TPBS Instantiation and Performance

We instantiate TPBS with Pointcheval-Sanders (PS) RDS Scheme [16,17]1

because of its short signature size and low signing cost in addition to its ability
1 PS scheme has two variants one is based interactive assumption to prove its security

[16] and a slightly modified one [17] where its security is proved based on the SDH
assumption both could be used to instantiate our scheme.

68 I. Afia and R. AlTawy

to sign a hiding commitment over a message using a special form of its signing
algorithm. we consider the One-way function f(.) over a type-3 bilinear group
map defined by (p,G, G̃,GT , e) where the SDH assumption holds to be simply
the function f(ski) = (gski , g̃ski)/ for (g, g̃) ∈ (G, G̃) and ski ∈ Z

∗
p. We instanti-

ate the issuer digital signature algorithm with the structure-preserving signature
scheme in of Abe et al. [2]. We instantiate the SE-NIZK scheme with the Groth-
Sahai proof system [14]. Any digital signature scheme can be utilized in TPBS,
we keep it as a black box since it is not utilized in TPBS signature genera-
tion or verification. Finally, we instantiate the PoK with the four-move perfect
zero-knowledge protocol of Cramer et al. [12]. We keep the original definition of
Bellare and Fuchsbauer for a policy p that defines a set of Pairing Product Equa-
tions (PPEs) (E1, . . . , En), such that the policy checker PC((p,m), wp) = 1 iff
Ej((p,m), wp) = 1 for all j ∈ [n]. The complete specifications of the algorithms
used in instantiating TPBS are depicted in the full version of this paper [3]. In
what follows, we give the concrete description of TPBS’s instantiated procedures.

ppGen. for a security parameter λ, let (p,G, G̃,GT , e, g, g̃) defines a type-3
bilinear group map that is generated by (g, g̃) that is used by all the scheme
algorithms, Run ppSig ← ppGenAbe(1λ), ppSigΣ ← ppGenSig(1λ), ppRDS ←
ppGenPS(1λ), and crs ← SetupGS. Set ppTPBS = {crs, ppRDS , ppSig, ppSigΣ},
where ppTPBS becomes an implicit input for all TPBS algorithms.

TASetup. (pkTA
TPBS, sk

TA
TPBS) ← KeyGenPS(ppRDS) such that pkTA

TPBS = (g1, Ã, B̃),
skTA

TPBS = (a, b). Setup an empty Reg = [].

IssuerSetup. (pkIssuer
TPBS , skIssuer

TPBS) ← KeyGenAbe(ppAbe) such that pkIssuer
TPBS =

(U, V,H,Z), and skIssuer
TPBS = (u, v, h, z) for U ∈ G, (V,H,Z) ∈ G̃ and (u, v, h, z) ∈

Z
∗
p

UserKeyGen. Generates (pki
SigΣ

, ski
SigΣ

) ← KeyGenSig(ppSigΣ), sets D[i] =

(pki
SigΣ

), picks ski
$← Z

∗
p, calculates Ci = (Ci, C

′
i) = (gski

1 , B̃ski), generates
τi ← SignSig(Ci, sk

i
SigΣ

), sets IDi = {Ci, τi}, finally return (pki, ski, IDi).

IDKeyGen. The user sends (i, IDi) to the TA, the TA parses IDi as {(Ci, C
′
i), τi}

and obtains an authentic copy of pki
SigΣ

, if Reg[i] = ∅∧VerifySig(pki
SigΣ

, Ci, τi)∧
e(Ci, B̃) = e(g1, C ′

i), the TA engages with the user to start the interactive
zero-knowledge protocol PoK(ski : Ci = gski

1), if TA verifies that the user
knows ski such that the relation of PoK holds, the TA generates σi

ID ←
SignComPS(skTA

TPBS, Ci) as follows, the TA picks r
$← Z

∗
p and generates σi

ID =
(σi

ID1
, σi

ID2
) ← (gr

1, (g
a
1 (Ci)b)r, finally the TA sets Reg[i] = IDi and the user

set his scheme identity key as ski
TPBS = (ski, σ

i
ID).

PolicyKeyGen. For policy p ∈ {0, 1}∗, which is presented by a set of PPE equa-
tions (E1, . . . , En) for a number of secret group elements (M, Ñ) ∈ G

kM × G̃
kN ,

the issuer generates skp
TPBS ← SignAbe(skIssuer

TPBS , (M, Ñ)) such that skp
TPBS =

(R,S, T).

Traceable Policy-Based Signatures with Delegation 69

Sign. To sign a message m, the signer first generates a rerandomized version of
σi

ID, σ′i
ID ← RandomizePS(σi

ID), along with a SE-NIZK proof πm for relation
R

′
NP

that is defined in 1 as follows:

((pkTA
TPBS, σ

′i
ID, pkIssuer

TPBS ,m), (ski, p, skp
TPBS, wp)) ∈ R

′
NP

⇔
e(σ′

ID1, Ã)e(σ′
ID1, B̃

ski) = e(σ′
ID2, g̃) ∧ e(g, B̃ski) = e(gski , B̃) (1a)

∧ e(R, V)e(S, g̃)e(M,H) = e(g, Z) ∧ e(R, T)e(U,N) = e(g, g̃) (1b)

∧ Ej(((M, Ñ),m), (Wp, W̃p)) = 1 ∀j ∈ [n] (1c)

Verify. To verify a message signature pair (m,σm), the verifier parses (σ′i
ID, πm)

from σm and runs VerifyNIZK(crs, (pkTA
TPBS, σ

′i
ID, pkIssuer

TPBS ,m), πm). Finally, the
verifier outputs � in case of verification success and ⊥ otherwise.

Trace. To trace a message signature pair (m,σm) to its original signer,
the TA verifies such pair. If the verification succeeds, it parses (σ′i

ID, πm)
from σm and exhaustively searches Reg for a matching i as follows.
foreach C′

i ∈ Reg

if e(σ′
ID2 , g̃)e(σ′

ID1 , Ã)−1 = e(σ′
ID1 , C′

i)

(i, IDi) = Reg[i]

π ← ProveNIZK(crs, (Ci, σ
′i
ID), C′

i) � e(σ′
ID2 , g̃)e(σ′

ID1 , Ã)−1 = e(σ′
ID1 , C′

i)

∧ e(Ci, B̃) = e(g1, C
′
i)

πTrace ← (Ci, τi, π)

return (i, πTrace)

Judge. After verifying (m,σm), parses (Ci, τi, π) from πTrace and outputs � if
VerifySig(pki

SigΣ
, Ci, τi) ∧ VerifyNIZK(crs, (Ci, σ

′i
ID), π)) or ⊥ otherwise.

Performance Analysis. Let TPBS be initialized with n users and the policy
p be expressed in 1 PPE uniquely defined by (M, Ñ) ∈ G × G̃ group elements.
To sign a message m that conforms to p, The proposed instantiation produces a
total signature size of 14 elements in G + 16 elements in G̃, where σ′i

ID is a PS
signature of size 2 elements in G, and πm is a Groth-Sahai proof of knowledge
of size 12 elements in G + 16 elements G̃. Signing costs two exponentiations
in G to generate σ′i

ID and approximately 40 exponentiations in G + 70 expo-
nentiations in G̃ to produce πm. Verifying a given TPBS message signature pair
costs approximately a total of 100 pairing operations to verify πm

2. For tracing
a signature, the TA performs at most n + 2 pairing operations and produces a
proof π of size 16 group elements in G̃, which costs around 10 exponentiations
in G and 20 exponentiations in G̃. To verify the output of the tracing algorithm,
the Judge performs around 40 pairing operations to verify π in addition to the
verification cost of the TPBS signature and the verification cost of the signature
τi of the user on the registration information.
2 The verification cost of Groth-Sahai proofs could be enhanced using batch verifica-

tion [8].

70 I. Afia and R. AlTawy

7 Comparisson with PBS and Xu et al.’s Schemes

TPBS builds on PBS and further provides traceability and non-frameability.
Accordingly, in addition to the issuer in PBS, TPBS has a TA that can trace sig-
natures back to their signers. Non-frameability of TPBS holds under the assump-
tion of a misbehaving TA. TPBS black-box construction has four new algorithms
when compared to PBS. Namely, UserKeyGen, and IDKeyGen, where the latter is
run interactively between each scheme user and the TA to generate such user’s
identity key, Furthermore, we introduce the Trace, and Judge algorithms. Where
Trace algorithm is used by the TA to trace a signature to its original signer and
Judge algorithm is used to verify the output of the Trace algorithm. The security
model of TPBS differs from that of PBS in that it includes formal definitions
for traceability and non-frameability and, the definitions of simulatability and
extractability capture the introduced notion of signer anonymity and identity
features.

Xu et al. also builds on PBS by attaching the user’s identity to the hidden
policy and utilizing a sign-encrypt-proof paradigm to provide the traceability
feature. On the other hand, TPBS utilizes sign-rerandomize-proof which pro-
duces more efficient signatures than the sign-encrypt-proof paradigm used in Xu
et al.’s proposal. TPBS separates identity keys from policy keys, thus it supports
the delegation of policy keys in the same way as PBS which is not applicable
in Xu et al.’s proposal. The issuer Xu et al.’s scheme generates the signing keys
of the user, thus, it does not ensure non-frameability. However, in TPBS the
scheme users generate their identity keys using an interactive protocol with the
TA, hence TPBS provides non-frameability. Xu et al.’s proposal does not give a
formal definition for traceability.

Table 1 summarizes the comparison between TPBS, PBS, and Xu et al.’s
proposal. We consider the utilized building blocks and the availability of the
traceability feature. If traceability is ensured by a scheme, then we contrast

Table 1. Comparison between TPBS, PBS and Xu et al.’s proposal. N/A denotes an
unavailable feature/entity.

TPBS(this work) PBS [5] Xu et al. [18]

Building blocks RDS
SE-NIZK
digital Sig.

SE-NIZK
digital Sig.

encryption scheme
SE-NIZK
digital Sig.

Traceability yes no yes

Identity identity key N/A attached to the policy

Tracing Authority standalone N/A issuer acts as the TA*

Delegatability yes yes no

Security definitions simulatability simulatability simulatability

extractability extractability extractability

traceability

non-frameability

*Although the scheme defines two different entities issuer and opener, the issuer has to partic-
ipate in the opening process since it generates policy keys that contain the users’ identities.

Traceable Policy-Based Signatures with Delegation 71

the schemes in terms of how the signer identity is utilized. We also consider the
structure of the TA, whether a scheme enables the delegation of signing keys, and
finally what security definitions are considered in the scheme’s security model.

8 Conclusion

We have proposed TPBS, a traceable policy-based signature scheme that sup-
ports delegatability. Our scheme fills the gap in the original policy-based schemes
by linking a signature to the identity of its signer when needed, thus holding the
signer of a specific message accountable for the produced signature. We have
analyzed the security of TPBS and proved that it is an anonymous, policy-
private, unforgeable, traceable, and non-frameable signature scheme. Moreover,
we provided a concrete instantiation of TPBS using the Pointcheval-Sanders
rerandomizable signature scheme, the structure-preserving signature scheme of
Abe et al., and the Groth-Sahai NIZK system and analyzed its efficiency. Fol-
lowing policy-based signature schemes which can be used in the construction
of mesh signatures, ring signatures, etc., TPBS can be adapted for signature
schemes that require traceability such as sanitizable and accountable redactable
signatures.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

2. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 37

3. Afia, I., AlTawy, R.: Traceable policy-based signatures with delegation. Cryptology
ePrint Archive, Paper 2023/193 (2023). https://eprint.iacr.org/2023/193

4. Afia, I., AlTawy, R.: Unlinkable policy-based sanitizable signatures. In: Rosulek,
M. (ed.) CT-RSA 2023. LNCS, vol. 13871, pp. 191–221. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30872-7 8

5. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 30

6. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

7. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15317-4 24

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-22792-9_37
https://eprint.iacr.org/2023/193
https://doi.org/10.1007/978-3-031-30872-7_8
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-642-15317-4_24

72 I. Afia and R. AlTawy

8. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.:
Batch groth–sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
218–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2
14

9. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Pro-
ceedings of the 11th ACM Conference on Computer and Communications Security,
pp. 168–177 (2004)

10. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

11. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

12. Cramer, R., Damg̊ard, I., MacKenzie, P.: Efficient zero-knowledge proofs of knowl-
edge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000.
LNCS, vol. 1751, pp. 354–372. Springer, Heidelberg (2000). https://doi.org/10.
1007/978-3-540-46588-1 24

13. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

14. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

15. Maji, H., Prabhakaran, M., Rosulek, M.: Attribute-based signatures: achiev-
ing attribute-privacy and collusion-resistance. Cryptology ePrint Archive, Report
2008/328 (2008). https://ia.cr/2008/328

16. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

17. Pointcheval, D., Sanders, O.: Reassessing security of randomizable signatures. In:
Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 319–338. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76953-0 17

18. Xu, Y., Safavi-Naini, R., Nguyen, K., Wang, H.: Traceable policy-based signa-
tures and instantiation from lattices. Inf. Sci. 607, 1286–1310 (2022). https://doi.
org/10.1016/j.ins.2022.06.031, https://www.sciencedirect.com/science/article/pii/
S0020025522006211

19. Zhou, S., Lin, D.: Unlinkable randomizable signature and its application in group
signature, vol. 2007, p. 213 (2007). https://doi.org/10.1007/978-3-540-79499-8 26

https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-46588-1_24
https://doi.org/10.1007/978-3-540-46588-1_24
https://doi.org/10.1007/11935230_29
https://ia.cr/2008/328
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-76953-0_17
https://doi.org/10.1016/j.ins.2022.06.031
https://doi.org/10.1016/j.ins.2022.06.031
https://www.sciencedirect.com/science/article/pii/S0020025522006211
https://www.sciencedirect.com/science/article/pii/S0020025522006211
https://doi.org/10.1007/978-3-540-79499-8_26

Basic Primitives

How to Enumerate LWE Keys as Narrow
as in KYBER/DILITHIUM

Timo Glaser(B) and Alexander May

Ruhr-University Bochum, Bochum, Germany
{timo.glaser,alex.may}@rub.de

Abstract. In the Learning with Errors (LWE) problem we are given a
matrix A ∈ Z

N×N
q and a target vector t ∈ Z

N
q such that there exists

small-norm s, e ∈ Z
N
q satisfying A · s = t + e mod q. Modern cryptosys-

tems often sample s, e from narrow distributions that take integer values
in a small range [−η, η]. Kyber and Dilithium both choose η = 2 and
η = 3 using either a Centered Binomial distribution (Kyber), or a Uni-
form distribution (Dilithium).

In this work, we address the fundamental question how hard the enu-
meration of LWE secret keys for narrow distributions with η ≤ 3 is. At
Crypto 21, May proposed a representation-based algorithm for enumer-
ating ternary keys, i.e. the case η = 1, with a fixed number of ±1 entries.
In this work, we extend May’s algorithm in several ways.

First, we show how to deal with keys sampled from a probability dis-
tribution as in many modern systems like Kyber and Dilithium, rather
than with keys having a fixed number of entries.

Second, we generalize to larger values η = 2, 3, thereby achiev-
ing asymptotic key guess complexities that are not far off from lattice
estimates.

E.g. for Kyber’s Centered Binomial distribution we achieve heuristic
time/memory complexities of O(20.36N) for η = 2, and O(20.37N) for
η = 3. For Dilithium’s Uniform distribution we achieve heuristic com-
plexity O(20.38N) for η = 2.

Let S be the Shannon entropy of Kyber/Dilithium keys. Then our
algorithms runs in time about S 1

6 , which greatly improves over the stan-
dard combinatorial Meet-in-the-Middle attack with complexity S 1

2 .
Our results also compare well to current lattice asymptotics of 20.29β ,

where the lattice parameter β is roughly of size 4
5
N . Thus, our analy-

sis supports that Kyber secret keys are indeed hard to enumerate. Yet,
we find it remarkable that a purely combinatorial key search is almost
competitive with highly evolved lattice sieving techniques.

Keywords: LWE Key Search · Representation Technique ·
Asymptotics

Funded by Deutsche Forschungsgemeinschaft (DFG) - Project number 465120249.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 75–100, 2023.
https://doi.org/10.1007/978-981-99-7563-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_4&domain=pdf
http://orcid.org/0000-0001-5965-5675
https://doi.org/10.1007/978-981-99-7563-1_4

76 T. Glaser and A. May

1 Introduction

Since the introduction of the Learning with Errors (LWE) problem by Regev
[20] into the cryptographic community, LWE has shown its amazing power to
realize efficient cryptographic constructions, such as the Gödel Prize 22 award
Fully Homomorphic Encryption schemes [6,7].

It does not come as a big surprise that LWE-type constructions play a central
role in the current NIST initiative for identifying encryption/signature schemes
resistant to quantum computers [5,8,9,15]. As solving LWE implies the solution
to worst-case lattice problems, LWE is usually considered a lattice problem.
However, this does not imply that lattice algorithms necessarily provide the
best way for solving LWE. Moreover, many cryptosystems choose especially small
secret keys for efficiency reasons, and to keep the probability of decryption errors
low.

In this work we study the combinatorial complexity of recovering LWE keys
chosen from a narrow range {−η, . . . , η}. Our analysis also applies to common
variants of LWE, such as Ring-LWE or Module-LWE, but we make no use of the
additional structure that these LWE variants provide.

Previous Work on LWE Key Enumeration. There is still much to learn about
directly enumerating LWE keys. A brute-force attack enumerates s ∈ Z

N
q , and

checks whether As − t yields a small-norm error vector e. If s has Shannon
entropy S, then the brute-force attack takes (expected) time S, up to a polyno-
mial runtime factor for checking key correctness. Throughout the paper, for ease
of notation we ignore polynomial factors and round runtime exponents upwards.

In a Meet-in-the-Middle attack, attributed to Odlyzko [21], we split s in two
N/2-dimensional vectors s1, s2 and check whether As1 ≈ t − As2 mod q. The
approximate matching of As1 and t−As2 is realized by a locality-sensitive hash
function. Up to polynomial factors, Odlyzko’s attack takes time S 1

2 .
Recently, May [17] showed that ternary LWE keys s,e ∈ {−1, 0, 1}N can be

enumerated more efficiently in time roughly S 1
4 . His algorithm for NTRU-type

schemes beats lattice reduction if s is overly sparse. May’s technique is a natural
recursive generalization of Odlyzko’s Meet-in-the-Middle attack to search trees,
using the so-called representation technique. This technique has been introduced
in [16] and successfully applied in the cryptographic context of decoding algo-
rithms [2,18].

Our Technical Contributions. We extend May’s LWE key recovery algorithm in
several ways.

– We first show that May’s algorithm can be applied for LWE keys sampled from
a probabilistic distribution. Since the purely combinatorial analysis in [17]
requires to know for every element in {−η, . . . , η} the exact number of appear-
ances in s, we define for any probability distribution P = (p−η, . . . , pη) a
so-called core set of vectors.
We then show that length-N LWE keys randomly sampled coordinate-wise
from P are in the core set with probability inverse polynomial in N . This core

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 77

set density shows that our key enumeration already applies to a polynomial
fraction of all keys.

– We then strengthen our result to almost all LWE keys s,e by transform-
ing almost any LWE instance in subexponential time 2O(

√
N) to a permuted,

weight-preserving LWE instance with keys s′,e′ such that s′ lies in the core
set. Since our subsequent enumeration of s′ takes time 2O(N), the transforma-
tion’s subexponential overhead contributes only an o(1)-term to the runtime
exponent.

– We generalize the combinatorics of [17] such that we can analyze secret vec-
tors from {−2, . . . , 2} and even from {−3, . . . , 3}. This introduces runtime
optimization parameters whose amount grows quadratically with the digit
sets and linearly in the search tree depth. The optimization complexity is the
reason that we only analyze up to η ≤ 3.

– Along this way we also generalize the ways in which the secret s can be
represented. This is crucial in the representation technique, since more repre-
sentations usually lead to better results. See as comparison the related subset
sum literature that optimized runtimes by solely analyzing more powerful rep-
resentations starting from {0, 1} [16], over {−1, 0, 1} [1], to {−1, 0, 1, 2} [4]. In
this work, we introduce four different representations, called Rep-0 to Rep-
3, with increasing complexity. Rep-3 representations are most powerful, and
we eventually use Rep-3 to show our best results for the Kyber/Dilithium
distributions.

– We analyze different probability distributions P = (p−η, . . . , pη). For η = 1,
we revisit weighted ternary key distributions and slightly improve over [17]
by using larger search tree depths. For η = 2, 3 we study the Centered Bino-
mial distribution B(η) used in Kyber, and the Uniform distribution used in
Dilithium.

Our Results. Table 1 shows our runtimes for s,e ∈ B(η)N , Kyber’s Centered
Binomial distribution. Kyber uses η = 3 in combination with N = 256·2 = 512,
and η = 2 in combination with N = 256 · 3 = 768 and N = 256 · 4 = 1024.

As one would expect with increasing η—i.e., broader distributions—the
key entropy S and our runtime T both increase. However, let us express our
runtime as a polynomial function of the entropy T = Sc for some constant
c = logS(T). Then we see that the runtime exponent c actually decreases in
Table 1 monotonously in η.

For η = 2 and η = 3 we have complexities around only S 1
6 , as opposed to the

η = 1 ternary key case with complexity S0.225 (slightly improving over S0.232

Table 1. Runtime T and entropy S of our LWE key enumeration algorithm for s
sampled from a Centered Binomial distribution B(η)N , η = 1, 2, 3.

η T S logS(T)
1 20.337N 21.500N 0.225
2 20.357N 22.031N 0.176
3 20.371N 22.334N 0.159

78 T. Glaser and A. May

achieved in [17]). Thus, our generalizations for larger digit sets are more effective
for larger η. This seems to be an artifact of the representation method. Our
analysis shows that the entropy growth with larger digit sets is over-compensated
by the growth of the number of representations, resulting in decreased runtime
exponents c = logS(T).

These results demonstrate the power of our new combinatorial LWE key
search algorithm. Recall that the best known combinatorial Meet-in-the-Middle
algorithm by Odlyzko so far achieved square root complexity S 1

2 , independent
of η. For the case η = 1 the exponent was lowered to c = 0.232 in [17]. Our work
indicates that for Centered Binomials c as a function of η decreases strictly.

The effect of a strictly decreasing exponent c(η) is also reflected in the abso-
lute runtimes T in Table 1. More precisely, when choosing keys from B(3)N

rather than ternary keys B(1)N , then our key enumeration algorithm’s runtime
only mildly increases from 20.337N to 20.371N . In other words, although we sig-
nificantly increase the key entropy from 21.5N to 22.334N we do not significantly
increase the key security.1

Other Distributions. Besides the Centered Binomial distribution we also study
the enumeration of randomly sampled ternary LWE keys of different weight,
thereby slightly improving the results of [17].

We also study the Uniform distribution U(η) = (p−η, . . . , pη) with pi = 1
2η+1 ,

widely used in cryptography, e.g. some NTRU variants [8] sample their keys from
U(1)N . Dilithium chooses s,e ∈ U(2)N for N = 1024, 2048.

Our results for the Uniform distribution are provided in Table 2. When com-
paring with Table 1, the lower entropy, more sharply zero-centered Binomial dis-
tribution yields slightly better runtimes than the Uniform distribution in Table 2,
as one would expect. However, maybe somewhat surprisingly, our results for
U(1)N and U(2)N are not far off, only U(3)N is significantly worse.

Relative to the entropy S we achieve for η = 2 again runtime S 1
6 , but as

opposed to the Centered Binomial distribution c = logT S is for the Uniform
distribution not strictly decreasing with growing η.

Notice that we achieve for Dilithium’s U(2)N a runtime T similar to
Kyber’s B(3)N . However, since Dilithium proposes much larger key lengths,
our key enumeration is way more effective for Kyber parameter sets.

Table 2. Runtime T and entropy S of our enumeration algorithm for LWE keys
sampled from a Uniform distribution U(η)N , η = 1, 2, 3.

η T S logS T
1 20.345N 21.585N 0.218
2 20.378N 22.322N 0.163
3 20.493N 22.808N 0.176

1 This conclusion is of course only valid relative to our algorithm. Relative to other
algorithms like lattice reduction the key security might be behave differently.

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 79

Asymptotics. We would like to stress that our LWE key search algorithm is at
this point mainly of theoretical interest. Our runtime analysis is asymptotic,
and throughout our work we do not only generously supress polynomial run-
time factors in soft-Oh notation Õ(·), but we also supress two subexponential
factors. First, as in [17] we have to guess r = (N/ log N) coordinates of e in
slightly subexponential time 2r. Second, our transformation to the core set of s

introduces another subexponential 2O(
√

N) runtime factor.
Our analysis solely focuses on minimizing the runtime exponent. Our memory

consumption is almost as large as the runtime exponent. Time-memory tradeoffs
are possible, as in [17], but we do not consider them in this work.

Significant further work would be required to bring our results to practice.
We would like to draw an analogy to decoding algorithms, which also first solely
focused on asymptotic improvements [2,18]. It took a decade that these algo-
rithms nowadays define the state-of-the-art in practical attacks against code-
based cryptosystems [13].

LWE Representation Heuristic. Our LWE key enumeration uses the standard
heuristic from representation based algorithms. Namely, we iteratively construct
in our key search partial solutions as vectors sums, and treat these sums as
independent in our analysis. This heuristic has been extensively verified exper-
imentally in the context of subset sum and decoding algorithms [4,13]. On the
theoretical side, it has been shown in [10] that the dependence between vec-
tors sums merely affects the overall runtime exponent by an o(1)-term. Our own
experimental results seem to validate this heuristic w.r.t. LWE.

In addition, we require that the LWE public key A is randomly chosen from
Z

N×N
q , which is the case for standard LWE. In the case of Module-LWE (MLWE)

we heuristically assume that A’s structure does not affect our analysis.
When formulating theorems, we refer to these two heuristic assumptions as

the MLWE Representation Heuristic.

Lattices. Our results are close to current lattice asymptotics of 20.29β from BKZ
reduction, where the BKZ block length β is roughly of size 4

5N . We find it
quite remarkable that combinatorial key enumeration, at least in the case of
quite narrow LWE keys as in Kyber and Dilithium, is not far off from highly
evolved lattice reduction techniques. Even if key enumeration eventually cannot
outperform lattice reduction, there exist other attack scenarios where direct key
enumeration might be preferable over lattices, e.g. in the setting of partially
known keys [4,12].

Organization of Paper. After fixing notations in Sect. 2, we give a short expla-
nation of May’s LWE-Search’s [17] in Sect. 3 and how to extend its analysis
to probabilistically sampled keys in Sect. 4. In Sect. 5, we provide a first simple
instantiation of LWE-Search, called Rep-0, for an introduction into the repre-
sentation technique. We then strengthen our results by introducing more elabo-
rated representations Rep-1 to Rep-3 in Sect. 6. Section 7 contains an overview
of our results for the weighted ternary, the Centered Binomial, and the Uniform

80 T. Glaser and A. May

distribution. Section 8 covers the method of parameter searching as well as our
experimental results.

We provide the source code for parameter optimization and our implemen-
tation of the attack via https://github.com/timogcgn/HTELWEK/.

2 Preliminaries

Unless explicitly stated otherwise, any log is base 2. For simplicity, we denote all
vectors as column vectors and omit transposing them. The weight of i in some
vector v, i.e. the amount of times i appears in v, is denoted wti(v).

Shannon Entropy. We denote with H the n-ary entropy function [19] where

H(p1, . . . , pn) = −
∑n

i=1 pi log(pi) for
∑

pi = 1.

Using Stirling’s Approximation, we find for constant pi

(
N

p1N , ··· , pnN

)
= Θ(N− n−1

2 · 2H(p1,··· ,pn)N) = Θ̃(2H(p1,··· ,pn)N). (1)

Distributions. Probability distributions are denoted P = (p−η, . . . , pη) where pi

denotes the probability to sample i ∈ {−η, . . . , η}. We only consider distributions
symmetric around 0, i.e. where pi = p−i, so indices are generally unsigned.

Sampling from a probability distribution P will be denoted with s ∼ P. If
s ∈ Z

N
q has its N coefficients drawn i.i.d. from P, we write s ∼ PN .

For some η ∈ N, we denote the Centered Binomial Distribution with

pi = (2η
η+i)
22η . (2)

LWE Keys. We attack standard LWE keys, where both s and e are randomly
drawn from some narrow probability distribution over Zq. More precisely, for
some prime q ∈ N and some N ∈ N, given a random A ∈ Z

N×N
q and t ∈ Z

N
q

where t = As + e for s,e ∈ Z
N
q drawn from PN , we want to find (s,e).

If we replace Zq with Zq[X]/P (X) and N with k, this becomes Module-LWE,
abbreviated MLWE. Our results can be applied to MLWE with N = deg(P)k.

3 How to Enumerate LWE Keys with May’s Algorithm

Before we introduce May’s algorithm for key enumeration [17], let us briefly
recall some basic techniques.

https://github.com/timogcgn/HTELWEK/

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 81

3.1 Brute-Force and Meet-in-the-Middle LWE Key Enumeration

Let q ∈ N and let (A, t) ∈ Z
N×N
q × Z

N
q be an instance of LWE satisfying

As +e = t mod q for some s,e ∈ Z
N
q that have small coefficients (relative to q).

A Brute-Force LWE key enumeration searches over all potential secrets
s ∈ Z

N
q , and checks whether the resulting error term t − As is sufficiently

small. By construction, there is usually a unique s that satisfies this condition.
If the potential s come from an exponential search space of size S, then one
has to iterate over Θ(S) potential s, where each candidate can be tested in
polynomial time. Thus, Brute-Force runs in time Õ(S). E.g. for random ternary
s ∈ {−1, 0, 1}N Brute-Force takes time Õ(3N).

A classical Meet-in-the-Middle (MitM) LWE key enumeration equally splits
s = (s1, s2) ∈ Z

N/2
q × Z

N/2
q and A = (A1, A2) ∈ Z

N×N/2
q × Z

N×N/2
q . One

then enumerates pairs (s1, s2) and checks whether A1s1 approximately matches
t−A2s2 modulo q, up to a small error term. The benefit is that (s1, s2) have half
the dimension of s, and the terms A1s1, t−A2s2 can be computed independently.
The matching (up to the small error term) of A1s1, t−A2s2 that finds the right
pairs (s1, s2) can usually be done in polynomial time, using a locality-sensitive
hashing approach due to Odlyzko [21]. This implies that classical MitM runs for
secret s from a search space of size S in time Õ(

√
S). For instance, for random

ternary s ∈ {−1, 0, 1}N , classical MitM takes time Õ(3N/2).

3.2 High-Level Idea of the Algorithm

May’s LWE key enumeration [17] can be seen as a Meet-in-the-Middle attack,
where we additively split s = s1 + s2 with s1, s2 ∈ Z

N
q . As opposed to classical

MitM the benefit of s’s splitting does not come from dimension reduction, but
from the following three properties.

Reduced Search Space. s1, s2 are usually easier to enumerate, i.e. they are defined
over smaller search spaces. For instance, [17] uses for enumerating ternary keys
s1, s2 of roughly half the Hamming weight of s.

Recursion [17] recursively splits s1, s2 as sums of N -dimensional vectors that
are (yet) defined over smaller search spaces. This recursion eventually results in
a complete binary search tree of some optimal depth d. The optimization of the
search spaces over all tree levels is a non-trivial optimization problem.

Ambiguous Representations. The secret s can be expressed in exponentially
many ways as a sum s1 + s2. The algorithm uses these so-called representations
of s to fix a special representation s.t. A1s1, t − A2s2 take a fixed predefined
value on certain coordinates.

In order to use representations, for some candidate s1, s2 we thus have to
fix the values A1s1, t − A2s2 on certain r coordinates. Let us fix zeros on these
coordinates for simplicity. Recall however that the values A1s1, t − A2s2 still

82 T. Glaser and A. May

Algorithm 1: LWE-Search [17]
Input : A ∈ Z

N×N
q , t ∈ Z

N
q

Output: Small norm s ∈ Z
N
q s.t. e := As − t has small norm

1 Guess r coordinates of e, denoted er.
2 for all s1, s2 such that As1 = 0r = t − As2 + er on these r coordinates and

As1 ≈ t − As2 on the remaining n − r coordinates do
3 Output s = s1 + s2

4 end

differ by the unknown error vector e. Thus, May’s algorithm first guesses r
coordinates of e. The algorithm’s high-level structure is described in Algorithm 1.

Algorithm 1 was instantiated and analyzed in [17] only for ternary vectors
s ∈ {−1, 0, 1}N with a predefined number of ±1-entries. However, the algorithm
may as well be instantiated with any notion of smallness of s,e (in comparison
to q). Throughout the paper, we assume that s,e are sampled from a constant
size range {−η, . . . , η}. I.e., the max-norm of s,e does not grow as a function of
q, as opposed to e.g. Regev’s original cryptosystem [20].

The narrow max-norm distributions that we address in this work are typical
for highly practical lattice-based schemes like Kyber and Dilithium. In the
narrow max-norm distribution setting for e (we do not need constant max-norm
s at this point) the following holds.

Subexponential Key Guessing. Let R be the number of representations of s.
In Algorithm 1 we choose r, the number of guessed error coordinates, such
that on expectation at least one representation survives. The probability that a
representation (s1, s2) satisfies the condition As1 = 0r in the last r coordinates
in Algorithm 1 is q−r. Thus, a representation survives if Rq−r ≥ 1. Since in
the following R = 2O(N) and q = Θ(N), we obtain r = O(N

log N). Thus, for
every constant max-norm e, Algorithm 1 requires for the key guessing in step 1
subexponential time

(O(1))r = 2O(N/log N).

As a consequence, the (exponential) runtime of LWE-Search includes an addi-
tional slightly subexponential factor. Asymptotically, this contributes a factor of
(1 + o(1)) to the exponent, and can be ignored by rounding the runtime expo-
nent upwards. However, in practice, this factor might affect concrete runtime
estimates on a significant scale.

Efficient LSH. An approximate matching A1s1 ≈ t−A2s2 mod q with Odlyzko’s
locality sensitive hash function (LSH) includes a constant runtime overhead O(1)
over an exact matching of lists (via sorting), when we match up to a constant
max-norm error vector e, see [17]. Consequently, we can ignore LSH costs.

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 83

4 Enumerating Keys from a Probabilistic Distribution

Larger Range. LWE-Search originally was instantiated and analyzed for
ternary s,e ∈ {−1, 0, 1}N , where s has a fixed number of −1, 0, 1 that sum
to 0, i.e., we have to know the weights wt−1(s),wt0(s),wt1(s). In subsequent
sections, we extend it to vectors s,e ∈ {−η, . . . , η}N , where η = 2, 3. These
calculations with wider ranges can be seen as a generalization of May’s analysis
for ternary keys.

Handling Probabilism. Motivated by our applications Kyber and Dilithium,
we want to deal with keys s,e that are sampled from a probabilistic distribution
P. This causes problems, since LWE-Search requires explicit knowledge of the
weights of s. This case is not covered by [17], and per se it is not clear that
LWE-Search permits a proper analysis for probabilistic distributions.

In this section, we first show that for any probabilistic distribution
P = (p−η, . . . , pη) with constant η, a polynomial fraction of all secret keys
s ∈ PN has weights wt−η(s) = p−ηN, . . . ,wtη(s) = pηN . I.e., all weights achieve
their expected values, ignoring rounding issues.

Thus, if we analyze LWE-Search with weights fixed to their expectation,
we already obtain an algorithm that succeeds for a polynomial fraction of keys.

Attacking (Almost) All Keys. In Sect. 5, we show that the runtime of LWE-
Search can be expressed as a function T (wt−η, . . . ,wtη) which grows exponen-
tially in N . Instinctively, one might think that iterating LWE-Search over all
possible O(Nη) many weight distributions would solve the problem presented
by randomly sampling keys. However, this would result in worst-case runtime

O(Nη · max{T (wt−η, . . . ,wtη)) |
∑

wti = N},

where the latter term can be exponentially larger than the runtime of LWE-
Search for a vector with wti = piN . Instead, we utilize a permutation technique.
In a nutshell, we permute the entries of s,e ∈ PN , until s achieves its expected
weights. It turns out than, on expectation, this happens within a subexponential
number 2O(

√
N) of iterations for all but a (tunably very small) fraction of keys

and yields a runtime of

2O(
√

N) · O(T (p−ηN, . . . , pηN)),

i.e. subexponential many iterations of exponentially less runtime. In other words,
we show that, for any probability distribution, one may analyze LWE-Search
w.l.o.g. with the weights of s fixed to their expectation. As a consequence, our
results hold for a (1 − o(1))-fraction of all randomly sampled s,e ∼ PN .

4.1 A Polynomial Fraction of All Keys Achieves Expectations

Let us define what we mean by the event that a vector v sampled from some
probability distribution P achieves its expected number of entries. We call the
set of these vectors a core set.

84 T. Glaser and A. May

Definition 1 (core set). Let N, η ∈ N. Let P = (p−η, . . . , pη) be a probability
distribution. We define the core set of N -dimensional vectors over P as

C(P) := {v ∈ {−η, . . . , η}N | wti(v) = piN for all − η ≤ i ≤ η},

where w.l.o.g. (asymptotically in N) we assume that piN ∈ N for all i.

Next, we show that for any discrete probability distribution P = (p−η, . . . , pη)
with constant η, a length-N vector v randomly sampled coordinate-wise accord-
ing to P belongs to the core set C(P) with probability inverse polynomial in N .

Lemma 1. Let P = (p−η, . . . , pη) be some probability distribution, and let
N ∈ N be such that Ni := piN ∈ N for all i. Then, v ∼ PN is in the core
set C(P) with probability at least Ω(1

Nη).

Proof. Let v ∼ PN . Then we have for all i that wti(v) := Ni := piN with
probability

Pr[v ∈ C(P)] =
(

N
N−η , ··· , Nη

)
·
∏

−η≤i≤η pNi
i .

We bound the multinomial coefficient using Eq. (1) as

Pr[v ∈ C(P)] = Ω
(

1
Nη · 2H(p−η,··· ,pη)N

)
· 2

∑
−η≤i≤η Ni log pi

= Ω
(

1
Nη

)
· 2H(p−η,··· ,pη)N · 2−H(p−η,··· ,pη)N = Ω

(
1

Nη

)
.

�
By Lemma 1, any attack that works for LWE keys s from the core set C(P)

with probability ε also works for any key s ∼ PN with probability Ω(1
Nη) · ε,

where the last probability is taken over the random choice of s.

4.2 Attacking Almost All Keys via Permutations

In order to attack almost all keys we devise a simple permutation technique that
exchanges coordinates in s and e. Our goal is to show that for almost all keys a
subexponential number of permutations yields a permuted s′ from the core set.

Permutation Technique. Let As + e = t mod q be an LWE instance with a
square A ∈ Z

N×N
q . We can rewrite this equation in the form

(A | IN) · (s | e) = t mod q.

Let P ∈ Z
2N×2N
q be a permutation matrix, and let (A | In) · P−1 = (B | C),

where B,C ∈ Z
N×N
q . Then clearly

(B | C) · P (s | e) = t mod q.

Assume that C is invertible with inverse C−1 ∈ Z
N×N
q . Then

(C−1B|IN) · P (s | e) = C−1t mod q.

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 85

Algorithm 2: Permute-LWE
Input : LWE instance (A, t) such that As + e = t mod q
Output: LWE instance (A′, t′) such that A′s′ + e′ = t′ mod q , where (s′, e′) is

a permutation of (s, e)
1 repeat
2 Choose a random permutation matrix P ∈ Z

2N×2N
q . ;

3 Compute (B | C) = (A | IN) · P −1 with B, C ∈ Z
N×N
q .

4 until C is invertible;
5 (A′, t′) := (C−1B, C−1t) ;

Define A′ := C−1B ∈ ZN×N
q , (s′,e′) := P (s | e), and t′ = C−1t. Then we

obtain a new LWE instance
A′s′ + e′ = t′,

where the coordinates of (s′,e′) are a permutation of the coordinates of
(s,e). Notice that a random matrix is invertible over Zq with probability
∏N

i=1(1 − q−i) ≥ 1
4 [22].

This gives us the algorithm Permute-LWE (Algorithm 2) with expected
polynomial runtime O(N3).

Any LWE key v = (s,e) ∼ P2N has expected weight wti(v) = 2Npi for
all i. Intuitively, if wti(v) is not significantly smaller than 2Npi for any i, then
Permute-LWE should have a good chance to produce some s′ ∈ C(P). This
motivates our following definition of well-balanced vectors.

Definition 2. Let P = (p−η, . . . , pη) be a probability distribution. We call an
LWE key (s,e) ∼ P2N c-well-balanced if for any −η ≤ i ≤ η and some constant
c, (s,e) contains at least 2Npi − c

√
Npi many i-entries.

We want to show that any randomly sampled vector (s,e) ∼ P2N is c-well-
balanced with constant probability.

Lemma 2. Let P = (p−η, . . . , pη) be a probability distribution. Then an LWE-
key (s,e) ∼ P2N is c-well-balanced with probability at least 1 − (2η + 1)e−c2/4.

Proof. Let Xi be a random variable for the number of i-entries in (s,e) ∼ P2N .
Then μ := E[Xi] = 2Npi. We apply the Chernoff bound

Pr[Xi ≤ (1 − δ)μ] ≤ e− μδ2

2

with the choice δ = c
2
√

Npi
, which yields

Pr[Xi ≤ 2Npi − c
√

Npi] ≤ e− c2
4 .

An application of the union bound shows the statement. �

86 T. Glaser and A. May

With Lemma 2, we know that, for large enough c, almost all keys are c-well-
balanced. Now, we want to show that any LWE instance with c-well-balanced
keys (s,e) can be turned via Permute-LWE into an LWE-instance with a secret
s′ in the core set in subexponential time, for which we analyze our instantiations
of LWE-Search (Algorithm 1) in subsequent sections.

Lemma 3. Let P = (p−η, . . . , pη) be a probability distribution, and (A, t) be an
LWE instance with c-well-balanced LWE-key (s,e) ∼ P2N . Then on expectation
Permute-LWE outputs an LWE instance (A, t′) with s′ ∈ C(P) after 2O(

√
N)

trials.

Proof. Since (s,e) is c-well-balanced, we have wti(s,e) ≥ 2Npi −c
√

Npi for any
i ∈ {−η, . . . , η}. Thus, we obtain

Pr[s ∈ C(P)] ≥
(2Np−η−c

√
Np−η

Np−η
)·...·(2Npη−c

√
Npη

Npη
)

(2N
N) .

Using Eq. (1) and neglecting polynomial terms we obtain for the exponent

log Pr[s ∈ C(P)] ≥ −2N +
∑η

i=−η H
(

1
2− c

Npi

)
·
(
2 − c√

Npi

)
Npi.

For any x ≤ 1
2 we have H(x, 1 − x) ≥ 2(1 − x), leading to

log Pr[s ∈ C(P)] ≥ −2N +
∑η

i=−η 2
(
1 − 1

2− c
Npi

)
·
(
2 − c√

Npi

)
Npi.

= −2N + 2
∑η

i=−η

(
1 − c√

Npi

)
Npi

= −2c
∑η

i=−η

√
Npi = −Θ(

√
N).

Thus, we expect that after (Pr[s ∈ C(P)])−1 = 2O(
√

N) iterations for Permute-
LWE to output an LWE-instance with a secret s in the core set C(P). �
5 Instantiating LWE-SEARCH with Simple (Rep-0)

Representations

In this section, we show how to instantiate LWE-Search (Algorithm 1) from
Sect. 3 with both s,e sampled from the Centered Binomial distribution B(3)N . In
the previous Sect. 4 we showed that for any distribution P it suffices to instantiate
LWE-Search with secret s chosen from the core set C(P), that fixes all weights
to their expectations, see Definition 1. Therefore, in the following we assume
that s ∈ C(P)N .

Our first LWE-Search instantiation is mainly for didactic reasons. We
assume that the reader is not familiar with the representation technique. There-
fore, we define an especially simple representation, called Rep-0, to illustrate the
analysis. In subsequent sections, we further refine and parametrize our represen-
tations, called Rep-1, Rep-2 and Rep-3. While these refinements complicate
the analysis, they also lead to significantly stronger results.

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 87

Rep-0. Let us define simple representations, called Rep-0, for s ∈ {−3, . . . , 3}N .
Our representations are illustrated in Table 3. For instance, we represent a 3 in s
as either 1+2 or 2+1, whereas a 2 is represented uniquely as 1+1. For negative
numbers we simply change sign, e.g. −1 is represented as either 0 + (−1) or
(−1) + 0. If a coefficient i has two representations, then we represent half of its
occurrences in s with either representation.

Counting Representations. Let R denote the number of representations of
s ∈ {−3, . . . , 3}N . Let Ri denote the number of representations for entry i.
Then R =

∏3
i=−3 Ri. Since we only consider distributions that are symmetric

in 0, we obtain R−i = Ri. For i ∈ {−2, 0, 2} we have unique representations and
therefore R0 = R2 = R−2 = 1. For i ∈ {−3,−1, 1, 3} we have two representa-
tions with equal splits instead, i.e.,

R1 = R−1 =
(wt1(s)

wt1(s)
2

)
, R3 = R−3 =

(wt3(s)
wt3(s)

2

)
.

As a conclusion, using Eq. (1) the number R of Rep-0 representations is

R =
(wt1(s)

wt1(s)
2

)2
·
(wt3(s)

wt3(s)
2

)2
= Θ̃(22wt1(s)+2wt3(s)). (3)

5.1 Rep-0 Instantiation of LWE-SEARCH

In a nutshell, LWE-Search enumerates candidates for the LWE secret s in a list
L
(0)
1 . The candidates for s are represented as sums of s

(1)
1 and s

(1)
2 , enumerated

in lists L
(1)
1 and L

(1)
2 , respectively, see Fig. 1 for an illustration. LWE-Search

constructs candidates recursively, i.e., on level j in the search tree of Fig. 1 we
construct all candidates s

(j)
i in list L

(j)
i as the sum of candidates s

(j+1)
2i−1 and s

(j+1)
2i

in lists L
(j+1)
2i−1 and L

(j+1)
2i . In the simplified illustration of Fig. 1 we stopped the

recursion in depth d = 3, but in general we have to optimize d.

Weights. In the root list L
(0)
1 we eventually enumerate the candidates for s.

Recall that s ∈ B(3)N and B(3) has by Eq. (2) probability distribution

(p−3, . . . , p3) =
(

1
64 , 6

64 , 15
64 , 20

64 , 15
64 , 6

64 , 1
64

)
.

Table 3. Rep-0 representations of i ∈ {−3, . . . , 3}. Note the symmetry between i and
−i, allowing us to omit negative values in later versions of this table.

i Representations of i

−3 −2 − 1 −1 − 2
−2 −1 − 1
−1 −1+ 0 0 − 1
0 0+ 0
1 0+ 1 1+ 0
2 1+ 1
3 1+ 2 2+ 1

88 T. Glaser and A. May

L
(3)
1 L

(3)
2 L

(3)
3 L

(3)
4 L

(3)
5 L

(3)
6 L

(3)
7 L

(3)
8

L
(2)
1 L

(2)
2 L

(2)
3 L

(2)
4

L
(1)
1 L

(1)
2

r(2)

r(1)

L
(0)
1

weight distribution

L
(3)
i : 452

512 0’s 30
512 ±1’s

L
(2)
i : 196

256 0’s 30
256 ±1’s

L
(1)
i :

70
128 0’s 28

128 ±1’s
1

128 ±2’s

L
(0)
i :

20
64 0’s 15

64 ±1’s
6
64 ±2’s 1

64 ±3’s

Fig. 1. LWE-Search tree in depth d = 3 with relative weights for B(3).

As shown in Sect. 4, in the root list L
(0)
1 , it suffices to enumerate only vectors

s ∈ C(B(3)N) from the core set with weights p−3N, . . . , p3N . For notational
convenience let us define relative (to N) weights ω

(j)
i := wti(s)

N for entry i on
level j of our LWE-search tree, see also Fig. 1. On the root level, we have
relative weights ω

(0)
i = pi. Since we only consider symmetric distributions, for

ease of exposition, we write ω
(j)
−i := ω

(j)
i on all levels j.

From Table 3 we deduce the relative weights on level j < d recursively as

ω
(j)
0 =

2ω
(j−1)
0 +2ω

(j−1)
1

2
, ω

(j)
1 =

ω
(j−1)
1 +2ω

(j−1)
2 +ω

(j−1)
3

2
, ω

(j)
2 =

ω
(j−1)
3
2

, ω
(j)
3 = 0.

On level d, LWE-Search uses a classical Meet-in-the-Middle strategy (without
representations) that splits the weights evenly. Thus, we obtain

ω
(d)
1 =

ω
(d−1)
1
2

, ω
(d)
2 =

ω
(d−1)
2
2

, ω
(d)
3 =

ω
(d−1)
3
2

, ω
(d)
0 = 1 − 2(ω

(d)
1 + ω

(d)
2 + ω

(d)
3).

The values of all relative weights for B(3) on all levels are summarized in Fig. 1.
As an example, in both level-1 lists L

(1)
1 , L

(1)
2 all vectors s

(1)
i have

wt0(s
(1)
i) = 70

128N many 0-entries, wt1(s
(1)
i) = 28

128N many ±1-entries each,
wt2(s

(1)
i) = 1

128N many ±2-entries each, and no ±3-entries.

Search Spaces. Now that we fixed the weight distributions on all levels of our
LWE-Search tree we can define search spaces, i.e., the amount S(j) of vectors
on level j that satisfy our weight distributions. We obtain

S(j) =
(N

ω
(j)
0 N , ω

(j)
1 N , ω

(j)
1 N , ... , ω

(j)
3 N , ω

(j)
3 N

)
= Θ̃(2H(ω

(j)
0 ,ω

(j)
1 ,ω

(j)
1 ,...,ω

(j)
3 ,ω

(j)
3)N).

(4)

Representations and Lists. Recall that our secret s has many representations as
the sum of two vectors. LWE-Search uses the representations to significantly

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 89

reduce search spaces. More precisely, if on level j we have R(j) representations,
then we cut the search space by a random 1

R(j) -factor such that on expecta-
tion only a single representation remains. This search space reduction is the
representation technique’s core idea.

From Eq. (3), we already know the amount of representations on level 1. Let
R(j) denote the amount of level-j representations, then R(1) := R, and Eq. (3)
easily generalizes to

R(j+1) = Θ̃(2(2ω
(j)
1 +2ω

(j)
3)N). (5)

Recall that in the root list L
(0)
1 we store candidate secret keys s, i.e.,

L
(0)
1 = {s ∈ C(B(3)) | A · s − t ∈ {−3, . . . , 3}N}.

At level 1 of the search tree, we have R(1) many representations of s. There-
fore, we have to cut the search space S(1) by an 1

R(1) -fraction. Let

r(1) := �logq(R(1))	 = O(N
log N).

Let πr denote the projection on the last r coordinates. In LWE-Search we
guess er := πr(1)(e) in subexponential time O(7r(1)

) = 2O(N
log N).

Let s
(1)
1 , s

(1)
2 be a representation of the secret key s. Then

As
(1)
1 + e = t − As

(1)
2 , which implies

πr(1)(As
(1)
1) + er = πr(1)(t − As

(1)
2). (6)

By the randomness of A, the left and right hand side of Eq. (6) takes random
values in Z

r(1)

q . Thus, for every target value v ∈ Z
r(1)

q any representation s1, s2

of s takes on both sides of Eq. (6) value v with probability q−r(1)
. As a conse-

quence, we expect that R(1) · q−r(1) ≥ 1 representations take value v. For ease
of exposition, we choose v = 0r(1)

in the following, but in a real implementation
one could randomize target values v. Hence, we define level-1 lists

L
(1)
1 := {s

(1)
1 | πr(1)(As

(1)
1) = −er}, L

(1)
2 := {s

(1)
2 | πr(1)(t − As

(1)
2) = 0r(1)}.

On level 2 to d − 1, we algorithmically take the same approach as on level 1.
As an example, let us derive the level-2 list descriptions. On level 2, we have
R(2) representations, and thus cut the search space S(2) by an 1

R(2) -fraction. To
this end, define r(2) := �logq(R(2))	 (We generally assume that r(j) ≥ r(j−1),
this can be achieved by using r̃(j) := maxj′≤j{r(j

′)} instead). Let s
(2)
1 , s

(2)
2 and

s
(2)
3 , s

(2)
4 be representations of s

(1)
1 and s

(1)
2 , respectively. Then we obtain level-2

lists

L
(2)
1 := {s

(2)
1 | πr(2)(As

(2)
1) = 0r(2)

}, L
(2)
2 := {s

(2)
2 | πr(2)(As

(2)
2 + er) = 0r(2)

},

L
(2)
3 := {s

(2)
3 | πr(2)(t − As

(2)
3) = 0r(2)

}, L
(2)
4 := {s

(2)
4 | πr(2)(As

(2)
4)) = 0r(2)

}.

Eventually, all level-d lists are constructed in a standard Meet-in-the-Middle
manner by splitting each s

(d−1)
i in two N/2-dimensional vectors s

(d)
2i−1, s

(d)
2i .

90 T. Glaser and A. May

Table 4. Rep-0 complexity exponents for B(3)N using LWE-Search with depths
d = 3, 4. Bold exponents indicate the dominating term.

d log T (0) log T (1) log T (2) log T (3) log T (4) logM
3 1.090N 1.103N .583N .510N - 1.045N
4 1.090N 1.103N .605N .405N .320N 1.045N

Runtime Analysis. The level-d lists are constructed by a classical square-root
complexity Meet-in-the-Middle approach for a search space of size S(d−1). On
levels 1 ≤ j < d, we enumerate an 1

R(j) -fraction of the search space size S(j).
Overall, we obtain lists of sizes

L(d) =
√

S(d−1), L(j) = S(j)

R(j) for 1 ≤ j < d. (7)

Since root list L
(0)
1 can be constructed on-the-fly and must not be stored, we

obtain a total memory consumption of M = max{L(j)}.
Let r(d) = 0. For constructing lists on level 1 ≤ j < d, we match two

neighboring lists L
(j+1)
2i−1 , L

(j+1)
2i of size L(j+1) on r(j) − r(j+1) coordinates into a

list L
(j)
i . Neglecting low order terms (e.g. for sorting), this can be done in time

T (j) = max{L(j+1), (L(j+1))2

qr(j)−r(j+1) }. (8)

We then filter out all s
(j)
i ∈ L

(j)
i that do not have the correct weight distri-

bution, resulting in list size L(j).
The root list L

(0)
1 results from approximately matching both level-1 lists of

size L(1) via Odlyzko’s hash function on the remaining N −r(1) coordinates that
were previously unmatched. This can be done in time

T (0) = max{L(1), (L(1))2

2N−r(1)
}. (9)

We obtain as total runtime complexity

T = max{T (0), . . . , T (d−1)}. (10)

We analyzed LWE-Search in depths d = 3, 4. All runtime exponents are given
in Table 4. We observe that depth 3 is already sufficient, since depth 4 does not
reduce the maximal exponent. The analysis for d = 3 is detailed in the proof of
the following theorem.

Theorem 1. (Rep-0). Under the MLWE Representation Heuristic the follow-
ing holds. Let (A, t) ∈ Z

N×N
q × Z

N
q be an (M)LWE instance with q = Ω(N)

and secret keys s,e ∼ B(3)N , where N = nk for MLWE. Then LWE-Search
instantiated with Rep-0 representations finds s (with constant probability) within
time O(21.103N).

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 91

Proof. The correctness of LWE-Search follows by the discussion above. It
remains to show that LWE-Search terminates in time O(21.103N).

We use the runtime formulas from Eqs. (8) and (9). Using Eqs. (7), (4) and
(5) for list size, search space size and representations, this results in

T (0) = (L(1))2

2N−r(1)
= 2(2(H(1

128 , 28
128 , 70

128 , 28
128 , 1

128)−2 15
64−2 1

64)−1+o(1))N = O(21.090N),

T (1) = (L(2))2

qr(1)−r(2)
= Θ̃(2(2H(30

256 , 196256 , 30
256)−2 15

64−2 1
64−2 28

128)N) = O(21.103N),

T (2) = (L(3))2

qr(2)−r(3)
= Θ̃(2(2H(30

256 , 196256 , 30
256)/2−2 28

128)N) = O(20.583N),

T (3) = L(3) = Θ̃(2(H(30
256 , 196256 , 30

256)/2)N) = O(20.51N).

Thus, due to (10), LWE-Search terminates in time max T (j) = O(21.103N). �
6 More Representations

In this section, we enhance our representations to significantly reduce the LWE-
Search runtime from Theorem 1. Our first refined representation Rep-1 can
be seen as an introduction to parametrization in the representation technique,
where we add additional ±1’s to represent 0-entries as 1 + (−1) and (−1) + 1.

We then parametrize to the full extent by adding in additional ±2’s and ±3’s
in Rep-2 and Rep-3. The parameters used in Theorems 2 and 3 were found using
the method described in Sect. 8.

6.1 REP-1 Representations

Our Rep-1 representations are illustrated in Table 5. We introduce a parameter
ε(j) ∈ [0, 1], 1 ≤ j < d for the additional number of ±1’s on level j. I.e., if we
have ω

(j−1)
0 N many entries 0 on level j−1, we represent ε(j)N many as 1+(−1),

and ε(j)N many as (−1) + 1. The remaining (ω(j−1)
0 − 2ε(j))N 0-entries are still

represented as 0+0. Accordingly, most formulas from Sect. 5 remain unchanged.
We only increase the number of 0-representations

R(j)
0 =

(
ω

(j−1)
0 N

ε(j)N , ε(j)N , ·

)

at the cost of slightly increased search spaces S(j), reflected by different weights

ω
(j)
0 = 2ω

(j−1)
0 +2ω

(j−1)
1 −4ε(j)

2 , ω
(j)
1 = ω

(j−1)
1 +2ω

(j−1)
2 +ω

(j−1)
3 +2ε(j)

2 .

Theorem 2. (Rep-1). Under the MLWE Representation Heuristic the follow-
ing holds. Let (A, t) ∈ Z

N×N
q × Z

N
q be an (M)LWE instance with q = Ω(N)

and secret keys s,e ∼ B(3)N , where N = nk for MLWE. Then LWE-Search
instantiated with Rep-1 representations finds s (with constant probability) within
time O(20.787N).

92 T. Glaser and A. May

Table 5. Rep-1 representations of i ∈ {0, 1, 2, 3}, magenta-colored representations are
new.

i Representations of i

0 −1+ 1 0+ 0 1 − 1
1 0+ 1 1+ 0
2 1+ 1
3 1+ 2 2+ 1

Proof. Analogous to the proof of Theorem 1, parameters are presented in Table 6.
The desired complexity O(20.787N) is achieved with tree depth d = 3. �

Notice that the —in comparison to Rep-0— only slightly more advanced
Rep-1 representations lowered the exponent 1.103N from Theorem 1 already
significantly down to 0.787N . In Sect. 6.2 we study way more advanced repre-
sentations that lower to even 0.388N (Rep-2) and 0.371N (Rep-3). The small
improvement from Rep-3 over Rep-2 however indicates that we are converg-
ing. We conjecture that even more complex representations would only provide
marginal improvements over Rep-3.

6.2 REP-2, REP-3 Representations

Our Rep-2 and Rep-3 representations are illustrated in Table 7. While our Rep-
1 representations only allowed for two more representations of 0, our Rep-2 and
eventually Rep-3 representations heavily increase the number of representations
(e.g. 7 representations for 0) for all elements (e.g. still 4 representations of 3).

Parametrization. Note that we define Rep-k such that for every 0 ≤ 	 ≤ k the
parameters of Rep-	 are contained in Rep-k.

To express the amount of additionally added ±1,±2,±3, we define param-
eters ε

(j)
10 , ε

(j)
20 , ε

(j)
21 , ε

(j)
22 , ε

(j)
30 , ε

(j)
31 , ε

(j)
32 , ε

(j)
33 ∈ [0, 1], where ε

(j)
10 = ε(j) from Rep-1

and ε
(j)
30 , ε

(j)
31 , ε

(j)
32 , ε

(j)
33 are Rep-3 parameters only.

These parameters are to be understood as follows. Let s
(j−1)
i be a level-

(j − 1) vector, represented by s
(j)
2i−1, s

(j)
2i . On level j, we replace 2ε

(j)
ik N of the

Rep-0 representations of k with ε
(j)
ik N representations i + (k − i) and ε

(j)
ik N

representations (k − i) + i in s
(j)
2i−1, s

(j)
2i .

Table 6. Rep-1 complexity exponents for B(3)N using LWE-Search with depths
d = 2, 3, 4 and optimized ε(j). Bold exponents indicate the dominating term.

d j ε(j) log T (j) logL(j)

2
0 - .810N 0
1 .036 .813N .810N
2 - .813N .813N

d j ε(j) log T (j) logL(j)

3

0 - .718N 0
1 .073 .787N .718N
2 .028 .655N .436N
3 - .655N .655N

d j ε(j) log T (j) logL(j)

4

0 - .718N 0
1 .073 .787N .718N
2 .028 .503N .436N
3 .503N .503N
4 - .433N .433N

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 93

Table 7. Representations of i ∈ {0, 1, 2, 3} under Rep-2 and Rep-3; magenta-colored
representations are added with Rep-1; orange-colored representations are added with
Rep-2; blue-colored representations are added with Rep-3.

i Representations of i

0 −3+ 3 −2+ 2 −1+ 1 0+ 0 1 − 1 2 − 2 3 − 3
1 −2+ 3 −1+ 2 0+ 1 1+ 0 2 − 1 3 − 2
2 −1+ 3 0+ 2 1+ 1 2+ 0 3 − 1
3 0+ 3 1+ 2 2+ 1 3+ 0

To unify notation, we always choose i such that i ≥ k − i (e.g. we write
ε
(j)
22 instead of ε

(j)
02). In summary, ε

(j)
ik is a parameter for Rep-	 if and only if

max{0, k+1
2 } < i ≤ 	.

For fixed ε
(j)
ik , we calculate the new formulas for R(j)

i and for ω
(j)
i as

R(j)
0 =

(
ω

(j−1)
0 N

ε
(j)
10 N , ε

(j)
10 N , ε

(j)
20 N , ε

(j)
20 N , ε

(j)
30 N , ε

(j)
30 N , ·

)
,

R(j)
1 =

(
ω

(j−1)
1 N

ε
(j)
21 N , ε

(j)
21 N , ε

(j)
31 N , ε

(j)
31 N ,

ω
(j−1)
1 −2ε

(j)
21 −2ε

(j)
31

2 N ,
ω
(j−1)
1 −2ε

(j)
21 −2ε

(j)
31

2 N

)
,

R(j)
2 =

(
ω

(j−1)
2 N

ε
(j)
22 N , ε

(j)
22 N , ε

(j)
32 N , ε

(j)
32 N , ·

)
,

R(j)
3 =

(
ω

(j−1)
3 N

ε
(j)
33 N , ε

(j)
33 N ,

ω
(j−1)
3 −2ε

(j)
33

2 N ,
ω
(j−1)
3 −2ε

(j)
33

2 N

)
,

ω
(j)
1 = ω

(j−1)
1 +2ω

(j−1)
2 +ω

(j−1)
3 +2ε

(j)
10 −4ε

(j)
22 −2ε

(j)
31 −2ε

(j)
32 −2ε

(j)
33

2 ,

ω
(j)
2 = ω

(j−1)
3 +2ε

(j)
20 +2ε

(j)
21 +2ε

(j)
22 +2ε

(j)
31 −2ε

(j)
33

2 ,

ω
(j)
3 = 2ε

(j)
30 +2ε

(j)
31 +2ε

(j)
32 +2ε

(j)
33

2 ,

ω
(j)
0 = 2ω

(j−1)
0 +2ω

(j−1)
1 −4ε

(j)
10 −4ε

(j)
20 −4ε

(j)
21 +4ε

(j)
22 −4ε

(j)
30 −4ε

(j)
31 +4ε

(j)
33

2 .

For a consistency check, verify that

ω
(j)
0 + 2ω

(j)
1 + 2ω

(j)
2 + 2ω

(j)
3 = ω

(j−1)
0 + 2ω

(j−1)
1 + 2ω

(j−1)
2 + 2ω

(j−1)
3 .

Inductively, by definition of level 0, we obtain

ω
(j)
0 + 2ω

(j)
1 + 2ω

(j)
2 + 2ω

(j)
3 = ω

(0)
0 + 2ω

(0)
1 + 2ω

(0)
2 + 2ω

(0)
3 =

∑3
−3 pi = 1.

Optimization of parameters leads to our following main result.

Theorem 3 (main result). Under the MLWE Representation Heuristic the
following holds. Let (A, t) ∈ Z

N×N
q × Z

N
q be an (M)LWE instance with q =

Ω(N) and secret keys s,e ∼ B(3)N , where N = nk for MLWE. Then LWE-
Search finds s (with constant probability) within time O(20.388N) (for Rep-2),
respectively O(20.371N) (for Rep-3).

Proof. Analogous to the proof of Theorem 1. Optimization parameters for
respective tree depths can be found in Table 8. �

94 T. Glaser and A. May

7 Other Distributions – Ternary, B(2), and Uniform

We apply our in previous sections developed representation technique to other
distributions of cryptographic interest. Throughout this section, we only focus
on the best results that we achieve with Rep-3 representations. Every parameter
set was found by using the method described in Sect. 8.

First, we analyze ternary keys s ∈ {−1, 0, 1}N of varying weight, as used
e.g. in the cryptosystems NTRU [3,8], BLISS [11], and GLP [14]. We slightly
improve over [17] for large weight keys.

Second, we study the Centered Binomial distribution B(η) for η = 1, 2, 3.
Notice that B(3)nk is used in Kyber with nk = 512, whereas B(2)nk is used in
Kyber with larger security parameters nk = 768 and nk = 1024.

Eventually, we study Uniform distributions in the range [−η, . . . , η] for η =
1, 2, 3. Naturally, uniformly distributed keys are widely used in cryptography, a
prominent example being Dilithium with secret keys uniformly sampled from
{−2, . . . , 2}nk, where nk = 1024 or nk = 2048.

7.1 Ternary Keys—Featuring NTRU, BLISS and GLP

We define a weighted ternary distribution as follows.

Definition 3. Let 0 ≤ ω ≤ 1. We denote the weighted ternary distribution

T (ω) := (p−1, p0, p1) =
(

ω
2 , 1 − ω, ω

2

)
.

Some NTRU versions [15] sample keys from the core set C(T (ω)), see Defini-
tion 1, i.e., with fixed expected weights. Other NTRU versions [8] sample directly
from T (ω)N . Our new techniques also apply to the latter probabilistic versions.

Table 8. Rep-2 and Rep-3 complexity exponents for B(3)N using LWE-Search
with optimized depths d = 6 (Rep-2) and d = 7 (Rep-3), and optimized ε

(j)
ik . Bold

exponents indicate the dominating term.

Rep. j ε
(j)
10 ε

(j)
20 ε

(j)
21 ε

(j)
22 ε

(j)
30 ε

(j)
31 ε

(j)
32 ε

(j)
33 log T (j) logL(j)

Rep-2

0 - .316N 0
1 .075 .018 .032 .023 .388N .316N
2 .061 .004 .014 .019 .388N .350N
3 .053 .001 .004 .007 .388N .366N
4 .028 .001 .002 .388N .382N
5 .007 .388N .388N
6 - .382N .382N

Rep-3

0 - .297N 0
1 .072 .011 .024 .020 .003 .003 .001 .371N .297N
2 .078 .004 .016 .015 .001 .001 .371N .316N
3 .070 .001 .007 .007 .371N .329N
4 .046 .002 .002 .371N .348N
5 .023 .371N .360N
6 .003 .356N .356N
7 - .316N .316N

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 95

Table 9. Ternary Key Results for different weights ω, and comparison with [17].

ω 0.3 0.375 0.441 0.5 0.62 0.667
d log T logM d log T logM d log T logM d log T logM d log T logM d log T logM

[17] 4 .295N .294N 4 .318N .316N 4 .334N .333N 4 .348N .346N 4 .371N .371N 4 .379N .379N
Us 4 .295N .294N 5 .315N .312N 6 .326N .320N 5 .337N .337N 6 .342N .336N 6 .345N .338N

Our ternary key results are summarized in Table 9. More detailed optimiza-
tion parameters are provided in Table 12, Appendix A. In particular, we see that
for ternary keys Rep-2 is sufficient, and Rep-3 provides no further benefit.

Whereas [17] analyzed only depths d ≤ 4, we obtain slightly better runtime
exponents for increasing weights ω ≥ 0.375 in depths 5 and 6. In particular, we
are interested in weights ω = 1

2 , 2
3 , which denote B(1) and U(1), respectively.

7.2 B(2) and B(3)—Featuring KYBER-512 and KYBER-768,1024

Our results for B(η), η = 1, 2, 3 are illustrated in Table 10. Our full optimization
parameters can be found in Table 12, Appendix A.

We find it remarkable that despite a significant growth in entropy from B(1)
with exponent 1.5N to B(3) with exponent 2.3N , the actual key security against
LWE-Search with Rep-3 increases only slightly with exponent 0.034N . It
appears that, in the case of Centered Binomial distributions, the number of
representations grows much faster than the search space sizes. Consequently,
whereas we obtain a ∼ S 1

4 algorithm for B(1)N , for B(3)N , we obtain an algo-
rithm with approximate runtime S 1

6 , i.e., we achieve the 6th root of the search
space.

7.3 Uniform Distribution—Featuring DILITHIUM-1024,2048

We define the Uniform distribution as follows.

Definition 4. Let η ∈ N. We denote by U(η) the Uniform distribution having
for all i = −η, . . . , η constant probability pi = 1

2η+1 .

Notice that U(1) = T (23). Two Dilithium parameter sets use U(2)nk for nk =
1024 and nk = 2048. Our U(η) results for η = 1, 2, 3 are provided in Table 10.
Our optimization parameters can be found in Table 12, Appendix A.

The complexity exponent 0.378N for U(2) is of a similar size than 0.371N
for B(3). But since Kyber uses significantly smaller key lengths N = nk in
comparison to Dilithium, our LWE-Search algorithm can be considered much
more effective for Kyber keys.

Table 10. Results for Centered Binomial distributions B(η) (left) and Uniform distri-
bution D(η) (right) for η = 1, 2, 3.

B(η) U(η)
η d log T logM logS logS T d log T logM logS logS T
1 5 .337N .337N 1.500N .225 6 .345N .338N 1.585N .218
2 7 .357N .357N 2.031N .176 8 .378N .372N 2.322N .163
3 7 .371N .360N 2.334N .159 6 .493N .481N 2.808N .176

96 T. Glaser and A. May

8 Parameter Optimization and Implementation

In this section, we discuss our practical efforts, which include our parameter
optimization method as well as our implementation of the algorithm. Either
program can be accessed under https://github.com/timogcgn/HTELWEK/ and
contains a readme with more in-depth description of its respective program.

8.1 Parameter Search

Let us first discuss our method of finding our (near)-optimal parameters.

Hill Climbing. Our goal was to find parameters which would minimize the run-
time T = max{T (j)}, a function that is continuous but not differentiable in ε

(j)
ik .

Therefore, applying a regular gradient descent search to find the optimal param-
eters is not possible. Instead, we opted to use a variant of the Hill Climbing
(HC) method:

For some parameter set ε := (ε(j)ik), consider the set of ε’ neighbors

Γ (ε) := {(ε(j)ik

′
) | ε

(j)
ik

′
= ε

(j)
ik or |ε(j)ik

′
− ε

(j)
ik | = γ for all ik, j}

for some fixed γ, say 0.001. Γ (ε) contains the parameter sets ε′ where each
singular parameter differs by either ±γ or not at all from their counterpart in ε.

Let ε0 := (0)8(d−1). With HC, instead of trying to find the steepest descent
by using the derivative of T , we instead only look for the next best parameter
set in Γ (ε) greedily, i.e., given εi, the next parameter set is

εi+1 = arg minε′∈Γ (εi) T .

Since we only consider ε
(j)
ik that are multiples of γ, this method guarantees to

find a proximate local minimum after a finite amount of steps.

Partial Hill Climbing. It is easy to see that, ignoring invalid neighboring param-
eter sets (for example when ε

(j)
ik < 0), the size of Γ (ε) is 38(d−1), as there are 8

parameters on a single level and every level from 1 to d−1 is parametrized. Even
for moderate tree depths d, this is a search space that is impractical to traverse
over multiple iterations, so we need a refined method that trades off runtime for
result optimality, and then iterate this method multiple times.

The new idea is simple: Instead of optimizing all 8(d−1) parameters at once,
fix, say, (8−t) parameters per level and only optimize the remaining t parameters
via Hill Climbing. Obviously, this implies a trade off between runtime and opti-
mality of the resulting parameter set, where the parameters tuples considered
per optimization step are now upper bounded by 3t(d−1).

The parameters we present in Appendix A are the result of 100 iterations of
this method per t ∈ {2, 3, 4}, i.e. 300 iterations overall (with t randomly drawn
parameters per level per iteration). Additional iterations did not improve the
runtime, so we assume that the parameters that we found are in close enough
proximity to the optimal parameter set.

https://github.com/timogcgn/HTELWEK/

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 97

8.2 Implementation

In this section, we discuss the validity of the (M)LWE Representation Heuristic
via an implementation of our algorithm. We would like to stress that our goal
is not to show runtime superiority over the usual Meet-in-the-Middle algorithm
(which follows from our runtime analysis), but to test our heuristic. Especially,
we have to show that we obtain list sizes which do not differ too much from their
expectation, which eventually guarantees that the final list contains solution with
good probability.

We attack an LWE instance over B(2) and N = 32, q = 3329, a scaled-down
version of Kyber. Aside from ε

(1)
10 = 1

16 , every optimization parameter we found
using our optimization tool from Sect. 8 is equal to 0. We use a search tree of
depth d = 3. For a detailed description of each tree level, consider Table 11.

Table 11. Level description and resulting list sizes for parameters d = 3, N = 32,
q = 3329, P = B(2).

j ω
(j)
0 N ω

(j)
1 N ω

(j)
2 N S(j) R(j) r(j) E[L(j)] L(j)

0 12 8 2 ∼ 8.4 · 1016 1 − 1 0.65
1 16 8 0 ∼ 7.7 · 1013 ∼ 1.5 · 108 2 698045.2 590153
2 24 4 0 ∼ 7.4 · 109 4900 1 221171.8 221187
3 28 2 0 215760 36 0 215760 215760

We removed the enumeration of r(1) coordinates of e, and the permutation of
s to an element from the core set C(B(2)) in our algorithm, since these procedures
just affect the runtime, but not the success probability.

We let our algorithm run for 20 iterations. In 13 of those iterations, we
successfully recovered the secret s from an element in L(0). In the remaing 7
iterations L(0) was empty.

Table 11 details the resulting average list sizes L(j) of these 20 iterations.
Level 3 achieves its expectation, since we construct the list exhaustively, but
level 2 also achieves its expectation. On level 1 we only get a 1

7 -fraction loss, and
on level 0 we obtain a 1

3 -fraction loss. Therefore, we still have success probability
2
3 showing that on expectation we have to run our algorithm only 3

2 times, until
we succeed to recover an LWE key. This implies the validity of our heuristic.

98 T. Glaser and A. May

A Full Parameter Sets: Ternary, Binomial, and Uniform

Table 12. Parameter sets for Ternary distributions (left, Rep-2) and Centered Bino-
mial and Uniform distributions (right, Rep-3).

P j ε
(j)
10 ε

(j)
20 ε

(j)
21 ε

(j)
22 log T (j) logL(j)

T (0.3)

0 - .239N 0
1 .050 .001 .295N .239N
2 .026 .295N .283N
3 .006 .294N .294N
4 - .288N .288N

T (0.375)

0 - .251N 0
1 .052 .001 .003 .313N .251N
2 .031 .001 .001 .315N .299N
3 .012 .315N .312N
4 .001 .275N .275N
5 - .216N .216N

T (0.441)

0 - .254N 0
1 .056 .001 .005 .325N .254N
2 .042 .001 .001 .326N .298N
3 .019 .326N .320N
4 .002 .316N .313N
5 .220N .220N
6 - .155N .155N

T (0.5)

0 - .268N 0
1 .049 .001 .009 .337N .268N
2 .040 .001 .002 .002 .337N .311N
3 .017 .001 .001 .337N .337N
4 .002 .333N .333N
5 - .273N .273N

T (0.62)

0 - .250N 0
1 .063 .001 .011 .341N .250N
2 .061 .001 .003 .002 .342N .290N
3 .036 .001 .001 .342N .324N
4 .015 .342N .336N
5 .001 .313N .313N
6 - .249N .249N

T (0.667)

0 - .258N 0
1 .056 .001 .013 .345N .258N
2 .060 .001 .004 .002 .345N .294N
3 .038 .001 .001 .345N .325N
4 .016 .345N .338N
5 .001 .321N .321N
6 - .257N .257N

P j ε
(j)
10 ε

(j)
20 ε

(j)
21 ε

(j)
22 ε

(j)
30 ε

(j)
31 ε

(j)
32 ε

(j)
33 log T (j) logL(j)

B(1)

0 - .268N 0
1 .049 .001 .009 .337N .268N
2 .040 .001 .002 .002 .337N .311N
3 .017 .001 .001 .337N .337N
4 .002 .333N .333N
5 - .273N .273N

B(2)

0 - .264N 0
1 .076 .007 .022 .014 .001 .357N .264N
2 .084 .003 .010 .009 .357N .289N
3 .061 .001 .004 .004 .357N .315N
4 .038 .001 .001 .357N .340N
5 .015 .357N .351N
6 .002 .316N .316N
7 - .265N .265N

B(3)

0 - .297N 0
1 .072 .011 .024 .020 .003 .003 .001 .371N .297N
2 .078 .004 .016 .015 .001 .001 .371N .316N
3 .070 .001 .007 .007 .371N .329N
4 .046 .002 .002 .371N .348N
5 .023 .371N .360N
6 .003 .356N .356N
7 - .316N .316N

U(1)

0 - .258N 0
1 .056 .001 .013 .345N .258N
2 .060 .001 .004 .002 .345N .294N
3 .038 .001 .001 .345N .325N
4 .016 .345N .338N
5 .001 .321N .321N
6 - .257N .257N

U(2)

0 - .308N 0
1 .046 .014 .029 .040 .001 .005 .010 .377N .308N
2 .072 .007 .024 .020 .001 .002 .001 .378N .322N
3 .071 .003 .014 .012 .378N .331N
4 .051 .001 .005 .006 .378N .351N
5 .031 .001 .002 .375N .370N
6 .010 .378N .372N
7 .001 .307N .307N
8 - .244N .244N

U(3)

0 - .451N 0
1 .030 .018 .025 .022 .006 .011 .013 .028 .493N .451N
2 .056 .007 .025 .027 .001 .001 .002 .492N .475N
3 .048 .001 .007 .012 .493N .481N
4 .023 .001 .001 .492N .476N
5 .004 .449N .449N
6 - .423N .423N

References

1. Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_21

2. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31

3. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
round 2 specification (2019)

4. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and
quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12492, pp. 633–666. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64834-3_22

https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-030-64834-3_22

How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium 99

5. Bos, J., et al.: Crystals-kyber: a CCA-secure module-lattice-based KEM. In: 2018
IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–367.
IEEE (2018)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3), 1–36
(2014)

7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

8. Chen, C., et al.: NTRU algorithm specifications and supporting documentation.
Brown University and Onboard security company, Wilmington, USA (2019)

9. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_16

10. Devadas, S., Ren, L., Xiao, H.: On iterative collision search for LPN and subset
sum. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 729–746.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_24

11. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4_3

12. Esser, A., May, A., Verbel, J., Wen, W.: Partial key exposure attacks on bike,
rainbow and NTRU. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. Lncs, vol.
13509, pp. 346–375. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
15982-4_12

13. Esser, A., May, A., Zweydinger, F.: McEliece needs a break - solving McEliece-
1284 and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski, S.
(eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 433–457. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-07082-2_16

14. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8_31

15. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

16. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_12

17. May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 701–731. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1_24

18. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6

19. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and
Probabilistic Techniques in Algorithms and Data Analysis. Cambridge University
Press, Cambridge (2017)

https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-319-70503-3_24
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-031-15982-4_12
https://doi.org/10.1007/978-3-031-15982-4_12
https://doi.org/10.1007/978-3-031-07082-2_16
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-030-84245-1_24
https://doi.org/10.1007/978-3-642-25385-0_6

100 T. Glaser and A. May

20. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of
Computing, STOC 2005, pp. 84–93. Association for Computing Machinery, New
York (2005). https://doi.org/10.1145/1060590.1060603

21. Silverman, J.H., Odlyzko, A.: A meet-in-the-middle attack on an NTRU private
key. Preprint (1997)

22. Waterhouse, W.C.: How often do determinants over finite fields vanish? Discret.
Math. 65(1), 103–104 (1987). https://doi.org/10.1016/0012-365X(87)90217-2

https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1016/0012-365X(87)90217-2

Towards Minimizing Non-linearity
in Type-II Generalized Feistel Networks

Yuqing Zhao1,2, Chun Guo1,2,3(B), and Weijia Wang1,2,4

1 School of Cyber Science and Technology, Shandong University, Qingdao,
Shandong, China

yqzhao@mail.sdu.edu.cn, {chun.guo,wjwang}@sdu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security of Ministry

of Education, Shandong University, Qingdao 266237, Shandong, China
3 Shandong Research Institute of Industrial Technology, Jinan 250102,

Shandong, China
4 Quan Cheng Laboratory, Jinan 250103, Shandong, China

Abstract. Recent works have revisited blockcipher structures to achieve
MPC- and ZKP-friendly designs. In particular, Albrecht et al. (EURO-
CRYPT 2015) first pioneered using a novel structure SP networks with
partial non-linear layers (P-SPNs) and then (ESORICS 2019) repopular-
ized using multi-line generalized Feistel networks (GFNs). In this paper,
we persist in exploring symmetric cryptographic constructions that are
conducive to the applications such as MPC. In order to study the min-
imization of non-linearity in Type-II Generalized Feistel Networks, we
generalize the (extended) GFN by replacing the bit-wise shuffle in a
GFN with the stronger linear layer in P-SPN and introducing the key
in each round. We call this scheme Generalized Extended Generalized
Feistel Network (GEGFN). When the block-functions (or S-boxes) are
public random permutations or (domain-preserving) functions, we prove
CCA security for the 5-round GEGFN. Our results also hold when the
block-functions are over the prime fields Fp, yielding blockcipher con-
structions over (Fp)∗.

Keywords: blockciphers · Generalized Feistel networks ·
substitution-permutation networks · provable security · prime fields

1 Introduction

The Feistel network has become one of the main flavors of blockciphers. A
classical Feistel network, as shown in Fig. 1(a), proceeds with iterating a Feis-
tel permutation ΨF (A,B) := (B,A ⊕ F (B)), where F is a domain-preserving
block-function. The generalized Feistel network (GFN) is a generalized form
of the classical Feistel network. A popular version of GFN, called Type-II,
show in Fig. 1(b), in which a single round uses a block-function F to map
an input (m1,m1, ...,mw) to (c1, c2, ..., cw) =

(
m2,m3 ⊕ F (m4),m4,m5 ⊕

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 101–125, 2023.
https://doi.org/10.1007/978-981-99-7563-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_5&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_5

102 Y. Zhao et al.

F (m6), ...,mw,m1⊕F (m2)
)
. As we can see, this operation is equivalent to apply-

ing Feistel permutation for every two blocks and then performing a (left) cyclic
shift of sub-blocks.

Type-II GFNs have many desirable features for implementation. In partic-
ular, they are inverse-free, i.e., they allow constructing invertible blockciphers
from non-invertible block-functions with small domains. This reduces the imple-
mentation cost of deciphering and has attracted attention. A drawback, however,
is the slow diffusion (when w is large), and security can only be ensured with
many rounds [23,33,35]. To remedy this, a series of works [5,7,10,32] investi-
gated replacing the block-wise cyclic shift with more sophisticated (though lin-
ear) permutations. These studies build secure GFN ciphers having fewer rounds
than Type-II, while simultaneously ensuring simplicity of structure and without
increasing the implementation cost as much as possible. Thus, a common feature
of linear permutations is block-wise operations.

F

(a)

F

(b)

F S S S S

T

(c)

S S

T

(d)

Fig. 1. Different blockcipher structures. (a) Feistel network; (b) multi-line generalized
Feistel, with 4 chunks; (c) the classical SPN; (d) partial SPN.

Motivated by new applications such as secure Multi-Party Computation
(MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs
(ZKP), the need for symmetric encryption schemes that minimize non-linear
operations in their natural algorithmic description is apparent. This can be pri-
marily attributed to the comparatively lower cost of linear operations compared
to non-linear operations.

In recent years, many works have been devoted to the research of construc-
tion strategies for symmetric cryptographic structures that are advantageous for
applications such as secure MPC. Initiated by Zorro [14] and popularized by
LowMC [2], a number of blockcipher designs followed an SPN variant depicted
in Fig. 1(d). This structure was named SP network with partial non-linear lay-
ers [4] or partial SPN (P-SPN). Guo et al. [19] establish strong pseudorandom
security for different instances of partial SPNs using MDS linear layers. The
recent HADES design [16,18] combines the classical SPN (shown in Fig. 1(c))
with the P-SPN, where a middle layer that consists of P-SPN rounds is sur-
rounded by outer layers of SPN rounds. Albrecht et al. [1] study approaches to
generalized Feistel constructions with low-degree round functions and introduce
a new variant of the generalized Feistel networks, which is called “Multi-Rotating
Feistel network” that provides extremely fast diffusion.

Our Results. In this work, we continue the exploration of construction strate-
gies for constructions for symmetric cryptography, which benefits applications

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks 103

such as MPC. Particular emphasis is placed on the investigation of the Type-II
GFNs. By the nature of the problem, we are interested in two different metrics.
One metric refers to what is commonly called multiplicative complexity (MC),
and the other metric refers to the multiplicative depth (AND Depth). Our aim
is to minimize both of these metrics as much as possible.

Due to the use of stronger diffusion layers, SPNs and P-SPNs enjoy much bet-
ter diffusion than Type-II GFNs. This is also indicated by provable CCA security
results: the best Type-II GFN variant [5] needs 10 rounds and 5w block-function
applications, while the SPN, resp. P-SPN, requires only 3 rounds, resp. 5 rounds,
and 3w, resp. 5w/2, block-function applications. It is thus natural to ask if the
non-linear operations can reduce by leveraging the relatively cheaper linear oper-
ations, such as strong diffusion layers in SPNs and P-SPNs.

T1

k0

T2

k1

k2

k3

S1S1S1S1

S3S3S3S3

S2S2S2S2

T1

k0

f1 f1 f1 f1

T2

f2 f2 f2 f2

k1

k2

f3 f3 f3 f3

k3

Fig. 2. Partial SPNs (with rate 1/2) and GEGFNs, with w = 8.

Regarding the above question, a natural idea is to “inject” the (strong) diffu-
sion layers of SPNs/P-SPNs into Type-II GFNs, as shown in Fig. 2 (right). This
model further generalizes the (extended) GFN by replacing the linear layer and
permutation layer in [5] with strong diffusion layers in SPNs and P-SPNs, and
introducing the key in each round. We call this scheme Generalized Extended
Generalized Feistel Networks (GEGFNs).

From an alternative perspective, GEGFN is very similar to the so-called rate-
1/2 partial Substitution-Permutation Networks (P-SPNs), as shown in Fig. 2
(left). We can also get our construction by replacing the non-linear layer of
P-SPN with the non-linear layer of Type-II GFN. GEGFN allows enjoying “the
best of the two worlds”– the stronger diffusion provided by the P-SPN construc-
tion, along with the inverse-free of the Type-II GFN construction.

To provide a theoretical justification, we investigate the CCA security of
GEGFNs. Noting that a number of recent MPC- and ZKP-friendly blockciphers
operate on the prime field Fp [3,17], we consider general block-functions fi :
FN → FN with N equals 2n or some prime p and addition +© over FN instead
of the typical XOR action ⊕ (as indicated in Fig. 2 right).

104 Y. Zhao et al.

Table 1. Comparison to existing wide SPRP structures. The Rounds column presents
the number of rounds sufficient for birthday-bound security, where λ(w) = �log2 1.44w�.
For Type-II GFN (i.e., GFNs with w/2 block-functions per round, see Fig. 1(b)), note
that 2λ(w) = 2�log2 1.44w� ≥ 6 when w ≥ 4. Depth stands for AND Depth and Inv-
free means Inverse-free. Parameters in the MC and AND Depth columns are relative
w.r.t. the S-box. The mode XLS [31] is excluded due to attacks [28,29]. Tweakable
blockcipher-based modes [6,26,27] are also excluded due to incomparability.

Structure Rounds MC Depth Inv-free? Reference

Optimal Type-II GFN 2λ(w) wλ(w) 2λ(w) � [10,32]

Extended GFN 10 5w 10 � [5]

Linear SPN 3 3w 3 ✗ [11]

HADES 4 3w 4 ✗ [13]

CMC - 2w 2w ✗ [21]

EME & EME∗ - 2w + 1 3 ✗ [20,22]

Rate 1/2 P-SPN 5 2.5w 5 ✗ [19]

GEGFN 5 2.5w 5 � Theorems 1 and 2

We first note that the 3-round GEGFN is insecure: the attack idea against
3-round P-SPN [19] can be (easily) adapted to GEGFN and extended to the
more general field FN . Towards positive results, we follow Dodis et al. [11,12]
and model the block-functions as public, random primitives available to all par-
ties, while the diffusion layer T as linear permutations. With these, we prove
CCA security up to N1/2 queries (i.e., the birthday bound over FN) for 5-round
GEGFNs, in two concrete settings:

(i) The block-functions are random permutations over FN ;
(ii) The block-functions are random functions from FN to FN .

In both cases, the linear layer T shall satisfy a certain property similar to [19]
(generalized to the setting of FN), which is slightly stronger than an MDS trans-
formation. To show the existence of such linear permutations, we exhibit exam-
ples in Appendix C.

Discussion. Being compatible with non-bijective block-functions is valuable
for MPC-friendly ciphers. For example, as commented by Grassi et al. [15], if
constructions incompatible with non-bijective block-functions (e.g., SPNs) are
used then designers have to adopt functions of degree at least 3 over Fp. They
eventually resorted to a variant of Type-III GFNs. This work provides another
choice.

On the other hand, while (GE) GFNs allow using non-bijective block-
functions, our treatments include random permutation-based GEGFNs to jus-
tify using bijective block-functions. In fact, practical GFN blockciphers such as
LBlock [34], Twine insist on using bijections, probably due to the difficulty in
designing good non-bijective block-functions. Though, for certain bijections such

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks 105

as the power function x �→ x3, x ∈ Fp, designers are reluctant to use their inef-
ficient inverse in deciphering. These motivated using inverse-free constructions,
including blockcipher structures and protocols, and permutation-based GEGFNs
may offer solutions.

As shown in Table 1, GEGFNs do enjoy fast diffusion, which is comparable
with P-SPNs. In addition, in the CCA setting, its non-linearity cost is compa-
rable with P-SPNs. This means it can be a promising candidate structure for
blockciphers with low multiplicative complexities. In this respect, its inverse-
freeness increases flexibility by allowing for more choices of S-boxes. On the
other hand, the linear layer of GEGFNs is much more costly than the “ordi-
nary” GFNs [7,10,32] (including the “extended” GFN [5]). Therefore, GEGFNs
are better used in settings where non-linear operations are much more costly
than linear ones (e.g., the MPC setting).

Lastly, as in similar works [5,9,12,19,24,32,35], provable security is lim-
ited by the domain of the block-functions and becomes meaningless when the
block-functions are small S-boxes. E.g., the block-function in Twine is a 4-bit
S-box, and our bounds indicate security up to 22 queries. Though, blockcipher
structures are typically accomplished by such small-box provable security justifi-
cation, and we refer to [5,24,32,35] as examples. Meanwhile, recent blockciphers
such as the Rescue [3] also used large block-functions f : FN → FN , N ≈ 2252,
on which the provable result may shed more light.

Organization. Section 2 presents notations, definitions and tools. Then, we
describe the attack against 3-round GEGFNs in Sect. 3. In Sect. 4 and Sect. 5,
we prove SPRP security for 5-round GEGFNs with random permutations and
functions, respectively. We finally conclude in Sect. 6.

2 Preliminaries

(FN ,+, ·) ≡ (GF(N),+, ·), where N is either a power of 2 or a prime number and
where + and · are resp. the addition and the multiplication in GF(N). We view
N as a cryptographic security parameter. For any positive integer w, we consider
a string consisting of w field elements in FN , which is also viewed as a column
vector in F

ω
N , where w is also called width. Indeed, strings and column vectors

are just two sides of the same coin. Let x be a column vector in F
w
N , then xT is a

row vector obtained by transposing x. Throughout the remaining, depending on
the context, the same notation, e.g., x, may refer to both a string and a column
vector, without additional highlight. In the same vein, the concatenation x‖y is
also “semantically equivalent” to the column vector

(
x
y

)
.

In this respect, for x ∈ F
w
N , we denote the j-th entry of x (for j ∈ {1, ..., w})

by x[j] and define x[a..b] := (x[a], ..., x[b]) for any integers 1 ≤ a < b ≤ w. Let’s
assume that w is an even number. We define x[even] := (x[2], x[4], . . . , x[w]) and
x[odd] := (x[1], x[3], . . . , x[w − 1]). For x, y ∈ F

w
N , we denote the difference of x

and y by
(x[1] − y[1])‖(x[2] − y[2])‖...‖(x[w] − y[w]),

106 Y. Zhao et al.

where − represents ⊕ when N is a power of 2 and represents
(
(x[i] − y[i])

mod N
)

when N is a prime number.
The zero entry of FN is denoted by 0 and we write 0w for the all-zero vector

in F
w
N . We write P(w) for the set of permutations of Fw

N and F(w) for the set
of functions of Fw

N .
Let T be a matrix. We denote by Toe the submatrix composed of odd rows

and even columns of matrix T , by Too the submatrix composed of odd rows and
odd columns of matrix T , by Tee the submatrix composed of even rows and even
columns of matrix T , and by Teo the submatrix composed of even rows and odd
columns of matrix T .

Given a function f : FN → FN , for any positive integer m and any vector
x ∈ F

m
N , we define f(x) :=

(
f(x[1]), ..., f(x[m])

)
. For integers 1 ≤ b ≤ a, we

write (a)b := a(a − 1)...(a − b + 1) and (a)0 := 1 by convention.

MDS Matrix. For any (column) vector x ∈ F
w
N , the Hamming weight of x is

defined as the number of non-zero entries of x, i.e.,

wt(x) :=
∣
∣{i|x[i] �= 0, i = 1, . . . , w}

∣
∣.

Let T be a w × w matrix over FN . The branch number of T is the minimum
number of non-zero components in the input vector x and output vector u = T ·x
as we search all non-zero x ∈ F

w
N , i.e., the branch number of w × w matrix T

is minx∈F
w
N ,x �=0{wt(x) + wt(T · x)}. A matrix T ∈ F

w×w
N reaching w + 1, the

upper bound on such branch numbers, is called Maximum Distance Separable
(MDS). MDS matrices have been widely used in modern blockciphers, including
the AES, since the ensured lower bounds on weights typically transform into
bounds on the number of active S-boxes.

GEGFNs. When we replace the linear layer of Type-II GFN with the linear
layer of P-SPN and introduce the key in each round, we get our construction Cλf

k

(shown in Fig. 2 (right)) that is defined by linear permutations {Ti ∈ F
w×w
N }λ−1

i=1

and a distribution K over K0 × . . .×Kλ and that take oracle access to λ public,
random functions f = {fi : FN → FN}λ

i=1, where k = (k0, . . . , kλ) and λ is the
number of rounds. Given input x ∈ F

w
N , the output of the GEGFN is computed

as follows:

– Let u1 := k0 + x.
– for i = 1, . . . , λ − 1 do:

1. vi := PGFfi(ui), where
PGFfi(ui) =

(
ui[1] + fi(ui[2])

)
‖ui[2]‖ . . . ‖

(
ui[w − 1] + fi(ui[w])

)
‖ui[w].

2. ui+1 = ki + Ti · vi.
– vλ := PGFfλ(uλ).
– uλ+1 = kλ + vλ.
– Outputs uλ+1.

SPRP Security of GEGFNs. Following [11], we consider GEGFN construc-
tion and analyze the security of the construction against unbounded-time attack-
ers making a bounded number of queries to the construction and to f. Formally,

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks 107

we consider the ability of an adversary D to distinguish two worlds: the “real
world”, in which it is given oracle access to f and Cλf

k (for unknown keys k
sampled according to K), and an “ideal world” in which it has access to f and
a random permutation P : Fw

N → F
w
N . We allow D to make forward and inverse

queries to Cλf
k or P , and we always allow D to make forward queries to ran-

dom functions f = {f1, ..., fλ}. However, whether D makes inverse queries to f
depends on whether f are random permutations. With these, for a distinguisher
D, we define its strong-PRP advantage against the construction Cλf

k as

AdvsprpCλf
k

(D) :=
∣
∣
∣ Pr

[
k $←− K : DCλf

k,f = 1
]
− Pr

[
P

$←− P(w) : DP,f = 1
]∣∣
∣,

where f = (f1, . . . , fλ) are λ independent, uniform functions on FN . The strong-
PRP (SPRP) security of Cλf

k is

AdvsprpCλf
k

(qC , qf) := max
D

{
AdvsprpCλf

k

(D)
}
,

where the maximum is taken over all distinguishers that make most qC queries
to their left oracle and qf queries to their right oracles.

A Useful Operator on the Linear Layer. We will frequently write M ∈
F

w×w
N in the block form of 4 submatrices in F

w/2×w/2
N . For this, we follow the

convention using u, b, l, r for upper, bottom, left, and right resp., i.e.,

M =
(

Mul Mur

Mbl Mbr

)
.

We use brackets, i.e., (M−1)xx, xx ∈ {ul,ur,bl,br}, to distinguish submatrices
of M−1 (the inverse of M) from M−1

xx , the inverse of Mxx.
As per our convention, we view u, v ∈ F

w
N as column vectors. During the

proof, we will need to derive the “second halves” u2 := u[w/2 + 1..w] and v2 :=
v[w/2 + 1..w] from the “first halves” u1 := u[1..w/2], v1 := v[1..w/2], and the
equality v = T · u. To this end, we follow [19] and define an operator on T :

T̂ :=
(

−T−1
ur · Tul T−1

ur

Tbl − Tbr · T−1
ur · Tul Tbr · T−1

ur

)
, (1)

which satisfies

v = T · u ⇔
(

u2

v2

)
= T̂ ·

(
u1

v1

)
.

3 A Chosen-Plaintext Attack on 3 Rounds

Guo et al. [19] showed a chosen-plaintext attack on 3-round P-SPN. We adapt
that idea to our context.1 Concretely, let C3fk be the 3-round GEGFN using any
invertible linear transformations T1, T2. I.e.,
1 We followed the attack idea in [19]. However, due to the difference between our

construction and the P-SPN in the round function, the collision-inducing positions
considered in our attack are distinct.

108 Y. Zhao et al.

C3fk(x) := k3 + PGFf3
(
k2 + T2 ·

(
PGFf2

(
k1 + T1 ·

(
PGFf1(k0 + x)

))))
.

We show a chosen-plaintext attacker D, given access to an oracle O : Fw
N → F

w
N ,

that distinguishes whether O is an instance of C3fk using uniform keys or a
random permutation. The attacker D proceeds as follows:

1. Fix δ ∈ FN\{0} in arbitrary, let Δ3 = δ‖0w/2−1, and compute two differences
Δ1 := (T1)−1

eo · Δ3 and Δ2 := (T1)oo · Δ1. Note that this means
(
T1 ·

(
Δ1[1]‖0‖Δ1[2]‖0‖ . . . ‖Δ1[w/2]‖0

))
[odd] = Δ2,

(
T1 ·

(
Δ1[1]‖0‖Δ1[2]‖0‖ . . . ‖Δ1[w/2]‖0

))
[even] = Δ3.

2. For all δ∗ ∈ FN (we note that if f2 is permutation, we have δ∗ ∈ FN\{0}),
compute

Δ∗ : = T2 ·
(
Δ2[1] ⊕ δ∗‖Δ3[1]‖Δ2[2]‖Δ3[2]‖ . . . ‖Δ2[w/2]‖Δ3[w/2]

)

= T2 ·
(
Δ2[1] ⊕ δ∗‖δ‖Δ2[2]‖0‖ . . . ‖Δ2[w/2]‖0

)
,

and add Δ∗[even] into a set Set.2

3. Choose inputs x, x′ such that (x − x′)[odd] = Δ1 and (x − x′)[even] = 0w/2,
query O(x) and O(x′) to obtain y and y′ respectively, and compute the output
difference Δ4 := y − y′.

4. If Δ4[even] ∈ Set then output 1; otherwise, output 0.

It is not hard to see that if O is a w width random permutation then D outputs
1 with probability O(N/Nw/2). On the other hand, we claim that when O is an
instance of the 3-round GEGFN then D always outputs 1.

For this, consider the propagation of the input difference Δ∗
1, where

Δ∗
1[odd] = Δ1 and Δ∗

1[even] = 0w/2. By step 1, the 2nd round input difference
must be Δ∗

2, where Δ∗
2[odd] = Δ2 and Δ∗

2[even] = Δ3. Since Δ3 = δ‖0w/2−1,
the output difference of the 2nd function f(Δ3) action must be in the set
{δ∗‖0w/2−1}δ∗∈FN

of size at most N . This means the 3rd round input differ-
ence, denoted Δ∗

3, must be in a set of size N . Since the 3rd round PGFf3 action
does not affect Δ∗

3[even], it can be seen Δ4[even], is also in a set of size N . Fur-
thermore, this set is the set Set derived in step 2. This completes the analysis.

4 SPRP Security at 5 Rounds with Public Permutations

We will prove security for 5-round GEGFNs built upon 5 “S-boxes”/random
permutations S = {S1, S2, S3, S4, S5} and a single linear layer T . Formally,

C5S
k(x) := k5 + PGFS5

(
k4 + T ·

(
PGFS4

(
k3 + T ·

(
PGFS3

(
k2 + T ·

(
PGFS2

(

k1 + T ·
(
PGFS1(k0 + x)

))))))))
. (2)

2 Here we consider the information-theoretic setting, with no limit on the time com-
plexity. In practice, N is usually small, especially in the binary fields, and this
enumeration remains feasible.

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks 109

Using a single linear layer simplifies the construction. Recall from our con-
vention that Toe, . . . , (T−1)ee constitute the eight submatrices of T and T−1. In
fact, (T−1)oe, . . . , (T−1)ee can be derived from Toe, . . . , Tee, but the expressions
are too complicated to use.

We next characterize the properties on T that are sufficient for security.

Definition 1 (Good Linear Layer for 5 Rounds with Permutations). A
matrix T ∈ F

w×w
N is good if T is MDS, and the 6 induced matrices Teo, −T−1

eo ·
Tee ·Teo−Too,

(
Toe−Too ·T−1

eo ·Tee

)
·Teo, (T−1)eo, (T−1)oo−Too ·T−1

eo ·(T−1)eo,
and T−1

eo · (T−1)eo are such that:

1. They contain no zero entries, and
2. Any column vector of the 6 induced matrices consists of w/2 distinct entries.

We remark that, as T is MDS, all the four matrices Toe, Too, Teo and Tee are
all MDS (and invertible). A natural question is whether such a strong T exists
at all. For this, we give several MDS matrices in Appendix C that follow our
definition.

With such a good T , we have the following theorem on 5-round GEGFNs
with public random permutations.

Theorem 1. Assume w ≥ 2, and qS + wqC/2 ≤ N/2. Let C5S
k be a 5-round,

linear GEGFN structure defined in Eq. (2), with distribution K over keys k =
(k0, . . . , k5). If k0 and k5 are uniformly distributed and the matrix T fulfills
Definition 1, then

AdvsprpC5S
k

(qC , qS) ≤ 12wqCqS + 7w2q2C
2N

+
2q2C

Nw/2
. (3)

All the remaining of this section devotes to proving Theorem 1. We employ
Patarin’s H-coefficient method [30], which we recall in Appendix A. Following the
paradigm of H-coefficient, we first establish notations in the Sect. 4.1. We then
complete the two steps of defining and analyzing bad transcripts and bounding
the ratio μ(τ)/ν(τ) for good transcripts in Sect. 4.2 and 4.3 resp.

4.1 Proof Setup

Fix a deterministic distinguisher D. Wlog assume D makes exactly qC (non-
redundant) forward/inverse queries to its left oracle that is either C5S

k or P , and
exactly qS (non-redundant) forward/inverse queries to each of the oracle Si on
its right side. We call a query from D to its left oracle a construction query and
a query from D to one of its right oracles an S-box query.

The interaction between D and its oracles is recorded in the form of 6 lists
of pairs QC ⊆ F

w
N × F

w
N and QS1 , . . . , QS5 ⊆ FN × FN . Among them, QC =

((x(1), y(1)), . . . , (x(qC), y(qC))) lists the construction queries-responses of D in
chronological order, where the i-th pair (x(i), y(i)) indicates the i-th such query
is either a forward query x(i) that was answered by y(i) or an inverse query y(i)

that was answered by x(i). QS1 , . . . , QS5 are defined similarly with respect to

110 Y. Zhao et al.

queries to S1, . . . , S5. Define QS := (QS1 , . . . , QS5). Note that D’s interaction
with its oracles can be unambiguously reconstructed from these sets since D is
deterministic. For convenience, for i ∈ {1, 2, 3, 4, 5} we define

Domi :=
{
a : (a, b)∈ QSi for some b∈ FN

}
, Rngi :=

{
b : (a, b)∈ QSi for a∈ FN

}
.

Following [8], we augment the transcript (QC , QS) with a key value k =
(k0, . . . , k5). In the real world, k is the actual key used by the construction. In
the ideal world, k is a dummy key sampled independently from all other values
according to the prescribed key distribution K. Thus, a transcript τ has the final
form τ = (QC , QS ,k).

4.2 Bad Transcripts

Let T be the set of all possible transcripts that can be generated by D in the ideal
world (note that this includes all transcripts that can be generated with non-zero
probability in the real world). Let μ, ν be the distributions over transcripts in
the real and ideal worlds, respectively (as in Appendix A).

We define a set T2 ⊆ T of bad transcripts as follows: a transcript τ =
(QC , QS ,k) is bad if and only if one of the following events occurs:

1. There exist a pair (x, y) ∈ QC and an index i ∈ {2, 4, . . . , w} such that
(x + k0)[i] ∈ Dom1 or (y − k5)[i] ∈ Dom5.

2. There exist a pair (x, y) ∈ QC and distinct i, i′ ∈ {2, 4 . . . , w} such that
(x + k0)[i] = (x + k0)[i′] or (y − k5)[i] = (y − k5)[i′].

3. There exist distinct (x, y), (x′, y′) ∈ QC and distinct i, i′ ∈ {2, 4, . . . , w} such
that (x + k0)[i] = (x′ + k0)[i′] or (y − k5)[i] = (y′ − k5)[i′].

4. There exist two indices i, � ∈ {1, . . . , qC} such that � > i, and:
• (x(�), y(�)) was due to a forward query, and y(�)[even] = y(i)[even]; or,
• (x(�), y(�)) was due to a inverse query, and x(�)[even] = x(i)[even].

Let T1 := T \T2 be the set of good transcripts.
To understand the conditions, consider a good transcript τ = (QC , QS ,k) and

let’s see some properties (informally). First, since the 1st condition is not fulfilled,
each construction query induces w/2 inputs to the 1st round S-box and w/2
inputs to the 5th round S-box, the outputs of which are not fixed by QS . Second,
since neither the 2nd nor the 3rd condition is fulfilled, the inputs to the 1st round
(5th round, resp.) S-boxes induced by the construction queries are distinct unless
unavoidable. These ensure that the induced 2nd and 4th intermediate values are
somewhat random and free from multiple forms of collisions. Finally, the last
condition will be crucial for some structural properties of the queries that will
be crucial in the subsequent analysis (see the full version, the proof of Lemma 2).

Let’s then analyze the probabilities of the conditions in turn. Since, in the
ideal world, the values k0, k5 are independent of QC , QS and (individually) uni-
form in F

w
N , it is easy to see that the probabilities of the first three events

do not exceed wqCqS/N ,
(
w/2
2

)
· 2qC

N ≤ w2qC/4N , and
(
w/2
2

)
·
(
qC

2

)
· 2

N ≤
w2qC(qC − 1)/8N ≤ w2qC(qC − 1)/4N , respectively.

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks 111

For the 4-th condition, consider the �-th construction query (x(�), y(�)). When
it is forward, in the ideal world, it means D issued P (x(�)) to the w width random
permutation P and received y(�), which is uniform in Nw − � + 1 possibilities.
Thus, when � ≤ qC ≤ Nw/2,

Pr
[
∃i ≤ � − 1 : y(�)[even] = y(i)[even]

]

=
∑

i≤�−1,z∈F
w/2
N

Pr
[
y(�) =

(
z‖y(i)[even]

)]
≤ (� − 1) · Nw/2

Nw − � + 1
≤ 2(� − 1)

Nw/2
.

A similar result follows when (x(�), y(�)) is inverse. A union bound thus yields

Pr
[
ν ∈ T2

]
≤ wqCqS

N
+

w2q2C
4N

+
qC∑

�=1

2(� − 1)
Nw/2

≤ wqCqS

N
+

w2q2C
4N

+
q2C

Nw/2
. (4)

4.3 Bounding the Ratio μ(τ)/ν(τ)

Let ΩX =
(
P(1)

)5×K be the probability space underlying the real world, whose
measure is the product of the uniform measure on (P(1))5 and the measure
induced by the distribution K on keys. (Thus, each element of ΩX is a tuple
(S,k) with S = (S1, . . . , S5), S1, . . . , S5 ∈ P(1) and k = (k0, . . . , k5) ∈ K.) Also,
let ΩY = P(w) ×

(
P(1)

)5 × K be the probability space underlying the ideal
world, whose measure is the product of the uniform measure on P(w) with the
measure on ΩX .

Let τ ′ = (Qτ ′
C , Qτ ′

S ,kτ ′
) be a transcript. We introduce four types of compati-

bility as follows.

• First, an element ω = (S∗,k∗) ∈ ΩX is compatible with τ ′ if: (a) k∗ = kτ ′
,

and (b) S∗
i (a) = b for all (a, b) ∈ Qτ ′

Si
, and (c) C5S∗

k∗ (x) = y for all (x, y) ∈ Qτ ′
C .

• Second, an element ω = (P ∗,S∗,k∗) ∈ ΩY is compatible with τ ′ if: (a) k∗ =
kτ ′

, and (b) S∗
i (a) = b for all (a, b) ∈ Qτ ′

Si
, and (c) P ∗(x) = y for all (x, y) ∈

Qτ ′
C . We write

ω ↓ τ ′

to indicate that an element ω ∈ ΩX ∪ ΩY is compatible with τ ′.
• Third, a tuple of S-boxes S∗ ∈ (P(1))5 is compatible with τ ′ = (Qτ ′

C , Qτ ′
S ,kτ ′

),
and write S∗ ↓ τ ′, if (S∗,k) ∈ ΩX is compatible with τ ′, where k is the key
value of the fixed transcript τ .

• Last, we say that (P ∗,S∗) ∈ P(w)×(P(1))5 is compatible with τ ′ = (Qτ ′
C , Qτ ′

S ,

kτ ′
) and write (P ∗,S∗) ↓ τ ′, if (P ∗,S∗,kτ ′

) ↓ τ ′.

For the rest of the proof, we fix a transcript τ = (QC , QS ,k) ∈ T1. Since
τ ∈ T , it is easy to see (cf. [8]) that

μ(τ) = Pr[ω ← ΩX : ω ↓ τ], ν(τ) = Pr[ω ← ΩY : ω ↓ τ],

112 Y. Zhao et al.

where the notation indicates that ω is sampled from the relevant probability
space according to that space’s probability measure. We bound μ(τ)/ν(τ) by
reasoning about the latter probabilities. In detail, with the third and fourth
types of compatibility notions, the product structure of ΩX ,ΩY implies

Pr[ω ← ΩX : ω ↓ τ] = Pr[k∗ = k] · PrS∗ [S∗ ↓ τ],
Pr[ω ← ΩY : ω ↓ τ] = Pr[k∗ = k] · PrP ∗,S∗ [(P ∗,S∗) ↓ τ],

where S∗ and (P ∗,S∗) are sampled uniformly from (P(1))5 and P(w)× (P(1))5,
respectively. Thus,

μ(τ)
ν(τ)

=
PrS∗ [S∗ ↓ τ]

PrP ∗,S∗ [(P ∗,S∗) ↓ τ]
.

By these, and by |QC | = qC , |QS1 | = . . . = |QS5 | = qS , it is immediate that

PrP ∗,S∗
[
(P ∗,S∗) ↓ τ

]
=

1

(Nw)qC
·
(
(N)qS

)5 .

To compute PrS∗ [S∗ ↓ τ], we start by writing

PrS∗ [S∗ ↓ τ] = PrS∗ [S∗ ↓ (QC , QS ,k)]
= PrS∗ [S∗ ↓ (∅, QS ,k)] · PrS∗ [S∗ ↓ (QC , QS ,k) | S∗ ↓ (∅, QS ,k)]

=
1

((N)qS
)5

· PrS∗ [S∗ ↓ (QC , QS ,k) | S∗ ↓ (∅, QS ,k)].

To analyze PrS∗ [S∗ ↓ (QC , QS ,k) | S∗ ↓ (∅, QS ,k)], we proceed in two steps.
First, based on QC and two outer S-boxes S∗

1 , S∗
5 , we derive the 2nd and 4th

rounds intermediate values: these constitute a special transcript Qmid on the
middle 3 rounds. We characterize conditions on S∗

1 , S∗
5 that will ensure certain

good properties in the derived Qmid, which will ease the analysis. Therefore, in
the second step, we analyze such “good” Qmid to yield the final bounds. Each
of the two steps will take a paragraph as follows.

The Outer 2 Rounds. Given a tuple of S-boxes S∗, we let Bad(S∗) be a
predicate of S∗ that holds if any of the following conditions is met:

• (B-1) There exist (x, y) ∈ QC and i ∈ {2, 4, . . . , w} such that
(
T · (PGFS∗

1 (x+
k0)) + k1

)
[i] ∈ Dom2 or

(
T−1 · (((PGFS∗

5)−1(y − k5)) − k4)
)
[i] ∈ Dom4.

• (B-2) There exist (x, y) ∈ QC and distinct indices i, i′ ∈ {2, 4, . . . , w} such
that

(
T · (PGFS∗

1 (x + k0)) + k1
)
[i] =

(
T · (PGFS∗

1 (x + k0)) + k1
)
[i′], or

(
T−1 ·

(((PGFS∗
5)−1(y − k5)) − k4)

)
[i] =

(
T−1 · (((PGFS∗

5)−1(y − k5)) − k4)
)
[i′].

• (B-3) There exist distinct pairs (x, y), (x′, y′) ∈ QC and two indices i, i′ ∈
{2, 4, . . . , w} such that:
1. x[even] �= x′[even], yet

(
T · (PGFS∗

1 (x + k0)) + k1
)
[i] =

(
T · (PGFS∗

1 (x′ +
k0)) + k1

)
[i′]; or

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks 113

2. x[even] = x′[even], i �= i′, yet
(
T · (PGFS∗

1 (x + k0)) + k1
)
[i] =

(
T ·

(PGFS∗
1 (x′ + k0)) + k1

)
[i′]; or

3. y[even] �= y′[even
]
, yet it holds

(
T−1 · (((PGFS∗

5)−1(y − k5)) − k4)
)
[i] =

(
T−1 · (((PGFS∗

5)−1(y − k5)) − k4)
)
[i′]; or

4. y[even] = y′[even
]
, i �= i′, yet

(
T−1 · (((PGFS∗

5)−1(y − k5)) − k4)
)
[i] =

(
T−1 · (((PGFS∗

5)−1(y − k5)) − k4)
)
[i′].

(B-1) captures the case that a 2nd round S-box input or a 4th round S-box input
has been in QS , (B-2) captures collisions among the 2nd round S-box inputs &
4th round S-box inputs for a single construction query, while (B-3) captures
various collisions between the 2nd round S-box inputs, resp. 4th round S-box
inputs from two distinct queries. Note that essentially, Bad(S∗) only concerns the
randomness of the outer 2 S-boxes S∗

1 and S∗
5 . For simplicity, define Good(S∗) :=

(S∗ ↓ QS) ∧ ¬Bad(S∗). Then it holds

PrS∗
[
S∗ ↓ (QC , QS ,k) | S∗ ↓ (∅, QS ,k)

]

≥ PrS∗
[
S∗ ↓ (QC , QS ,k) ∧ Good(S∗) | S∗ ↓ (∅, QS ,k)

]

= PrS∗
[
Good(S∗) | S∗ ↓ (∅, QS ,k)

]
· PrS∗

[
S∗ ↓ (QC , QS ,k) | Good(S∗)

]
. (5)

Hence, all that remains is to lower bound the two terms in the product of (5). For
the first term, we serve the result below and defer the proof to the full version.

Lemma 1. When qS + w ≤ N/2, we have

PrS∗
[
Bad(S∗) | S∗ ↓ (∅, QS ,k)

]
≤ 4wqCqS + w2qC + w2q2C

2N
. (6)

Analyzing the 3 Middle Rounds. Our next step is to lower bound the term
PrS∗

[
S∗ ↓ (QC , QS ,k) | Good(S∗)

]
from Eq. (5). Given S∗ for which Good(S∗)

holds, for every (x(i), y(i)) ∈ QC , we define u
(i)
1 := x(i) + k0, v

(i)
1 := PGFS∗

1 (u(i)
1)

(this means v
(i)
1 [even] = u

(i)
1 [even]), u

(i)
2 := T · v

(i)
1 + k1; v

(i)
5 := y(i) − k5, u

(i)
5 :=

(
PGFS∗

5
)−1(v(i)

5) (where v
(i)
5 [even] = u

(i)
5 [even]), v

(i)
4 := T−1 · (u(i)

5 − k4). With
these, we obtain

Qmid =
((

u
(1)
1 , u

(1)
2 , v

(1)
4 , v

(1)
5

)
, . . . ,

(
u
(qC)
1 , u

(qC)
2 , v

(qC)
4 , v

(qC)
5

))
,

in which the tuples follow exactly the same chronological order as in QC . Define

C3S∗
(k2,k3)

(u) = PGFS∗
4
(
T ·

(
PGFS∗

3
(
T ·

(
PGFS∗

2 (u)
)

+ k2
))

+ k3
)
,

and write S∗ ↓ (Qmid, QS ,k) for the event that “C3S∗
(k2,k3)

(u2) = v4 for every
(u1, u2, v4, v5) in the set Qmid”. Then it can be seen

PrS∗
[
S∗ ↓(QC , QS ,k) | Good(S∗)

]
= PrS∗

[
S∗ ↓(Qmid, QS ,k) | Good(S∗)

]
. (7)

To bound Eq. (7), we will divide Qmid into multiple sets according to collisions
on the “even halves” u1[even] and v5[even], and consider the probability that S∗

is compatible with each set in turn. In detail, the sets are arranged according to
the following rules:

114 Y. Zhao et al.

• Qm1 :=
{
(u1, u2, v4, v5) ∈ Qmid : u1[even] = u

(1)
1 [even]

}
;

• For � = 2, 3, . . ., if ∪�−1
i=1Qmi

= Qm1∪Qm2∪. . .∪Qm�−1 ⊂ Qmid, then we define
Qm�

. Let j be the minimum index such that (u(j)
1 , u

(j)
2 , v

(j)
4 , v

(j)
5) remains in

Qmid\ ∪�−1
i=1 Qmi

. Then:
– If v

(j)
5 has collisions, i.e., there exists (u∗

1, u
∗
2, v

∗
4 , v

∗
5) ∈ ∪�−1

i=1Qmi
such that

v∗
5 [even] = v

(j)
5 [even], then we define Qm�

:=
{
(u1, u2, v4, v5) ∈ Qmid\∪�−1

i=1

Qmi
: v5[even] = v

(j)
5 [even]

}
. We call such sets Type-II.

– Else, Qm�
:=

{
(u1, u2, v4, v5) ∈ Qmid\ ∪�−1

i=1 Qmi
: u1[even] = u

(j)
1 [even]

}
.

We call such sets as well as Qm1 Type-I.

Assume that Qmid is divided into α disjoint sets by the above rules, with
|Qm�

| = β�. Then
∑α

�=1 β� = qC , and

PrS∗
[
S∗ ↓ (Qmid, QS ,k) | Good(S∗)

]

=
α∏

�=1

PrS∗
[
S∗ ↓ (Qm�

, QS ,k) | S∗ ↓ (∪�−1
i=1Qmi

, QS ,k) ∧ Good(S∗)
]
. (8)

Now we could focus on analyzing the �-th set Qm�
. Assume that

Qm�
=

((
u
(�,1)
1 , u

(�,1)
2 , v

(�,1)
4 , v

(�,1)
5

)
, . . . ,

(
u
(�,β�)
1 , u

(�,β�)
2 , v

(�,β�)
4 , v

(�,β�)
5

))
.

The superscript (�, i) indicates that it is the i-th tuple in this �-th set Qm�
.

For this index �, we define six sets ExtDom(�)
i and ExtRng(�)i , i = 2, 3, 4, as

follows:

ExtDom(�)
2 :=

{
u2[j] : (u1, u2, v4, v5) ∈ ∪�−1

i=1Qmi
, j ∈ {2, 4, . . . , w}

}

ExtRng(�)2 :=
{
S∗
2 (a) : a ∈ ExtDom(�)

2

}

ExtDom(�)
3 :=

{(
T·

(
PGFS∗

2 (u2)
)
+k2

)
[j] :(u1,u2,v4,v5)∈∪�−1

i=1Qmi
,j ∈{2,4, . . . ,w}

}

ExtRng(�)3 :=
{
S∗
3 (a) : a ∈ ExtDom(�)

3

}

ExtDom(�)
4 :=

{
v4[j] : (u1, u2, v4, v5) ∈ ∪�−1

i=1Qmi
, j ∈

{
2, 4, . . . , w

}}

ExtRng(�)4 :=
{
S∗
4 (a) : a ∈ ExtDom(�)

4

}

Note that, conditioned on S∗ ↓ (∪�−1
i=1Qmi

, QS ,k) ∧ Good(S∗), the values in
ExtDom(�)

i and ExtRng(�)i , i = 2, 3, 4, are compatible with the set ∪�−1
i=1Qmi

. For
Qm�

, two useful properties regarding the arrangement of tuples and the derived
intermediate values resp. could be exhibited.

Lemma 2. Consider the �-th set Qm�
=

(
(u(�,1)

1 , u
(�,1)
2 , v

(�,1)
4 , v

(�,1)
5), . . .

)
. If it is

of Type-I, then the number of tuples (u1, u2, v4, v5) ∈ ∪�−1
i=1Qmi

with u1[even] =
u
(�,1)
1 [even] is at most 1; if it is of Type-II, then the number of (u1, u2, v4, v5) ∈

∪�−1
i=1Qmi

with v5[even] = v
(�,1)
5 [even] is also at most 1.

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks 115

The proof is deferred to the Appendix B.1.

Lemma 3. Consider the �-th set Qm�
and any two distinct elements

(
u
(�,i1)
1 ,

u
(�,i1)
2 , v

(�,i1)
4 , v

(�,i1)
5

)
and

(
u
(�,i2)
1 , u

(�,i2)
2 , v

(�,i2)
4 , v

(�,i2)
5

)
in Qm�

. Then, there exist
two indices j1, j2 ∈ {2, 4, . . . , w} such that,

• when Qm�
is of Type-I: u

(�,i1)
2 [j1] /∈ Dom2 ∪ExtDom(�)

2 , u
(�,i2)
2 [j2] /∈ Dom2 ∪

ExtDom(�)
2 , and (u(�,i1)

2 [j1], u
(�,i1)
2 [j2]) �= (u(�,i2)

2 [j1], u
(�,i2)
2 [j2]);

• when Qm�
is of Type-II: v

(�,i1)
4 [j1] /∈ Dom4∪ExtDom(�)

4 , v
(�,i2)
4 [j2] /∈ Dom4∪

ExtDom(�)
4 , and (v(�,i1)

4 [j1], v
(�,i1)
4 [j2]) �= (v(�,i2)

4 [j1], v
(�,i2)
4 [j2]).

The proof is deferred to the Appendix B.2. With the help of these two lemmas,
we are able to bound the probability that the randomness is compatible with
the �-th set Qm�

.

Lemma 4. For the �-th set Qm�
, it holds

PrS∗
[
S∗ ↓ (Qm�

, QS ,k) | S∗ ↓ (∪�−1
i=1Qmi

, QS ,k) ∧ Good(S∗)
]

≥
(
1 − 12β�w(qS + wqC/2) + 3β2

� w2

4N

)
· 1
Nwβ�

. (9)

The proof is deferred to the full version.
From Eq. (9), Eq. (8), and using

∑α
�=1 β� = qC , we obtain

PrS∗
[S∗ ↓ (Qmid, QS ,k) | Good(S∗)

]

≥
α∏

�=1

((
1 − 12β�w(qS + wqC/2) + 3β2

� w2

4N

)
· 1

Nwβ�

)

≥
(
1 −

α∑

�=1

12β�w(qS + wqC/2) + 3β2
� w2

4N

)
· 1

Nw
∑α

�=1 β�

≥
(
1 − 12wqC(qS + wqC/2) + 3w2q2C

4N

)
· 1

NwqC
.

Gathering this and Eqs. (7) (6), and (5), we finally reach

μ(τ)

ν(τ)
≥

(
1− 4wqCqS + w2qC + w2q2C

2N

)(
1− 12wqC(qS + wqC/2) + 3w2q2C

4N

)
· (N

w)qC

NwqC

≥
(
1− 4wqCqS + w2qC + w2q2C

2N

)(
1− 12wqC(qS + wqC/2) + 3w2q2C

4N

)
·
(
1− q2C

Nw

)

≥1− 20wqCqS + 13w2q2C
4N

− q2C
Nw

≥ 1− 20wqCqS + 13w2q2C
4N

− q2C
Nw/2

.

Further, using Eq. (4) yields the bound in Eq. (3) and completes the proof.

5 SPRP Security at 5 Rounds with Public Functions

In this section, we will prove security for 5-round GEGFNs built upon 5 random
functions F = {F1, F2, F3, F4, F5} and a single linear layer T . Firstly, we modify
the Definition 1 to apply to the situation of using random functions.

116 Y. Zhao et al.

Definition 2 (Good Linear Layer for 5 Rounds with Functions). A
matrix T ∈ F

w×w
N is good if T is MDS, and the 2 induced matrices Teo and

(T−1)eo are such that:

1. They contain no zero entries, and
2. Any column vector of the 2 induced matrices consists of w/2 distinct entries.

With a good linear layer in Definition 2, we have the following theorem on 5-
round GEGFNs with public random functions.

Theorem 2. Assume w ≥ 2. Let C5Fk be a 5-round, linear GEGFN structure
defined in Eq. (10), with distribution K over keys k = (k0, . . . , k5) and public
functions F = (F1, F2, F3, F4, F5).

C5Fk(x) := k5 + PGFF5
(
k4 + T ·

(
PGFF4

(
k3 + T ·

(
PGFF3

(
k2 + T ·

(
PGFF2

(

k1 + T ·
(
PGFF1(k0 + x)

))))))))
. (10)

If k0 and k5 are uniformly distributed and the matrix T fulfills Definition 2, then

AdvsprpC5Fk
(qC , qF) ≤ 20wqCqF + 9w2q2C

8N
+

2q2C
Nw/2

. (11)

Since C5Fk is defined on random functions instead of random permutations,
which slightly deviates from the permutation case, for the proof, we only need
to make some moderate modifications to the previous proof for C5S

k . We follow
the proof idea of C5S

k and reduce proof as follows.

Proof Setup. Fix a deterministic distinguisher D. Similar to Sect. 4.1, we
assume D makes exactly qC (non-redundant) forward/inverse queries to its left
oracle that is either C5Fk or P , and exactly qF (non-redundant) forward queries
to each of the oracle Fi on its right side. We call a query from D to its left oracle
a construction query and a query from D to one of its right oracles a function
query.

The interaction between D and its oracles is recorded in the form of 6 lists
of pairs QC ⊆ F

w
N × F

w
N and QF1 , . . . , QF5 ⊆ FN × FN . The definition of QC

remains unchange, QF1 , . . . , QF5 are defined similarly with respect to queries to
F1, . . . , F5. Define QF := (QF1 , . . . , QF5). For convenience, for i ∈ {1, 2, 3, 4, 5}
we define

Domi :=
{
a : (a, b)∈ QFi

for some b∈ FN

}
,Rngi :=

{
b : (a, b)∈ QFi

for a∈ FN

}
.

Similar to Sect. 4.1, we augment the transcript (QC , QF) with a key value
k = (k0, . . . , k5). Thus, a transcript τ has the final form τ = (QC , QF,k).

Completing the Proof. Note that since Fi is a random function, for a new
input x, the function value Fi(x) is uniform in FN , for i = 1, 2, 3, 4, 5, i.e., for
any y, the probability of Fi(x) = y is 1/N . This is the main difference from the
proof of C5S

k .
In detail, we recall the definition of bad transcripts in Sect. 4.2 and we also

have the same definition of bad transcripts in C5Fk . Therefore,

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks 117

Lemma 5. The upper bounding of getting bad transcripts in the ideal world is

Pr
[
ν ∈ T2

]
≤ wqCqS

N
+

w2q2C
4N

+
qC∑

�=1

2(� − 1)
Nw/2

≤ wqCqF

N
+

w2q2C
4N

+
q2C

Nw/2
. (12)

Then, following the idea as before, we bound the ratio μ(τ)/ν(τ). Let
ΩX =

(
F(1)

)5 × K be the probability space underlying the real world and
ΩY = P(w) ×

(
F(1)

)5 × K be the probability space underlying the ideal world.
We fix a transcript τ = (QC , QF,k) ∈ T1. Since τ ∈ T , it is easy to see (cf. [8])
that

μ(τ) = Pr[ω ← ΩX : ω ↓ τ] = Pr[k∗ = k] · PrF∗ [F∗ ↓ τ],
ν(τ) = Pr[ω ← ΩY : ω ↓ τ] = Pr[k∗ = k] · PrP ∗,F∗ [(P ∗,F∗) ↓ τ],

where the notation indicates that ω is sampled from the relevant probability
space according to that space’s probability measure and F∗ and (P ∗,F∗) are
sampled uniformly from (F(1))5 and P(w) × (F(1))5, respectively. Thus,

μ(τ)
ν(τ)

=
PrF∗ [F∗ ↓ τ]

PrP ∗,F∗ [(P ∗,F∗) ↓ τ]
.

By these, and by |QC | = qC , |QF1 | = . . . = |QF5 | = qF , it is immediate that

PrP ∗,F∗
[
(P ∗,F∗) ↓ τ

]
=

1

(Nw)qC
·
(
NqF

)5 .

To compute PrF∗ [F∗ ↓ τ] we start by writing

PrF∗ [F∗ ↓τ] = PrF∗ [F∗ ↓ (QC , QF,k)]
= PrF∗ [F∗ ↓(∅, QF,k)] · PrF∗ [F∗ ↓(QC , QF,k) | F∗ ↓(∅, QF,k)]

=
1

(NqF)5
· PrF∗ [F∗ ↓(QC , QF,k) | F∗ ↓(∅, QF,k)].

Now let’s focus on PrF∗ [F∗ ↓ (QC , QF,k) | F∗ ↓ (∅, QF,k)]. To analyze
PrF∗ [F∗ ↓ (QC , QF,k) | F∗ ↓ (∅, QF,k)], we proceed in two steps. First, based
on QC and two outer random functions F ∗

1 , F ∗
5 , we derive the 2nd and 4th rounds

intermediate values: these constitute a special transcript Qmid on the middle
3 rounds. We characterize conditions on F ∗

1 , F ∗
5 that will ensure certain good

properties in the derived Qmid, which will ease the analysis. Therefore, in the
second step, we analyze such “good” Qmid to yield the final bounds. Thus,

PrF∗
[
F∗ ↓(QC , QF,k) | F∗ ↓(∅, QF,k)

]

≥ PrF∗
[
F∗ ↓(QC , QF,k) ∧ Good(F∗) | F∗ ↓(∅, QF,k)

]

= PrF∗
[
Good(F∗) | F∗ ↓(∅, QF,k)

]
· PrF∗

[
F∗ ↓(QC , QF,k) | Good(F∗)

]
. (13)

In the first step, we define Bad(F∗) the same as Bad(S∗). So we have the
following lemma,

118 Y. Zhao et al.

Lemma 6.

PrF∗
[
Bad(F∗) | F∗ ↓ (∅, QF,k)

]
≤ 4wqCqF + w2qC + w2q2C

4N
. (14)

The proof is deferred to the full version.
Then, in the second step, we analyze PrF∗

[
F∗ ↓ (QC , QF,k) | Good(F∗)

]
.

We define Qmid as before and we have PrF∗
[
F∗ ↓ (QC , QF,k) | Good(F∗)

]
=

PrF∗
[
F∗ ↓ (Qmid, QF,k) | Good(F∗)

]
.

Lemma 7. For the set Qmid, it holds

PrF∗
[
F∗ ↓(Qmid, QF,k) | Good(F∗)

]
≥

(
1− 4wqC(qF + wqC/2)+w2q2C

8N

)
· 1
NwqC

.

(15)

The proof is deferred to the full version.
Gathering Eq. (13) and Eqs. (14) and (15), we finally reach

μ(τ)

ν(τ)
≥

(
1 − 4wqCqF + w2qC + w2q2C

4N

)(
1 − 4wqC(qF + wqC/2) + w2q2C

8N

)
· (N

w)qC

NwqC

≥
(
1 − 4wqCqF + w2qC + w2q2C

4N

)(
1 − 4wqC(qF + wqC/2) + w2q2C

8N

)
·
(
1 − q2C

Nw

)

≥1 − 12wqCqF + 7w2q2C
8N

− q2C
Nw

≥ 1 − 12wqCqF + 7w2q2C
8N

− q2C
Nw/2

.

Further, using Eq. (12) yield the bound in Eq. (11) and complete the proof.

6 Conclusion

In this paper, we explore the problem of minimizing non-linearity in Type-II
Generalized Feistel Networks. Inspired by the fast diffusion of SPNs, we con-
sider incorporating their (strong) diffusion layers into Type-II Generalized Feis-
tel Networks and introduce the key in each round. Thus, we introduce a new
variant of the generalized Feistel Networks, which we call GEGFN. To provide
a theoretical justification, we study SPRP security of GEGFN using random
permutation or function in binary fields F2n and prime fields Fp, with p being
prime. Our research proves birthday-bound security at 5 rounds.

Acknowledgments. Chun Guo was partly supported by the National Natural Science
Foundation of China (Grant No. 62002202) and the Taishan Scholars Program (for
Young Scientists) of Shandong. Weijia Wang was partly supported by the Program of
Qilu Young Scholars (Grant No. 61580082063088) of Shandong University.

A The H-Coefficient Technique

We use Patarin’s H-coefficient technique [30] to prove the SPRP security of
GEGFNs. We provide a quick overview of its main ingredients here. Our pre-
sentation borrows heavily from that of [8]. Fix a distinguisher D that makes at

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks 119

most q queries to its oracles. As in the security definition presented above, D’s
aim is to distinguish between two worlds: a “real world” and an “ideal world”.
Assume wlog that D is deterministic. The execution of D defines a transcript that
includes the sequence of queries and answers received from its oracles; D’s output
is a deterministic function of its transcript. Thus, if μ, ν denote the probability
distributions on transcripts induced by the real and ideal worlds, respectively,
then D’s distinguishing advantage is upper bounded by the statistical distance

Dist(μ, ν) :=
1
2

∑

τ

∣
∣μ(τ) − ν(τ)

∣
∣, (16)

where the sum is taken over all possible transcripts τ .
Let T denote the set of all transcripts such that ν(τ) > 0 for all τ ∈ T . We

look for a partition of T into two sets T1 and T2 of “good” and “bad” transcripts,
respectively, along with a constant ε1 ∈ [0, 1) such that

τ ∈ T1 =⇒ μ(τ)/ν(τ) ≥ 1 − ε1. (17)

It is then possible to show (see [8] for details) that

Dist(μ, ν) ≤ ε1 + Pr[ν ∈ T2] (18)

is an upper bound on the distinguisher’s advantage.

B Deferred Proofs

B.1 Proof of Lemma 2

Wlog, consider the case of Type-I Qm�
, as the other case is just symmet-

ric. Assume otherwise, and assume that tuple1 =
(
u
(j1)
1 , u

(j1)
2 , v

(j1)
4 , v

(j1)
5

)
and

tuple2 =
(
u
(j2)
1 , u

(j2)
2 , v

(j2)
4 , v

(j2)
5

)
in ∪�−1

i=1Qmi
are such two tuples with the small-

est indices j1, j2. Wlog assume j2 > j1, i.e., tuple2 was later. Then tuple2 was
necessarily a forward query, as otherwise u

(j1)
1 [even] = u

(j2)
1 [even] would con-

tradict the goodness of τ (the 4th condition). By this and further by the 4th
condition, v

(j2)
5 [even] is “new”, and tuple2 cannot be in any Type-II set Qmi

,
i ≤ � − 1. This means there exists a Type-I set Qmi

, i ≤ � − 1, such that
tuple2 ∈ Qmi

. By our rules, the tuples in the purported Qm�
should have been

Qmi
, and thus Qm�

should not exist, reaching a contradiction.

B.2 Proof of Lemma 3

Wlog consider a Type-I Qm�
. First, note that by ¬(B-1) (the 1st condition),

u
(�,i1)
2 [j] /∈ Dom2 and u

(�,i2)
2 [j] /∈ Dom2 for any j ∈ {2, 4, . . . , w}. We then

distinguish two cases depending on ∪�−1
i=1Qmi

(which contribute to ExtDom(�)
2):

120 Y. Zhao et al.

Case 1: u(�,i1)
1 [even] �= u1[even] for all (u1,u2,v4,v5) ∈ ∪�−1

i=1Qmi
. Then by

¬(B-3), u
(�,i1)
2 [j], u(�,i2)

2 [j] /∈ ExtDom(�)
2 for all j ∈ {2, 4, . . . , w}. Among these

w/2 indices, there exists j1 such that u
(�,i1)
2 [j1] �= u

(�,i2)
2 [j1], as otherwise, it

would contradict the “qC non-redundant forward/inverse queries”. Therefore,
we complete the argument for this case.

Case 2: there exists (u∗
1,u

∗
2,v∗

4,v
∗
5)∈∪�−1

i=1Qmi
with u∗

1[even]=u(�,i1)
1 [even].

Then by construction, we have u
(�,i1)
2 [even] = u∗

2[even] + Δi1 and
u
(�,i2)
2 [even] = u∗

2[even] + Δi2 , where Δi1 = Teo ·
(
u
(�,i1)
1 [odd] − u∗

1[odd]
)

and
Δi2 = Teo ·

(
u
(�,i2)
1 [odd] − u∗

1[odd]
)
. Let Ji1 be the subset of {2, 4, . . . , w} such

that Δi1 [j] �= 0 iff. j ∈ Ji1 , and Ji2 ⊆ {2, 4, . . . , w} be such that Δi2 [j] �= 0 iff.
j ∈ Ji2 . We distinguish three subcases depending on Ji1 and Ji2 :

• Subcase 2.1: Ji1\Ji2 �= ∅. Then, let j1 ∈ Ji1\Ji2 , and j2 ∈ Ji2 in arbitrary.
This means j1 �= j2, Δi1 [j1] �= 0 but Δi2 [j1] = 0, and then u

(�,i1)
2 [j1] �=

u
(�,i2)
2 [j1]. Moreover,
– u

(�,i1)
2 [j1] �= u∗

2[j3] for any j3 /∈ {2, 4, . . . , w}\{j1}, by ¬(B-3) (the 2nd con-
dition); u

(�,i1)
2 [j1] �= u∗

2[j1] since j1 ∈ Ji1 . Thus u
(�,i1)
2 [j1] /∈ ExtDom(�)

2 .
Similarly for u

(�,i2)
2 .

– u
(�,i1)
1 [even] �= u∗∗

1 [even] for any (u∗∗
1 , u∗∗

2 , v∗∗
4 , v∗∗

5) �= (u∗
1, u

∗
2, v

∗
4 , v

∗
5) in

∪�−1
i=1Qmi

(by Lemma 2), and thus u
(�,i1)
2 [j1] �= u∗∗

2 [j′] for any j′ ∈
{2, 4, . . . , w} by ¬(B-3) (the 1st condition). Similarly for u

(�,i2)
2 .

• Subcase 2.2: Ji2\Ji1 �= ∅. Then, let j2 ∈ Ji2\Ji1 , and j1 ∈ Ji1 , and the
argument is similar to subcase 2.1 by symmetry.

• Subcase 2.3: Ji1 = Ji2 . Then there exists j ∈ Ji1 such that Δi1 [j] �= Δi2 [j],
as otherwise Δi1 = Δi2 , meaning a contradiction. Let j1 = j2 = j, then it’s
easy to see all the claims hold.

By the above, for Type-I sets, the claims hold in all cases. Thus the claim.

C MDS Candidates in FN

An important question is whether such a strong T in Definition 1 exists at all.
Note that if a strong T in Definition 1 exists, then T in Definition 2 naturally
exists. Therefore, we give candidates in FN , where N is either a power of 2 or a
prime number.

C.1 MDS in Binary Field

Using the primitive polynomial x8 +x4 +x3 +x2 +1, two candidates for N = 28

and w = 8, 16, respectively, are as follows. We employ Vandermonde matrices [25]
to generate these MDS matrices.

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks 121

⎛

⎜⎜
⎜
⎝

0x87 0xB3 0x1D 0xC7 0x27 0x12 0x5A 0x83
0x86 0x3C 0xE6 0x3E 0x0D 0xBA 0xE9 0x3D
0x5D 0xF4 0x4A 0x1C 0x0C 0x3B 0x79 0xB0
0x51 0xB1 0xA6 0xA5 0x34 0x6A 0xA7 0x1B
0x63 0x66 0xBC 0x83 0x02 0xC9 0x63 0x93
0x61 0xB5 0xB6 0x97 0xEE 0x67 0x09 0x74
0x62 0x9E 0x42 0xC4 0x50 0x35 0xDA 0xC4
0xA5 0x65 0xF B 0x90 0xF C 0x8E 0xC9 0x11

⎞

⎟⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

0x52 0xE7 0xAE 0x82 0x5E 0x47 0x66 0x1C 0x7C 0x35 0x68 0xBE 0x96 0x13 0xD1 0x30
0xF B 0xA2 0x7B 0xAB 0x2E 0x8E 0x5A 0xF9 0x8C 0x07 0xE2 0xC3 0x82 0xc8 0x89 0xE2
0xD4 0xF A 0xEC 0x33 0x7E 0xE6 0x04 0xBC 0x2D 0x43 0x2B 0x7E 0xAB 0xDF 0x58 0xC7
0xC4 0xBF 0xAF 0x1A 0x7A 0xDF 0xBD 0xF E 0x67 0x5F 0xDB 0x3E 0x52 0xA7 0xDA 0xE6
0xC1 0x18 0xDE 0x5C 0x1B 0x26 0x3D 0xC8 0x10 0x4D 0xC4 0xD0 0x0D 0x62 0x91 0x25
0x81 0xD8 0x77 0x92 0x12 0x6A 0x92 0x3A 0x8B 0xCF 0xAD 0x43 0xC4 0xF D 0x44 0xBA
0xDF 0x67 0x52 0xE2 0xCB 0xCC 0x8E 0xEC 0x1E 0xEF 0x71 0xDC 0xD7 0xD1 0x95 0xA3
0xE4 0x3C 0x88 0xE7 0xD2 0x41 0x01 0x20 0x3E 0x56 0x11 0x9B 0x09 0xF D 0xD2 0xC0
0xF7 0x33 0x8F 0x55 0x79 0x65 0x27 0x29 0x48 0x39 0x96 0xB9 0xF6 0xBF 0xA5 0xBF
0xAB 0xEF 0xA0 0x9C 0xA7 0x6A 0xF0 0x44 0x57 0x63 0xAF 0x0F 0x79 0x6A 0xBA 0x3D
0x66 0x52 0x58 0xB5 0x17 0x1B 0x58 0xBE 0x9C 0xBA 0x77 0xD6 0x30 0xEA 0xA1 0xCE
0xC6 0x9D 0x9C 0xD2 0x89 0x02 0x5F 0x25 0x90 0x25 0x34 0x21 0xD1 0xE9 0x2F 0x52
0xE9 0x37 0xB1 0xF3 0x88 0x0F 0x5F 0xE7 0xCA 0x0D 0xF9 0x52 0x9F 0x80 0xF5 0x24
0x13 0xB4 0xF3 0x71 0x0A 0x7C 0x13 0xCC 0xC2 0x04 0x43 0xD3 0xC0 0xAC 0x9B 0x2C
0xBE 0x01 0x7B 0x40 0x54 0x49 0x73 0xD9 0x2E 0x47 0xA5 0x55 0x3B 0x55 0xF7 0x32
0x5F 0xA6 0x19 0x03 0x4D 0x3F 0x9E 0xE8 0x9D 0x54 0xC0 0xB6 0x62 0x5C 0xE8 0x8F

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

Using the primitive polynomial x11 + x2 + 1 a candidate for N = 211 and w = 8
is as follows:

⎛

⎜⎜
⎜
⎝

0x078 0x166 0x14D 0x019 0x1C8 0x098 0x187 0x09C
0x257 0x436 0x7F9 0x644 0x0F9 0x370 0x634 0x260
0x777 0x721 0x309 0x609 0x158 0x59B 0x353 0x2C7
0x5F C 0x6D8 0x63A 0x21A 0x78B 0x483 0x252 0x65F
0x74C 0x4B3 0x068 0x1B5 0x103 0x273 0x263 0x330
0x568 0x45F 0x401 0x5EE 0x25B 0x541 0x2D4 0x517
0x60C 0x53B 0x7EB 0x30F 0x0B8 0x52D 0x35C 0x11B
0x67C 0x77C 0x388 0x749 0x216 0x742 0x52B 0x5BF

⎞

⎟⎟
⎟
⎠

.

We have also found plenty of candidates for other parameters, which are
however omitted for the sake of space.

C.2 MDS in Prime Field

Rescue [3] is a symmetric cryptographic algorithm in the prime field. [3] offers
to use m× 2m Vandermonde matrices using powers of an FN primitive element.
This matrix is then echelon reduced after which the m × m identity matrix is
removed and the MDS matrix is obtained.

The field is FN where N = 261 + 20 · 232 + 1 and the state consists of w = 12
elements. We get an MDS matrix T 12×12 that satisfies Definition 1. Because the
matrix is large, we give four submatrices of T 12×12 for convenience.

Remark 1. Our results also apply to some finite commutative rings if these rings
exist MDS matrix. We assume that R is a finite commutative ring with identity
and U(R) be the set of unit elements in R. We note that a square matrix M
over R is an MDS matrix if and only if the determinant of every submatrix of
M is an element of U(R).

122 Y. Zhao et al.

T
e
o

=

⎛ ⎜ ⎜ ⎝

2
1
3
2
4
2
4
7
3
6
3
6
2
5
1
0
2
4
9

2
7
2
2
1
9
6
9
0
4
3
4
8
3
5
9
3
5

6
2
8
3
8
4
1
1
2
9
0
5
1
0
6
4
1
3

1
5
6
5
4
8
9
6
8
2
1
8
9
4
3
7
8
1
9

1
0
2
6
4
7
7
5
1
0
1
8
5
5
8
1
6
6

2
3
0
1
5
1
3
4
7
7
4
7
5
4
0
5
9
1
3

7
6
0
4
2
0
5
7
4
9
9
7
4
4
1
7
5
0

2
0
3
5
8
4
8
4
1
7
4
6
8
0
0
1
2
2
0

3
6
7
9
1
2
2
0
8
2
5
3
2
4
1
9
4
4

5
4
7
8
1
2
4
7
4
6
4
1
1
2
7
2
4
6

1
6
1
2
6
4
4
5
0
6
1
5
5
1
7
0
8
0
7

1
0
3
9
0
5
1
6
1
3
6
4
4
0
8
7
5
3
8

1
3
2
7
2
6
7
9
5
0
7
7
6
8
0
2
5
1

2
7
6
0
4
9
0
0
2
4
0
2
1
3
2
6
0
0

2
0
6
2
1
0
6
6
8
1
8
5
3
0
3
8
2
9
4

1
7
9
8
4
6
2
3
1
8
1
8
9
4
9
6
8
2
9

8
7
6
9
6
6
6
8
6
2
9
3
5
0
6
2
6
4

2
8
7
9
3
4
9
4
4
9
2
4
4
2
2
3
5
9

1
2
6
4
6
4
4
2
7
6
9
8
6
5
5
2
6
6
9

9
5
9
2
3
1
2
5
4
3
1
3
8
9
4
9
1
9

1
6
0
9
8
6
7
5
3
5
6
8
5
4
5
0
0
6
3

6
0
0
1
3
1
8
3
1
5
2
9
3
8
2
2
6
6

1
6
2
0
6
5
9
9
4
2
4
0
7
8
0
2
1
8
0

1
9
1
7
5
1
7
7
5
1
8
6
3
5
0
7
7
5
1

4
4
5
0
0
0
5
1
6
6
6
9
4
0
6
8
2
1

9
9
9
4
2
5
3
0
0
1
2
6
3
8
0
6
3
5

1
4
2
4
3
8
6
5
8
3
5
4
9
0
5
9
8
3
7

1
8
4
0
7
8
5
4
8
1
4
6
1
6
6
1
8
4
4

7
7
0
2
0
7
5
5
5
8
2
6
0
6
8
2
9
1

1
3
2
1
6
8
5
4
0
1
2
2
5
7
1
8
3
5
8

6
3
9
8
3
6
0
2
4
9
8
6
4
8
2
4
9
9

8
9
1
6
4
1
5
0
9
4
1
6
4
2
6
2
4
9

8
5
6
8
4
0
0
6
9
7
9
3
4
9
2
1
8

2
0
0
9
3
1
4
2
4
8
2
5
5
7
6
8
9
7
9

1
4
6
1
7
8
5
3
2
9
4
0
8
7
9
5
8
7
1

6
1
4
5
2
6
4
2
7
2
3
4
6
6
1
3
0
2

⎞ ⎟ ⎟ ⎠
,

T
e
e

=

⎛ ⎜ ⎜ ⎝

1
5
7
1
1
4
8
4
9
2
2
6
3
0
9
6
2

2
2
2
7
5
1
7
0
4
0
4
8
2
4
6
5
9
1
1

1
8
7
8
9
0
8
2
6
7
1
5
9
1
3
9
1
4

8
5
5
1
8
5
1
5
8
2
4
8
9
6
6
9
0
1

1
2
4
0
2
3
1
4
6
1
8
5
3
9
6
1
9
5
3

5
2
9
5
5
4
0
5
2
3
0

1
6
0
9
9
0
3
3
2
4
5
8
7
3
1
2
7
8
9
2
1
0
2
8
9
5
9
4
2
8
2
8
6
9
8
0
6
2

5
4
9
2
1
9
3
8
5
5
4
5
9
6
2
6
8
8

1
6
9
5
1
5
3
7
3
8
2
9
3
5
9
8
9
1
5

2
0
6
0
3
6
2
8
1
2
1
5
6
7
6
1
4
4
1

1
7
5
9
6
7
6
6
6
7
2
1
9
8
7
4
7
1
2

9
2
3
0
9
5
7
0
9
9
6
8
0
0
0
1
8
9

9
5
9
3
3
8
7
5
1
0
4
6
8
9
9
4
9
1

2
4
4
4
5
3
7
3
6
1
0
5
6
6
8
1
0
1

1
4
0
6
8
9
8
9
7
9
2
5
8
6
4
9
6
5
3

2
7
5
4
4
7
6
3
7
2
1
4
9
3
4
4
9
0

2
2
8
5
7
3
4
2
3
3
2
3
0
7
7
0
8
4
5

1
2
6
5
6
3
9
3
1
9
2
1
6
6
7
8
1
4
9

6
9
7
9
9
1
2
4
9
3
9
5
2
9
6
2
0
3

1
7
0
4
1
3
1
8
6
4
8
7
9
0
1
9
3
6
5

1
6
8
5
1
4
6
5
1
8
1
3
7
7
7
3
2
8
3

1
0
6
0
8
5
1
4
3
7
9
8
3
4
6
1
8
7
4

1
7
5
5
0
8
8
6
8
3
3
9
2
4
6
0
3
9
0

2
0
9
3
2
0
5
6
4
8
1
3
3
5
5
8
7
5
9

3
2
9
6
3
7
4
7
9
5
4
8
4
1
9
0
0
1

3
0
1
4
2
8
0
0
8
4
4
5
5
2
5
9
0
7

1
5
1
3
5
6
6
3
0
6
3
0
1
4
2
2
2
6
4

6
7
0
6
2
6
9
8
1
7
0
1
4
9
6
9
1
6

2
1
2
5
1
0
3
3
0
7
6
8
9
5
2
0
6
0
6

8
7
5
1
4
4
5
8
7
0
3
6
2
2
8
5
7
6

3
6
5
5
3
9
5
5
9
4
0
3
4
6
3
5
1
3

5
9
5
4
9
4
0
9
0
9
2
0
3
5
1
3
2
0

3
9
6
2
9
4
8
8
2
8
4
5
8
5
3
6
9
2

7
3
3
9
0
8
5
3
8
7
4
1
4
1
5
2
4
0

5
5
4
2
0
3
1
7
5
2
2
3
3
6
3
0
3
4

⎞ ⎟ ⎟ ⎠
,

T
o
e

=

⎛ ⎜ ⎜ ⎝

1
7
8
5
7
6
7
7
4
8
3
8
4
7
1
3
9
2
0
1
1
7
6
2
0
2
7
0
5
9
0
0
4
3
3
2
4
1

2
0
0
2
1
0
0
4
1
1
5
4
2
3
8
6
9
7
3

3
9
1
6
1
4
2
6
1
6
9
7
2
7
5
9
7
4

3
6
0
7
9
5
5
8
5
8
9
8
4
4
0

2
6
5
7
2
0

1
9
1
1
2
0
6
4
8
9
0
2
5
0
3
6
2
8
2
2
2
8
8
8
0
0
0
6
1
1
8
1
6
2
0
7
7
4

2
0
2
2
5
3
8
4
6
7
2
2
0
8
0
6
5
7
0

1
5
2
8
9
7
3
1
0
7
9
8
5
3
4
2
4
9
6

1
3
2
9
4
1
7
0
6
8
3
5
1
1
5
3
6
1
9

9
7
4
1
6
9
2
6
4
0
0
8
1
6
4
0

1
0
1
7
9
7
5
2
3
1
5
8
7
9
3
5
9
0
7

4
5
8
4
5
5
4
6
9
8
6
0
7
0
8
5
4
0

1
5
0
9
6
1
1
0
6
9
4
8
9
4
3
1
7
0
3

1
4
3
1
3
8
2
4
5
3
2
1
8
9
9
9
7
6
3

1
6
0
3
0
6
2
9
3
4
9
5
7
2
7
0
2
2
5

1
1
5
4
3
9
5
1
6
1
4
1
4
0
7
3
3
6
5

9
6
7
9
5
5
8
6
3
0
4
4
1
3
9
6
7
4

6
0
6
6
7
8
7
4
1
8
0
0
9
3
6
6
1
2

2
1
5
2
3
1
2
1
1
9
3
2
9
4
5
8
7
1
2

1
9
2
2
9
1
4
0
7
8
8
0
5
3
3
1
4
2
2

2
2
4
8
1
6
8
5
9
8
5
8
7
3
5
6
3
4

1
9
0
5
4
5
0
0
6
0
4
2
4
7
2
7
8
1
3

1
6
0
4
5
9
5
8
8
0
1
0
7
5
2
1
2
8
5
1
8
6
8
0
1
4
2
0
5
5
8
8
4
8
0
9
8
8

2
1
3
6
4
2
3
1
9
4
6
9
3
6
8
3
4
7
6

1
1
6
3
0
3
5
5
8
4
9
3
0
9
2
1
2
0
0

1
1
6
9
1
0
4
1
3
3
9
4
0
2
8
5
3
8
1

3
9
8
9
5
2
8
9
8
7
8
4
9
0
4
6
8
2

2
1
7
4
3
8
9
7
4
9
0
7
2
7
4
0
6
1
4
1
8
9
0
6
3
8
1
2
6
8
2
5
7
9
7
9
8
4

1
2
6
0
3
3
0
3
5
7
6
0
6
8
5
1
5
4
0

1
1
3
4
3
8
9
3
0
7
7
4
7
6
5
3
1
2
2

1
1
8
0
1
8
7
0
0
0
3
2
9
4
9
2
2
0
0

1
2
4
5
3
5
6
2
3
8
0
8
0
5
6
5
9
6
2

⎞ ⎟ ⎟ ⎠
,

T
o
o

=

⎛ ⎜ ⎜ ⎝

6
4
8
4
6
7
8
2
0
9
8
9
1
9
3
4
8
6

2
2
9
3
0
2
9
8
9
0
1
2
1
3
3
5
5
7

1
5
7
3
7
5
4
0
7
3
9
8
2
8
6
7
1
6
8

1
5
0
6
6
0
6
3
1
4
4
5
3
5
8
4
2
3
8

2
2
1
5
0
3
8
3
7
1
6
6
8
1
5
9
8
1
9

2
3
0
5
8
4
3
0
7
7
4
6
1
3
2
6
7
0
3

1
6
9
4
0
8
2
6
6
6
6
1
8
2
5
7
0
3
1
1
7
7
9
9
6
0
5
3
0
2
2
7
7
3
7
4
0
6

2
0
7
6
1
8
8
6
7
0
6
4
8
9
4
9
0
1
5

6
8
6
0
1
0
3
3
2
5
6
9
0
3
5
5
7

1
0
7
8
3
3
0
8
1
7
0
7
8
1
5
9
3
0
4

3
5
3
0
6
1
0
6
1
5
5
7
2
3
1
4
1
8

2
3
0
5
1
1
6
7
3
5
6
0
6
7
0
2
2
1
0
1
3
6
4
9
0
2
8
9
6
2
4
3
0
8
4
3
3
4

6
9
3
7
0
0
0
3
4
9
7
2
0
9
1
3
8
5

2
1
5
0
7
3
2
3
6
5
7
4
8
5
9
0
3
8
0

2
0
4
7
0
2
4
2
3
4
4
5
4
9
0
2
9
3
8

4
0
4
5
4
3
0
7
8
2
3
7
4
8
8
3
6
2

1
3
9
3
2
1
0
2
1
7
9
0
4
0
4
4
0
8
3

4
7
5
8
9
7
4
4
7
8
5
7
6
3
5
5
6
5

1
9
6
4
4
1
4
6
7
8
9
5
8
2
1
9
5
6
1

1
7
6
4
7
8
3
2
5
1
1
2
6
2
8
3
7
1
3

1
7
0
6
1
0
8
0
0
6
6
8
4
6
2
9
5
3

2
8
6
0
1
4
4
5
0
9
0
0
2
6
3
4
9
7

1
0
0
4
4
2
0
8
8
7
4
2
6
7
8
7
8
2
6
2
1
3
2
5
1
8
6
0
9
9
4
3
8
7
1
8
1
9

1
3
2
8
9
6
5
3
7
0
6
2
2
6
1
7
2
1
2

2
0
3
2
3
8
5
8
2
6
9
3
8
9
5
9
0
0
1

1
1
1
1
9
2
1
6
3
1
0
0
7
0
5
3
7
4

1
1
9
1
2
9
2
9
0
9
7
1
2
5
4
0
8
6
8

1
9
5
6
7
0
5
7
0
9
9
6
5
0
7
2
7
3
8

2
6
0
7
5
1
6
1
0
6
3
2
9
4
7
4
2
5

2
2
8
7
2
7
9
5
9
1
5
9
4
2
2
8
8
5
7

1
2
6
6
7
4
7
2
8
2
5
0
2
0
7
0
7
1
1

8
3
5
2
4
0
4
2
1
6
1
9
6
6
3
5
8
9

6
4
8
8
8
6
2
6
9
8
1
4
1
9
4
3
7
0

⎞ ⎟ ⎟ ⎠
.

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks 123

References

1. Albrecht, M.R., et al.: Feistel structures for MPC, and more. In: Sako, K., Schnei-
der, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 151–171.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0 8

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

3. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Trans.
Symm. Cryptol. 2020(3), 1–45 (2020). https://doi.org/10.13154/tosc.v2020.i3.1-
45

4. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.:
Cryptanalysis of SP networks with partial non-linear layers. In: Oswald, E., Fis-
chlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 315–342. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46800-5 13

5. Berger, T.P., Francq, J., Minier, M., Thomas, G.: Extended generalized Feistel
networks using matrix representation to propose a new lightweight block cipher:
Lilliput. IEEE Trans. Comput. 65(7), 2074–2089 (2016). https://doi.org/10.1109/
TC.2015.2468218

6. Bhaumik, R., List, E., Nandi, M.: ZCZ – achieving n-bit SPRP security with
a minimal number of tweakable-block-cipher calls. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 336–366. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 12

7. Cauchois, V., Gomez, C., Thomas, G.: General diffusion analysis: how to find
optimal permutations for generalized type-II Feistel schemes. IACR Trans. Symm.
Cryptol. 2019(1), 264–301 (2019). https://doi.org/10.13154/tosc.v2019.i1.264-301

8. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

9. Cogliati, B., et al.: Provable security of (tweakable) block ciphers based
on substitution-permutation networks. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 722–753. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 24

10. Derbez, P., Fouque, P., Lambin, B., Mollimard, V.: Efficient search for optimal
diffusion layers of generalized Feistel networks. IACR Trans. Symmetric Cryptol.
2019(2), 218–240 (2019). https://doi.org/10.13154/tosc.v2019.i2.218-240

11. Dodis, Y., Katz, J., Steinberger, J., Thiruvengadam, A., Zhang, Z.: Provable
security of substitution-permutation networks. Cryptology ePrint Archive, Report
2017/016 (2017). https://eprint.iacr.org/2017/016

12. Dodis, Y., Stam, M., Steinberger, J., Liu, T.: Indifferentiability of confusion-
diffusion networks. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 679–704. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 24

13. Gao, Y., Guo, C.: Provable security Of HADES structure. In: Beresford, A.R.,
Patra, A., Bellini, E. (eds.) CANS 2022. LNCS, vol. 13641, pp. 258–276. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-20974-1 13

14. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES

https://doi.org/10.1007/978-3-030-29962-0_8
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.1007/978-3-662-46800-5_13
https://doi.org/10.1109/TC.2015.2468218
https://doi.org/10.1109/TC.2015.2468218
https://doi.org/10.1007/978-3-030-03326-2_12
https://doi.org/10.13154/tosc.v2019.i1.264-301
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-319-96884-1_24
https://doi.org/10.1007/978-3-319-96884-1_24
https://doi.org/10.13154/tosc.v2019.i2.218-240
https://eprint.iacr.org/2017/016
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-031-20974-1_13

124 Y. Zhao et al.

2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1 22

15. Grassi, L., Hao, Y., Rechberger, C., Schofnegger, M., Walch, R., Wang, Q.:
Horst meets fluid-SPN: griffin for zero-knowledge applications. Cryptology ePrint
Archive, Paper 2022/403 (2022). https://eprint.iacr.org/2022/403. To appear at
CRYPTO 2023

16. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger,
M.: Starkad and Poseidon: new hash functions for zero knowledge proof systems.
Cryptology ePrint Archive, Report 2019/458 (2019). https://eprint.iacr.org/2019/
458

17. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
A new hash function for zero-knowledge proof systems. In: USENIX Security Sym-
posium (2021)

18. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a
generalization of substitution-permutation networks: the HADES design strategy.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 674–
704. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 23

19. Guo, C., Standaert, F.X., Wang, W., Wang, X., Yu, Y.: Provable security of SP
networks with partial non-linear layers. In: FSE 2021, pp. 353–388 (2021). https://
doi.org/10.46586/tosc.v2021.i2.353-388

20. Halevi, S.: EME*: extending EME to handle arbitrary-length messages with asso-
ciated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 315–327. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30556-9 25

21. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 28

22. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24660-2 23

23. Hoang, V.T., Rogaway, P.: On generalized Feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 33

24. Iwata, T., Kurosawa, K.: On the pseudorandomness of the AES finalists - RC6
and serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 231–243. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7 16

25. Lacan, J., Fimes, J.: Systematic MDS erasure codes based on Vandermonde matri-
ces. IEEE Commun. Lett. 8, 570–572 (2004)

26. Nakamichi, R., Iwata, T.: Iterative block ciphers from tweakable block ciphers with
long tweaks. IACR Trans. Symm. Cryptol. 2019(4), 54–80 (2019). https://doi.org/
10.13154/tosc.v2019.i4.54-80

27. Nakaya, K., Iwata, T.: Generalized Feistel structures based on tweakable block
ciphers. IACR Trans. Symmetric Cryptol. 2022(4), 24–91 (2022). https://doi.org/
10.46586/tosc.v2022.i4.24-91

28. Nandi, M.: XLS is not a strong pseudorandom permutation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 478–490. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45611-8 25

29. Nandi, M.: On the optimality of non-linear computations of length-preserving
encryption schemes. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,

https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://doi.org/10.1007/978-3-030-45724-2_23
https://doi.org/10.46586/tosc.v2021.i2.353-388
https://doi.org/10.46586/tosc.v2021.i2.353-388
https://doi.org/10.1007/978-3-540-30556-9_25
https://doi.org/10.1007/978-3-540-30556-9_25
https://doi.org/10.1007/978-3-540-45146-4_28
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-642-14623-7_33
https://doi.org/10.1007/3-540-44706-7_16
https://doi.org/10.1007/3-540-44706-7_16
https://doi.org/10.13154/tosc.v2019.i4.54-80
https://doi.org/10.13154/tosc.v2019.i4.54-80
https://doi.org/10.46586/tosc.v2022.i4.24-91
https://doi.org/10.46586/tosc.v2022.i4.24-91
https://doi.org/10.1007/978-3-662-45611-8_25

Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks 125

vol. 9453, pp. 113–133. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3 5

30. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

31. Ristenpart, T., Rogaway, P.: How to enrich the message space of a cipher. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 101–118. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74619-5 7

32. Suzaki, T., Minematsu, K.: Improving the generalized Feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13858-4 2

33. Wu, S., Wang, M.: Automatic search of truncated impossible differentials for word-
oriented block ciphers. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 283–302. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34931-7 17

34. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21554-4 19

35. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, p. 10.1007/0-387-34805-0 42-480. Springer, New
York (1990). https://doi.org/10.1007/0-387-34805-0 42

https://doi.org/10.1007/978-3-662-48800-3_5
https://doi.org/10.1007/978-3-662-48800-3_5
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-540-74619-5_7
https://doi.org/10.1007/978-3-642-13858-4_2
https://doi.org/10.1007/978-3-642-34931-7_17
https://doi.org/10.1007/978-3-642-34931-7_17
https://doi.org/10.1007/978-3-642-21554-4_19
https://doi.org/10.1007/0-387-34805-0_42

Hardness of Learning AES
with Gradient-Based Methods

Kanat Alimanov1 and Zhenisbek Assylbekov2(B)

1 Department of Computer Science, Nazarbayev University, Astana, Kazakhstan
2 Department of Mathematical Sciences, Purdue University Fort Wayne, Fort Wayne,

IN, USA
zassylbe@pfw.edu

Abstract. We show the approximate pairwise orthogonality of a class
of functions formed by a single AES output bit under the assumption
that all of its round keys except the initial one are independent. This
result implies the hardness of learning AES encryption (and decryption)
with gradient-based methods. The proof relies on the Boas-Bellman type
of inequality in inner-product spaces.

Keywords: Advanced Encryption Standard · Block Ciphers ·
Gradient-based Learning

1 Introduction

The Advanced Encryption Standard (AES) is a widely used encryption algo-
rithm in modern internet communication protocols such as TLS 1.3. However,
its security is not based on any known hard mathematical problem. On the con-
trary, this algorithm is a heuristic proposed by Rijmen and Daemen [1] in the
late 90 s. It is noteworthy that since then no one has managed to build a suc-
cessful attack on the AES. State-of-the-art attacks are only marginally better
than brute force: for example, a biclique attack of Tao and Wu [8] requires 2126

operations to recover a 128-bit AES key (compared to 2128 operations with a
brute force attack).

A recent work by Liu et al. [5] shows that under the assumption of indepen-
dence of keys at each round, the outputs of AES for distinct inputs are statis-
tically close to pairwise independence, making it resistant to attacks based on
differential and linear cryptanalysis. Our work shows that this result is also suf-
ficient for establishing the resistance of AES to gradient-based machine learning
attacks.

Related Work. The main source of inspiration for us is the work of Shalev-
Shwartz et al. [6], which, among other things, shows the intractability of learn-
ing a class of orthogonal functions using gradient-based methods. We emphasize
that their result is not directly applicable to the class of functions that we con-
sider in this paper—a single bit of AES output—since these functions are not

Z. Assylbekov—Work done while at Nazarbayev University.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 126–133, 2023.
https://doi.org/10.1007/978-981-99-7563-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_6&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_6

Hardness of Learning AES with Gradient-Based Methods 127

necessarily orthogonal with respect to a uniform distribution over the domain.
However, under certain assumptions, they are approximately pairwise orthog-
onal (Lemma 2). In addition, our adaptation of the proof method by Shalev-
Shwartz et al. [6] using the Boas-Bellman type inequality [2] deserves special
attention, as it allows us to extend the failure of gradient-based learning to a
wider class of approximately orthogonal functions.

It should be noted that the relationship between orthogonal functions and
hardness of learning is not new and has been established in the context of statisti-
cal query (SQ) learning model of Kearns [4]. It is noteworthy that gradient-based
learning with an approximate gradient oracle can be implemented through the
SQ algorithm [3], which means that our result on the approximate orthogonality
of the considered class of functions (Lemma 2) immediately gives the hardness
of learning this class with gradient-based methods. Nevertheless, we believe that
the proof of this result directly (without resorting to the SQ proxy) deserves
attention, since it allows us to establish that the low information content of the
gradient is the very reason why gradient learning fails.

2 Preliminaries

Notation. Bold-faced lowercase letters (x) denote vectors, bold-faced uppercase
letters (X) denote random vectors, regular lowercase letters (x) denote scalars,
regular uppercase letters (X) denote random variables. ‖·‖ denotes the Euclidean
norm: ‖x‖ :=

√
x�x. U(X) denotes uniform distribution over X . When p is a

prime or prime power, let Fp denote the finite field of size p, and ⊕ is an addition
operation in such a field. We will use F2 and {0, 1} interchangeably. A sequence
of elements ai, ai+1, . . . , aj is denoted by ai:j . For two square-integrable functions
f, g on a Boolean hypercube {0, 1}n, let 〈f, g〉L2 := EX∼{0,1}n [f(X) · g(X)] and
‖f‖L2 :=

√〈f, f〉.

2.1 Advanced Encryption Standard

We give a brief overview of the AES algorithm. It can be considered as a special
case of a substitution-permutation network (SPN), which in turn is a special
case of a key alternating cipher (KAC), see Fig. 1. A KAC is parameterized by
a block size n, number of rounds r, and a fixed permutation π : F2n → F2n .
A KAC is a family of functions indexed by r + 1 sub-keys k0,k1, . . . ,kr, and
defined recursively as follows

F
(0)
k0

(x) = x ⊕ k0, (1)

F
(i)
k0:i

(x) = π(F (i−1)
k0:i−1

(x)) ⊕ ki.

The family of functions is F := {F
(r)
k0:r

(x) : ki ∈ F
n
2}. This can be naturally

extended to have different permutations πi in each round as depicted in Fig. 1.
An SPN can be seen as a special case of a KAC, where n = k · b, and the
permutation π is obtained from an S-box S : F2b → F2b and a linear mixing

128 K. Alimanov and Z. Assylbekov

Fig. 1. KAC, SPN, and AES. Source: https://liutianren.com/static/slides/KAC.pdf.
Reproduced with permission.

layer, described by a matrix M ∈ F
k×k
2b

. In particular, π splits its input x into k b-
bit blocks x1, . . . , xk (treated as elements of F2b), and computes first y� = S(x�)
for each � ∈ {1, . . . , k}, and then outputs M · (y1, . . . , yk). Finally, AES is a
special case of SPN with the block size n = 128, k = 16, and b = 8. The S-box
is instantiated by S(x) = A(x28−2), where x 	→ x28−2 is the patched inverse
function over F28 , A is an invertible affine function over F

8
2.

2.2 Statistical Properties of AES

For the sake of brevity, Fk(x) denotes the output of AES with an initial key k
on input x. The rest of the round keys are assumed to be sampled uniformly
at random from {0, 1}n, i.e. K1, . . . ,Kr

iid∼ U({0, 1}n).1 Under this assumption,
Liu et al. [5] proved the following

Theorem 1 (Liu et al. [5]). For a pair of distinct inputs x,x′ ∈ {0, 1}n, and
a uniformly sampled key K ∼ U({0, 1}n), and given sufficiently large r, the
distribution of the corresponding pair of outputs [FK(x), FK(x′)] can be made
arbitrarily close in total variation distance to the uniform distribution of two
random distinct n-bit strings [U,U′]. That is, for any ε > 0, there exists r ∈ N

such that

1
2

∑

y,y′

∣∣∣∣PrK
[FK(x) = y, FK′(x) = y′] − Pr

U,U′
[U = y,U′ = y′]

∣∣∣∣ ≤ ε.

1 This assumption is motivated by pseudo-randomness of the scheduler used in the
real AES.

https://liutianren.com/static/slides/KAC.pdf

Hardness of Learning AES with Gradient-Based Methods 129

We can use the symmetry between the initial key and input at the 0th round of
AES (1) to prove the following

Lemma 1. For a pair of distinct keys k,k′ ∈ {0, 1}n, and a uniformly sampled
input X ∼ U({0, 1}n), and any ε > 0, the distribution of the corresponding pair
[Fk(X), Fk′(X)] can be made ε-close to the distribution of two random distinct
n-bit strings [U,U′] given sufficiently large r, i.e.

1
2

∑

y,y′

∣∣∣∣PrX
[Fk(X) = y, Fk′(X) = y′] − Pr

U,U′
[U = y,U′ = y′]

∣∣∣∣ ≤ ε.

Proof. This follows from Theorem 1 and the chain of equalities:

Pr
K
[FK(k) = y, FK(k′) = y′]

= Pr
K
[F (r−1)

K1:r
(π(k ⊕ K)) = y, F

(r−1)
K1:r

(π(k′ ⊕ K)) = y′]

= Pr
K
[Fk(K) = y, Fk′(K) = y′] = Pr

X
[Fk(X) = y, Fk′(X) = y′].

�
Let hk(x) be defined as follows:

hk(x) =

{
+1, if the first bit of Fk(x) equals to 1,
−1, otherwise

(2)

The next lemma establishes the approximate pairwise orthogonality of the func-
tions {hk(x) | k ∈ {0, 1}n}.

Lemma 2. For any pair of distinct keys k,k′ ∈ {0, 1}n, and any ε > 0 there
exists r ∈ N such that

∣∣∣E
X
[hk(X)hk′(X)]

∣∣∣ ≤ 2ε +
1

2n − 1
.

Proof. Let U, U′ be sampled uniformly at random from {0, 1}n without replace-
ment. Then the first bits of U and U′ (denoted as U1 and U ′

1 respectively) differ
with probability

Pr[U1 �= U ′
1] =

2 · 2n−1 · 2n−1

2n · (2n − 1)
=

2n−1

2n − 1
.

From this and Lemma 1, we have
∣∣∣PrX[hk(X) �= hk′(X)] − 2n−1

2n−1

∣∣∣ ≤ ε. Thus,
∣∣∣E
X
[hk(X)hk′(X)]

∣∣∣ =
∣∣∣−1 · Pr

X
[hk(X) �= hk′(X)] + 1 · Pr

X
[hk(X) = hk′(X)]

∣∣∣

=
∣∣
∣∣−1 ·

(
Pr
X
[hk(X) �= hk′(X)] − 2n−1

2n − 1

)
+ (−1) · 2n−1

2n − 1

+1 ·
(
Pr
X
[hk(X) = hk(X)] −

(
1 − 2n−1

2n − 1

))
+ 1 ·

(
1 − 2n−1

2n − 1

)∣∣∣∣

≤ 2ε +
∣∣∣
∣1 − 2n

2n − 1

∣∣∣
∣ = 2ε +

1
2n − 1

.

�

130 K. Alimanov and Z. Assylbekov

We will also need the following generalization of Bessel’s inequality.

Lemma 3 (Boas-Bellman type inequality). Let h1, . . . , hd, g be elements
of an inner product space. Then

d∑

i=1

〈hi, g〉2 ≤ ‖g‖2
(
max

i
‖hi‖2 + (d − 1)max

i�=j
|〈hi, hj〉|

)
.

Proof. Proof can be found in the work of Dragomir [2].

3 Main Result

Suppose we want to learn the first bit of AES output using a gradient-based
method (e.g., deep learning). For this, consider the stochastic optimization prob-
lem associated with learning a target function hk defined by (2),

Lk(w) := E
X
[�(pw(X), hk(X))] → min

w
, (3)

where � is a loss function, X are the random inputs (from {0, 1}n), and pw is
some predictor parametrized by a parameter vector w (e.g. a neural network of
a certain architecture). We will assume that Lk(w) is differentiable w.r.t. w. We
are interested in studying the variance of the gradient of LK when K is drawn
uniformly at random from {0, 1}n:

Var[∇LK(w)] := E
K

‖∇LK(w) − E
K′

∇LK′(w)‖2 (4)

The following theorem bounds this variance term.

Theorem 2. Suppose that pw(x) is differentiable w.r.t. w, and for some scalar
G(w), satisfies EX

[∥
∥ ∂

∂wpw(X)
∥
∥2

]
≤ G(w)2. Let the loss function � in (3) be

either the square loss �(ŷ, y) = 1
2 (ŷ − y)2 or a classification loss of the form

�(ŷ, y) = s(ŷ ·y) for some 1-Lipschitz function s. Then for any ε > 0 there exists
r ∈ N such that

Var[∇LK(w)] ≤
(

1
2n−1

+ 2ε
)

· G(w)2.

Proof. Define the vector-valued function

g(x) =
∂

∂w
pw(x),

Hardness of Learning AES with Gradient-Based Methods 131

and let g(x) = (g1(x), g2(x), . . . , gd(x)) for real-valued functions g1, . . . , gd. Then
for the squared loss, we have EK[∇LK(w)] = EX[pw(X)g(X)], and

Var[∇LK(w)] = E
K

∥∥∥∇FK(w) − E
X
[pw(X)g(X)]

∥∥∥
2

= E
K

∥
∥∥E
X
[(pw(X) − hK(X))g(X)] − E

X
[pw(X)g(X)]

∥
∥∥
2

= E
K

∥
∥∥E
X
[hK(X)g(X)]

∥
∥∥
2

= E
K

d∑

j=1

(
E
X
[hK(X)gj(X)]

)2

= E
K

d∑

j=1

〈hK, gj〉2L2

=
d∑

j=1

⎛

⎝ 1
2n

∑

k∈{0,1}n

〈hk, gj〉2L2

⎞

⎠
(∗)
≤

d∑

j=1

1
2n

‖gj‖2
(
1 + (2n − 1)

(
2ε +

1
2n − 1

))

=
2 + 2ε(2n − 1)

2n

d∑

j=1

‖gj‖2 ≤
(

1
2n−1

+ 2ε
)
E
X

‖g(X)‖2 ≤
(

1
2n−1

+ 2ε
)

G(w)2,

where (∗) follows from Lemmas 2 and 3. The case of the classification loss is
handled analogously. �

Since ε can be made arbitrarily small, Theorem 2 says that the gradient of
Lk(w) at any point w is extremely concentrated around a fixed point independent
of the key k. Using this one can show [7, Theorem 10] that a gradient-based
method will fail in returning a reasonable predictor of the first bit of AES output
unless the number of iterations is exponentially large in n (length of the key).
This provides strong evidence that gradient-based methods cannot learn even a
single bit of AES in poly(n) time. The result holds regardless of which class of
predictors we use (e.g. arbitrarily complex neural networks)—the problem lies
in using gradient-based method to train them.

Finally, we note that due to the one-to-one nature and symmetry of AES,
we can replace Fk with its inverse F−1

k in all our reasoning. This immediately
implies the impossibility of learning even one bit of the inverse AES, and hence
the entire AES decryption, in polynomial time using gradient-based methods.

4 Experiments

To validate the predictions of our theory, we generated a training sample as
follows. We sampled x1, ...,xm from {0, 1}n uniformly at random. Next, we took
a random key k and computed the ciphertexts Fk(x1), . . . , Fk(xm). We used the
set {(Fk(x1), x1

1), . . . , (Fk(xm), x1
m)} for training, where x1

i denotes the first bit
of i-th plaintext. The test sample was generated in the same way. The training
and test sample sizes are 3.3M and 0.4M examples, respectively. We trained
fully connected feedforward neural networks of depths 1–32 and evaluated their

2 We used dropout 0.5 after each hidden layer, ReLU as the activation function, sig-
moid as the output activation, and cross-entropy loss.

132 K. Alimanov and Z. Assylbekov

accuracies on the test set. The results of this experiment are shown in Table 1.
Even though some architectures show some ability to fit the training set, this
does not help them to generalize to new data, because in all cases the test
accuracy is 0.5, which corresponds to randomly guessing the correct label by
flipping a fair coin.

Table 1. The results of the experiments.

Depth Architecture Train Acc Test Acc

1 128 → 2048 → 1 0.61 0.50
2 128 → 256 → 164 → 1 0.50 0.50
3 128 → 256 → 128 → 32 → 1 0.52 0.50

In order to visualize the hidden representations learned by the neural network
with 1 hidden layer, we projected them from the hidden layer onto a 2D plane
through the PCA. The results are shown in Fig. 2. As we can see, the neural
network fails to separate the classes on both training and test samples. This
supports implications from our Theorem 2.

Fig. 2. PCA projections of representations from the 1-hidden-layer neural network for
subsamples of size 600 from the training (left) and test sets.

5 Conclusion

Inspired by the recent result of Liu et al. [5] on statistical closeness of AES to
pairwise independence under randomness of all round keys, we show closeness
of AES to pairwise independence under randomness of the input and all round
keys except the initial one. Based on this, we prove the resistance of AES against
gradient-based machine learning attacks that aim to learn AES encryption (or
decryption) from plaintext–ciphertext pairs (without recovering the key). Our
proof is elementary and uses only college-level mathematics.

Hardness of Learning AES with Gradient-Based Methods 133

Acknowledgements. This work was supported by the Program of Targeted Funding
“Economy of the Future” #0054/PCF-NS-19.

References

1. Daemen, J., Rijmen, V.: The block cipher Rijndael. In: Quisquater, J.-J., Schneier,
B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 277–284. Springer, Heidelberg (2000).
https://doi.org/10.1007/10721064_26

2. Dragomir, S.S.: On the boas-bellman inequality in inner product spaces. Bull. Aust.
Math. Soc. 69(2), 217–225 (2004)

3. Feldman, V., Guzmán, C., Vempala, S.S.: Statistical query algorithms for mean
vector estimation and stochastic convex optimization. In: Klein, P.N. (ed.) Proceed-
ings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, 16–19 January 2017, pp. 1265–
1277. SIAM (2017)

4. Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. In: Kosaraju,
S.R., Johnson, D.S., Aggarwal, A. (eds.) Proceedings of the Twenty-Fifth Annual
ACM Symposium on Theory of Computing, 16–18 May 1993, San Diego, CA, USA,
pp. 392–401. ACM (1993)

5. Liu, T., Tessaro, S., Vaikuntanathan, V.: The t-wise independence of substitution-
permutation networks. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV.
LNCS, vol. 12828, pp. 454–483. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84259-8_16

6. Shalev-Shwartz, S., Shamir, O., Shammah, S.: Failures of gradient-based deep learn-
ing. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August
2017. Proceedings of Machine Learning Research, vol. 70, pp. 3067–3075. PMLR
(2017)

7. Shamir, O.: Distribution-specific hardness of learning neural networks. J. Mach.
Learn. Res. 19, 32:1–32:29 (2018)

8. Tao, B., Wu, H.: Improving the biclique cryptanalysis of AES. In: Foo, E., Stebila,
D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 39–56. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19962-7_3

https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/978-3-030-84259-8_16
https://doi.org/10.1007/978-3-030-84259-8_16
https://doi.org/10.1007/978-3-319-19962-7_3
https://doi.org/10.1007/978-3-319-19962-7_3

Security

Privacy-Preserving Digital Vaccine
Passport

Thai Duong1, Jiahui Gao2, Duong Hieu Phan3, and Ni Trieu2(B)

1 Google LLC, Mountain View, USA
thai@calif.io

2 Arizona State University, Tempe, USA
{jgao76,nitrieu}@asu.edu

3 LTCI, Telecom Paris, Institut Polytechnique de Paris, Paris, France
hieu.phan@telecom-paris.fr

Abstract. The global lockdown imposed during the Covid-19 pandemic
has resulted in significant social and economic challenges. In an effort to
reopen economies and simultaneously control the spread of the disease,
the implementation of contact tracing and digital vaccine passport tech-
nologies has been introduced. While contact tracing methods have been
extensively studied and scrutinized for security concerns through numer-
ous publications, vaccine passports have not received the same level of
attention in terms of defining the problems they address, establishing
security requirements, or developing efficient systems. Many of the exist-
ing methods employed currently suffer from privacy issues.

This work introduces PPass, an advanced digital vaccine passport sys-
tem that prioritizes user privacy. We begin by outlining the essential
security requirements for an ideal vaccine passport system. To address
these requirements, we present two efficient constructions that enable
PPass to function effectively across various environments while uphold-
ing user privacy. By estimating its performance, we demonstrate the
practical feasibility of PPass. Our findings suggest that PPass can effi-
ciently verify a passenger’s vaccine passport in just 7 milliseconds, with
a modest bandwidth requirement of 480 KB.

1 Introduction

As we navigate into the third year of the unprecedented global disruptions caused
by the COVID-19 pandemic, there is a noticeable improvement in our circum-
stances. The accelerated development and widespread distribution of vaccines
have played a vital role in expediting the pandemic’s resolution and enhancing
our preparedness for future outbreaks. However, it is crucial to recognize that
privacy is equally significant in the context of vaccine passports as it is in con-
tact tracing. Surprisingly, despite the multitude of proposals introduced by the
scientific community last year for contact tracing, vaccine passports have not
received the same level of attention when it comes to defining the problems they
aim to address, establishing security requirements, or developing efficient sys-
tems. Consequently, many of the current methods employed in vaccine passport
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023

J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 137–161, 2023.
https://doi.org/10.1007/978-981-99-7563-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_7&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_7

138 T. Duong et al.

implementation suffer from privacy issues. In this study, we specifically focus on
the privacy implications of a vaccine passport rollout (the term “vaccine pass-
port” is used here to emphasize the privacy concern, but the discussion applies
to all types of digital certificates).

It is important to acknowledge that the incentives for the general public to
adopt a vaccine passport are considerably higher compared to those for using a
contact tracing app. The use of a vaccine passport directly and immediately ben-
efits the passport holder by allowing them to resume a normal life. On the other
hand, the purpose of a contact tracing application primarily revolves around
reducing the circulation of the virus in a more abstract manner. This disparity
may explain why people tend to be more skeptical about the privacy and effec-
tiveness of contact tracing while being more supportive of vaccine passports.

A survey conducted by Ipsos [17] further sheds light on public sentiment. The
survey, which encompassed over 21,000 individuals across 28 countries between
March 26 and April 9, 2021, revealed that 78% of respondents supported the
requirement of COVID-19 vaccine passports for travelers. Interestingly, the same
survey found that, on average across the 28 countries, only 50% of individuals felt
comfortable with their government accessing their personal health information,
with the number dropping to 40% in the case of private companies. Meanwhile,
amidst the evolving landscape, several governments have made the decision to
implement vaccine passports. Notably, we examine instances within countries
known for their commitment to privacy:

– European leaders have reached an agreement to expedite the implementation
of an EU-wide Digital Green Certificate as a matter of utmost importance.

– Some European countries, including Denmark, Sweden, and Iceland, have
taken the initiative to launch their own vaccine passports. Denmark, for
instance, has introduced the “Coronapas” vaccine passport domestically, with
potential plans to utilize it for international travel purposes as well.

– Estonia has introduced the VaccineGuard, a distributed data exchange plat-
form, to issue vaccination certificates in adherence to the EU’s green certifi-
cate proposal. Additionally, in collaboration with the World Health Organi-
zation (WHO), Estonia has been involved in the creation of a “smart yellow
card,” which serves as a global vaccine certificate.

– In the United Kingdom, the primary National Health Service (NHS) has
undergone updates to facilitate the presentation of COVID-19 vaccination or
test results by the public when traveling or attending public events.

Essentially, the aforementioned solutions involve issuing a certificate to indi-
viduals after they have been vaccinated. This certificate is signed by the relevant
authority and can be utilized for various purposes. In the case of the EU-wide
Digital Green Certificate [1], it is specified that the certificate incorporates a QR
code that is protected by a digital signature to prevent counterfeiting. During
the verification process, the QR code is scanned and the signature is validated.
To safeguard user privacy, the certificate contains only a limited set of infor-
mation that cannot be retained by the visited countries, and all health data
remains under the jurisdiction of the member state that issued the certificate.

Privacy-Preserving Digital Vaccine Passport 139

However, it is important to note that this approach necessitates placing trust
in the issuing authority. If the QR code is compromised or marked, it becomes
possible to trace the movements of an individual. Moreover, even if the QR code
is solely scanned by a machine, a security breach could result in the linkage of an
individual’s entire movement history. The reliance on trust in the authority and
the potential linkability of data raise significant privacy concerns. Therefore, it
is imperative to urgently address privacy concerns through a privacy-by-design
approach rather than relying solely on trust. This entails proposing methods
that offer the highest level of privacy protection.

1.1 Our Contribution

In this work, we present PPass, an innovative solution for safeguarding privacy
in digital vaccine passports. Our system combines robust security measures with
low resource requirements, ensuring an efficient and cost-effective approach. To
enable PPass, we introduce two cryptographic constructions that function seam-
lessly both online and offline during the passport verification process. These con-
structions are specifically designed to optimize performance on resource-limited
devices, such as mobile phones, while accommodating a substantial user base.
Moreover, our proposed constructions fulfill all security and privacy objectives,
which we will elaborate on in subsequent discussions. In summary, our contribu-
tions can be summarized as follows.

1. Problem Definition and Desirable Properties: We provide a formal definition
of the digital vaccine passport problem and outline the essential security and
performance requirements for an ideal scheme. To the best of our knowledge,
this work represents the first formal study of this problem.

2. Efficient Constructions for PPass: Leveraging an untrusted cloud server, we
propose two efficient constructions for PPass, namely a digital signature-based
construction for offline verification and a PIR-based construction for online
verification. For each construction, we conduct a thorough analysis of their
security properties and assess their computational and communication costs.

3. Performance Evaluation: To demonstrate the feasibility of PPass, we estimate
its performance in practical scenarios. Remarkably, the computational require-
ments for the involved entities-the health authority, the client/user (phone’s
holder), and the service (verifier)-are lightweight during the passport verifica-
tion process. Specifically:

– The authority needs a mere 0.054ms per client to generate/sign a valid
vaccination certificate, with its runtime scaling linearly with the number
of clients.

– The client’s computation cost is constant per redeemed token, requiring
up to 13 milliseconds to redeem a vaccine passport certificate.

– In the PIR-based construction, the service’s computation cost grows log-
arithmically with the number of valid tokens held by the cloud server.
However, in the signature-based construction, it remains constant per
redeemed token, taking only 155 milliseconds.

140 T. Duong et al.

Note that the cloud server bears the highest computation cost, but this can be
mitigated by employing a more powerful machine or distributing the workload
across multiple servers/cores. Importantly, PPass ensures no information leak-
age to the untrusted cloud server, enabling computation outsourcing without
any privacy risks.

2 Problem Statement and Desirable Properties

In this section, we will elucidate the issue concerning digital vaccine passports
that we aim to address. We will outline its security definition and expound upon
the desirable properties of the system we propose.

Problem Definition. The problem at hand revolves around digital vaccine pass-
ports, which are mobile applications designed to verify an individual’s vaccina-
tion status for a specific disease (e.g., COVID-19). The digital vaccine passport
system comprises three primary participants: the client (C), the health authority
(A), and the service or verifier (S). When a client (C) receives a vaccination, they
obtain a vaccination certificate (σ) from a health authority (A). The client (C)
can utilize this certificate (σ) to authenticate their vaccination status to a ser-
vice without disclosing the actual certificate (σ) itself. The proof process involves
leveraging information from the health authority (A) that issued the certificate.
In our proposed system, known as PPass, we employ an untrusted cloud server
(H) that performs the computational workload of the health authority (A) to
enhance system efficiency while ensuring the cloud server (H) remains unaware
of any sensitive information.

2.1 Security Definition

The vaccine passport system involves four types of participants: a client (or phone
holder) C, an authority A, a cloud server H, and a service (or verifier) S. All
participants have agreed upon a specific functionality, which is vaccine passport
verification, and have consented to share the final result with a designated party.
The computational process ensures that nothing is revealed except the final
output.

For simplicity, we assume the presence of an authenticated secure channel
(e.g., with TLS) between each pair of participants. In this work, we specifically
focus on the semi-honest setting and the colluding model. In the ideal execution,
the participants interact with a trusted party that evaluates the function while a
simulator corrupts the same subset of participants. In the real-world execution,
the protocol is performed in the presence of an adversary who can corrupt a
subset of the participants. Privacy of the users is guaranteed as long as the
adversary can only corrupt parties and does not compromise the authority server
A and the service S. Further details regarding the formal security definition and
the security of our system can be found in Appendix D and Sect. 4, respectively.

Privacy-Preserving Digital Vaccine Passport 141

2.2 Desirable Security

We outline the security and privacy requirements for the privacy-preserving dig-
ital vaccine passport system. One of the primary objectives is to ensure that
the actions of honest clients, as well as other participants such as the authority
server A, cloud server H, and service S, are indistinguishable from each other.
In other words, an ideal digital vaccine passport system would guarantee that
executing the system in the real model is equivalent to executing it in an ideal
model with a trusted party. This requirement aligns with the standard security
definitions presented in [27]. Based on this definition, we consider the following
security and privacy properties for the vaccine passport system:

– Anonymous Identity: The real identity of a client C should not be revealed
to the untrusted cloud server H. Furthermore, unless necessary, the service
S should remain unaware of the client’s identity. It is important to note that
our PPass system does not maintain anonymity for clients if they willingly
publish identifiable information. The authority A is only allowed to know the
identity of a vaccinated client C.

– Token Unlinkability: Valid tokens, generated from the same vaccination
certificate σ, can be redeemed at multiple services S. However, it should not
be possible for any participant to link tokens belonging to the same client.
Our PPass system does not guarantee token unlinkability if a group of services
collude with the authority server A.

– Token Unforgeability: All vaccination tokens must be unforgeable. A client
should not be able to compute a valid token unless it corresponds to their valid
vaccination certificate σ. Similarly, a client should not be able to compute a
valid token generated from another client’s vaccination certificate σ. Clients
should be unable to redeem forged tokens, and any attempt to do so should
be detected.

– Token Unreusability: Each valid token should be usable only once. Once a
token is redeemed, it should be immediately deleted from the client’s device.
Clients and all participants, including services, should not be able to reuse
redeemed tokens.

2.3 Desirable Performance

In addition to ensuring security and privacy, an ideal privacy-preserving digital
vaccine passport system should possess certain performance requirements. We
consider the following desirable performance properties:

– Efficiency: The digital vaccine passport system should be capable of process-
ing a verification computation within a few seconds and should be scalable to
accommodate a large number of users. Furthermore, participants, especially
the authority A and the client C, should perform lightweight tasks to ensure
efficient operation.

– Flexibility: In certain scenarios where the client’s ID is required to be col-
lected by a service (e.g., at the airport), the vaccine passport system cannot
maintain anonymous identity. Therefore, the system should be flexible enough

142 T. Duong et al.

to provide a trade-off between performance and privacy in such cases. Sim-
ilarly, the system can be optimized for efficiency in other scenarios where
presenting an ID is not necessary.

– Offline/Online Redeem: In practice, a service may experience a slow net-
work connection or be unable to connect to the internet during the verification
process. The system should be designed to function correctly under different
network conditions, supporting both offline and online redemption processes.

3 Cryptographic Preliminaries

This section introduces the notations and cryptographic primitives used in the
later sections. For n ∈ N, we write [n] to denote the set of integers {1, . . . , n}. We
use ‘||’ to denote string concatenation. In this work, the computational and sta-
tistical security parameters are denoted by κ, λ, respectively. Our PPass system
is essentially based on the CDH or DDH assumption in a cyclic group [11].

3.1 Randomizable Signature Scheme

The use of digital signatures [25,33] in various applications has been crucial,
serving as a fundamental building block. With the integration of advanced fea-
tures like randomizability, digital signatures have become even more valuable.
This added functionality allows for the derivation of a new valid signature σ� on
the same message, given an original valid signature σ. Importantly, randomiz-
ability ensures that these two signatures remain unlinkable, even for the signer
themselves. The initial construction achieving this property was proposed by
Camenisch and Lysyanskaya [7], which has since been further enhanced by
Pointcheval and Sanders [31,32]. The use of randomizable signature schemes
proves highly advantageous in our scenario as it enables the preservation of user
privacy, even if the authority responsible for providing signed certificates is com-
promised.

Bilinear Group Setting. In the context of bilinear groups, a bilinear group gen-
erator G refers to an algorithm that takes a security parameter λ as input and
produces a tuple (G1,G2,GT , p, g1, g2, e). Here, G1 = 〈g1〉 and G2 = 〈g2〉 are
cyclic groups of prime order p (a λ-bit prime integer), generated by g1 and g2
respectively. The function e : G1 × G2 → GT is an admissible pairing satisfying
the following properties:

– Bilinearity: For all a, b ∈ Zp, e(ga
1 , gb

2) = e(g1, g2)ab.
– Efficiency: e can be computed efficiently in polynomial time with respect to

the security parameter λ.
– Non-degeneracy: e(g1, g2) �= 1.

Additionally, the bilinear setting (G1,G2,GT , p, g1, g2, e) is considered asym-
metric when G1 �= G2. There exist three types of pairings:

1. Type 1: G1 = G2.

Privacy-Preserving Digital Vaccine Passport 143

2. Type 2: e : G1 × G2 → GT is asymmetric, but an efficient homomorphism
exists from G2 to G1, while no efficient homomorphism exists in the reverse
direction.

3. Type 3: e is asymmetric, and no efficiently computable homomorphism exists
between G1 and G2.

The Camenisch and Lysyanskaya signature scheme utilizes pairings of type 1,
while the Pointcheval and Sanders signature scheme uses type 3 with a constant-
size signature. The Pointcheval-Sanders scheme’s unlinkability is based on the
Decisional Diffie-Hellman (DDH) assumption in G1, and its unforgeability relies
on a complex assumption defined in [31]. In our PPass system, we rely on the
Pointcheval-Sanders signature scheme because pairing type 3 offers the best per-
formance among the three types.

3.2 Private Information Retrieval

Private Information Retrieval (PIR) allows a client to request information from
one or multiple servers in such a way that the servers do not know which infor-
mation the client queried. The basic concept of PIR is that the server(s) hold
a database DB of N strings, and the client wishes to read data record DB[i]
without revealing the value of i. The construction of PIR [4] typically involves
three procedures:

– PIR.Query(pk, i) → k: a randomized algorithm that takes the index i ∈ [N]
and public key pk as input and outputs an evaluated key k.

– PIR.Answer(pk, k, DB) → c: a deterministic algorithm that takes an evaluated
key k, public key pk, and the DB as input and returns the response c.

– PIR.Extract(sk, c) → d: a deterministic algorithm that takes the private key
sk and the response c as input and returns the desired data d.

A PIR construction is correct if and only if d = DB[i]. We say that PIR is
(symmetric) secure if an evaluated key k reveals nothing about the index i and
the answer c reveals nothing about other database record DB[j], j ∈ [N], j �= i.

Keyword-PIR. A variant of PIR called keyword-PIR was introduced by Chor,
et al. [8]. In keyword-PIR, the client has an item x, the server has a database
DB, and the client learns whether x ∈ DB. The most efficient keyword PIR [4]
is implemented using bucketing with Cuckoo hashing [12]. In this paper, we are
interested in Keyword PIR based on 1-server PIR [4,26,29], but our protocol
can use multiple-server PIR [6,10,28] to speed up the system’s performance.

Similar to traditional PIR, a keyword-PIR construction [4] comprises four pro-
cedures. However, in keyword-PIR, the PIR.Query(pk, x) procedure takes a key-
word x as input, and PIR.Extract returns a bit d indicating whether x exists in the
server’s database DB. Utilizing hashing techniques [4,5], keyword-PIR exhibits
similar computational and communication costs as traditional PIR. Angel et
al.’s work [5, Figure 5] demonstrates that a PIR query on a database of size 220

incurs approximately 7.62 milliseconds of client-side processing time and 80 mil-
liseconds of server-side processing time (online time). Furthermore, the query
requires 480KB of bandwidth for communication.

144 T. Duong et al.

PIR-with-Default. Another variant of PIR, known as PIR-with-Default, was
introduced by Lepoint et al. [20]. In PIR-with-Default, the server maintains a
set of key-value pairs P = (x1, v1), . . . , (yn, vn), where yi are distinct values and
vi are pseudo-random values. Additionally, there is a default (pseudo-random)
value w. When the client submits an item x, it receives vi if x = vi, and w
otherwise. The default value w needs to be refreshed for each query. This variant
of PIR has found applications in private join and compute scenarios.

Similar to keyword-PIR, a PIR-with-Default construction also consists of
the same procedures. However, in PIR-with-Default, the PIR.Answer(pk, k, P, w)
procedure takes P and w as input, and PIR.Extract returns a value v. The PIR-
with-Default protocol proposed by Lepoint et al. [20] is highly efficient, enabling
28 PIR with default lookups on a database of size 220 with a communication
cost of 7MB and an online computation time of 2.43 milliseconds.

3.3 Private Matching

A Private Matching (PM) is a two-party communication protocol where a sender
possessing an input string m0 interacts with a receiver who holds an input string
m1. The goal of this protocol is for the receiver to determine whether m0 is equal
to m1, while ensuring that the sender learns nothing about m1". The receiver
obtains a single bit as output, indicating the equality result, but no additional
information is revealed.

To the best of our knowledge, the concept of Private Equality Testing (PM)
was first introduced in the works of Meadows [23] and FNW [14]. PM plays a
crucial role in private set intersection (PSI) protocols [15]. Performing a batch of
PM instances efficiently can be achieved using Oblivious Transfer (OT) extension
techniques. For instance, a study by KKRT [19] demonstrates that the amortized
cost of each PM instance, with an unbounded input domain 0, 1∗, amounts to
only a few symmetric-key operations and involves a communication of 488 bits.
However, our protocol necessitates executing one PM instance at a time, render-
ing the construction of [19] unsuitable for our requirements. In our PPass system,
we adopt a DH-based PM scheme, please refer Appendix E for the details.

4 Digital Vaccine Passport Constructions

We begin with describing the overview of our PPass system. We then present two
cryptographic constructions: one for online verification and the other for offline
verification.

4.1 System Overview

The purpose of a digital vaccine passport is to provide a means of verifying
whether the individual holding the phone (referred to as the client) has been
vaccinated for a specific disease. In this section, we present an overview of our
proposed PPass system, which encompasses three primary procedures.

Privacy-Preserving Digital Vaccine Passport 145

– RegistrationRequest(κ, inf) → σ: The client C initiates this protocol by
submitting a certificate request to the health authority A. The A verifies
whether the client has been vaccinated. If so, A generates a valid vaccination
certificate σ and returns it to the client C. Additionally, A sends certain
anonymous information to the cloud server H.

– TokenGeneration(σ, n) → {tok1, ..., tokn}: The client C engages in this pro-
tocol with the cloud server H to generate a list of n vaccination tokens. The
client C provides her vaccination certificate σ and specifies the number n,
resulting in the generation of n tokens as output.

– TokenRedeem(tokt, inf) → {0, 1}: At time t, the client C redeems a token tokt.
The protocol takes as input the token tokt and the client’s information inf if
required. Optionally, a service provider (verifier) S interacts with the cloud
server H to verify the validity of tokt and its association with the token holder.
The output may be returned to the client C. Once redeemed, the token toki

becomes invalid (Fig. 1).

Fig. 1. The Overview of our PPass System. It consists of three main phases: Reg-
istration, Token’s Generation, Token’s Redeem. The solid and dashed lines show the
required and optimal communication/connection between the participants, respectively.

4.2 PIR-Based Construction (Online Verification)

In this section, we present the vaccine passport construction where a service
requires to be online for verifying whether a token is valid. The construction
heavily relies on different PIR variants.

4.2.1 Technical Overview

At a starting point, we consider a blueprint solution in which a client C obtains
a vaccination certificate σ from the authority A, after being vaccinated. When
visiting a location and needing to demonstrate vaccination status, the client C

146 T. Duong et al.

presents the certificate σ to a service, which securely communicates with the
authority to validate σ in a privacy-preserving manner. A similar variation of
this blueprint solution is currently implemented by the Smart Health Cards
Framework, discussed in Sect. B.

Although the above solution provides a basic functionality for a digital vac-
cine passport, it falls short in terms of the desired security measures described in
Sect. 2.2. For instance, it enables multiple compromised services to link tokens
belonging to the same client. Moreover, the blueprint solution requires the
authority to perform computationally intensive secure computations for token
verification, contradicting the desired performance outlined in Sect. 2.3.

To meet the desirable security criteria of a vaccine passport system, we mod-
ify the blueprint construction to enable the client C to prove to the service S that
she has been vaccinated, while keeping the vaccination certificate σ confidential.
Specifically, we generate redeem tokens by computing a Pseudorandom Function
(PRF), denoted as tok ← F (σ, t), where t represents the token’s redemption time.
This process ensures that all generated tokens are unlinkable due to the under-
lying PRF, and each token can be redeemed individually. For certain locations,
each token can be associated with an encryption of the client’s ID to prevent
unauthorized usage of a valid token by other clients.

Regarding the system’s performance, we observe that the authority A can
delegate its computations to an untrusted cloud server, denoted as H. If the vacci-
nation certificate σ is computed from a random key r and the client’s information,
revealing σ to H does not compromise privacy as long as r remains secret and
known only to the authority A. In our construction, σ = F (r, I2||...||In), where r
is randomly chosen by the authority, I1 represents the client’s ID, and Ii ∈ {0, 1}�

denotes additional information about the client’s vaccine, such as the “type of
vaccine” and “effective date.” With the vaccination certificate σ, the cloud server
H can generate a list T consisting of valid tokens tok ← F (σ, t). Additionally,
the authority A sends the cloud server H the group element m = gH(I1) for
anonymizing the user’s identification where H is a one-way hash function. Based
on the Diffie-Hellman assumption, m reveals no information about the client’s
actual ID.

To verify the token’s validity, the service S, possessing a token tok obtained
from the client, aims to determine whether tok exists in the list of valid tokens
held by the cloud server H. This verification can be achieved using Keyword-
PIR, as described in Sect. 3.2. Specifically, the service S sends a PIR request as
PIR.Query(pk, tok) → k and receives PIR.Answer(pk, k, T) → c from the cloud
server H. By utilizing PIR.Extract(sk, c) → 0, 1, the service S can determine the
validity of the token tok. Here, the public-private key pair pk, sk is generated by
the service S using PIR.Gen(κ) → (pk, sk).

Depending on whether the client’s ID is required by the service, we consider
two cases. In the first case, where the service S (e.g., an airline company) pos-
sesses the client’s identity I1 in clear, S can compute m = gH(I1) and append
it to the token as tok||m before sending a PIR request. Similarly, the cloud
server modifies T to include a set of tok||m before returning a PIR answer to
the service.

Privacy-Preserving Digital Vaccine Passport 147

In the second case, where the service is not permitted to collect the client’s ID,
our construction relies on PIR-with-Default and Private Matching. Specifically,
the cloud server H creates pairs (tok, m) and allows the service S to retrieve
either m or a random default value using PIR-with-Default. Subsequently, the
service S and the client C, possessing m, engage in a private matching instance,
leveraging the obtained PIR output, to determine whether the client redeemed
a valid token generated from her vaccination certificate σ.

4.2.2 Construction

Figure 2 illustrates the construction of our PIR-based vaccine passport. The con-
struction closely adheres to the technical overview described earlier. We organize
the construction into three phases, aligning with the system overview detailed in
Sect. 4.1. The first phase involves the computation and distribution of the vacci-
nation certificate by the authority A. In the second phase, each client C and the
cloud server H independently generate valid tokens based on the obtained vacci-
nation certificate. The final phase entails the redemption process of the tokens,
wherein all participants except the authority A are involved (as the authority’s
role is limited to the first phase).

It is easy to see that correctness is obvious from the definitions of PIR vari-
ants, private matching, and Diffie-Hellman’s assumption.

4.2.3 Security

We analyze the security of the proposed PIR-based construction according to
our desirable security and privacy of a digital vaccine passport.

Anonymous Identity. To ensure anonymity, we demonstrate that the client’s
identity is not revealed to the cloud server. We assume that the corrupt cloud
server H does not collude with the authority A. The view of H includes the
vaccination certificate σ, the exponentiation m = gH(I1), and PIR transcripts.
As H does not know the authority’s secret value r, σ appears random to H. Our
construction relies on the difficulty of the discrete log problem. Therefore, given
m = gH(I1), H cannot recover the client’s identity I1.

We consider two cases: one where the service does not require collecting the
client’s identity I1 but mandates presenting the ID (Step IV,3 in Fig. 2), and
another where presenting the client’s identity is not required. In the former case,
the view of the corrupt service S consists of the redeemed token tok′

t, PIR’s
and private matching transcripts. The token tok′

t is generated from the PRF
key σ which is unknown to S. Thus, tok′

t looks random to him. Because of PIR
and private matching pseudorandomness property, the real identity of the client
is protected. For the latter case, the analysis of anonymous identity security
remains similar to the first one.

148 T. Duong et al.

Fig. 2. Our PIR-based Vaccine Passport Construction.

Privacy-Preserving Digital Vaccine Passport 149

Token Unlinkability. Token unlinkability is crucial to prevent the disclosure of a
user’s travel history, safeguarding their privacy. In this section, we discuss how
PPass ensures token unlinkability. We focus on the steps of the protocol and
show the difficulty an attacker faces when attempting to link multiple individual
tokens. We assume that clients use secure channels for communication with
service providers and disregard attacks involving IP address matching.

– Phase 1. Registration Phase: During registration, the client and the cloud
server communicate with the authority A to obtain a vaccination certificate
σ and a value m. It is impractical for an attacker to recover the client’s
information I2, . . . , In from the PRF value without the authority’s secret
value r, unless A is compromised. Additionally, due to the Diffie-Hellman
assumption, the value m appears random to the attacker.

– Phase 2. This phase involves local computation by individual clients and the
cloud server, without any communication or computation between the partic-
ipants. Hence, no information is leaked. However, if an attacker compromises
the cloud server, they can identify which tokens are generated from the same
vaccination certificate σ, but they cannot determine where the tokens are
redeemed (Phase 3).

– Phase 3. Token’s Redeem Phase: During this phase, if an attacker controls a
subset of service providers S who collect the client’s IDs, PPass cannot pro-
vide unlinkability. However, if the attacker collects a list of redeemed tokens
from different service providers S, all the redeemed tokens appear random,
even if they were generated from the same key σ. Furthermore, each token is
designed for one-time use only. Therefore, no linkability can be established
between tokens. If the attacker compromises the cloud server, they also gain
no information due to the PIR ideal functionality. The cloud server does not
know which tokens were redeemed at which places.

Token Unforgeability. According to our construction, if a token tok is not gener-
ated from a valid vaccination certificate, the service is able to detect this event
via PIR. Recall that the cloud server H has a set of valid tokens, PIR function-
ality allows the service to check whether tok is in the H’s database. Moreover,
PIR-with-default allows S to retrieve anonymous information of the client’s iden-
tity m. Private matching between S and C prevents an attacker to redeem tokens
of another client.

Token Unreusability. Each token is associated with a specific redeem time, which
prevents an attacker from reusing the token later. However, PPass cannot prevent
an attacker from attempting to redeem the same token simultaneously at two
different service providers, unless ID presentation is required. Therefore, we rely
on end-user devices to delete the token after redemption. To eliminate the need
for trust in end-user devices, secure deletion can be employed to obliviously
remove redeemed tokens from the cloud server’s database T . However, the cloud
server can observe which token was deleted. To address this issue, multiple cloud
servers can be used, with each holding secret shares of T . After executing an
oblivious deletion event, all the shares must be re-randomized.

150 T. Duong et al.

Finally, we state the security of our PIR-based construction using the follow-
ing theorem. The proof of security straightforwardly follows from the security of
its constituent building blocks and the security analysis presented above. There-
fore, we omit the proof.

Theorem 1. Given the Keyword-PIR, PIR-with-Defalt, Private Matching func-
tionalities described in Sect. 3, the PIR-based construction of Fig. 2 securely imple-
ments the digitial vaccine passport described in Sect. 2 in semi-honest setting.

4.2.4 Complexity

We begin with the analysis of the computational complexity. As desired, the
authority only needs to perform one PRF (e.g. AES), and one exponentiation
per client who was vaccinated.

The cloud server H requires to perform N AES calls to generate the set
Tm. N can set to be 80 if assuming that a token is generated every 15 min for
approximately 20 h a day. The H also involves PIR with the service in Phase 3.
Denote the computational cost of PIR as |PIR| which is O(Nn), where n is the
number of vaccinated clients. The computational complexity of H is N + |PIR|.

The client needs to compute N AES instances and one exponentiation in
Phase 2. In the token redemption phase, she may need to perform private match-
ing with the service, involving two additional exponentiations as described in
Sect. 3.3. The computation on the service’s side includes PIR, private matching
(if the client presents their ID but doesn’t allow the service to collect it), and
one exponentiation (if the service can collect the ID).

In terms of communication complexity, the A sends a κ-bit σ to the client C
and a 3κ-bit σ||m to the cloud server. The client sends the service a κ-bit token
along with 2κ-bits m, if required. Additionally, all participants except A send
and receive transcripts/randomness from PIR or private matching executions.

4.3 Digital Signature-Based Construction (Offline Verification)

The vaccine passport construction described here eliminates the need for an
online service provider, S, to verify the authenticity of a token. It relies on
randomized signatures and signatures on committed values.

4.3.1 Technical Overview

At the initial stage, the client C obtains a vaccination certificate σ from the
authority after receiving the vaccination. In the PIR-based construction, the
validation of a valid token requires an online interaction with the cloud server H
to ensure client privacy. However, our construction eliminates the need for such
online verification.

The central concept of our construction, based on digital signatures, involves
randomizing the certificate σ into σ� to ensure their unlinkability. The client

Privacy-Preserving Digital Vaccine Passport 151

can then utilize σ� during the redemption process in a way that prevents the
authority from linking it to the original certificate. The Pointcheval-Sander sig-
nature scheme perfectly aligns with our objective as it allows for randomiza-
tion and offers a scalable solution with constant-sized signatures. Therefore, our
signature-based construction relies on the Pointcheval-Sander signature scheme.
The authority A generates a signature σ on the client’s information I, which
includes details such as the client’s identity, vaccine type, and effective date. To
optimize system performance, the health authority A only issues a long-term
certificate to the client and delegates the generation of short-lived temporary
tokens to an untrusted cloud server H.

The design of the system raises the question of how clients can request tokens
from the cloud server H. The simplest approach would be for the client to present
the cloud server H with the randomized signature σ� on the information I.
However, this would expose all personal information to the cloud server H. For-
tunately, the Pointcheval-Sander signature scheme enables us to transform the
signature σ on the information I into a randomized signature σ� on a committed
value derived from I. Consequently, the cloud server H can verify the validity
of the client’s certificate from the authority A without gaining access to any
personal information. Subsequently, the H can issue tokens to the clients.

Each token includes a signature from the cloud server H on the committed
value derived from I, along with additional information t. This additional infor-
mation t, appended by the cloud server H, primarily comprises the redemption
time for the token to prevent any potential reuse. To validate the token, the ser-
vice S simply needs to check the validity of the signature, thereby enabling offline
verification. For enhanced privacy, the client can also randomize the received
token tok into tok� and store only tok� in memory. Consequently, even if the
authority and the cloud server collude, they cannot link the utilized token tok�

with personal information, ensuring strong privacy guarantees.
Additionally, we propose an optional “light verification” approach where ser-

vices such as cinemas or restaurants can verify the validity of a token by checking
if it is a valid signature from the cloud server H. In this case, the client only
needs to present their token tok to the service S, along with aggregated infor-
mation V related to their personal information, to demonstrate that the token
tok is a valid signature issued by the cloud server H. This allows the service S
to quickly verify the token’s validity without requiring any personal information
from the client. While this approach benefits privacy, its drawback is that the
token can be transferred between clients as personal information is not disclosed.
For important checks, such as at airports or borders, where identity verification
is necessary, the client must present their identity card and provide the infor-
mation I. This enables the service S to perform a thorough verification of the
token against the personal information I. In practice, a combination of light
and full verification can be employed, wherein daily activities (e.g., restaurants,
cinemas, public transport) mainly undergo light verification, with occasional
random checks of full verification to mitigate the risk of token transfer between
individuals.

152 T. Duong et al.

4.3.2 Construction

The construction of our signature-based PPass system is outlined in Fig. 3, closely
adhering to the technical overview provided earlier. Since our construction is
based on the Pointcheval-Sander signature scheme [31], we will briefly explain
the multi-message version of this signature below:

Setup: A type 3 bilinear map e : G1 × G2 → GT with G1 = 〈g1〉, G2 = 〈g2〉,
and GT = 〈gT 〉 are cyclic group of prime order p.

KeyGen: Choose a secret key sk = (x, y1, . . . , yn) and computes the public key
pk = (g2, X, Y1, . . . , Yn), where X = gx

2 and Yi = gyi

2 , i = 1, . . . , n.
Sign(sk, {m1, . . . , mn} ∈ (Z�

p)n): Choose a random h ∈ G1, define σ1 = h and
σ2 = hx+Σn

j=1yjmj , and output σ = (σ1, σ2)
Verify(sk, {m1, . . . , mn}, σ = (σ1, σ2)): Check whether σ1 �= 1G1 and

e(σ2, g2) = e(σ1, XΠn
j=1Y

mj

j) are both satisfied, here 1G1 denotes the identity
in G1. If yes, it accepts, otherwise, it rejects.

We use this signature for both authority server S and cloud server H. In par-
ticular, the cloud server H utilizes the signature to sign the committed value of
m1, . . . , mn, ensuring that clients’ personal information remains concealed from
the cloud server H. To accommodate space constraints, we defer the detailed
security analysis of our PIR-based construction to Appendix C, where we elab-
orate on its security.

4.3.3 Complexity

The utilization of the Pointcheval-Sanders signature scheme is particularly advan-
tageous for devices with limited storage capacity. This is because the signature
size remains constant, allowing each token to contain only two elements in G1. In
terms of computational requirements, the following observations can be made:

– Client C performs 2 pairings and n exponentiations in G1 to verify the valid-
ity of each credential or token. However, in practice, C may directly utilize
credentials or tokens without the need for verification. C needs to randomize
each credential or token for privacy, which requires only 2 exponentiations in
G1 per credential or token.

– The cloud server H performs n + 2 pairings to verify each credential because
C only provides H with the committed values com = (M1, . . . , Mn).

– Service S requires 2 pairings and n exponentiations in G1 for verification (no
exponentiation is necessary for light verification) of each token.

– The generation of credentials or tokens is efficient, requiring just one expo-
nentiation in the group G1.

5 Performance

In this section, we present an estimation of the performance of our PPass system
to demonstrate its feasibility in practical scenarios. We assume that a redeem

Privacy-Preserving Digital Vaccine Passport 153

Fig. 3. Our signature-based construction.

154 T. Duong et al.

token is generated every 15 min, resulting in approximately 80 distinct tokens
per day for each user (denoted as N = 80). We consider user information to
consist of its identity I1 and the concatenated vaccine information I2, which
gives us a value of n = 2.

For the PIR-based construction, we implement PRF and PRG instances using
AES. Each AES operation costs 10 cycles, and on a 2.3 GHz machine, we can
expect to compute an AES operation in approximately 0.005 microseconds. In
our constructions, participants need to compute exponentiations. For example,
the DH-based private matching consists of 3 exponentiation. [30, Table 2] reports
the computation cost of DH-based PSI which computes 221 exponentiations in
1148.1 s using the miracl library1. Using libsodium library2 which is approxi-
mately 10× faster than miracl, we estimate that the time per exponentiation is
1148.1 s/221/10 = 54 microseconds. Our signature-based construction requires
participants to compute pairings. We estimate that each pairing consists of about
30× exponentiations [9,16] which cost about 1620 microseconds.

As mentioned in Sect. 3.2, a Keyword-PIR query on a database of size 220

requires 7.62 milliseconds on the client’s side and 80 milliseconds on the server’s
side (online time). These queries necessitate a communication bandwidth of
480KB. The PIR-with-Default queries [20] with 28 queries on a database of
size 220 require a communication of at most 7MB and an online computation
time of 2.43 milliseconds.

Table 1 (Appendix A) provides a summary of the estimated running time and
communication/size for AES, exponentiation (Exp), two PIR variants (Keyword-
PIR and PIR-with-Default) with different running times on the sender/client and
receiver/server sides, private matching (PM), and pairing. It is important to note
that Keyword-PIR includes a fixed cost for an offline phase on the cloud server’s
side, which is not included in Table 1.

Based on the information provided in Table 1, we have calculated the run-
ning time and communication costs for various implementation options in our
PPass system. The estimated values are presented in Table 2 (Appendix A).
Upon analysis, we observe that the PIR-based construction generally outper-
forms the signature-based construction in terms of speed. However, it does come
with higher bandwidth costs and relies on an (online) connection between the
cloud server H and the service S. We observe that, a service such as an airport
service counter can conduct an online verification to validate the authenticity
of a token within just 7 milliseconds, leveraging its authorization to collect the
passenger’s ID. For offline verification, our protocol takes a maximum of 0.15 s.
Based on these results, we conclude that the proposed PPass system is practical
and feasible for real-world applications.

1 Experiments were done on a machine with an Intel(R) Xeon(R) E5-2699 v3 2.30
GHz CPU and 256 GB RAM.

2 https://doc.libsodium.org/.

https://doc.libsodium.org/

Privacy-Preserving Digital Vaccine Passport 155

Acknowledgment. The second and the fourth authors were partially supported by
NSF awards #2101052, #2200161, #2115075, and ARPA-H SP4701-23-C-0074. The
third author was partially supported by the BPI VisioConfiance Project.

A Performance
We show the running time of communication cost for building blocks in Table 1
and the performance of our PPass in Table 2.

Table 1. Estimated running time and communication cost (size) for building blocks
and core operations used in our PPass constructions.

AES Exp. Keyword-PIR PIR-with-Default PM Pairing
Computation (microsecond) Sender 0.005 54 80000 2430 108 1620

Receiver 7620 2430 108
Communication/Size (KB) 0.016 0.032 480 7000 0.096 0.064

Table 2. Estimated running time and communication cost for our PPass system across
different implementation options. The client generates N = 80 tokens per day. The
cloud server has 220 tokens. The numbers with “star” indicate the cost for Step (III,3)
where private matching and PIR-with-default are required in the PIR-based construc-
tion. The “star” also indicates the cost of light verification in the signature-based
construction.

PIR-based Construction Signature-based Construction
Runtime (ms) Comm. (KB) Runtime (ms) Comm. (KB)

Authority A 0.054 0.064 0.054 0.064
Cloud Server H 85.24 480 226492 67108

5.24* 7000*
Client C 0.004 0.016 1.836 0.352

12.99* 0.112* 1.944* 0.384
Service S 7.62 480 142.56 7.68

2.54* 7000.1* 13.82* 5.12*

B Related Work
In the realm of controlling the spread of COVID-19, privacy-preserving con-
tact tracing [2,13,21,22] has garnered significant attention. However, there has
been limited research on digital vaccine passports, and most existing solutions
have privacy vulnerabilities. Notably, none of these solutions have been formally
described with their construction and security guarantees.

There have been a few attempts to build digital vaccine passports such as
in [3,24,34,35]. However, these works are in the blockchain setting and/or lack
performance evaluations. In this section, we review the popular framework –
Smart Health Cards Framework3, which serves as a prominent system for digital
3 https://smarthealth.cards.

https://smarthealth.cards

156 T. Duong et al.

vaccine passport cards. This open-source standard has been adopted by numer-
ous companies and organizations, including Microsoft, IBM, and Mayo Clinic.
The framework proposes a model involving three parties:

– Issuer (e.g., a lab, pharmacy, healthcare provider, public health department,
or immunization information system) generates verifiable tokens (credentials).

– Client (e.g., a phone holder) stores the tokens and presents them when
required.

– Verifier/Service (e.g., a restaurant, an airline) receives tokens from the client
and verifies their authenticity through proper signatures.

In the Smart Health Cards system, the client is required to disclose personally
identifiable information (PII) (e.g., full name and date of birth) and immuniza-
tion status (e.g., vaccination location, date and time, vaccine type, lot number)
to the issuer. Based on this information, the issuer generates multiple tokens,
each containing a subset of the client’s information along with a digital signa-
ture. By choosing which token to present to a verifier, the client can control the
granularity of information disclosed to that specific verifier.

Although the Smart Health Cards framework aims to uphold end-user pri-
vacy, it fails to meet the desirable properties outlined in Sect. 2.2: token linka-
bility and reusability. If a client presents tokens to two different verifiers, these
verifiers can link the tokens together. Furthermore, if the verifiers collude with
the issuer, they can potentially uncover the identity of the token holder.

C Security of Our Digital Signature-Based Construction

We proceed with the analysis of the security of our signature-based construc-
tion, considering the desired security and privacy properties of a digital vaccine
passport system as described in Sect. 2.2.

Token Unlinkability and Unforgeability. These properties are directly inherited
from the unlinkability and unforgeability of the Pointcheval-Sanders signature.
Each token corresponds exactly to a signature generated by the cloud server H.

Token Unreusability. To ensure token unreusability, the cloud server H appends
additional information t to each token, indicating its redeem time. Therefore, the
token’s unreusability outside this redeem time is derived from the unforgeability
of the Pointcheval-Sanders signature.

Anonymous Identity. In the digital signature-based construction, clients’
anonymity is guaranteed against collusion between the authority A and the
cloud server H. We can outline the proof as follows:

– The authority A stores all the information I = {I1, . . . , In} of each client as
well as the corresponding signature σ = (σ1, σ2).

– The cloud server H stores all the clients’ randomized signatures σ� = (σ�
1 , σ�

2)

Privacy-Preserving Digital Vaccine Passport 157

– The clients only use their randomized tokens given by the cloud server H.
After randomization, the clients do not need to store the original signature σ
and the token tok.

– The tokens used by the client tok� are unlinkable to tok and thus unlikable
to σ� and σ.

The unlinkability directly stems from the unlinkability property of the
Pointcheval-Sanders signature, which is guaranteed under the Decisional Diffie-
Hellman (DDH) assumption. Consequently, client privacy is inherently pre-
served.

Clearly, when the client is required to present personal information to the S,
privacy cannot be guaranteed if the S is compromised. In this case, we offer the
option of light verification, where the service S only receives V = A(Πn

j=1B
mj

j)
and tok�, t, without gaining access to any personal information. Even if the ser-
vice S colludes with the cloud H, they cannot obtain any personal information
because tok� is unlinkable to (M1, . . . , Mn) (due to the unlinkability property
of Pointcheval-Sanders). However, if all three parties, A, H, S, collude, the iden-
tity of the client matching the pre-calculated value V can be revealed. In this
scenario, the authority A can perform an exhaustive search on the entire set of
registered clients using their personal information (m1, . . . , mn) and check if V
matches A(Πn

j=1B
mj

j). Finally, we state the security of our signature-based con-
struction through the following theorem. The security proof of the construction
straightforwardly follows from the security of its building blocks and the security
discussion provided above. Therefore, we omit the proof.

Theorem 2. Given the randomizable (Pointcheval-Sanders) signature scheme
described in Sect. 3.1, the signature-based construction of Fig. 3 securely imple-
ments the digital vaccine passport described in Sect. 2 in semi-honest setting.

D Formal Security Definition

There are two adversarial models and two models of collusion considered.

– Adversarial Model: The semi-honest adversary follows the protocol but
tries to gain additional information from the execution transcript. The mali-
cious adversary can employ any arbitrary polynomial-time strategy, deviating
from the protocol to extract as much extra information as possible.

– Collusion Security: In the non-colluding model, independent adversaries
observe the views of individual dishonest parties. The model is secure if the
distribution of each view can be simulated independently. In the colluding
model, a single monolithic adversary captures the possibility of collusion
between dishonest parties. The model is secure if the joint distribution of
these views can be simulated.

Following security definitions of [18,27], we formally present the security
definition considered in this work.

158 T. Duong et al.

Real-world Execution. The real-world execution of protocol Π takes place
between a set of users (C1, . . . , Cn), an authority server A, a cloud server H,
a set of services (S1, . . . , SN), and a set of adversaries (Adv1, . . . ,Advm). Let H
denote the honest participants, I denote the set of corrupted and non-colluding
participants, and C denote the set of corrupted and colluding participants.

At the beginning of the execution, each participant receives its input xi, an
auxiliary input ai, and random tape ri. These values xi, ai can be empty. Each
adversary Advi∈[m−1] receives an index i ∈ I that indicates the party it corrupts.
The adversary Advm receives C indicating the set of parties it corrupts.

For all i ∈ H, let outi denote the output of honest party, let out′i denote the
view of corrupted party for i ∈ I ∪ C during the execution of Π. The ith partial
output of a real-world execution of Π between participants in the presence of
adversaries Adv = (Adv1, . . . ,Advm) is defined as

reali
Π,Adv,I,C,yi,ri

(xi)
def= {outj | j ∈ H} ∪ out′i

Ideal-world Execution. All the parties interact with a trusted party that evaluates
a function f in the ideal-world execution. Similar to the real-world execution,
each participant receives its input xi, an auxiliary input yi, and random tape
ri at the beginning of the ideal execution. The values xi, yi can be empty. Each
participant sends their input x′

i to the trusted party, where x′
i is equal to xi if

this user is semi-honest, and is an arbitrary value if he is malicious. If any honest
participant sends an abort message (⊥), the trusted party returns ⊥. Otherwise,
the trusted party then returns f(x′

1, . . . , x′
n) to some particular parties as agreed

before.
For all i ∈ H, let outi denote the output returned to the honest participant by

the trusted party, and let out′i denote some value output by corrupted participant
i ∈ I ∪ C. The ith partial output of a ideal-world execution of Π between
participants in the presence of independent simulators Sim = (Sim1, . . . ,Simm)
is defined as

ideali
Π,Sim,I,C,zi,ri

(xi)
def= {outj | j ∈ H} ∪ out′i

Definition 1. [18,27] (Security) Suppose f is a deterministic-time n-party
functionality, and Π is the protocol. Let xi be the parties’ respective private
inputs to the protocol. Let I ∈ [N] denote the set of corrupted and non-colluding
parties and C ∈ [N] denote the set of corrupted and colluding parties. We say
that protocol Π(I, C) securely computes deterministic functionality f with abort
in the presence of adversaries Adv = (Adv1, . . . ,Advm) if there exist probabilistic
polynomial-time simulators Simi∈m for m < n such that for all x̄, ȳ, r̄ ← {0, 1}�,
and for all i ∈ [m],

{reali
Π,Adv,I,C,ȳ,r̄(x̄)=̃{ideali

Π,Sim,I,C,ȳ,r̄(x̄)}
Where Sim = (Sim1, . . . ,Simm) and Sim = Simi(Advi)

Privacy-Preserving Digital Vaccine Passport 159

E Diffie–Hellman-Based Private Matching

The DH-based PM operates as follows: The receiver computes u ← H(m1)r using
a random, secret exponent r and a one-way hash function H. The computed
value u is then sent to the sender. The sender raises u to the power of the
random secret k, obtaining uk. This result is then sent back to the receiver. Upon
receiving uk, the receiver can compute (uk)1/r, which yields H(m1)k. Next, the
sender sends H(m0)k to the receiver. The receiver can check whether H(m0)k is
equal to H(m1)k in order to determine the equality of m0 and m1. Importantly,
in cases where m0 �= m1, the receiver learns no information about m1 from
H(m1)k. This scheme relies on the Diffie-Hellman assumption [11] for its security
guarantees. We introduce the Diffie-Hellman assumption in Definition 2. We
describe the ideal functionality and the DH-based construction of PM in Fig. 4.
The computation and communication cost of PM is 3 exponentiations and 3
group elements, respectively.

Fig. 4. The Private Matching Functionality and DH-based Construction

Definition 2. [11] Let G(κ) be a group family parameterized by security param-
eter κ. For every probabilistic adversary Adv that runs in polynomial time in κ,
we define the advantage of Adv to be:

|Pr[Adv(g, ga, gb, gab) = 1] − Pr[Adv(g, ga, gb, gc) = 1]|

Where the probability is over a random choice G from G(κ), random generator
g of G, random a, b, c ∈ [|G|] and the randomness of Adv. We say that the
Decisional Diffie-Hellman assumption holds for G if for every such Adv, there
exists a negligible function ε such that the advantage of Adv is bounded by ε(κ).

Definition 3. Let G be a cyclic group of order N , and let g be its generator.
The Computational Diffie-Hellman (CDH) problem is hard in G if no efficient
algorithm given (g, ga, gb) can compute gab.

160 T. Duong et al.

References

1. European digital green certificates. https://ec.europa.eu
2. Apple and google privacy-preserving contact tracing (2020). https://www.apple.

com/covid19/contacttracing
3. Abid, A., Cheikhrouhou, S., Kallel, S., Jmaiel, M.: Novidchain: blockchain-based

privacy-preserving platform for COVID-19 test/vaccine certificates. Softw. Pract.
Exp. 52(4), 841–867 (2022)

4. Ali, A., et al.: Communication-computation trade-offs in PIR. Cryptology ePrint
Archive, Report 2019/1483 (2019). https://eprint.iacr.org/2019/1483

5. Angel, S., Chen, H., Laine, K., Setty, S.: PIR with compressed queries and amor-
tized query processing. In: 2018 IEEE Symposium on Security and Privacy, pp.
962–979. IEEE Computer Society Press, May 2018

6. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016, pp. 1292–1303. ACM Press, October 2016

7. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4

8. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Cryp-
tology ePrint Archive, Report 1998/003 (1998). https://eprint.iacr.org/1998/003

9. Clarisse, R., Duquesne, S., Sanders, O.: Curves with fast computations in the first
pairing group. In: 19th CANS (2020)

10. Corrigan-Gibbs, H., Kogan, D.: Private information retrieval with sublinear online
time. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp.
44–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_3

11. Diffie, W., Hellman, M.: New directions in cryptography (2006)
12. Dong, C., Chen, L.: A fast single server private information retrieval protocol with

low communication cost. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8712, pp. 380–399. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11203-9_22

13. Duong, T., Phan, D.H., Trieu, N.: Catalic: delegated PSI cardinality with applica-
tions to contact tracing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12493, pp. 870–899. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64840-4_29

14. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Com-
mun. ACM 39(5), 77–85 (1996)

15. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3_1

16. Guillevic, A.: Arithmetic of pairings on algebraic curves for cryptography. PhD
thesis (2013)

17. IPSOS. Global public backs COVID-19 vaccine passports for international travel.
https://www.ipsos.com/

18. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function
evaluation. Cryptology ePrint Archive, Report 2012/542 (2012). https://eprint.
iacr.org/2012/542

19. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser,

https://ec.europa.eu
https://www.apple.com/covid19/contacttracing
https://www.apple.com/covid19/contacttracing
https://eprint.iacr.org/2019/1483
https://doi.org/10.1007/978-3-540-28628-8_4
https://eprint.iacr.org/1998/003
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.1007/978-3-319-11203-9_22
https://doi.org/10.1007/978-3-319-11203-9_22
https://doi.org/10.1007/978-3-030-64840-4_29
https://doi.org/10.1007/978-3-030-64840-4_29
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://www.ipsos.com/
https://eprint.iacr.org/2012/542
https://eprint.iacr.org/2012/542

Privacy-Preserving Digital Vaccine Passport 161

S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 818–829. ACM
Press, October 2016

20. Lepoint, T., Patel, S., Raykova, M., Seth, K., Trieu, N.: Private join and com-
pute from pir with default. Cryptology ePrint Archive, Report 2020/1011 (2020).
https://eprint.iacr.org/2020/1011

21. Liu, X., Trieu, N., Kornaropoulos, E.M., Song, D.: Beetrace: a unified platform for
secure contact tracing that breaks data silos. IEEE Data Eng. Bull. 43(2), 108–120
(2020)

22. Madhusudan, P., Miao, P., Ren, L., Venkatakrishnan, V.: Contrail: privacy-
preserving secure contact tracing (2020). https://github.com/ConTraILProtocols/
documents/blob/master/ContrailWhitePaper.pdf

23. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In: IEEE Symposium on Security
and Privacy, pp. 134–137 (1986)

24. Meng, W., Cao, Y., Cao, Y.: Blockchain-based privacy-preserving vaccine passport
system. Secur. Commun. Netw. (2022)

25. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0_21

26. Mughees, M.H., Chen, H., Ren, L.: OnionPIR: response efficient single-server PIR.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’21, pp. 2292–2306, New York, NY, USA. Association for
Computing Machinery (2021)

27. Oded, G.: Foundations of Cryptography: Volume 2, Basic Applications, 1st ed.
Cambridge University Press, USA (2009)

28. Patel, S., Persiano, G., Yeo, K.: Private stateful information retrieval. In: Lie, D.,
Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1002–1019. ACM
Press, October 2018

29. Patel, S., Seo, J.Y., Yeo, K.: Don’t be dense: efficient keyword PIR for sparse
databases. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 3853–
3870, Anaheim, CA, August 2023. USENIX Association (2023)

30. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-Light: lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8_13

31. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.) CT-
RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-29485-8_7

32. Pointcheval, D., Sanders, O.: Reassessing security of randomizable signatures. In:
Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 319–338. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76953-0_17

33. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0_22

34. Shakila, M., Rama, A.: Design and analysis of digital certificate verification and
validation using blockchain-based technology. In: 2023 Eighth International Con-
ference on Science Technology Engineering and Mathematics (ICONSTEM), pp.
1–9 (2023)

35. Shih, D.-H., Shih, P.-L., Wu, T.-W., Liang, S.-H., Shih, M.-H.: An international fed-
eral hyperledger fabric verification framework for digital COVID-19 vaccine pass-
port. Healthcare 10(10) (2022)

https://eprint.iacr.org/2020/1011
https://github.com/ConTraILProtocols/documents/blob/master/ContrailWhitePaper.pdf
https://github.com/ConTraILProtocols/documents/blob/master/ContrailWhitePaper.pdf
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-76953-0_17
https://doi.org/10.1007/0-387-34805-0_22

Exploiting Android Browser

Animesh Kar(B) and Natalia Stakhanova

Department of Computer Science, University of Saskatchewan, Saskatoon, Canada

gqx108@usask.ca, natalia@cs.usask.ca

Abstract. Android permission is a system of safeguards designed to
restrict access to potentially sensitive data and privileged components.
While third-party applications are restricted from accessing privileged
resources without appropriate permissions, mobile browsers are treated
by Android OS differently. Android mobile browsers are the privileged
applications that have access to sensitive data based on the permissions
implicitly granted to them. In this paper, we present a novel attack app-
roach that allows a permission-less app to access sensitive data and priv-
ileged resources using mobile browsers as a proxy. We demonstrate the
effectiveness of our proxy attack on 8 mobile browsers across 12 Android
devices ranging from Android 8.1 to Android 13. Our findings show that
all current versions of Android mobile browsers are susceptible to this
attack. The findings of this study highlight the need for improved secu-
rity measures in Android browsers to protect against privilege escalation
and privacy leakage.

Keywords: Android · Permissions · Overlay · Privilege Escalation

1 Introduction

Mobile phones have revolutionized the way we interact and exchange informa-
tion. Android, one of the most prevalent mobile operating systems worldwide,
has contributed significantly to this transformation, with over 2.5 billion active
devices in 2021 [16]. The broad and convenient access to phone resources offered
by Android has exposed shortcomings in the existing security measures. The
Android permissions system is a crucial mechanism that aims to restrict an
application’s access to sensitive data and privileged components. However, sev-
eral studies have highlighted its limitations [1,5,9,12,17,31,40].

The Android permission system has since evolved to a more regulated permis-
sion model enabling users to determine whether an app should access resources
or not. Granting users the authority to accept or decline app permissions has
not resolved the security concerns associated with Android permissions.

In this work, we investigate this transitive permission usage through mobile
browsers. Although the Android permissions system has become more advanced,
it appears to be still vulnerable to transitive permission usage, which enables
attackers to perform actions that are prohibited for a third-party app.

We introduce the proxy attack which capitalizes on the absence of privi-
leges for seemingly harmless operations (such as querying system information
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 162–185, 2023.
https://doi.org/10.1007/978-981-99-7563-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_8&domain=pdf
http://orcid.org/0000-0003-1931-2234
http://orcid.org/0000-0003-1923-319X
https://doi.org/10.1007/978-981-99-7563-1_8

Exploiting Android Browser 163

and launching an intent), thereby circumventing Android’s permission frame-
work. In our attack, we exploit a mobile browser as a proxy to request and
gain unauthorized access to sensitive permission-protected data and resources
on Android devices. Despite being limited in accessing sensitive data without
explicit user consent, mobile browsers are granted certain permissions that reg-
ular user applications do not have. This is because browsers are viewed as less of
a security threat since they present information to users in a controlled manner.
In order to conceal the browser activity, we utilize overlay views, a form of UI
deception technique that can manipulate users into performing specific actions.
These techniques have been previously employed in attacks (e.g., phishing [13])
as users are unable to determine the source of a window they are interacting
with on the screen. Although the abuse of overlays is not novel, the key aspect
of the proxy attack involves obtaining unauthorized access to information that
would typically be inaccessible to third-party apps but can be achieved through
mobile browsers. Therefore, in the proxy attack, overlays primarily serve as a
means to provide reassurance and conceal the use of browsers, which often goes
unnoticed and does not raise suspicion among users.

In summary, we present the following contributions:

– We introduce a novel proxy attack that circumvents Android’s permission
model. We demonstrate that an unauthorized malicious app can leverage a
mobile browser to gain privileged access to phone resources. By delegating the
responsibility of acquiring permissions to the browser, which acts as a proxy
and shields the attacker app, the malicious app is able to obtain the necessary
permissions without raising suspicion. This attack methodology demonstrates
the significant security risks posed to Android users and emphasizes the neces-
sity of implementing effective security controls to counter such attacks.

– We show the effectiveness of our attack against eight popular mobile browsers
on Android versions 8.1 to 13. Our findings reveal that most of the tested
browsers disclose sensitive device-related information. We demonstrate that
the proposed proxy attack is effective regardless of the updated security
patches in older (Android 8.1–10) and newer devices (Android 11–12).

– We reexamine the vulnerabilities that enable our attack to succeed and sug-
gest a set of countermeasures to establish a robust defense against such an
attack.

The attacker app used in this study is publicly available1. The rest of our
paper is organized as follows: Sect. 2 provides the required background informa-
tion on Android. In Sect. 3, the overall attack scenario for this study is detailed.
Our initial setup and overall evaluated findings are shown in Sect. 4. The con-
sequences of our attack strategy and defenses against it are discussed in Sect. 5.
Section 6 provides related studies, and the limitations of our work are discussed
in Sect. 7 to conclude this work.

1 https://github.com/thecyberlab/androidproxyattack.

https://github.com/thecyberlab/androidproxyattack

164 A. Kar and N. Stakhanova

2 Background

To govern access to sensitive data and privileged components, Android uses
a system of safeguards called permissions. If an app requires access to any
restricted device functionality, it must declare the corresponding permissions
in its AndroidManifest.xml file. Historically, Android differentiated permissions
with respect to the risk implied by requested permission. Currently, Android
supports the following categories of permissions with respect to their protection
level [19]: 1© normal permissions that have the least risk associated with them.
These permissions are granted to an app automatically during installation; 2©
signature permissions that are granted if an app is signed with the same signing
key/certificate as the app defining them; 3© dangerous permissions that allow
more substantial access to restricted data and interfaces; 3© internal permissions
that are managed internally by the operating system.

Besides, these protections Android differentiates permissions based on the
time they are granted [4]: 1© Install-time permissions that are granted to the
application when it is installed, these include normal permissions and signature
permissions. 2© Runtime permissions allow access to restricted data and func-
tions, and hence, these are considered dangerous permissions. These permissions
are requested at the runtime of the application. 3© Special permissions allowed
for use only by the Android platform and original equipment manufacturers
(OEM).

Components are the foundational elements of Android applications. An
Activity is one of the main components managed by the Android system which is
a single screen that a user can interact with in an Android application. Activities
are the building blocks of an Android application responsible for presenting the
user interface.

Inter-Process Communication (IPC) in Android refers to the method by
which various parts of an application or various applications can communi-
cate with one another. IPC can be used for a variety of things, including
data exchange, calling methods from other processes, and messaging between
processes.

An Android intent is a messaging object that is used to ask another app
component or system tool for a certain action. The component name or fully
qualified class name of the target component is specified in an explicit intent,
which is used to start the component either within the same app or a separate
app. An implicit intent, on the other hand, defines the kind of action to be
taken and the data involved without specifying the precise component to begin
with. Based on the action, category, and data specified in the intent in the
AndroidManifest.xml file, the Android OS will look for the right component to
handle the intent.

Exploiting Android Browser 165

Fig. 1. The flow of the proxy attack

3 The Proxy Attack

3.1 Threat Model Overview

Android employs permissions as a primary system of safeguards to protect access
to sensitive data or privileged resources. We adopt a typical threat model that
assumes the attacker app has no permissions, i.e., no permissions are defined in
the AndroidManifest.xml file, thus it appears benign with respect to the granted
automatic permissions. In our attack, we assume that an attacker app may be any
application installed on a device from a digital app distribution platform such
as the Google Play Store. As such attacker app does not contain any malicious
payload that may be recognized by anti-malware vendors. The target victim is
the browser app that is pre-installed on a device or intentionally installed by a
user.

3.2 Attack Overview

The goal of the proxy attack is to retrieve sensitive information or obtain
protected access to phone resources without permission. The attacker app,
installed on the user’s device, exploits a specific browser by circumventing the
QUERY ALL PACKAGES permission. The app delegates the responsibility of obtain-
ing permissions to the browser, which then acts as a proxy hiding the attacker
app. The app creates a deceptive customized toast overlay, a visual element that
appears on top of other app interfaces. This overlay conceals the targeted browser
and any malicious activities conducted by the attacker. By hiding the browser,
the attacker gains access to protected information such as location coordinates
or can initiate actions in system apps (e.g., sending an SMS message) on behalf
of the attacker app. Once the sensitive data is collected, it is redirected back to
the attacker app using implicit intent and deep linking, enabling the delivery of
content directly to the attacker app without raising suspicion.

3.3 Attack Heuristics

The premise of the proxy attack is that an attacker app remains innocuous
while interacting with a browser to obtain access to sensitive data on the device.

166 A. Kar and N. Stakhanova

Figure 1 shows the flow of the proxy attack that encompasses three primary steps:
1© Collection of information about the installed mobile browsers on the device,
gather permissions granted to browsers to narrow focus to a specific attack; 2©
Launch the vulnerable browser with a target website and obscure the view with
an overlay layer. Deceive the user to provide approval for the attacker’s website
to collect information; 3© Retrieval of information and its transfer back to the
attacker app with deep linking. We further explain each of these steps.

3.4 Collection of Information

Since an attacker app does not request any permissions, the main goal of this
phase is to choose a vulnerable proxy browser. Since different browsers may
support different APIs and features or support them in different ways, the
attacker app needs to gather information on the browsers that are installed
on the user’s device. Typically, scanning the 3rd party app information requires
QUERY ALL PACKAGES permission. With this permission, an app can access other
app’s name, version code, granted/not granted permissions, component infor-
mation (e.g., activities, services), etc. Given the sensitive nature of data, this
permission allows to access, Google restricts the use of QUERY ALL PACKAGES per-
mission to specific cases where interoperability with another app on the device is
critical for the app to function [18]. For example, although QUERY ALL PACKAGES
is an install time permission, an app developer wishing to place its app on the
Google Play market has to obtain approval from Google first [27].

Listing 1.1. Bypassing a need for QUERY ALL PACKAGES permission
<quer i e s>

<intent>
<act ion android : name=”android . i n t en t . ac t i on .MAIN”/>
<category android : name=”android . i n t en t . category .LAUNCHER”/>

</intent>
</quer i e s>

To bypass this permission, we identified a loophole in using the <queries>
element. The <queries> element specifies the content URI that the app is inter-
ested in, along with other additional parameters such as action and category. It
allows the app to query the specified content URI and retrieve the data it needs.

Setting this <queries> element with the intent filter that uses the action
element ’android.intent.action.MAIN’ gives visibility into other apps installed
on the device and their properties without requesting QUERY ALL PACKAGES per-
mission. An example of this element usage is shown in Listing 1.1. The use of
<queries> element is innocuous as almost all apps have this element in their
AndroidManifest.xml file.

Listing 1.2. Search browsers in the device
Intent in t en t = new Intent () ;
i n t en t . se tAct ion (Intent .ACTION VIEW) ;
in t en t . addCategory (Intent .CATEGORY DEFAULT) ;
i n t en t . addCategory (Intent .CATEGORY BROWSABLE) ;
i n t en t . setData (Uri . parse (” http ://www. goog le . com”)) ;
List<ResolveInfo> l i s t = nu l l ;
PackageManager pm = getPackageManager () ;
l i s t = pm. que r y In t en tAc t i v i t i e s (intent , PackageManager .MATCH ALL) ;
f o r (Reso lve In fo i n f o : l i s t) {

Str ing browserName = in f o . a c t i v i t y I n f o . packageName ;
}

Exploiting Android Browser 167

The next step is to retrieve granted permission information on all browsers
available on the device using a launchable intent that can be handled by the
available browsers (Listing 1.2).

To view the permissions, we use the Android’s PackageManager class which
provides methods to retrieve information about the installed browser applica-
tions on a device, including the list of permissions granted to each application.

We retrieve the list of permissions for a specific application using the getPack-
ageInfo() method of the PackageManager class. This method returns information
about the specified browser package, including the list of permissions requested
by the package (Listing 1.3).

Listing 1.3. Retrieve permissions granted to browsers

PackageManager pm = getPackageManager () ;
// r ep l a c e with the package name of the browser app
Str ing packageName = ”com . android . chrome ” ;

PackageInfo packageInfo = nu l l ;
t ry {

packageInfo = pm. getPackageInfo (packageName , PackageManager .GET PERMISSIONS) ;
} catch (PackageManager . NameNotFoundException e) {

e . pr intStackTrace () ;
}
Str ing [] pe rmi s s i ons = packageInfo . r eques tedPermis s ions ;

i f (pe rmis s i ons != nu l l && permis s ions . l ength > 0) {
f o r (St r ing permissioName : permis s i ons) {

i n t permis s ionStatus = pm. checkPermiss ion (permissioName , packageName) ;
i f (permis s ionStatus == PackageManager .PERMISSION GRANTED) {

// permiss ion i s granted
Log . i (” pe rmi s s i ons g ranted ” , permissioName) ;

} e l s e {
// permiss ion i s not granted
Log . i (” pe rmi s s i on s not g rant ed ” , permissioName) ;

} } }

Once the vulnerable browser with the necessary permissions is identified, we
are now ready to launch the proxy attack.

3.5 Launch

As the next step, we launch the targeted browser with an attacker-controlled
website. We aim to deceive a user to grant the necessary permission to the
attacker’s website.

Browser Launch. Communication between apps in Android is realized through
intent. At this stage, we know the specific browser’s package name, so, rather
than launching an implicit intent, we explicitly launch a chosen mobile browser
app with a target URL.

When an intent with a target URL is sent by the attacker app, the sys-
tem searches for browsers that can handle it based on their intent filters.
ResolveInfo.activityInfo.packageName returns the package name and Resolve-
Info.activityInfo.name returns the launcher activity of the browser used to han-
dle the intent based on the current configuration of the device (see Table 1).

There are two ways how a target website can be opened on an Android
device. Typically, when a user clicks on the link or an app launches an intent
with a website request, the Android OS invokes the default mobile browser with

168 A. Kar and N. Stakhanova

Table 1. Mobile browsers and their launchers retrieved using Listing 1.1

Browser Package Browser Launcher

com.android.chrome com.google.android.apps.chrome.IntentDispatcher

com.duckduckgo.mobile.android com.duckduckgo.app.browser.BrowserActivity

com.kiwibrowser.browser com.google.android.apps.chrome.IntentDispatcher

com.microsoft.emmx (Edge) com.google.android.apps.chrome.IntentDispatcher

com.opera.mini.native com.opera.mini.android.Browser

org.mozilla.firefox org.mozilla.fenix.IntentReceiverActivity

com.brave.browser com.google.android.apps.chrome.IntentDispatcher

com.sec.android.app.sbrowser (Samsung) com.sec.android.app.sbrowser.SBrowserLauncherActivity

the target website. Alternatively, an app can embed a target website content as
a part of its screen by asking the OS to load a website in a WebView. Since
the attack aims to access sensitive data, it is critical to avoid requesting any
privileges to not raise suspicions.

In the former approach, an Android app typically requires android.
permission.INTERNET permission to access the internet service. However, the
Android API provides several ways to request a target website and exfiltrate
captured data without this permission. For example, requesting the URI of a
website through Intent, allows the attacker’s app to bypass this permission.

To incorporate web content within a mobile app’s WebView, the originating
app must possess the appropriate permissions for authorized access. However, if
the app defers to a mobile browser to obtain such access, it essentially delegates
the responsibility of obtaining permissions to the browser, which then acts as a
proxy and shields the attacker app.

Due to the lack of restrictions in the Android OS, a URL activity can be
initiated, enabling any website (even a malicious one controlled by an attacker)
to be launched by a browser on behalf of the attacker’s app.

In this proxy attack, we leverage the target website under the attacker’s
control. The website allows an attacker to embed Javascript (JS) code to collect
location, microphone, camera, and device-related (e.g., operating system, device
memory, and battery level) data. The window.navigator object in JS provides
information about the user’s device and environment(Table 2). For example, to
collect location information, the window.navigator object can be used with the
Geolocation API which allows websites to access the user’s location. To collect
microphone and camera information, the MediaDevices API can provide access
to the user’s microphone and camera. In both cases, appropriate permissions are
expected to be granted.

At this point, an attacker is facing two challenges:

– Permissions: Some device information (e.g., device model, time zone) is avail-
able to any app without permissions, however, the more sensitive data is
protected. The setup step ensures that the attacker app can see permissions
already granted on the device’s mobile browser apps, which significantly sim-
plifies an attack and allows invoking the browser that was already granted
permissions protecting the target data. For example, access to a phone’s cam-

Exploiting Android Browser 169

Fig. 2. Toast overlay on the attacker’s website. (a) A conceptual view of overlay, (b)
50% overlay transparency and (c) 100% overlay shown on One Plus 7 Pro device.

era relies on run-time permission mandated by Android OS which means a
user is prompted to grant this permission the first time the browser attempts
to access it.
To provide an additional layer of protection, the browser mandates an extra
confirmation when a website requests access to the camera. Subsequently, if
the browser has permission, any website that attempts to access the camera
triggers a prompt requiring the user to grant further consent. Consequently,
if the attacker app can manipulate the user into granting this confirmation
on their website, the attacker’s site can gain access to the camera without
any further prompts to the user.
It is possible, however, that none of the browsers have the necessary permis-
sions yet. This requires attackers to obtain permissions first and subsequently
prompt the user to approve access to the camera without raising the user’s
suspicions.

– Browser visibility : The browser with a target website appears in the fore-
ground. Thus, its activity and the following user prompts are visible to a
user.

We resolve both challenges with the use of overlays. Several studies have
investigated Android UI deception techniques using overlays [6,14,42]. These
techniques range from drawing toasts [34] to performing click-jack-style attacks
[42]. The attacker app that we developed for this study uses a variation of these
attacks to hide the browser’s activity and silently obtain permissions.

Using Overlays. Figure 2(a) presents a conceptual view of using an overlay to
deceive a user and access privileged data.

The attack combines an overlay layer with a toast window, i.e., a small text
message pop-up window shown on screen for a limited amount of time. Toast
messages can be drawn over the top view window even when an unrelated app
controls the main screen without explicit permission.

170 A. Kar and N. Stakhanova

In the proxy attack, we invoke a toast overlay for 2 purposes: (1) to hide the
invoked mobile browser and its activity; and (2) to elicit user response to tap on
the screen.

Hiding Browser Behavior. By adding an overlay layer on top of the host view
(a mobile browser screen), the attacker app can completely obscure the target
web page’s content and the fact that a mobile browser was launched.

The toast window is intended for a quick message, e.g., a notification, and
thus typically appears for 3.5 or 2 s. We continuously invoke toast to provide
an overlay layer for a required period of time. To create a toast overlay, we use
a Handler class and Looper object, which is responsible for creating a message
queue (for our attack it is a customized toast) for our app thread.

The attacker app uses Handler.postDelayed() that starts both our custom
toast overlaying (OuterHandler) and launches the targeted browser (InnerHan-
dler) in a parallel thread so that our main user interface (UI) is non-blocking.
This non-blocking mechanism allows long-running operations of toast to show
on the screen of the device without blocking the main thread. This keeps our
attacker app’s overlay interface responsive and avoids ANR (Application Not
Responding) errors.

The toast overlay is started right after the attacker app’s main thread finishes
scanning for the permission (e.g., camera) that is already granted on the targeted
browser, the screen is taken over by the customized toast overlay, and then the
targeted browser is launched. This sequence hides the underlying transitions and
presents the workflow expected by a user.

Deceiving User. The toast overlay view also aims to deceive a user and elicit
necessary taps on the screen. The toast overlay presents a legitimate-looking
view, for example, mimicking an expected app view, without appearing suspi-
cious (e.g., using toast.setView(customiziedView)). This view can include buttons
to capture a user’s taps. These taps are then transferred to a hidden browser
requesting permissions or user approval. Note that the toast overlay does not
get focus on the touch events and cannot be dismissed by a user, hence it is fully
controlled by the attack app.

The use of toasts for user deception was noted by previous studies [15]
using two signature protection level permissions SYSTEM ALERT WINDOW and the
BIND ACCESSIBILITY SERVICE. To mitigate this vulnerability, Android intro-
duced a timeout of a maximum of 3.5 s for a single toast and a single toast
window per UserID (UID) at a time. This, however, does not address the under-
lying issue that an app does not require permission to show a toast window over
any other app. Our use of toast overlay also bypasses any permissions that are
required to draw over other apps as described in CVE-2017-0752.

If a targeted browser does not have the necessary permissions, upon request
to access privileged resources, Android prompts the user twice to approve this
access (once to grant this permission to a browser, and the second time to allow
website access to this resource). The key weakness that our proxy attack exploits
at this stage is the ability of any app to cover these permission prompts with
the toast overlays.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0752

Exploiting Android Browser 171

Since the toast overlay presents a customized view, a user may be easily
tricked into unknowingly approving permissions. As Fig. 2(a) shows a customized
toast view can be easily mapped to the ’Allow’ button on the underlying permis-
sion prompt. An example of a user prompt, when a website attempts to access
sensitive data is shown in Fig. 2(b) and (c).

3.6 Retrieving Data

When an attacker’s activities remain in the background hidden with an
inescapable overlay view, there are many opportunities for exploiting device
resources. We build an attacker app to obtain information and access services
that require permissions. Once the permission-related data is gathered, it is redi-
rected back to the attacker app through implicit intent using deep linking, which
allows to programmatically delivery of content to an app. Deep links function as
URIs links that guide users to a particular content of our attacker app. For exam-
ple, the attacker app can specify what type of URIs links should be transferred
back to this app.

Mobile browsers can invoke various activities, e.g., display link data, using a
BROWSABLE intent. Thus, the attacker app specifies a BROWSABLE intent
filter along with a URI scheme and a host in the app’s AndroidManifest.xml file.
An automatic click on any hyperlink on the website that fits the app’s defined
URI scheme and host triggers an intent to the attacker app that collects data
sent by the browser (through .SendReceiveActivity).

For example, the hyperlink can be placed on the target website
using an anchor tag(<a>), i.e., a.href = “attackerscheme://attackerhost/?data=

base64EncodedData”, where the specified URI ’scheme’ is attackerscheme, the
’host’ attackerhost, and ’base64Encoded’ is transferred data.

There is no specific limit on the amount of data that an Android app can
receive from a browser using a URI scheme, however, the device’s available mem-
ory and processing power can impose limitations on how much data can be trans-
ferred, e.g., captured image and audio recordings can be resource consuming. For
practical reasons, in our attack, we encode the collected data in base64 format.

Listing 1.4. Browsable intent-filter

<a c t i v i t y android : name=”. SendRece iveAct iv i ty ”
android : exported=”true ”
android : excludeFromRecents=”true”>

<intent−f i l t e r >
<act ion android : name=”android . i n t en t . ac t i on .VIEW” />
<category android : name=”android . i n t en t . category .DEFAULT” />
<category android : name=”android . i n t en t . category .BROWSABLE” />
<data android : scheme=”attackerscheme ”

android : host=”at tacke rhos t ” />
</intent−f i l t e r >

</ac t i v i t y >

The Listing 1.4, shows the BROWSABLE intent filter configuration provided
in the attacker app’s AndroidManifest.xml file. The collected data redirected by
the browser is received by SendReceiveActivity in onResume() function. Finally,
we extract the received intent with intent.getData() returning the data associ-
ated with the intent (Listing 1.5).

172 A. Kar and N. Stakhanova

The android:excludeFromRecents=“true” attribute used is to exclude the
SendReceiveActivity from appearing in the list of recently used apps (the
Overview screen). When this attribute is set to true for an activity in the
AndroidManifest.xml file, the activity is removed from the list of recent tasks
when the user navigates away from the app. This means that the user is not able
to return to the activity using the Overview screen, and needs to restart the app.
Though android:excludeFromRecents=“true” is used to prevent sensitive data of
activity from being exposed in the recent apps list, we use this attribute to hide
SendReceiveActivity on the device.

Listing 1.5. Receiving data from a browser

@Override
protected void onResume () {

super . onResume () ;
hand le IntetExtras (ge t In t en t ()) ;

}
pr iva t e void hand le IntetExtras (Intent in t en t) {

Uri u r i = in t en t . getData () ;
i f (u r i != nu l l) {

Log . i (” Server Response ” , ” r e c e i v ed some data ”) ;
Log . i (” Device Data ” , u r i . getQuery ()) ;
// f u r th e r l o g i c to stop / cont inue toa s t over lay with
// sharedPre f e rence s to rage with a boolean f l a g

}
}

Table 2. Information type and their navigator syntax

Device Information JS Syntax

OS - navigator.paltform
- navigator.OS

Device Version navigator.appVersion

GPU(Renderer) canvas.getContext(’#canvasID’)

User Language - navigator.languages
- navigator.userLanguage
- navigator.language

Network Information navigator.connection

Battery* navigator.getBattery()

Ram(memory)* navigator.deviceMemory

Take Picture* navigator.mediaDevices.getUserMedia()

Audio Record* navigator.mediaDevices.getUserMedia()

Location* navigator.geolocation.getCurrentPosition

* requires HTTPS protocol, the rest can be accessed through both
HTTP and HTTPS.

Additional Attacks. Additional steps can allow us to mount more effective
attacks accessing phone, SMS, and email services. These resources are typically
accessed through the pre-installed system apps present on the device.

Exploiting Android Browser 173

Listing 1.6. Launching system apps via browser

<!DOCTYPE html>
<html>

<body>
SMS
Call
Email

</body>
<s c r i p t type=”text / j a v a s c r i p t”>

var aSms = document . getElementById (’ sendSms ’) ;
aSms . h r e f = ”sms ://+12345565444?body=I%27am%20Bob” ;
//document . getElementById (” sendSms ”) . c l i c k () ;
var aTel = document . getElementById (’ cal lPhone ’) ;
aTel . h r e f = ” t e l :12345565444” ;
document . getElementById (” cal lPhone ”) . c l i c k () ;
var aEmail = document . getElementById (’ sendEmail ’) ;
aEmail . h r e f = ”mai l to : person1@example . com?body=You%20are%20 inv i t ed%20to%20The

%20Party ! ” ;
//document . getElementById (” sendEmail ”) . c l i c k () ;

</s c r i p t>
</html>

Table 3. Tested devices for proxy attack

Android
version

Device model The latest installed
security patch

8.1 Huawei (P20 Pro) June 1, 2018

9 Samsung (Galaxy A10 e) December 1, 2020

10 LG (Phoenix 5) July 1, 2020

10 Xiomi (Poco f1) December 1, 2020

11 Umidigi (A9 Pro) March 5, 2021

11 Ulefone (Armor 8 Pro) July 5, 2022

11 Samsung (Galaxy A22) March 1, 2022

12 Umidigi (BV4900 Pro) May 5, 2022

12 One Plus 7 (Pro) August 5, 2022

12 Ulefone (Note 14) March 5, 2023

13 Samsusng (Galaxy A22 5g) November 1, 2022

13 Google Pixel 7 February 5, 2022

Equivalently, these can be launched via browsers. When a hyperlink with a
specific protocol is requested, for example, tel:, sms:, or mailto:, Android OS
invokes an app that can handle the requested protocol. An attacker can pre-fill
these schemes with corresponding information, thus, making a call, or sending
an SMS or an email message.

To exploit these capabilities, predefined phone number, SMS, and email mes-
sage with the receiver’s contact information are placed on the target website
called by the attacker app using the hyperlinks. We then follow the described
deep link approach to automatically launch the corresponding system apps.
Android allows the launching of the system apps via browsers without requiring
any explicit permissions. A snippet is given in Listing 1.6. Android OS decides
which apps can handle these implicit intents coming from the browser.

When an implicit intent is transmitted from a browser to the Android OS
to carry out operations such as sending an SMS or making a phone call, a
notification is not shown to the user. When a user clicks on an SMS link in a
browser, for example, the implicit intent is delivered immediately to the SMS
app without the user being notified. This strategy improves user experience and
prevents interruptions by assuming that the user intentionally performs this
operation.

174 A. Kar and N. Stakhanova

4 Evaluation Study

4.1 Settings

Since some device information accessible by browsers requires an HTTPS con-
nection to the server (Table 2), we installed an Apache/2.4.41 server with a
self-signed certificate. Although all tested browsers gave an alert accessing the
target HTTPS website, this did not prevent us from retrieving necessary infor-
mation. To evaluate the proxy attack in the real world, we tested it on 12 mobile
phones with Android versions 8.1 to 13 (Table 3).

For our evaluation, we have selected 6 most popular (based on the number of
downloads) mobile browsers: Google Chrome, Samsung Internet browser, Opera
Mini, Mozilla Firefox, Microsoft Edge, and Kiwi Browser. We also included 2
privacy-focused browsers: Brave Private Web Browser and DuckDuckGo Private
browser.

Before proceeding with an attack, we verified permissions that were granted
to mobile browsers by default on the Android devices using Android Debug
Bridge (adb) [23]. The granted permissions were obtained using the adb shell

Table 4. Information generally accessible by mobile browsers

Information Type Chrome

←
Mozilla

Firefox

←

Opera

Mini

DDG Edge

←
Brave

←
Samsung

←
Kiwi

←
Necessary Permissions

C
a
te

g
o
ry

1

TimeZone � � � � � � � � N/A

User Language � � � � � � � � N/A

Device Model,

Android Version

� � � � � � � � N/A

OS � � � � � � � � N/A

GPU � � � � � � � � N/A

Memory(RAM) � X � X � � � � N/A

Network Info

- Internet

Connection

- Connection

Type

- EffectiveType

- Downlink

� X � � � X � � ACCESS NETWORK

STATEa

ACCESS WIFI

STATEa

READ PHONE

STATEb*

Battery Status

- Charging Status

- Charge Level

� X � X � Wrong

Value

� � BATTERY STATSc*

C
a
te

g
o
ry

2

Camera � � � � � � � � CAMERAb

Microphone

(Audio

Recording)

� � � � � � � � RECORD AUDIOb

Location � � � � � � � � ACCESS FINE

LOCATIONb

ACCESS COARSE

LOCATIONb

DDG: DuckDuckGo browser
a Normal Permission
b Runtime Permission
c Signature Permission
* The 3rd party apps are required to obtain these permissions, while browsers granted them implicitly,

← Browsers that allow automatic hyperlink clicking from the attacker’s site back to the attacker app through

Android OS (deep link)

Exploiting Android Browser 175

dumpsys package “browser.package.name”. Although in practice browsers are
likely to have at least some permissions granted, for our experiments, we made
sure that browsers had no granted runtime permissions.

4.2 Accessible Information

Table 4 presents the devices’ information availability on 8 mobile browsers tested
on all analyzed Android devices. We observe fairly consistent results. Most
browsers have direct access to this data. The exceptions are Mozilla Firefox, and
two privacy-focused browsers: Brave and DuckDuckGo. Several device parame-
ters can be retrieved by browsers and third-party apps without any permissions,
e.g., timezone, user language, device model, Android version, OS, GPU, and
memory-related information. We were able to retrieve network-related informa-
tion from 6 out of 8 browsers without requiring to obtain any permissions.

We see that most of the browsers that provide network information (e.g.,
internet connection type, connection effective type, connection downlink) are
granted ACCESS NETWORK STATE and ACCESS WIFI STATE permissions implic-
itly. Note that any third-party app requesting cellular information(e.g., 3g/4g)
explicitly requires READ PHONE STATE permission which is a run-time permission
and has dangerous level protection. Network information was unavailable from
Mozilla Firefox and Brave (released under Mozilla) browsers as a part of defense
from fingerprinting [38].

Memory (RAM) information was unavailable from Mozilla and Duck-
DuckGo browsers. According to Mozilla Developer Network(MDN), in order
to reduce fingerprinting [10], the reported figure is inaccurate on web browsers
and is not available on Android Firefox browser [10]. Similarly, due to anti-
fingerprinting techniques, DuckDuckGo browser returns undefined for naviga-
tor.deviceMemory [29](hardware APIs).

Similarly, 6 browsers had access to battery-level information, while none of
them had BATTERY STATS permissions granted. Although this is signature-level
permission, mobile browsers are exempt from it. Interestingly, Brave browser
consistently provided incorrect battery level, i.e., 100% and the charging sta-
tus is true even in cases when the device has a low charge level and was not
being charged. The battery status API is deprecated in Mozilla due to track-
ing and fingerprinting. However, a third-party script found on multiple websites
can quickly associate users’ visits by exploiting battery information accessible to
web scripts. These scripts can utilize battery level, discharging time, and charg-
ing time values, which remain constant across sites due to synchronized update
intervals. Consequently, this approach enables the script to link concurrent vis-
its effectively [35]. As a preventive measure, browsers like DuckDuckGO, Mozilla
Firefox, and Brave have disabled the battery status API, thwarting this form of
tracking.

All browsers provided geolocation information and also had access to the
camera and microphone.

176 A. Kar and N. Stakhanova

Table 5. The summary of the proxy attack on various Android devices

Device Android Version Browsers

Chrome Kiwi Bravea Edge Samsung Firefoxb Opera DDG

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3

Huawei 8.1 (API 27) � � � � � � � � � � � � � � � � � � X X

Samsung Galaxy 9 (API 28) � � � � � � � � � � � � � � � � � � X X

LG 10 (API 29) � � � � � � � � � � � � � � � � � � X X

Xiomi 10 (API 29) � � � � � � � � � � � � � � � � � � X X

Ulefone 11 (API 30) � � � � � � � � � � � � � � � � � � X X

Umidigi 11 (API 30) � � � � � � � � � � � � � � � � � � X X

Samsung Galaxy 11 (API 30) � � � � � � � � � � � � � � � � � � X X

One Plus 12 (API 31) � � � � � � � � � � � � � � � � � � X X

Ulefone 12 (API 31) � X �
c
� X �

c
� X �

c
� X �

c
� X �

c
� X �

c X X

Umidigi 12 (API 31) � X X � X X � X X � X X � X X � X X X X

Samsung Galaxy 13 (API 33) � X X � X X � X X � X X � X X � X X X X

Google Pixel 13 (API 33) � X X � X X � X X � X X � X X � X X X X

DDG: DuckDuckGo browser
Category1(c1): TimeZone, User Language, Device Model, Android Version, OS, GPU,
Ram, Network Info, Battery Status (no user interaction required)
Category2(c2): Permission-granted data - location, camera, microphone
Category3(c3): System app initiation: call, sms, email
a Except Network Info & Incorrect Battery status
b Except Ram, Battery Status, Network Info
c Except Email Sending

4.3 Evaluation Results

To evaluate the effectiveness of the proxy attack, we have installed all 8 browsers
on each of the analyzed Android devices. Table 5 presents the results of our
proxy attack. Browsers mostly displayed the same behavior on different devices.
Although 6 of the 8 tested browsers, readily gave the attacker app all the data it
needed, 2 of the browsers (such as DuckDuckGo and Opera Mini) did not allow
the automatic click to occur using JS, making it impossible for the attacker app
to automatically retrieve the information it had gathered from these browsers on
the tested devices. We presume that these 2 browsers may, for security purposes,
disable automatic navigation to native applications. This is most likely done to
stop malicious websites from launching other apps on a user’s device. The proxy
attack failed on these 2 browsers. It should be noted that DuckDuckGo is a
privacy-focused browser, hence stricter security measures are generally expected.
However, Brave, another privacy-focused browser, did not exhibit this behavior,
and in most cases provided information similar to the majority of browsers.

To see the smooth data flow from the browser to our attacker application, we
set DuckDuckGo and Opera Mini as default browsers and changed the “href”
value from ‘‘attackerscheme://attackerhost/?data=base64Encoded’’
to ‘‘intent://attackerhost/#Intent;scheme=attackerscheme;package=
attacker.package.name;S.data=‘‘+base64Encoded+’’;end;’’ in JS to test
data transmission specifically through intent. Even after this change, we were

Exploiting Android Browser 177

unable to retrieve data from Opera Mini and DuckDuckGo browsers however
for the remaining browsers this strategy worked. This shows that, unlike other
browsers that have used this strategy successfully, Opera Mini and DuckDuckGo
do not provide seamless intent transfer to the 3rd party apps in the Android OS.

Accessing Category 1 Data. The first set of experiments was focused on accessing
data that requires no user interaction. Some of this data requires no permissions
(such as timezone, user language, Android model and version, etc.), while other
needs runtime and signature permissions, e.g., accessing network information
requires READ PHONE STATE run-time permission, while accessing battery status
needs signature-level BATTERY STATS permission.

Our attacker app did not obtain network information through Firefox and
Brave browsers and memory and battery-level information through Firefox and
DuckDuckGo browsers, as these browsers do not typically access this information
even in non-attack context. In other browsers on all devices, our attack was
successful, i.e., the attacker app was able to obtain data typically inaccessible
by third-party apps without proper permissions.

We observed several noticeable variations in browser behavior when the
attacker website was accessed through the attacker app beneath the overlay.
No browsers alerted the user asking to confirm whether the attacker app should
be launched through the automatic deeplink. Deeplinking did not succeed in the
DuckDuckGo and Opera Mini browsers as they do not allow automatic deeplink-
ing to happen.

Accessing Category 2 Data. With our proxy attack, we were able to retrieve
permission-related data (location, camera, microphone) from browsers on devices
with Android versions 8.1 to 11, and Android 12 (One Plus 7 Pro). We were
unsuccessful on two Android 12 (Ulefone, Umidigi) and two Android 13 devices.

Retrieved Location Data. Apart from deceiving the user to give consent on
the website’s location prompt, we also examined the location coordinates of the
Android devices using a public API and JavaScript code placed on the target
website accessed by a browser. The user does not need to manually give consent
to the location request. We use IP-based geolocation-db API [11] to get the
latitude and longitude of the user’s device. When the attacker app navigates
to the target website, the browser automatically provides the IP address of the
device. This API then retrieves the location by matching the IP address with
geolocation in their database. We requested this information on each browser
for 3 different locations. The retrieved information was imprecise by 2.06 km
on average and varied against the data retrieved from browser apps. So, even if
location data can be retrieved without the user’s consent from the public API(s),
the accuracy is not precise.

Initiating System Apps (Category 3). Our proxy attack was successful in trig-
gering system apps to perform actions such as making a phone call, sending

178 A. Kar and N. Stakhanova

an SMS message, and sending an email across all browsers, except for Opera
and DuckDuckGo, on devices running Android 8.1 to 11. However, the behavior
observed on Android 12 exhibited some variability. Specifically, the attack was
able to successfully make a phone call and send an SMS message on two devices,
but it was unsuccessful on the Umidigi phone. Unfortunately, access to system
apps failed on both Android 13 phones.

For all devices sending email message with the proxy attack was successful
with a single tap (indicating the user’s approval). An exception was the One
Plus 7 (Pro) device that unexpectedly requested an additional confirmation after
pressing the ’Send’ button. Hence the overall attack required 2 clicks although
permission was already granted to a browser. Knowing this behavior, however,
does not prevent an attack, i.e., an attacker can craft an overlay view to obtain
2 clicks from the user within a few seconds. There was another interesting result
we found analyzing an Android 12 Ulefone (Note 14) device. With a delay of
215–220 ms for notifying successive toasts with minimal flickering, we were able
to successfully send an SMS message and dial phone numbers. However, the
attack was inconsistent, 3 out of 10 attempts were successful.

We found that maintaining the duration of the toasts in the foreground for
more than 3.5 s was challenging for Android versions 11 and up. However, setting
the targetSDK version of the attacker app to 29 gave us more flexibility in
maintaining the different duration of toast, i.e., more than 40 s on Android 11,
approximately 16 s on Android 12, and 13 devices.

The observed behavior partially aligns with the official mitigation measures.
In Android 11, Google implemented partial protection to prevent background
custom toasts [26], and in Android 12, they introduced full pass-through touch
protection to prevent touch events from reaching apps when they pass through
a window from another app [24]. However, despite these measures, we consis-
tently found that system apps could be accessed on Android 11 devices and
inconsistently on Android 12 devices. Despite the introduction of Android 13,
Android versions 10-12 continue to be widely used globally [41] underlying the
devastating effects of the proxy attack.

Similarly, the use of overlays leading to privilege escalation has been reported
before2 and according to Android Security Bulletin, patched [20,21]. In our
experiments, the tested devices had the latest patches installed (Table 3). These
patches, however, did not prevent the use of overlays.

Although it was shown in [42] that pass-through touch and background
toasts are still unresolved until Android 11, it’s important to note that Android
has effectively resolved the pass-through touch problem in Android 12 and 13.
Android 12 automatically stops full occlusion attacks, and this protection is fur-
ther enhanced in Android 13 and subsequent versions, where touch events from
untrusted overlays originating from different UIDs are declined. The prevention
of fully covered attacks is also feasible by adjusting the code. Specifically, devel-
opers need to ensure that setFilterTouchesWhenObscured is set to “true” in the

2 CVE-2021-0954: https://www.cvedetails.com/cve/CVE-2021-0954/, CVE-2021-
39692: https://www.cvedetails.com/cve/CVE-2021-39692/,.

https://www.cvedetails.com/cve/CVE-2021-0954/
https://www.cvedetails.com/cve/CVE-2021-39692/

Exploiting Android Browser 179

code, or setting android:filterTouchesWhenObscured to true in the root layout,
thereby prohibiting touch interactions while an overlay is active [28]. However,
it’s interesting to highlight that the pass-through touch problem remained under
overlay even after the One Plus 7 Pro(Android 12) device was updated from
Android 9 to Android 12. Moreover, The tested browsers that were compromised
under toast overlay attack did not set the setFilterTouchesWhenObscured/an-
droid:filterTouchesWhenObscured to true in the launchers and layout files.

Through further examinations, we have discovered that when multiple appli-
cations share the same UID, they can experience pass-through touch due to being
processed under a common process ID (PID). Additionally, we have identified
that activities that utilize webviews are also vulnerable to toast overlay attacks
within the confines of a single application.

Difficulty in Detecting Toast Overlay Behavior During App Review
Process. Previous strategies to counter toast attacks have included actions like
deprecating TYPE TOAST since Android 8.0 and implementing a restriction on
overlapping toasts [22]. Nonetheless, our research, as well as findings from [42],
indicates that employing a brief delay in generating subsequent toasts can facil-
itate the execution of overlay attacks. Notably, Google’s recent interventions to
counter overlays predominantly occur after the application’s release, focusing
on stopping background toast bursts from Android 12. While app stores such
as Google Play employ rigorous review processes to weed out potential threats
before an app’s release, the detection of sophisticated attacks like toast over-
lay attacks can sometimes pose challenges. However, while background toast
blocking is a defense mechanism, Android provides a full-screen overlay in apps
employing modules like SurveyFragment.java under interaction package for ani-
mation and tutorial purposes. So, the complexity of distinguishing between
legitimate uses and malicious intent in apps under overlay can result in uncer-
tainty during app review. Striking a balance between ensuring user safety and
avoiding false positives remains a complex task for the app store. Moreover,
Google employs advanced machine learning techniques to detect phishing activi-
ties within messaging apps, predominantly in the Pixel series. This system oper-
ates based on identifying suspicious requests and texts [25]. However, our toast
overlay attack effectively circumvents these scanning mechanisms, as illustrated
in Fig. 2.

We conducted an examination of our attacker app by subjecting it to scrutiny
by two prominent antivirus programs, namely AVG Antivirus & Security3 and
Malwarebytes Mobile Security4. Despite huge downloads of these apps, neither
application was able to identify the malicious intentions underlying the toast
attack and the scan results indicated that the app was ’clean’ and devoid of
threats. To delve deeper into the detection process, we resorted to employing
a specialized toast detection application named Toast Source5. However, it is

3 https://play.google.com/store/apps/details?id=com.antivirus.
4 https://play.google.com/store/apps/details?id=org.malwarebytes.antimalware.
5 https://play.google.com/store/apps/details?id=pl.revanmj.toastsource.

https://play.google.com/store/apps/details?id=com.antivirus
https://play.google.com/store/apps/details?id=org.malwarebytes.antimalware
https://play.google.com/store/apps/details?id=pl.revanmj.toastsource

180 A. Kar and N. Stakhanova

worth noting that this app is designed to detect all types of toasts and does not
possess the capability to differentiate between toast overlays and regular toasts.
It is important to highlight that all these 3rd party apps required permission to
AccessibilityService for their functioning.

Responsible Disclosure. We reached out to OnePlus6 regarding the toast
overlay vulnerability on the OnePlus 7 Pro(Android 12). They acknowledged
it as a known problem on their end failing to give any kind of notification to
users and asked us for device-specific details, including the IMEI. However, no
concrete solution was provided following this initial communication.

5 Discussion and Lessons

Mitigation: Our evaluation of 8 mobile browsers across 12 mobile devices shows
that the proposed proxy attack is effective in the real world in both older and
newer devices regardless of the updated security patches. The attack relies on a
few critical weaknesses that make this approach viable on the latest versions of
mobile browsers and Android devices:

– Query without permission: Bypassing QUERY ALL PACKAGES permission
in Android allows any third-party app to have visibility into other installed
apps on the same device. As we showed, this can lead to several negative impli-
cations for user privacy and device security, including collecting information
about other apps to craft targeted attacks or exploit known vulnerabilities.
This information can be retrieved even for disabled apps. This weakness can
be easily mitigated by modifying the app’s default launcher activity settings
to android:exported=“false”, in this case, the activity is not launchable even
after querying. Note, that the browsers’ default activity launchers are set to
android:exported=“true”.

– Overlays: Overlaying presents a significant threat. Users are at risk of virtu-
ally any type of attack through these inescapable view-blocking layers that
require no permissions to invoke. The fact that any app can draw a customized
overlay with essentially any content on top of any other unrelated app allows
a malicious attacker to convince the user to perform any action, e.g., provide
credentials, or click on a phishing link. In spite of numerous studies show-
ing the dangers of overlays [14,32], they still remain largely exploitable. Our
proxy attack was successful in obtaining access to sensitive data and sys-
tem apps on all Android devices versions 8.1–11 and partially successful on
Android 12 and 13 phones.
The touch protection introduced by Google for the new devices does not
appear to be adopted uniformly by different OEMs, while the older devices
that are prevalent worldwide have no protection. The impact of these weak-
nesses can be mitigated by introducing release patches for loop-based toast
overlay attacks for both recent and older versions of Android.

6 https://oneplus.custhelp.com/app/ask.

https://oneplus.custhelp.com/app/ask

Exploiting Android Browser 181

– Lack of required permission for launching intent : Android OS provides the
mechanism for launching intents to browser apps without requiring any
explicit permissions. To counter this Android OS should not allow third-
party apps to launch browsers without explicit permissions defined in the
AndroidManifest.xml. For example, the apps can be required to use internet
permission to launch an intent using Intent.ACTION VIEW along with some
URI that starts with http or https.

– Browser permissions: The permissions only need to be granted once to a
mobile browser regardless of whose behalf the browser is accessing the data.
The user might choose to grant permission on the browser without any restric-
tions (Allow), once per session (Allowed once), for 24 h, or deny the browser-
specific access. As our attack showed, only the ’Allowed once’ option can be
considered the safest. In this case, users are explicitly alerted when third-party
apps attempt to access browsers.

– Touch sensitivity of system apps: Default phone and SMS applications need
just a single click to function and trigger no additional confirmation before
launching. While this allows for a seamless user experience, it presents many
opportunities for malicious apps. Mitigation measures can include device but-
ton annotations with additional properties such as a long click duration, and
confirmation prompts to prevent overlay-based clickjacking.

Limitations. In order to be successful, our proxy attack strategically positions
buttons on the overlay using commonly observed coordinates from preliminary
manual testing. For instance, for the dialer system app, the buttons are typically
located in the lower middle section of the screen, while for the SMS system
app, they are mostly placed in the lower right corner. However, there is some
slight variation among different browsers. For example, Chrome, Edge, and Kiwi
browsers display the alert in the middle of the screen, whereas Mozilla Firefox,
Opera, and Samsung browsers show it at the bottom. It is possible that other
browsers and system apps may exhibit further variations in button placement,
potentially limiting the effectiveness of the attack. Nevertheless, we anticipate
that a determined attacker can expand the testing pool and adjust the button
coordinates based on specific browsers.

During our experimentation, we also observed another behavioral character-
istic where multiple touches on the overlay were needed to perform a function
in the target app. Among the devices we tested, only the OnePlus 7 phone
required 2 clicks to send an email. It is reasonable to expect that other Origi-
nal Equipment Manufacturers (OEMs) may have similar implementations that
require multiple confirmations. While this does not prevent the attack, it does
necessitate the attacker apps to anticipate and implement additional overlays.

6 Related Work

In the past decade, numerous studies examined attack paths and vulnerabilities
unique to mobile browsers. Aldoseri et al. [2] showed security flaws in popular

182 A. Kar and N. Stakhanova

mobile browsers. Hassanshahi et al. [30] introduced web-to-app injection attacks
that allow invoking installed apps on a mobile device when a user visits a mali-
cious website in an Android browser.

Many studies investigated Android GUI deception techniques focused on
exploiting the user’s confusion and inability to verify which app is producing
actions on the screen. These attack range from tapjacking [37], UI redressing [34],
draw-and-destroy [42]. The mobile tapjacking attack is similar to traditional
browser clickjacking which involves loading the victim webpage as a transparent
frame on top of a harmless page, enticing the user to click on it. When the user
clicks, the click event is transferred to the victim frame, allowing attackers to
perform actions on behalf of the user.

Niemietz et al. [34] showed a UI redressing attack that allows to make
a phone call without necessary permissions. The attack was relying on
SYSTEM ALERT WINDOW permission explicitly requested in the AndroidMani-
fest.xml. Fratantonio et al. [15] showed however that users can be deceived to
grant SYSTEM ALERT WINDOW and the BIND ACCESSIBILITY SERVICE permissions
enabling UI attacks. Rydstedt et al.’s [39] explored how different tapjacking
attacks can be used against mobile browsers, e.g., for stealing WPA secret keys
and geofencing the user. Felt et al. [13] demonstrated that in these cases users
can be convinced to enter their sensitive information, such as their passwords.
Bianchi et al. [6] explored different ways mobile users can be deceived and devel-
oped a defense mechanism to prevent GUI confusion attacks.

Starting Android API level 23, overlays have been significantly restricted,
disabling most of these early attacks targeting GUI confusion. Focusing on more
generic GUI properties, Alepis et al.’s [3] showed security standards of Android
UI can be still bypassed. Wang et al. [42] introduced the draw-and-destroy over-
lay attack. Taking advantage of the Android animation mechanism, a malicious
app can quickly draw and destroy a customized toast over a victim app stealing
the user’s input without triggering a system alert. In response to GUI confusion
attacks, Possemato et al. [36] proposed the ClickShield defense mechanism based
on an image analysis technique.

The impact of zero permission attacks have been noted before. For exam-
ple, Block et al. [8] leveraged magnetic field communications in Android device
location identification attack. Block et al. [7] showed that two apps can communi-
cate with one another via an ultrasonic bridge using only two system-shared and
permissionless resources, the speaker and the sensors. Narain et al. [33] demon-
strated that an Android app with zero permissions can infer a user’s location
and route they have taken using accelerometer, gyroscope, and magnetometer
information.

In this work, we also leverage overlays to hide browser behavior from
the user, yet, our attack is fundamentally different as it exploits browsers
to receive sensitive data and resources not accessible to third-party apps. As
opposed to the existing approaches, our attack identifies permissions that have
already been granted on the browser apps hence avoiding the need to request
QUERY ALL PACKAGES permission at runtime.

Exploiting Android Browser 183

7 Conclusion

In this work, we presented a proxy attack that bypasses Android’s permis-
sion model to gain unauthorized access to sensitive data and resources of
Android devices. Our attack uses toast overlay to silently exploit vulnerabili-
ties in Android browsers and gain access to sensitive permissions not otherwise
available to third-party apps. We demonstrate how an attack can be conducted
quietly and covertly to extract sensitive information such as voice recordings,
camera access, and location data with just one click using the browser as a
proxy. We outline the weaknesses that enable the proxy attack and offer defense
measures.

References

1. Aafer, Y., Tao, G., Huang, J., Zhang, X., Li, N.: Precise Android API protection
mapping derivation and reasoning. In: Proceedings of the 2018 ACM SIGSAC CCS,
pp. 1151–1164. ACM, New York (2018)

2. Aldoseri, A., Oswald, D.: Insecure://vulnerability analysis of URI scheme handling
in Android mobile browsers. In: Proceedings of the Workshop on MADWeb (2022)

3. Alepis, E., Patsakis, C.: Trapped by the UI: the Android case. In: Dacier, M.,
Bailey, M., Polychronakis, M., Antonakakis, M. (eds.) RAID 2017. LNCS, vol.
10453, pp. 334–354. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66332-6 15

4. Android: Permissions on Android (2022). https://developer.android.com/guide/
topics/permissions/overview#system-components

5. Backes, M., Bugiel, S., Derr, E., Mcdaniel, P., Octeau, D., Weisgerber, S.: On
demystifying the Android application framework: re-visiting Android permission
specification analysis. In: USENIX Security Symposium (2016)

6. Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C., Vigna, G.:
What the app is that? Deception and countermeasures in the Android user inter-
face. In: 2015 IEEE Symposium on Security and Privacy, pp. 931–948 (2015)

7. Block, K., Narain, S., Noubir, G.: An autonomic and permissionless Android covert
channel. In: Proceedings of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, pp. 184–194 (2017)

8. Block, K., Noubir, G.: My magnetometer is telling you where I’ve been? A mobile
device permissionless location attack. In: Proceedings of the 11th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, pp. 260–270 (2018)

9. Calciati, P., Kuznetsov, K., Gorla, A., Zeller, A.: Automatically granted permis-
sions in Android apps: an empirical study on their prevalence and on the potential
threats for privacy. In: Proceedings of the 17th International Conference on MSR,
pp. 114–124. ACM, New York (2020)

10. Contributors, M.: Navigator: devicememory property (2023). https://developer.
mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory

11. DB, G.: https://www.geolocation-db.com/documentation
12. Egners, A., Meyer, U., Marschollek, B.: Messing with Android’s permission model.

In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in
Computing and Communications, pp. 505–514. IEEE (2012)

13. Felt, A.P., Wagner, D.: Phishing on mobile devices. In: W2SP (2011)

https://doi.org/10.1007/978-3-319-66332-6_15
https://doi.org/10.1007/978-3-319-66332-6_15
https://developer.android.com/guide/topics/permissions/overview#system-components
https://developer.android.com/guide/topics/permissions/overview#system-components
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory
https://www.geolocation-db.com/documentation

184 A. Kar and N. Stakhanova

14. Fernandes, E., et al.: Android UI deception revisited: attacks and defenses. In:
Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 41–59. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 3

15. Fratantonio, Y., Qian, C., Chung, S.P., Lee, W.: Cloak and dagger: from two
permissions to complete control of the UI feedback loop. In: 2017 IEEE Symposium
on Security and Privacy (SP), pp. 1041–1057. IEEE (2017)

16. Garg, S., Baliyan, N.: Comparative analysis of Android and iOS from security
viewpoint. Comput. Sci. Rev. 40, 100372 (2021)

17. Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: automatically detect-
ing potential privacy leaks in Android applications on a large scale. In: Katzen-
beisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.)
Trust 2012. LNCS, vol. 7344, pp. 291–307. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30921-2 17

18. GOOGLE: Permissions and APIs that Access Sensitive Information (2020).
https://support.google.com/googleplay/android-developer/answer/9888170?
hl=en&ref topic=9877467

19. Google: Android developers reference (2022). https://developer.android.com/
reference/android/R.attr#protectionLevel

20. Google: Android Security Bulletin-December 2021 (2022). https://source.android.
com/docs/security/bulletin/2021-12-01#system

21. Google: Android Security Bulletin-March 2022 (2022). https://source.android.
com/docs/security/bulletin/2022-03-01#framework

22. Google: Android Security Bulletin-September 2017 (2022). https://source.android.
com/docs/security/bulletin/2017-09-01#2017-09-01-details

23. Google: Android Debug Bridge (ADB) (2023). https://developer.android.com/
studio/command-line/adb

24. Google: Behavior changes: all apps (2023). https://developer.android.com/about/
versions/12/behavior-changes-all#untrusted-touch-events

25. Google: Features and APIs Overview (2023). https://developer.android.com/
about/versions/12/features#pixel-phishing-detection

26. Google: Tapjacking (2023). https://developer.android.com/topic/security/risks/
tapjacking

27. GOOGLE: Use of the broad package (App) visibility (QUERY ALL PACKAGES)
permission (2023). https://support.google.com/googleplay/android-developer/
answer/10158779?hl=en

28. Google: View(Security) (2023). https://developer.android.com/reference/android/
view/View#security

29. Hartzheim, A.: Technical analysis of duckduckgo privacy essentials (part 1) (2021).
https://austinhartzheim.me/blog/2021/06/27/ddg-technical-analysis-part-1.html

30. Hassanshahi, B., Jia, Y., Yap, R.H.C., Saxena, P., Liang, Z.: Web-to-application
injection attacks on Android: characterization and detection. In: Pernul, G., Ryan,
P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 577–598. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24177-7 29

31. Li, L., Bissyandé, T.F., Le Traon, Y., Klein, J.: Accessing inaccessible Android
APIs: an empirical study. In: 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 411–422 (2016)

32. Luo, T., Jin, X., Ananthanarayanan, A., Du, W.: Touchjacking attacks on web in
Android, iOS, and Windows phone. In: Garcia-Alfaro, J., Cuppens, F., Cuppens-
Boulahia, N., Miri, A., Tawbi, N. (eds.) FPS 2012. LNCS, vol. 7743, pp. 227–243.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37119-6 15

https://doi.org/10.1007/978-3-662-54970-4_3
https://doi.org/10.1007/978-3-642-30921-2_17
https://doi.org/10.1007/978-3-642-30921-2_17
https://support.google.com/googleplay/android-developer/answer/9888170?hl=en&ref_topic=9877467
https://support.google.com/googleplay/android-developer/answer/9888170?hl=en&ref_topic=9877467
https://developer.android.com/reference/android/R.attr#protectionLevel
https://developer.android.com/reference/android/R.attr#protectionLevel
https://source.android.com/docs/security/bulletin/2021-12-01#system
https://source.android.com/docs/security/bulletin/2021-12-01#system
https://source.android.com/docs/security/bulletin/2022-03-01#framework
https://source.android.com/docs/security/bulletin/2022-03-01#framework
https://source.android.com/docs/security/bulletin/2017-09-01#2017-09-01-details
https://source.android.com/docs/security/bulletin/2017-09-01#2017-09-01-details
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/about/versions/12/behavior-changes-all#untrusted-touch-events
https://developer.android.com/about/versions/12/behavior-changes-all#untrusted-touch-events
https://developer.android.com/about/versions/12/features#pixel-phishing-detection
https://developer.android.com/about/versions/12/features#pixel-phishing-detection
https://developer.android.com/topic/security/risks/tapjacking
https://developer.android.com/topic/security/risks/tapjacking
https://support.google.com/googleplay/android-developer/answer/10158779?hl=en
https://support.google.com/googleplay/android-developer/answer/10158779?hl=en
https://developer.android.com/reference/android/view/View#security
https://developer.android.com/reference/android/view/View#security
https://austinhartzheim.me/blog/2021/06/27/ddg-technical-analysis-part-1.html
https://doi.org/10.1007/978-3-319-24177-7_29
https://doi.org/10.1007/978-3-642-37119-6_15

Exploiting Android Browser 185

33. Narain, S., Vo-Huu, T.D., Block, K., Noubir, G.: Inferring user routes and locations
using zero-permission mobile sensors. In: 2016 IEEE Symposium on Security and
Privacy (SP), pp. 397–413. IEEE (2016)

34. Niemietz, M., Schwenk, J.: UI Redressing Attacks on Android Devices. Black Hat
Abu Dhabi (2012)

35. Olejnik, �L, Acar, G., Castelluccia, C., Diaz, C.: The leaking battery: a privacy anal-
ysis of the HTML5 battery status API. In: Garcia-Alfaro, J., Navarro-Arribas, G.,
Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA -2015. LNCS, vol. 9481, pp.
254–263. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29883-2 18

36. Possemato, A., Lanzi, A., Chung, S.P.H., Lee, W., Fratantonio, Y.: Clickshield:
are you hiding something? Towards eradicating clickjacking on Android. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1120–1136 (2018)

37. Qiu, Y.: Tapjacking: an untapped threat in Android. Trend Micro, [Hλεκτρoνικó]
(2012). http://blog.trendmicro.com/trendlabs-security-intelligence/tapjacking-
an-untapped-threat-inandroid/. [Πρóσβαση 7 12 2016]

38. Reardon, D.: Measuring the prevalence of browser fingerprinting within browser
extensions (2018)

39. Rydstedt, G., Gourdin, B., Bursztein, E., Boneh, D.: Framing attacks on smart
phones and dumb routers: tap-jacking and geo-localization attacks. In: Proceedings
of the 4th USENIX Conference on Offensive Technologies, pp. 1–8 (2010)

40. Shao, Y., Chen, Q.A., Mao, Z.M., Ott, J., Qian, Z.: Kratos: discovering inconsistent
security policy enforcement in the Android framework. In: NDSS (2016)

41. Statista: Mobile Android operating system market share by version worldwide
from January 2018 to January 2023 (2023). https://www.statista.com/statistics/
921152/mobile-android-version-share-worldwide/

42. Wang, S., et al.: Implication of animation on Android security. In: 2022 IEEE
42nd International Conference on Distributed Computing Systems (ICDCS), pp.
1122–1132 (2022)

https://doi.org/10.1007/978-3-319-29883-2_18
http://blog.trendmicro.com/trendlabs-security-intelligence/tapjacking-an-untapped-threat-inandroid/
http://blog.trendmicro.com/trendlabs-security-intelligence/tapjacking-an-untapped-threat-inandroid/
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/

Are Current CCPA Compliant Banners
Conveying User’s Desired Opt-Out

Decisions? An Empirical Study of Cookie
Consent Banners

Torsha Mazumdar, Daniel Timko, and Muhammad Lutfor Rahman(B)

California State University San Marcos, San Marcos, USA
{mazum001,timko002,mlrahman}@csusm.edu

Abstract. The California Consumer Privacy Act (CCPA) secures the
right to Opt-Out for consumers in California. However, websites may
implement complex consent mechanisms that potentially do not capture
the user’s true choices. We investigated the user choices in Cookie Con-
sent Banner of US residents, the plurality of whom were from Califor-
nia, through an online experiment of 257 participants and compared the
results with how they perceived to these Cookie Consent Banner. Our
results show a contradiction between how often participants self-report
their Opt-Out rates and their actual Opt-Out rate when interacting with
a complex, CCPA-compliant website. This discrepancy expands the con-
text with which modern websites may implement the CCPA without
providing users sufficient information or instruction on how to success-
fully Opt-Out. We further elaborate on how US residents respond to and
perceive the GDPR-like Opt-In model. Our results indicate that even
though very few consumers actually exercised their right to Opt-Out,
the majority of US consumers desire more transparent privacy policies
that the current implementation of CCPA on websites lacks.

Keywords: Cookie Consent Banner · CCPA · GDPR · Privacy Policy

1 Introduction

Over the past decade, there has been a significant increase in global awareness
regarding data privacy. Personal information, as well as data on preferences,
interests, and browsing behavior, is being captured, collected, sold to other com-
panies, and analyzed in order to deliver personalized user experiences. While
consumers are often curious or irritated by the sudden appearance of unsolicited
advertisements on their screens or the constant influx of promotional emails
in their inboxes, businesses also face the daunting challenge of ensuring data
protection.

In response to escalating concerns about data privacy, the California Con-
sumer Privacy Act (CCPA), which came into effect on January 1, 2020, grants

T. Mazumdar and D. Timko—Both authors contributed equally.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 186–207, 2023.
https://doi.org/10.1007/978-981-99-7563-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_9&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_9

Are Current CCPA Compliant Banners Conveying User’s 187

consumers greater control over the personal information collected by businesses.
The CCPA establishes regulations that offer guidance on the implementation of
the law. Similar in many aspects to the European Union’s General Data Pro-
tection Regulation (GDPR), the CCPA and GDPR share a common goal of
safeguarding personal data by ensuring its fair, lawful, and transparent use.

However, despite these regulations, numerous businesses either fail to comply
or intentionally create convoluted opt-out processes that are challenging for users
to navigate [13]. Moreover, many users either remain unaware of their rights,
exhibit reluctance to read privacy policies thoroughly, or simply do not prioritize
data privacy to the same extent.

In this study, we conducted an online experiment involving 257 US residents
to investigate how users react to consent notices. To enhance the experiment’s
realism, we employed a minor deception technique in the online task. Instead of
explicitly focusing on the cookie banner consent popup, we instructed users to
consider the browser’s security indicators. By employing this minor deception,
we aimed to minimize priming effects and obtain results that truly reflect users’
authentic online behavior [16]. Additionally, to complement the online exper-
iment, we administered a survey to gather users’ perspectives on their data
privacy rights and the data practices of corporations.

We further analyze the impact of various implementation choices commonly
employed on websites subject to the CCPA on users’ ability to make informed
consent decisions [14]. It is important to note that the CCPA specifically applies
to California residents and businesses operating within the state. Unlike the
Opt-In model adopted by its European Union counterpart GDPR, the CCPA
includes specific regulations regarding the right to Opt-Out. Through our online
experiment, we closely observe and assess users’ responses to the Opt-In and
Opt-Out options, as well as capture their thoughts and opinions regarding these
choices. In summary, we have the following contributions to our study.

1. We design a website that uses the pretense of a security indicator setup task
to record the activity of participants with randomly assigned cookie consent
mechanism. We conducted a user study to determine how different consent
mechanisms affect user’s Opt-Out rates.

2. We compare the rates of actual Opt-Out against the perception of how often
the average user states they want to Opt-Out.

3. We analyze the user perspectives on the Opt-In model and their awareness
of CCPA regulations among US residents.

2 Related Works

CCPA and Consent Mechanisms. The CCPA introduces a crucial right
known as the Right to Opt-Out of Sale or Share, which is commonly imple-
mented by offering users the option to withdraw their consent by clicking on a
button or link within a website or application. It grants California residents the
authority to file complaints with the Office of the Attorney General (OAG) in
cases of suspected CCPA violations. However, it can be challenging for an average

188 T. Mazumdar et al.

individual to ascertain whether a specific website is subject to or exempt from
the CCPA [19].

O’Connor et al. [14] conducted a study that revealed the significant impact
even minor differences in implementation decisions can have on user interactions
with consent notices that appear on screens. The CCPA, which draws inspiration
from the GDPR, mandates that Opt-Out links for sale must be clear and con-
spicuous. However, it has been observed that many websites adopt design and
implementation choices that appear to negatively impact user privacy. Work by
Utz et al. [18] explored how the developers use placement of notifications, notifi-
cation choices, and persuasive design techniques like dark patterns and nudging
to influence consent decisions. Dark patterns are malicious design choices that
direct users into certain behavior or choices. These design implementations can
be used to reduce Opt-Out rates by providing a link to the Opt-Out mechanism
on a separate web page or requiring users to scroll to the bottom of the page to
find the link, rather than offering a direct link.

Additionally, nudging techniques, low-contrast font colors, and smaller font
sizes are used to divert users’ attention. Some websites even place the Opt-Out
mechanism solely within their privacy policy, disregarding the CCPA guideline
that specifies the need for an Opt-Out link on the homepage of the website.

In their study, Chen et al. [6] conducted an analysis of 95 privacy poli-
cies from popular websites and discovered inconsistencies among them. They
observed that not all disclosures provided the level of clarity mandated by the
CCPA when describing data practices. Moreover, their findings indicated that
different wording choices influenced how consumers interpreted the data prac-
tices of businesses and their own privacy rights. The presence of Vagueness and
ambiguity in privacy policies significantly hampers consumers’ ability to make
informed choices [6].

It is worth noting that even for thoroughly tested designs, consumer educa-
tion remains crucial for several reasons. Firstly, it helps raise awareness among
users, communicates the purpose of privacy icons, and dispels any misconcep-
tions [10]. Additionally, unifying privacy choices in a single, standardized loca-
tion would likely enhance user accessibility to these controls [9]. The CCPA not
only requires companies to provide privacy choices but also emphasizes the need
to make these choices usable and user-friendly.

Opt-In systems require businesses to obtain an individual’s express, affirma-
tive, and informed consent before sharing or processing their data. In contrast,
the Opt-Out rule places the responsibility on the individual to safeguard their
own data [15]. Participants’ responses can be influenced by the way questions
are framed. Merely presenting the question as an Opt-Out instead of an Opt-In,
or vice versa, often leads to different privacy preferences being recorded. Consent
choices are frequently displayed with a pre-selected “Yes” or “Accept” response,
exploiting individuals’ inattention, cognitive biases, and tendency for laziness [3].

3 Methodology

Our study methodology was cleared by our university Institutional Review Board
(IRB) and consisted of a presurvey questionnaire, online experiment and an

Are Current CCPA Compliant Banners Conveying User’s 189

exit survey. The average time required for this survey was 27 min. The time
elapsed during the study was calculated from the start time of the presurvey
questionnaire to the end time of the exit survey for each participant.

3.1 Participant Recruitment

Participants were recruited from the general US population. To be eligible, indi-
viduals had to be at least 18 years old and primarily English-speaking. While the
main focus of this study is on the CCPA, which primarily affects the population
of California, we also examined differences between residents in California and
those in other states. We recruited participants for the “Study on Internet Users’
Choice of Browser Security Indicators” through various channels, including fly-
ers posted around the university campus, a call for participants on Craigslist,
Reddit, and social media platforms such as Facebook, Instagram, and LinkedIn,
as well as through the university email lists. As an incentive for participating in
the study, two randomly selected participants out of the total 257 received a $50
Amazon gift card.

3.2 Presurvey Questionnaire

The presurvey questionnaire comprised a consent form and a Qualtrics ques-
tionnaire that collected participants’ demographic information. The informed
consent form, serving as the initial page of the Qualtrics questionnaire, provided
a detailed overview of the study. Only participants who explicitly consented
proceeded to the subsequent steps of the study. Each participant was assigned a
unique 4-digit random number, generated within Qualtrics, which was referred
to as the Participant ID throughout the paper.

The demographic questionnaire consisted of multiple-choice questions aimed
at capturing participants’ age, gender, education, income, occupation, weekly
internet usage hours, state of residence in the US, as well as their preferred
devices, browsers, and operating systems.

The inclusion of experiment variables, such as age, gender, education, income,
occupation, and allowed us to assess the representativeness of our sample popula-
tion and the generalizability of our results. Examining the participants’ internet
usage shed light on their familiarity with navigating various websites, thereby
contributing to the existing literature on the relationship between online literacy,
privacy awareness, and willingness to share data. Additionally, the inclusion of
experiment variables like devices, browsers, and operating systems enabled us to
analyze the impact of these choices on the implementation of the consent notice
and subsequently the users’ responses. Given that the CCPA exclusively applies
to California residents, the participants’ state of residence within the US served
as an important variable in our study, allowing us to compare the tendencies of
the US population residing outside of California.

190 T. Mazumdar et al.

3.3 Online Experiment

Participants who completed the presurvey questionnaire were subsequently
directed to our experiment website. In order to maintain the integrity of the
study, we employed a method of deception by using advertisements and instruc-
tions on the last page of the presurvey questionnaire. Although the study aimed
to examine participants’ responses to consent notices, participants were led to
believe that the study focused on their preferences for browser security indica-
tors. The use of deception in research has been the subject of ethical debates,
but it can be implemented safely when carefully framed and reviewed [2,12,16].
Notably, several influential studies [17] have utilized deception to enhance the
realism of experiments. The advantage of employing this deception is that it
elicits more authentic responses from participants. If participants had been fully
informed about the true purpose of our study, they might have approached
the consent notices with increased attention and made choices that differ from
their regular browsing tendencies. By incorporating an unrelated primary task
in our experiment, we were able to observe how participants make consent deci-
sions while simultaneously engaging in other prioritized tasks. This simulation
reflects real-world scenarios, as users typically browse websites for personal, pro-
fessional, or entertainment purposes rather than solely for accepting or rejecting
cookies. The IRB granted approval for the use of deception in our study after
determining that this aspect of the experiment would not cause any actual harm
to participants. Furthermore, prior knowledge of the true purpose of the study
was deemed likely to influence participants’ behavior and potentially undermine
the study’s outcomes. At the conclusion of the exit survey, participants were
provided with a debriefing that included information about the true purpose of
the study, details about the CCPA, and suggestions for safeguarding their data.

Primary Task for the Participants. Participants were invited to participate
in an online experiment framed as a study focusing on their preferred choices
for browser security indicators. Browser security indicators serve the purpose of
either alerting users to potentially suspicious URLs or assuring them of a secure
connection. On the initial page of our website, participants were prompted to
enter their Participant ID (generated in Qualtrics) and provided with context
regarding the use of security indicators (see Fig. 1). They were then asked to
indicate their preference for either the default browser security indicators or
personalized ones (Fig. 1). Additionally, participants were asked to specify the
type and color of the security indicators they would prefer to see in URLs (Fig. 1).
The responses provided by participants were recorded and stored in our database.
Although the users’ choices were not directly related to our primary study on
consent, they offer valuable insights into user preferences.

Consent Mechanisms. According to the CCPA, it is required that the Opt-
Out links on websites should be “clear and conspicuous” on the homepage.
As stated in the CCPA law document [4], “You may request that businesses

Are Current CCPA Compliant Banners Conveying User’s 191

Fig. 1. a) Left: Welcome page screen. Middle: Security indicator selection task screen.
Right: Exit page screen where participants are directed to the exit survey. b) 7 cookie
consent mechanism banners and their steps used in the online experiment.

stop selling or sharing your personal information (“opt-out”), including via a
user-enabled global privacy control.”. However, many businesses have deliberately
implemented mechanisms that impede users’ ability to Opt-Out, resulting in

192 T. Mazumdar et al.

lower Opt-Out rates. O’Connor et al. [14] conducted a study on the top 500
US websites and discovered significant deviations from the CCPA guidelines
regarding Opt-Out mechanisms, deeming these implementations as “(Un)clear
and (In)conspicuous.” They identified eight distinct types of Opt-Out controls
used in popular websites, from which we selected and implemented five designs
for our study. Additionally, some of our designs drew inspiration from popular
customizable CCPA compliant banners [7], which involve multiple decision steps
for complete Opt-Out and offer toggle settings for opting out of specific content.
In our experiment, we employed consent mechanisms that encompassed both
the sharing and selling of personal information. The complete set of consent
mechanism choices and their interpretations can be found in Table 1.

1. Consent Mechanism 1 - “Do Not Sell My Data” button and a “Close”
button. Clicking on “Do Not Sell My Data” button would trigger a second
consent banner to make specific choice (“Allow” or “Do Not Allow”) in a
toggle switch for sale of data and “Confirm my choice” or “Close”

2. Consent Mechanism 2a - “Accept Cookies & Close” and a “Do not
sell my data” button. Clicking on “Do Not Sell My Data” button would
trigger a second consent banner to make specific choice (“Allow” or “Do Not
Allow”) in a toggle switch for sale of data and “Confirm my choice” or
“Allow All & Close”

3. Consent Mechanism 3 - “OK” button to close and an in-line “Visit Set-
tings” link. Clicking on “Visit Settings” link would trigger a second consent
banner to make specific choice (“Allow” or “Do Not Allow”) in a toggle switch
for sale of data and “Confirm my choice” or “Close”

4. Consent Mechanism 4 - “Thanks for letting me know” button and an
in-line “How We Use Cookies” link. Clicking on “How We Use Cookies”
link would trigger a second consent banner with a “Close” button or an
in-line “opt out of Google Analytics tracking” link.

5. Consent Mechanism 5 - “Accept All & Close” and a “Customize”
button. Clicking on “Customize” button would trigger a second consent ban-
ner to make specific choice (“Allow” or “Do Not Allow”) in a toggle switch for
each kind of cookie(Functional, Analytics and Advertisement) and “Confirm
my choice” or “Accept All”

Although the aforementioned five consent mechanisms technically provide
participants with the same options to either Opt-Out or remain opted-in by
default for the sale or sharing of data, our study aims to investigate how the
wording and implementation of each mechanism influence users’ choices. Existing
literature suggests that the format of questions plays a significant role [11], and
our study seeks to verify this assertion. The remaining three Opt-Out controls
described in O’Connor et al. [14] are not within the scope of this paper as they
involve contacting third parties via email, filling out Opt-Out request forms, or
adjusting account settings, which cannot be tested within a single experiment.

In their research, O’Connor et al. [14] also noted that nudging was commonly
employed in direct links to subtly guide users away from successfully opting

Are Current CCPA Compliant Banners Conveying User’s 193

out. Digital Nudging [20] refers to a design approach where businesses highlight
certain buttons to indirectly suggest, influence, or manipulate user behavior in a
manner that benefits the businesses. In all of the above five consent mechanisms,
we have incorporated nudging by highlighting options that do not allow users
to Opt-Out. However, to examine all available conditions, we further expand
Consent Mechanism 2 to include the following variation without nudging:

Consent Mechanism 2b - Neutral: Both the Opt-Out and accept options
have the same design. Some websites employ an Anti-nudging design [14],
wherein only the Opt-Out option is presented without any further steps. Click-
ing on this button directly opts the user out. We implemented this design as the
initial decision in Consent Mechanism 6.

While the CCPA mandates the right to Opt-Out, we also included an Opt-In
mechanism based on the GDPR model, allowing us to compare and contrast
the two types of mechanisms. In Consent Mechanism 7, a banner was dis-
played with an “I’m in” and a “No, thank you!” button, enabling participants
to explicitly provide single step consent to the sale of their data.

Participants were directed to our experiment website through a link pro-
vided at the end of the presurvey questionnaire. The website was designed to
display a consent banner on the screen after 3 s of a participant visiting the web
page hosting the primary task. Following a completely randomized experiment
design [12], participants were randomly assigned one of the eight consent mech-
anisms developed for the study by selecting a random integer between 1 and 8.
The assignment of consent mechanisms was counterbalanced [1] by selecting a
different random consent mechanism from the last recorded one, ensuring that
the same random number was not repeatedly selected. This approach allowed us
to gather sufficient data for analyzing participant behavior across each consent
mechanism. It is important to note that we did not actually place any cookies
on participants’ devices or require participants to consent to the sale of their
personal data. Instead, we used HTML forms to replicate commercial consent
banners and recorded participants’ responses in our experiment database.

For the readers’ reference, snapshots of our website screens, showcasing the
unique design of each banner, are included in Fig. 1.

Response Collection and Interpretation. Prior to commencing our study,
we conducted an analysis of the cookie consent banners displayed on 20 differ-
ent websites. We observed that online businesses intentionally design complex
consent mechanisms, which hinders users’ ability to make informed choices. The
presence of multiple buttons and switches often confuses or frustrates users, lead-
ing them to hastily dismiss the consent banner without fully understanding its
implications in terms of data sale. In our experiment website, we have recreated
this environment to capture participants’ authentic behavior.

For instance, in consent mechanism 1, clicking on the “Do Not Sell My Data”
button does not automatically indicate that participants have opted out. Instead,
they are presented with a second banner where they need to explicitly slide the
toggle switch until it turns grey, and then click on “Confirm my choice” to record

194 T. Mazumdar et al.

Table 1. Consent combinations and their interpretations. We present the Opt-Out
path for each mechanism in bold.

Default #CM 1st Decision 2nd Decision 2nd Decision
Toggle

Interpretation

Opt-In 1 Close NA NA Opt-In

1 Do Not Sell My Data Confirm my choice Always Active(On) Opt-In

1 Do Not Sell My Data Confirm my choice Do Not Allow Opt-Out

1 Do Not Sell My Data OK Allow Opt-In

1 Do Not Sell My Data OK Do Not Allow Opt-In

Opt-In 2a 2b Accept Cookies & Close NA NA Opt-In

2a, 2b Do Not Sell My Data Allow All & Close Allow Opt-In

2a, 2b Do Not Sell My Data Allow All & Close Do Not Allow Opt-In

2a, 2b Do Not Sell My Data Confirm my choice Allow Opt-In

2a, 2b Do Not Sell My Data Confirm my choice Do Not Allow Opt-Out

Opt-In 3 OK NA NA Opt-In

3 Visit Settings Close Allow Opt-In

3 Visit Settings Close Do Not Allow Opt-In

3 Visit Settings Confirm my choice Allow Opt-In

3 Visit Settings Confirm my choice Do Not Allow Opt-Out

Opt-In 4 How We Use Cookies Close NA Opt-In

4 How We Use Cookies Opt-out of google analytics NA Opt-Out

4 Thanks for letting me know NA NA Opt-In

Opt-In 5 Accept All & Close NA NA Opt-In

5 Customize Accept All Allow Opt-In

5 Customize Accept All Do Not Allow Opt-In

5 Customize Confirm my choice Allow Opt-In

5 Customize Confirm my choice Do Not Allow Opt-Out

Opt-In 6 Do Not Sell My Data Allow All & Close Allow Opt-In

6 Do Not Sell My Data Allow All & Close Do Not Allow Opt-In

6 Do Not Sell My Data Confirm my choice Allow Opt-In

6 Do Not Sell My Data Confirm my choice Do Not Allow Opt-Out

Opt-Out 7 I’m in NA NA Opt-In

7 No, thank you! NA NA Opt-Out

their response as “Opted-Out.” If participants either click on “Close” or click on
“Confirm my choice” without disabling the toggle switch in the second banner,
their response will still be recorded as “Opted-In,” even though they initially
selected “Do Not Sell My Data.” This demonstrates that the combination of
buttons and switches in the subsequent step either impairs participants’ ability
to make an informed decision or frustrates them, leading them to hastily dismiss
or ignore the banner.

Participants who chose to ignore the consent banner in the first or second step
for consent mechanisms 1 through 6 were categorized as “Opted-In.” According
to the CCPA, businesses are permitted to sell consumers’ data unless consumers
explicitly withdraw their consent. Conversely, participants who disregarded the
consent banner for consent mechanism 7 were classified as “Opted-Out,” as Opt-
In models do not assume consent by default. Participant responses were recorded
in our experiment database, indexed with the unique Participant ID assigned to
them in the presurvey questionnaire.

Are Current CCPA Compliant Banners Conveying User’s 195

3.4 Exit Survey

The exit questionnaire consisted of Likert scale, multiple-choice questions and
few open ended questions. It was divided into three sections -

1. Reflection on Completed Activity In this section, we prompted partic-
ipants to recall and reflect on the online experiment. Firstly, we inquired
whether participants had noticed the presence of the consent banner and
whether they believed their behavior was being tracked for the purpose of
selling data to third parties. Secondly, we asked participants whether they
were provided with the option to Opt-Out of the sale or share of their data.
Thirdly, participants were asked to rate their comfort level regarding the
website’s tracking of their behavior and the potential sale of their informa-
tion to third parties. Lastly, we inquired whether participants could recall
their choices made within the cookie consent banner and to explain their
choices.

2. CCPA case examples Participants were presented with two hypothetical
scenarios, which were constructed based on real privacy complaints investi-
gated by the Office of the Attorney General at the State of California Depart-
ment of Justice [8]. The first scenario revolved around registering for an online
dating platform and explored whether clicking a share button when creat-
ing an account constituted sufficient consent for the sale of personal infor-
mation, especially in cases where no additional “Do Not Sell My Personal
Information” links were provided on the platform’s homepage. The second
scenario involved an online pet adoption platform where submitting an Opt-
Out request necessitated a third-party authorized agent to submit a nota-
rized verification on behalf of the user. These scenarios were accompanied by
Likert-scale questions [21] including: 1) “I think scenarios like this are likely
to happen”; 2) “I would be concerned about my privacy in this scenario”; and
3) “Do you think the business acted appropriately and lawfully based on the
situation described?” Additionally, participants were asked an open-ended
question: 4) “Explain your reasoning above.”

3. Opt-In vs Opt-Out Participants were initially queried regarding their famil-
iarity with the distinction between Opt-In and Opt-Out consent mechanisms.
Regardless of their prior response, they were subsequently provided with a
debriefing explaining how each consent mechanism operates and its implica-
tions in terms of data sale. Participants were then asked to indicate their pre-
ferred consent mechanism. Following that, participants were given a debrief-
ing on the economic implications [5] associated with Opt-In, and once again
asked to specify their preferred consent mechanism. This economic impli-
cations debriefing can be found in the Opt-In vs Opt-Out section in the
appendix.

4 Data Analysis and Results

In this section, we present participant demographics, compare the observations
from our experiment with self-reported behavior in the exit survey, and discuss

196 T. Mazumdar et al.

the results of our thematic analysis. Our findings provide insights into the level
of concern or awareness among consumers regarding their privacy and privacy
rights. Furthermore, we explore potential reasons why users are unable to suc-
cessfully Opt-Out despite their intention to do so. To achieve this, we combine
the findings from the online experiment, responses related to attitudes and con-
cerns, reflections on the completed experiment, and explanations provided in
a few open-ended questions. This comprehensive approach allows us to gain a
deeper understanding of how users perceive the consent notices and why they
make the choices they do. We reinforce our findings with participant quotes
extracted from the responses to the open-ended questions.

After removing duplicate entries and rows with invalid data, a total of 360
participants responded to our invitation to participate in the study. 257 partici-
pants completed the primary task on our experiment website. After the primary
task, we provided a link to an exit survey, which was completed by 232 par-
ticipants. We utilized the data from the 257 participants who completed the
primary task to examine the Opt-Out and Opt-In rates, as well as investigate
the possible factors contributing to the low Opt-Out rates.

4.1 Participant Demographics

Our participant pool consisted of 163 (63.4%) males and 93 (36.2%) females.
The age range varied from 18 to 75 years old, with the most common age group
being 25 to 34 years, which accounted for 166 (64.6%) participants. The majority
of participants, 106 (41.2%), held a bachelor’s degree as their highest level of
education. While the highest number of participants, 92 (35.8%), were from
California, we also had participants from all other states in the US. The primary
occupation for a significant portion of our participants was computer engineering,
with 52 (20.2%) individuals, suggesting a higher level of overall online literacy.
Among the participants, the highest number, 126 (49.0%), used a mobile device
to complete the activity, while 167 (65.0%) preferred Google Chrome as their
browser, and 128 (49.8%) used iOS/Mac as their operating system. In terms of
self-reported internet usage, the most common range reported by participants
was between 11 to 20 h per week, with 94 (36.6%) participants falling into this
category.

4.2 Experiment Results

As a reminder, our experimental task primarily focused on participants indicat-
ing their preferred browser security indicators. Additionally, participants were
randomly assigned one of the eight consent banners. They had the option to
respond to the banners by clicking on the presented buttons or to ignore the
banners altogether. Each participant’s choices and the resulting interpretations
were recorded and stored in our database.

Consent Mechanism Results. Table 2 provides a summary of the number
of Opt-In and Opt-Out requests or preferences provided by participants on the

Are Current CCPA Compliant Banners Conveying User’s 197

experiment website. Our dataset is balanced due to the randomization and coun-
terbalancing techniques discussed in the methodology, enabling us to compare
the counts for each mechanism. It is important to note that our consent mecha-
nism involved a two-step process.

Out of the total participants, we observed that 20.09% (45/224) interacted
with the first step of our consent mechanism. However, only 0.45% (1/224) of
users actually chose to Opt-Out in the second step for the consent mechanisms
numbered 1 through 6. Consequently, 99.55% (223/224) of participants did not
Opt-Out, resulting in their consent decision remaining as Opt-In by default.
This aligns with real-world websites governed by the CCPA, where users’ data
is considered to be sold unless they explicitly Opt-Out.

For consent mechanism 7, which is an Opt-In mechanism, we received only 4
Opt-In requests out of the 34 participants assigned to this mechanism. This indi-
cates that only 11.76% of users chose to Opt-In. Since this mechanism involved
a one-step process, participants’ first choice was sufficient to successfully Opt-In.
In the next section, we will delve deeper into the analysis of our results.

Table 2. Opt-Out and Opt-In counts for each consent mechanism. Here, #Interact
means the number of participant interact with cookie consent banner

Default Opt-In

Mech. #N #Interact 1st Decision
Opt-In

1st Decision
Opt-Out

Default
Opt-In

Opt-In Opt-Out

1 34 6 6 0 28 34 0

2a 32 8 6 2 24 32 0

2b 34 8 6 2 26 34 0

3 26 8 8 0 18 26 0

4 30 6 6 0 24 30 0

5 28 6 5 1 22 28 0

6 40 3 0 3 37 39 1

Total Opt-In 224 45 37 8 179 223 1

Default Opt-Out

7 33 6 4 2 27 4 29

Grand Total 257 51 41 10 206 227 30

Consent Mechanism Results Interpretation. In the related work, we have
highlighted the significance of even minor differences in implementation choices
and their impact on how users perceive and respond to consent notices. Fur-
thermore, existing literature emphasizes the importance of the question format.
Although the data collected was evenly distributed among the eight mechanisms,
we observed variations in the number of Opt-Out requests for each mechanism,
as shown in Table 2. In the following analysis, we will examine the influence of
each consent mechanism on participants’ consent decisions.

198 T. Mazumdar et al.

2-Step Opt-Out Mechanisms. Consent mechanisms 1 through 6 involved a
2-step Opt-Out process. In the first step, if participants accepted, closed, or
ignored the banner, it indicated that they had not opted out. In the second step,
participants were asked to make a specific choice regarding the sale of their data
if they clicked on other available options such as “Do Not Sell My Data,” “Visit
Settings,” “Customize,” or “How We Use Cookies”.

Table 2 reveals that a total of 31 participants clicked on the buttons labeled
“Accept Cookies & Close,” (#CM 2a,2b) “Close,” (#CM 1) “OK,” (#CM 3) or
vAccept All & Close” (#CM 5) in the first step, indicating that they explicitly
choose not to Opt-Out. This suggests that participants either made an informed
decision, lacked sufficient understanding of online privacy, or were influenced by
nudging factors that discouraged them from selecting the Opt-In buttons.

Furthermore, while 7 participants clicked on the more direct button “Do Not
Sell My Data,” one participant clicked on “Customize,” and none on “How We
Use Cookies” or “Visit Settings.” This indicates that the direct buttons attracted
more attention from users, while inline links were less commonly followed. In fact,
this implementation choice, where businesses prioritize direct buttons over inline
links, is one of the most common approaches employed by businesses (77.7% of
the top 5000 US websites in 2021) to discourage users from opting out more
frequently [14].

As a result, out of the participants who clicked on the “Not Accepted” options
(grouped as “Not Accepted”) in the first step, only 1 participant proceeded to
Opt-Out in the final step. Consequently, 97.78% (44/45) of the participants who
interacted with our Opt-In default consent banners remained in the Opt-In cate-
gory. This suggests that although these participants did not immediately accept
all cookies, they exhibited a higher level of curiosity or concern by exploring
the other available options. However, their final decision did not align with their
initial choice. Several factors could have influenced these decisions, including
participants facing difficulty navigating the consent banners, altering their deci-
sion after reading the privacy policy, or losing interest in the privacy banner
altogether.

Nudging, Neutral and Anti-Nudging. Among the Opt-Out mechanisms
developed in our study, all except for consent mechanism 2b and consent mech-
anism 6 employed nudging techniques. Consent mechanism 2b, a variation of 2a,
utilized a neutral format, while consent mechanism 6 employed an anti-nudging
approach. We hypothesized that the use of nudging could potentially manipulate
users into selecting the highlighted option. In the case of consent mechanism 6, we
expected that the highlighting of the “Do Not Sell My Data” button would lead
to a higher Opt-Out rate. Similarly, we anticipated a relatively higher Opt-Out
rate for consent mechanism 2b since both Opt-In and Opt-Out options were pre-
sented in the same format without any push towards a specific choice. However,
in our study, we did not receive any Opt-Out requests for consent mechanism
2b. To substantiate this observation, a larger dataset would be required. The
counts for each mechanism can be found in Table 2, presented above.

Are Current CCPA Compliant Banners Conveying User’s 199

Third-party Opt-Out Mechanism. Consent mechanism 4 featured two inline
links in the second step of the Opt-Out process. Six participants clicked on
“Thanks for letting me know,” indicating that they did not choose to explore
the available options for managing their privacy preferences further. Only one
participant clicked on “How We Use Cookies” in the first step and also on “opt
out of Google Analytics tracking” in the second step. In our experiment, selecting
“opt out of Google Analytics tracking” was interpreted as the user’s intention
to Opt-Out of the sale of their data. However, in real websites, clicking on a
similar link would redirect users to a new page with instructions to download
and install an add-on for their browsers. It was not possible to determine in
this study whether the participant who clicked on “opt out of Google Analytics
tracking” would actually proceed with the installation of the add-on.

1-Step Opt-In Mechanism. In consent mechanism 7, we introduced a default
Opt-In consent banner with a 1-step Opt-In mechanism. We observed that 27
participants ignored the banner, and 2 participants clicked on “No, thank you!”
This indicates that only a few users actively chose to Opt-In, suggesting that
they are not readily willing to share their data with businesses when they are
not assumed to be Opt-In by default. However, under the current default model
of CCPA, users’ data remains accessible because the process of opting out can
be confusing or cumbersome. On the other hand, 4 participants clicked on “I’m
in.” On real websites, clicking on similar buttons would provide businesses with
explicit consent to sell or use their data. Although the number of participants
who provided express consent in our experiment is small, it is noteworthy that
these participants granted consent to an unknown website they visited for a
research study on browser indicators. This could be attributed to participants’
lack of online privacy literacy or the influence of nudging techniques.

We analyzed participants’ explanations for their consent decisions (Section:
Reflection on Completed Activity) and quote few of them that represent the
most commonly reported reasons for:

1. Accepting Cookies - “If you do not select Accept, the site will not function
properly”, “Automatic click to the big button that says accept.”, “Cause this
one takes less time” and “I’m open to resource sharing”.

2. Rejecting Cookies - “This is my personal data so I don’t agree to sell it”, “I
pay more attention to information security”, “I’m afraid they’re selling it like
crazy” and “I don’t want to reveal my privacy to the outside world. I don’t
feel good about it”.

Statistical Analysis. Significance tests were conducted for the below between-
group studies. We used consent decision as the dependent variable and the mis-
cellaneous factors as the independent variables and a 95% confidence interval for
all our significance tests.

Residential Status in California. Since CCPA applies only to residents and busi-
nesses in California and only two other states in the US have similar privacy

200 T. Mazumdar et al.

protection laws, we compare user behaviors from different states. 11.96% partic-
ipants from California and 11.52% participants from all other states (49 states,
Puerto Rico and District of Columbia) opted-out. A one-way ANOVA test sug-
gests that there is no significant difference among how users from different states
and territories in the US respond to consent notices (F(39,217) = 0.792, p =
.805). However, as we discuss later in our survey results, 74.70% participants
from California reported they are slightly to extremely concerned about their
privacy and are not comfortable sharing their data with businesses.

Miscellaneous Platform Factors. We have learned that the design or imple-
mentation of the consent notices, or in other words how the consent banners
are displayed on users’ screens, impact users’ choices or their ability to make
these choices. The consent banners may have slight variations in look and feel
depending upon the device, browser or operating system used. Using a one-way
Anova test, we found that there was no observed statistically significant differ-
ence between groups of devices (F(3,253) = 0.461, p = .710), browsers (F(5,251)
= 0.962, p = .442) and operating systems (F(3,253) = 0.574, p = .632).

Miscellaneous Demographic Factors. We analyze the impact of demo-
graphic factors into the consent decisions. We found that there was no statisti-
cally significant difference in the number of Opt-Outs or Opt-Ins when comparing
males and females (t=0.847, df=254 p = 0.389), level of education (F(7,249) =
0.597, p = .759), hours spent on the internet (F(4,252) = 1.439, p = .221), occu-
pation (F(13,243) = 0.844, p = .613), and age groups (F(4,252) = 0.413, p =
.799).

4.3 Exit Survey Result

In the following section we present the results of the exit survey for Reflection
on completed activity, CCPA case examples, and Opt-In vs Opt-Out.

Reflection on Completed Activity. In this section, we will analyze the par-
ticipants’ reflections on their completed activity. A majority of the participants,
71%, were able to recall that our experiment website provided them with the
option to Opt-Out of the sale of their personal data. When asked about how
often they notice websites offering the option to opt-out of data sale, 32.5%
of participants stated that they rarely or never notice this option. Regarding
their choice in the experiment, 57.2% of participants mentioned that they either
accepted the cookies or closed the Opt-In consent banner. Additionally, 31.6%
of participants indicated that they chose not to sell their data. The remaining
participants were unsure about their choices or mentioned visiting the settings.
In terms of comfort level, 14.7% of participants stated that they would be very
comfortable if the experiment website tracked their behavior and sold their infor-
mation to third parties, while 16.9% expressed being very uncomfortable with
this idea.

Are Current CCPA Compliant Banners Conveying User’s 201

Fig. 2. Participants’ responses to CCPA case examples.

CCPA Case Examples. The cases presented in this study depict two distinct
scenarios involving how businesses handle and sell customer personal informa-
tion, as well as a user’s ability to Opt-Out of the sale or sharing of their data.
While a majority of participants expressed concern in response to these scenar-
ios, only 24% and 20.3% of participants correctly identified scenarios 1 and 2
as unlawful (see Fig 2). Many participants felt that since users were “warned in
advance,” the practices were deemed acceptable. This finding suggests that busi-
nesses can potentially exploit consumers’ limited awareness to their advantage.
It is important to note that these scenarios were based on real CCPA cases, in
which the Office of the Attorney General notified the companies of alleged non-
compliance and corrective actions were subsequently taken [8]. This observation
highlights the lack of knowledge among users regarding their privacy rights.

Opt-In vs Opt-Out. A significant majority of participants, 85.7%, reported
that they were aware of the distinction between Opt-In and Opt-Out mod-
els. After being presented with the differences between these models, 82.0%
of participants indicated a preference for Opt-In. We found that 3.1% of par-
ticipants changed their preference to Opt-Out after being informed about the
potential economic implications associated with the Opt-In model. This suggests
that 78.9% of participants still preferred Opt-In despite the awareness of these
implications. Although there was a slight decrease in the number of individuals
favoring Opt-In after being briefed about the economic implications, the overall
preference for Opt-In remained higher. This could be attributed to users’ high

202 T. Mazumdar et al.

level of concern for their privacy and their inclination towards Opt-In in all cir-
cumstances. Another possible explanation is that participants gained valuable
insights into the use of their data by businesses, as well as the Opt-Out and
Opt-In systems, throughout the study, leading to heightened concerns about
their privacy.

5 Discussion

5.1 Understanding User Consent Choices and Privacy Actions

Out of the 224 participants assigned to the Opt-Out consent mechanisms (1–6),
179 participants chose to ignore the consent banner. Additionally, 8 participants
did not Opt-Out despite not accepting the cookies in the first step, and only 1
participant actually opted out in the subsequent step.

When we asked participants to explain their reasoning, the most common
response was that they clicked on the “Do not sell my data” button because of
concerns about privacy and their personal data. However, not all users who click
on this button successfully Opt-Out.

Furthermore, we observed that the most commonly used implementation
choices have a negative impact on Opt-Out rates, either due to the difficulty of
navigating through multiple options or the influence of nudging techniques.

Although our study did not include consent mechanisms that require users to
fill out forms or send requests via email, it is likely that even fewer users would
go through the process due to the time-consuming nature of these methods. For
example, one of our participants mentioned that they clicked on “Accept cookies
& Close” because it was a quick option. Businesses have the ability to reduce
Opt-Out rates through various design choices, as only a small percentage of users
have the patience or willingness to complete the entire Opt-Out process.

Furthermore, we observed that very few users file complaints, and even fewer
are able to identify if a website is acting unlawfully. Without significant pressure
from users, companies and policymakers are likely to maintain the status quo
and neglect necessary corrective changes.

5.2 Exploring User Interaction with Consent Banners

The Opt-Out mechanism, which assumes consent by default, typically has lower
Opt-Out rates, and users remain opted-in. However, this does not necessarily
mean that all users made an informed decision, fully understood the implications,
or were aware of how the process works if they did not click on any button. When
given an explicit option to Opt-In, users seldom choose to do so. This suggests
that in an Opt-In regime, only a small number of users would actively opt-in for
the use of their data, due to the default nature of the Opt-Out system.

Users generally prefer the Opt-In model because it provides them with power
and control over their data. Interestingly, users rarely interacted with the consent
banners at all. This aligns with the findings of O’Connor et al. [14], who observed

Are Current CCPA Compliant Banners Conveying User’s 203

a maximum interaction rate of 20.5% with their consent banners, compared with
19.84% in ours. In both Opt-In and Opt-Out scenarios, inaction was the most
common outcome. By comparing the outcomes of Opt-In and Opt-Out banners,
we can see that they lead to significantly different results based on the default
condition. While further research is needed to explore the specific reasons for this
inaction, it is clear that users’ preferred mechanism differs from their chosen one
due to the complexities of websites.

5.3 Limitations and Future Work

Given the small size of our sample population, the statistical power of our results
is limited. To ensure the validity of these findings, it is necessary to replicate this
study with a larger and more diverse sample that is representative of the general
population. It is important to note that our survey results may not fully capture
the tendencies of US residents outside of California, as CCPA primarily applies
to California. Furthermore, the nature of our study being conducted within a
university setting and utilizing a survey format may introduce biases, attracting
younger and more educated participants who may be more inclined to consent
to sharing their information compared to a real-world advertising context. Addi-
tionally, since our study was conducted exclusively in the US, the findings may
not be applicable to other regions around the world. Furthermore, its important
that we acknowledge the effect that utilizing pure HTML in our website design
might have on the consent choices of participants. These choices contributed to
an outdated appearance of our pages, and may have potentially influenced par-
ticipant interaction rates with the banners or choices to consent. Future studies
should aim to replicate these experiments with a non-Western, Educated, Indus-
trialized, Rich, and Democratic (non-WEIRD) population to explore their per-
spectives and investigate potential differences between WEIRD and non-WEIRD
populations regarding data privacy. Specifically, future research can tailor sce-
narios where participants have no pre-existing trust relationship with the website
and where security indicators are not the primary focus. This would allow for
a more comprehensive understanding of user behavior and decision-making in
relation to consent banners.

5.4 Recommendations to Policy Makers

The feasibility of adopting the Opt-In model in the US market should be further
explored. Under the current Opt-Out model, most users remain opted-in not
because they want to, but due to either a lack of knowledge or the tedious and
confusing Opt-Out process. The Opt-In model, as seen in GDPR, offers several
benefits. Businesses can maintain a lean database of highly relevant leads who
are genuinely interested, reducing data management overhead. Brands that are
transparent and prioritize their customers’ privacy gain consumer trust and can
build stronger relationships. Adopting an Opt-In model can foster trust, open
new opportunities, and provide internet users with a greater sense of safety and
control over their data, without having to go through additional hurdles.

204 T. Mazumdar et al.

While the Opt-Out process under CCPA may seem promising, our study
reveals that it is still far from effectively addressing consumer preferences. Stan-
dardizing the Opt-Out process is crucial. By establishing consistent formats,
users will be relieved from the burden of navigating complex privacy forms
and successfully opting out. Additionally, within this standardized setup, there
should always be a single-step option available for users to easily opt out. Strict
monitoring of businesses’ compliance is necessary to ensure that users can make
informed decisions based on their preferences, without the need to navigate
through multiple buttons or web pages to submit an Opt-Out request. Aware-
ness campaigns should also be launched to educate consumers about privacy
laws, complaint filing procedures, and their privacy rights through mediums like
radio and television. It is imperative that privacy laws, whether Opt-Out or
Opt-In, are introduced in all states across the US to ensure consistency and
protection for all consumers.

6 Conclusion

In this study, we conducted a deceptive experiment to evaluate user responses to
CCPA compliant cookie consent banners. Our findings indicate that only 0.45%
of participants chose to Opt-Out in the default opt-in model. Despite expressing
a desire to Opt-Out, the current implementation of the Opt-Out mechanism hin-
ders users from successfully doing so. Conversely, in the default Opt-Out mech-
anism, only 12.12% of participants opted-in. These results reveal a discrepancy
between users’ self-reported preferences to Opt-Out and the actual outcomes
observed in our study. To address this issue, policymakers should establish clear
guidelines for companies to follow in implementing the Opt-Out or Opt-In mech-
anisms, ensuring a standardized approach rather than allowing for variations in
the steps involved.

Acknowledgement. ChatGPT was utilized to rectify grammatical errors and
enhance the clarity and readability of the entire text. Primarily, we have used a common
prompt: “Please correct grammatical errors, and improve the readability and clarity
of this paragraph.” We extend our gratitude to all study participants for their time.
Furthermore, we are grateful to the anonymous reviewers for improving our paper for
publication.

Appendix A

Reflection on Completed Activity

1. Answer the following (Yes, No, Unsure)
(a) Did the website you visited for this activity track your behavior and sell

this information to third parties?
(b) Did the website you visited for this activity give you an option to opt out

of the sale of your personal data?

Are Current CCPA Compliant Banners Conveying User’s 205

2. If this website tracked your behavior and sold this information to third par-
ties, how comfortable would you be with it? (Very Comfortable, Somewhat
comfortable, Neutral, Somewhat uncomfortable, Very uncomfortable)

3. Which option for consent did you choose? (Do not sell my data, Opt-In, Close,
Accept Cookies and Close, OK, Visit Settings, Unsure)

CCPA Case Examples
Imagine yourself in each of the following scenarios and indicate to what extent

you agree or disagree with each statement.

1. You have registered on an online dating platform. A user clicking an “accept
sharing” button when creating a new account is sufficient to establish blanket
consent to sell personal information as per this business. There is no additional
“Do Not Sell My Personal Information” link on its homepage.
(a) I think scenarios like this are likely to happen. (Strongly Agree, Agree,

Neither agree nor disagree, Disagree, Strongly Disagree, Don’t know)
(b) I would be concerned about my privacy in this scenario. (Strongly Agree,

Agree, Neither agree nor disagree, Disagree, Strongly Disagree, Don’t
know)

(c) Do you think the business acted appropriately in a lawful manner based
on the situation described? (Yes, No, Unsure)

(d) Explain your reasoning above. [Textbox]
2. A business that operates an online pet adoption platform requires your autho-

rized agent to submit a notarized verification when invoking your privacy
rights. The business directs you to a third-party trade association’s tool in
order to submit an opt-out request.
(a) I think scenarios like this are likely to happen. (Strongly Agree, Agree,

Neither agree nor disagree, Disagree, Strongly Disagree, Don’t know)
(b) I would be concerned about my privacy in this scenario. (Strongly Agree,

Agree, Neither agree nor disagree, Disagree, Strongly Disagree, Don’t
know)

(c) Do you think the business acted appropriately in a lawful manner based
on the situation described? (Yes, No, Unsure)

(d) Explain your reasoning above. [Textbox]

Opt-In vs Opt-Out

1. Do you understand the difference between Opt-in and Opt-out? (Yes, No,
Unsure)

2. Which of the below options would you rather have businesses follow?

– Option A : “Opt-In”

(a) Default settings: Do not sell data
(b) Explicitly ask user for consent before selling data
(c) If user doesn’t provide consent, do not sell data
(d) User will not get customized recommendations
(e) User will not get directed advertisements

206 T. Mazumdar et al.

– Option B : “Opt-Out”

(a) Default settings: Sell data
(b) Ask user if they want to revoke consent
(c) If user revokes consent, do not sell data
(d) By default, user will get the full experience of the service, customized

recommendations and get directed advertisements

3. Research says “opt-in” impedes economic growth by raising the costs of pro-
viding services and consequently decreasing the range of products and ser-
vices available to consumers. It would make it more difficult for new and often
more innovative, firms and organizations to enter markets and compete. It
would also make it more difficult for companies to authenticate customers and
verify account balances. As a result, prices for many products would likely
rise. Which option would you prefer with the information presented above?
(Opt-In, Opt-Out)

References

1. The sage encyclopedia of communication research methods au - allen, mike, April
2017

2. Adar, E., Tan, D.S., Teevan, J.: Benevolent deception in human computer interac-
tion. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 1863–1872 (2013)

3. Bellman, S., Johnson, E., Lohse, G.: To opt-in or opt-out? It depends on the
question. Commun. ACM 25–27 (2001). https://doi.org/10.1145/359205.359241

4. Bonta, R.: California consumer privacy act (ccpa) (2023). https://oag.ca.gov/
privacy/ccpa. Accessed 18 May 2023

5. Cate, F.H., Staten, M.E.: Protecting privacy in the new millennium: the fallacy of
opt-in (2001)

6. Chen, R., Fang, F., Norton, T., McDonald, A., Sadeh, N.: Fighting the fog: eval-
uating the clarity of privacy disclosures in the age of CCPA, September 2021

7. Cookiefirst: Ccpa compliance - cookiefirst - cookie consent management (2023).
https://cookiefirst.com/ccpa-compliance/. Accessed 20 May 2023

8. GENERAL, O.O.T.A.: CCPA Enforcement Case Examples (2021). https://oag.
ca.gov/privacy/ccpa/enforcement. Accessed 7 June 2022

9. Habib, H., et al.: It’s a scavenger hunt: usability of websites’ opt-out and data
deletion choices. In: Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, pp. 1–12 (2020)

10. Habib, H., et al.: Toggles, dollar signs, and triangles: how to (in) effectively con-
vey privacy choices with icons and link texts. In: Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, pp. 1–25 (2021)

11. Johnson, E., Bellman, S., Lohse, G.: Defaults, framing and privacy: why opt-
ing in-opting out1. Mark. Lett. 13, 5–15 (2002). https://doi.org/10.1023/A:
1015044207315

12. Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human-Computer Inter-
action. Morgan Kaufmann, Cambridge (2017)

13. Liu, Z., Iqbal, U., Saxena, N.: Opted out, yet tracked: are regulations enough to
protect your privacy? arXiv e-prints pp. arXiv-2202 (2022)

https://doi.org/10.1145/359205.359241
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://cookiefirst.com/ccpa-compliance/
https://oag.ca.gov/privacy/ccpa/enforcement
https://oag.ca.gov/privacy/ccpa/enforcement
https://doi.org/10.1023/A:1015044207315
https://doi.org/10.1023/A:1015044207315

Are Current CCPA Compliant Banners Conveying User’s 207

14. O’Connor, S., Nurwono, R., Siebel, A., Birrell, E.: (Un) clear and (in) conspicuous:
the right to opt-out of sale under CCPA. In: Proceedings of the 20th Workshop on
Workshop on Privacy in the Electronic Society, pp. 59–72 (2021)

15. Park, G.J.: The changing wind of data privacy law: a comparative study of the
European union’s general data protection regulation and the 2018 California con-
sumer privacy act. UC Irvine Law Rev. 1455 (2020)

16. Salah El-Din, R.: To deceive or not to deceive! Ethical questions in phishing
research (2012)

17. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: Emperor’s new security
indicators: an evaluation of website authentication and the effect of role playing
on usability studies. In: In Proceedings of the 2007 IEEE Symposium on Security
and Privacy (2007)

18. Utz, C., Degeling, M., Fahl, S., Schaub, F., Holz, T.: (Un)informed consent: study-
ing GDPR consent notices in the field. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 973–990. CCS ’19,
Association for Computing Machinery, New York, NY, USA (2019). https://doi.
org/10.1145/3319535.3354212

19. Van Nortwick, M., Wilson, C.: Setting the bar low: are websites complying with
the minimum requirements of the CCPA? Proc. Priv. Enhanc. Technol. 608–628
(2022)

20. Weinmann, M., Schneider, C., Brocke, J.V.: Digital nudging. Bus. Inf. Syst. Eng.
433–436 (2016)

21. Zhang-Kennedy, L., Chiasson, S.: Whether it’s moral is a whole other story:
consumer perspectives on privacy regulations and corporate data practices. In:
SOUPS@ USENIX Security Symposium, pp. 197–216 (2021)

https://doi.org/10.1145/3319535.3354212
https://doi.org/10.1145/3319535.3354212

MPC with Cards

Upper Bounds on the Number of Shuffles
for Two-Helping-Card Multi-Input AND

Protocols

Takuto Yoshida1(B) , Kodai Tanaka2 , Keisuke Nakabayashi2,
Eikoh Chida1 , and Takaaki Mizuki2

1 National Institute of Technology, Ichinoseki College, Ichinoseki, Iwate, Japan
{a22706,chida+lncs}@g.ichinoseki.ac.jp

2 Tohoku University, Sendai, Japan
mizuki+lncs@tohoku.ac.jp

Abstract. Card-based cryptography uses a physical deck of cards to
achieve secure computations. To evaluate the performance of card-based
protocols, the numbers of helping cards and shuffles required to execute
are often used as evaluation metrics. In this paper, we focus on 𝑛-input
AND protocols that use at most two helping cards, and investigate how
many shuffles suffice to construct such a two-helping-card AND protocol.
Since the Mizuki–Sone two-input AND protocol uses two helping cards
and it can be repeatedly applied 𝑛 − 1 times to perform a secure 𝑛-
input AND computation, an obvious upper bound on the number of
required shuffles is 𝑛 − 1. In this paper, to obtain better bounds (than
𝑛 − 1), we consider making use of the “batching” technique, which was
developed by Shinagawa and Nuida in 2020 to reduce the number of
shuffles. Specifically, we first formulate the class of two-helping-card 𝑛-
input AND protocols obtained by applying the batching technique to
the Mizuki–Sone AND protocol, and then show 𝑛-input AND protocols
requiring the minimum number of shuffles (among the class) for the case
of 2 ≤ 𝑛 ≤ 500.

Keywords: Card-based cryptography · Secure computation · Real-life
hands-on cryptography · AND protocols

1 Introduction

Secure computations [36] enable players holding individual private inputs to
evaluate a predetermined function without revealing the input values more than
necessary. The method of secure computation using a physical deck of cards
is called card-based cryptography [7,19]. Typically, two types of cards are used,

The original version of this chapter was revised: The change was updated and the
correct chapter title is “Upper Bounds on the Number of Shuffles for Two-Helping-Card
Multi-Input AND Protocols”. The correction to this chapter is available to https://doi.
org/10.1007/978-981-99-7563-1_26

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023, corrected publication 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 211–231, 2023.
https://doi.org/10.1007/978-981-99-7563-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_10&domain=pdf
http://orcid.org/0009-0004-3766-9303
http://orcid.org/0009-0006-3524-4453
http://orcid.org/0009-0009-5701-5311
http://orcid.org/0000-0002-8698-1043
https://doi.org/10.1007/978-981-99-7563-1_26
https://doi.org/10.1007/978-981-99-7563-1_26
https://doi.org/10.1007/978-981-99-7563-1_10

212 T. Yoshida et al.

where the reverse side is indistinguishable as ? and the front side is either ♣ or
♥ . These cards are arranged in the following way to represent Boolean values:

♣ ♥ = 0, ♥ ♣ = 1.

When two cards placed face down according to this encoding rule represent a
bit 𝑥 ∈ {0, 1}, these two cards are called a commitment to 𝑥 and are represented
as follows:

? ?
︸︷︷︸

𝑥

.

A two-input AND protocol takes as input two commitments to bits 𝑥, 𝑦 ∈

{0, 1} along with some helping cards like ♣ ♥ , and performs a secure computa-
tion of the AND value 𝑥 ∧ 𝑦 via a series of actions such as shuffling, rearranging,
and turning over cards. When the output is obtained as a commitment to 𝑥 ∧ 𝑦,
such a protocol is called a committed-format protocol:

? ?
︸︷︷︸

𝑥

? ?
︸︷︷︸

𝑦

♣ ♥ · · · → · · · → ? ?
︸︷︷︸

𝑥∧𝑦

.

This paper deals with committed-format AND protocols, especially multi-input
AND protocols, as seen later.

1.1 The Mizuki–Sone and Protocol

The most practical committed-format two-input AND protocol currently known
would be the protocol proposed by Mizuki and Sone in 2009 [20]. Hereinafter,
we refer to this as the MS-AND protocol, and the procedure is described below.

1. Place two input commitments to 𝑥, 𝑦 ∈ {0, 1} along with two helping cards,
turning the middle two cards face down, as follows:

? ?
︸︷︷︸

𝑥

♣ ♥ ? ?
︸︷︷︸

𝑦

→ ? ?
︸︷︷︸

𝑥

? ?
︸︷︷︸

0

? ?
︸︷︷︸

𝑦

.

2. Rearrange the sequence as follows:

? ? ? ? ? ?
�

������ ���
? ? ? ? ? ? .

3. A random bisection cut (hereafter sometimes called an RBC for short),
denoted by [· · · | · · ·], is applied to the sequence of six cards, meaning that
we split the card sequence in half and randomly swap the left and right sides
(until anyone loses track of the move):

[

? ? ?
�

�

� ? ? ?
]

→ ? ? ? ? ? ? .

Two-Helping-Card Multi-Input AND Protocols 213

It is known that a random bisection cut can be securely implemented using
familiar tools such as envelopes [35].

4. Rearrange the sequence as follows:

? ? ? ? ? ?
������

�
��	

? ? ? ? ? ? .

5. The two cards are turned over from the left. Depending on the order of the
two revealed cards, we obtain a commitment to 𝑥 ∧ 𝑦 as follows:

♣ ♥ ? ?
︸︷︷︸

𝑥∧𝑦

? ? or ♥ ♣ ? ? ? ?
︸︷︷︸

𝑥∧𝑦

.

The above is the MS-AND protocol, which, given commitments to 𝑥 and 𝑦,
uses two helping cards and one random bisection cut to output a commitment
to 𝑥 ∧ 𝑦.

After the protocol terminates, the two cards that were turned over in Step 5
can be used as helping cards in another protocol run; we call such face-up cards
free cards.

We will also call the two face-down cards that are not a commitment to 𝑥∧𝑦 a
garbage commitment1. A garbage commitment can be transformed into two free
cards by applying a (normal) shuffle to the two cards (composing the garbage
commitment) and turning them over.

1.2 Committed-Format Multi-input and Protocol

As mentioned above, the subject of this paper is to construct committed-format
multi-input AND protocols. That is, given 𝑛 input commitments

? ?
︸︷︷︸

𝑥1

? ?
︸︷︷︸

𝑥2

· · · ? ?
︸︷︷︸

𝑥𝑛

,

we want to produce a commitment to 𝑥1 ∧ 𝑥2 ∧ · · · ∧ 𝑥𝑛.
Applying the MS-AND protocol described in Sect. 1.1 to commitments to 𝑥1

and 𝑥2 yields a commitment to 𝑥1∧𝑥2 together with two free cards. Thus, we can
continue to apply the MS-AND protocol to commitments to 𝑥1 ∧ 𝑥2 and 𝑥3. By
repeating this a total of 𝑛 − 1 times, a committed-format 𝑛-input AND protocol
can be constructed [15]:

? ?
︸︷︷︸

𝑥1

? ?
︸︷︷︸

𝑥2

· · · ? ?
︸︷︷︸

𝑥𝑛

♣ ♥ → · · · → ? ?
︸︷︷︸

𝑥1∧𝑥2∧···∧𝑥𝑛

.

In this case, the number of required helping cards is two, and the number of
required shuffles (namely, the number of random bisection cuts) is 𝑛 − 1.
1 These two cards are actually a commitment to 𝑥 ∧ 𝑦.

214 T. Yoshida et al.

1.3 Contribution of This Paper

As described in Sect. 1.2, an obvious upper bound on the number of required
shuffles for a committed-format 𝑛-input AND protocol is 𝑛−1 under the condition
that two helping cards are available. On the other hand, there is a technique
called the “batching” proposed in 2020 by Shinagawa and Nuida [31] that can
reduce the number of shuffles.

Therefore, in this paper, we apply the batching technique to the MS-AND
protocol so that we can construct two-helping-card 𝑛-input AND protocols hav-
ing a smaller number of shuffles. Such an application naturally formulates the
class of committed-format two-helping-card 𝑛-input AND protocols. Within the
class, we present a simple generic protocol having a smaller number of shuffles.
Furthermore, we reduce the problem of constructing a protocol to the “MSbatch-
ing move-sequence” problem (which is a kind of a computational problem), and
by analyzing the latter problem, we show the minimum number of shuffles among
the class of protocols in the range of 2 ≤ 𝑛 ≤ 500. It turns out that the generic
proposed protocol is optimal in terms of the number of shuffles for many cases
of 𝑛. For every 𝑛, 2 ≤ 𝑛 ≤ 500, such that the proposed protocol is not optimal,
we find optimal protocols, as well.

1.4 Related Works

The history of committed-format two-input AND protocols dates back to
1993 [2], and since then, a couple protocols have been invented [22,33], followed
by the MS-AND protocol in 2009 [20] (which uses six cards and one random
bisection cut as seen above). Subsequently, four- and five-card protocols have
been developed using complex shuffles [8,9,25].

As for committed-format multi-input AND protocols, those using only one
or two shuffles have recently been proposed [11] (although many helping cards
are required). In addition, several specialized protocols have been known [6,15].

The research area of card-based cryptography has been growing rapidly in
recent years [16,17]. Examples of active topics are: physical zero-knowledge proof
protocols [4,10,23,24], private-model secure computations [1,12,21], symmetric
function evaluation [26–28], information leakage due to operative or physical
errors [18,29], graph automorphism shuffles [14,30], multi-valued protocols with
a direction encoding [34], the half-open action [13], card-minimal protocols [3,8],
and applications to private simultaneous messages protocols [32].

1.5 Organization of This Paper

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the batching technique along with the “pile-scramble shuffle” required for it.
In Sect. 3, we show how the batching technique can be applied to multiple MS-
AND protocols. In Sect. 4, we formulate the class of protocols obtained by apply-
ing the batching technique, and reduce the problem of finding protocols having
fewer shuffles to the “MSbatching move-sequence” problem and propose a simple

Two-Helping-Card Multi-Input AND Protocols 215

generic protocol in Sect. 5. In Sect. 6, the MSbatching move-sequence problem is
analyzed by a dynamic programming algorithm, and we show optimal 𝑛-input
AND protocols for 2 ≤ 𝑛 ≤ 500 in the sense that the number of shuffles is min-
imum among all the protocols in the class. Finally, the conclusion is given in
Sect. 7.

2 Preliminaries

In this section, we first introduce the pile-scramble shuffle [5] and then explain
the batching technique [31].

2.1 Pile-Scramble Shuffle

A pile-scramble shuffle [5] is a shuffling operation that divides a sequence of
cards into multiple piles of the same size and then rearranges the order of those
piles uniformly at random (while the order of cards inside each pile is kept
unchanged).

As an example, applying a pile-scramble shuffle, denoted by [· | · | · · · | ·],
to a sequence of nine cards consisting of three piles yields one of the following
six sequences with a probability of exactly 1/6:

[1

?
2

?
3

?
�

�

�

4

?
5

?
6

?
�

�

�

7

?
8

?
9

?
]

→

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

?
1

?
2

?
3

?
7

?
8

?
9

?
4

?
5

?
6

?
4

?
5

?
6

?
1

?
2

?
3

?
7

?
8

?
9

?
4

?
5

?
6

?
7

?
8

?
9

?
1

?
2

?
3

?
7

?
8

?
9

?
1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

?
4

?
5

?
6

?
1

?
2

?
3

? .

A pile-scramble shuffle can be easily implemented by placing each pile in an
envelope and randomly stirring the envelopes.

A random bisection cut that appears in the MS-AND protocol can be said
to be a pile-scramble shuffle for two piles (each consisting of three cards).

2.2 Batching Technique

The batching technique [31] combines multiple pile-scramble shuffles that can
be executed in parallel into a single pile-scramble shuffle, thereby reducing the

216 T. Yoshida et al.

number of shuffles. Simply put, after adding “identifiers” with some helping cards
to the piles of each pile-scramble shuffle, we perform a single pile-scramble shuffle
together, and then open the identifier to return each pile to the position of its
original pile-scramble shuffle.

As an example, suppose that we want to apply two random bisection cuts
(RBCs) in parallel, which appear in the MS-AND protocol, and that we want
to use the batching technique. In other words, we want to perform two RBCs

[

? ? ?
�

�

� ? ? ?
]

,
[

? ? ?
�

�

� ? ? ?
]

simultaneously using a single shuffle by the batching technique.

1. To identify two RBCs, we use ♣ and ♥ . That is, at the head of each pile,
a helping card for identification is placed as follows:

♣ ? ? ? ♣ ? ? ? ♥ ? ? ? ♥ ? ? ? .

In the sequel, we call such helping cards identifier cards.
2. Turn over the identifier cards and apply a pile-scramble shuffle to the four

piles:
[

? ? ? ?
�

�

� ? ? ? ?
�

�

� ? ? ? ?
�

�

� ? ? ? ?
]

→ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? .

3. Turn the identifier cards face up. For instance, suppose that the following
sequence of cards is obtained:

♣ ? ? ? ♥ ? ? ? ♥ ? ? ? ♣ ? ? ? .

4. Sort the piles so that the pile with ♣ at the head is on the left and the pile
with ♥ at the head is on the right, as when the identifier cards were inserted
in Step 1. In the example above, the fourth pile is moved in front of the second
pile:

♣ ? ? ? ♥ ? ? ? ♥ ? ? ? ♣ ? ? ?

→
♣ ? ? ? ♣ ? ? ? ♥ ? ? ? ♥ ? ? ? .

Note that sorting the piles here is done publicly as seen just above (and hence,
we need no additional shuffle).

5. Remove the face-up identifier cards; then, we have performed two RBCs by
one pile-scramble shuffle.

In this example, two sets of ♣ ♥ were used to identify the two RBCs. If we
want to identify four RBCs, two sets of

♣ ♣ ♣ ♥ ♥ ♣ ♥ ♥

Two-Helping-Card Multi-Input AND Protocols 217

suffice. That is, we can distinguish the piles by two binary digits according to the
one-card-per-bit encoding: ♣ = 0, ♥ = 1. In general, when we want to apply the
batching technique to 𝑘 RBCs, we need 2𝑘 �log2 𝑘	 identifier cards (i.e., 𝑘 �log2 𝑘	
free cards for each of ♣ and ♥).

The batching technique can be applied not only to RBCs, but more generally
to multiple pile-scramble shuffles. However, this paper only utilizes it for RBCs
(of six cards each).

3 Application of Batching to MS-AND Protocol

As seen in Sect. 1.2, executing repeatedly the MS-AND protocol provides a two-
helping-card 𝑛-input AND protocol using 𝑛 − 1 shuffles, namely 𝑛 − 1 RBCs. In
this section, we utilize the batching technique to reduce the number of shuffles.

In Sect. 3.1, we mention the idea behind our approach. In Sect. 3.2, we present
how to batch MS-AND protocols. In Sect. 3.3, we show an example of a protocol
based on our approach.

3.1 Idea

As described in Sect. 2.2, the batching technique can be used to convert multiple
RBCs into a single pile-scramble shuffle. This can be applied to the execution of
multiple MS-AND protocols to reduce the number of shuffles. Remember that,
in order to perform the batching technique, some free cards as identifier cards
must be provided to identify each pile pair. Remember furthermore that in the
problem setup, only two helping cards are available:

? ?
︸︷︷︸

𝑥1

? ?
︸︷︷︸

𝑥2

· · · ? ?
︸︷︷︸

𝑥𝑛

♣ ♥ .

Therefore, the batching technique cannot be applied immediately (because of
shortage of free cards as identifier cards).

Let us recall the procedure of the MS-AND protocol described in Sect. 1.1;
then, a garbage commitment arises in Step 5. That is, one execution of the MS-
AND protocol yields one garbage commitment. Several garbage commitments
can be turned into free cards by shuffling all the cards (of the garbage commit-
ments) and revealing them. This leads to increasing the number of free cards
to be used as identifier cards even if there are only two helping cards at the
beginning.

More specifically, for the first 𝑚 input commitments, if the MS-AND protocol
is repeated 𝑚 − 1 times, we obtain 2𝑚 − 2 free cards:

? ?
︸︷︷︸

𝑥1

· · · ? ?
︸︷︷︸

𝑥𝑚

♣ ♥ → ? ?
︸︷︷︸

𝑥1∧𝑥2∧···∧𝑥𝑚

♣ ♥ ♣ ♥ · · ·
♣ ♥

︸�������������︷︷�������������︸

2𝑚−2 cards
Thus, some of the 2𝑚 free cards can be used as identifier cards for the batching
technique. In this way, we first apply the MS-AND protocol for the first several
input commitments to produce free cards enough for the batching technique to
execute.

218 T. Yoshida et al.

3.2 MSbatching: How to Batch MS-AND Protocols

This subsection describes in detail how the batching technique is applied to the
execution of multiple MS-AND protocols.

Before we begin, let us define a couple of terms. As described in Sect. 3.1,
free cards can be created by collecting garbage commitments, shuffling all the
cards (constituting the garbage commitments), and then turning them over. This
procedure is called the garbage collection. For convenience, we will refer to a pair
of free cards (of different colors) ♣ ♥ placed face up as a free pair.

First, as an example, assume that there are four commitments

? ?
︸︷︷︸

𝑦1

? ?
︸︷︷︸

𝑦2

? ?
︸︷︷︸

𝑦3

? ?
︸︷︷︸

𝑦4

and we want to produce commitments to 𝑦1 ∧ 𝑦2 and 𝑦3 ∧ 𝑦4 by executing the
MS-AND protocol twice. Recalling the MS-AND protocol procedure, we need
two helping cards, i.e., one free pair ♣ ♥ , per run; therefore, we require two
free pairs:

? ?
︸︷︷︸

𝑦1

♣ ♥ ? ?
︸︷︷︸

𝑦2

? ?
︸︷︷︸

𝑦3

♣ ♥ ? ?
︸︷︷︸

𝑦4

.

For each of these, an RBC is applied (after reordering). Using the batching
technique, this can be achieved with a single shuffle. In this case, however, two
more free pairs

♣ ♥ ♣ ♥

are required (for identifier cards). After applying the batching technique and
turning over the four identifier cards, we return to the two MS-AND protocols
and terminate each protocol. Then, the following commitments are obtained:

♣ ♥ ♣ ♥ ♣ ♥ ? ?
︸︷︷︸

𝑦1∧𝑦2

? ?
︸︷︷︸

garbage

♣ ♥ ? ?
︸︷︷︸

𝑦3∧𝑦4

? ?
︸︷︷︸

garbage

.

In summary, given four commitments and four free pairs, one shuffle suffices to
output two commitments (to the AND values), four free pairs, and two garbage
commitments.

Next, more generally, consider running 𝑘 MS-AND protocols in parallel (i.e.,
the number of input commitments is 2𝑘). As mentioned earlier, one MS-AND
protocol requires one free pair, and hence, 𝑘 free pairs are needed for this amount.
In addition, when applying the batching technique, free cards are also needed
for serving identifier cards; as mentioned in Sect. 2.2, we require 2𝑘 �log2 𝑘	 free
cards, which are 𝑘 �log2 𝑘	 free pairs. Thus, a total of 𝑘 + 𝑘 �log2 𝑘	 free pairs are
required:

? ?
︸︷︷︸

𝑦1

? ?
︸︷︷︸

𝑦2

· · · ? ?
︸︷︷︸

𝑦2𝑘−1

. ? ?
︸︷︷︸

𝑦2𝑘

♣ ♥

︸︷︷︸

free

× (𝑘 + 𝑘 �log2 𝑘).

Two-Helping-Card Multi-Input AND Protocols 219

Applying the batching technique to this sequence of cards, the 2𝑘 commitments
become 𝑘 commitments (to the AND values) after one shuffle, resulting in 𝑘
garbage commitments and no change in the number of free pairs:

? ?
︸︷︷︸

𝑦1∧𝑦2

· · · ? ?
︸︷︷︸

𝑦2𝑘−1∧𝑦2𝑘

♣ ♥

︸︷︷︸

free

× (𝑘 + 𝑘 �log2 𝑘) ♣ ♥

︸︷︷︸

garbage

× 𝑘.

This procedure will henceforth be referred to as 𝑘-MSbatching.
The number of free pairs required for 𝑘-MSbatching is given by 𝑘 + 𝑘 �log2 𝑘	,

where the specific numbers are shown in Table 1. Note that 1-MSbatching is the
MS-AND protocol itself (i.e., one run of the protocol).

3.3 Example of Two-Helping-Card and Protocol by MSbatching

In this subsection, we illustrate a two-helping-card protocol by using
MSbatching.

Table 1. The number of free pairs required for 𝑘-MSbatching

𝑘 1 2 3 4 5 6 7 8 9
of free pairs 1 4 9 12 20 24 28 32 45

Suppose that the number of inputs is 48, i.e., 𝑛 = 48. Then, 48 commitments
and one free pair are the input sequence:

? ?
︸︷︷︸

𝑥1

? ?
︸︷︷︸

𝑥2

? ?
︸︷︷︸

𝑥3

? ?
︸︷︷︸

𝑥4

· · · ? ?
︸︷︷︸

𝑥48

♣ ♥

︸︷︷︸

free

.

Recall that the obvious upper bound on the number of shuffles is to repeat the
MS-AND protocol 47 times, which is 47 shuffles. The following protocol requires
a smaller number of shuffles to produce a commitment to the AND value of 48
inputs.

1. Perform 1-MSbatching 15 times for the commitments to 𝑥1, . . . , 𝑥16 to obtain
a commitment to 𝑥1 ∧ · · · ∧ 𝑥16 (by 15 shuffles):

? ?
︸︷︷︸

𝑥1∧···∧𝑥16

? ?
︸︷︷︸

𝑥17

? ?
︸︷︷︸

𝑥18

· · · ? ?
︸︷︷︸

𝑥48

♣ ♥

︸︷︷︸

free

? ?
︸︷︷︸

garbage

×15.

2. The garbage collection is performed to generate 15 free pairs (by one shuffle):

? ?
︸︷︷︸

𝑥1∧···∧𝑥16

? ?
︸︷︷︸

𝑥17

? ?
︸︷︷︸

𝑥18

· · · ? ?
︸︷︷︸

𝑥48

♣ ♥

︸︷︷︸

free

×16.

220 T. Yoshida et al.

3. Perform 4-MSbatching for 𝑥17, . . . , 𝑥24 and for 𝑥25, . . . , 𝑥32, followed by 4-
MSbatching, 2-MSbatching, and 1-MSbatching, in this order, to obtain a
commitment to 𝑥17 ∧ · · · ∧ 𝑥32 (by five shuffles):

? ?
︸︷︷︸

𝑥1∧···∧𝑥16

? ?
︸︷︷︸

𝑥17∧···∧𝑥32

? ?
︸︷︷︸

𝑥33

· · · ? ?
︸︷︷︸

𝑥48

♣ ♥

︸︷︷︸

free

×16 ? ?
︸︷︷︸

garbage

×15.

4. Perform 1-MSbatching for 𝑥1 ∧ · · · ∧ 𝑥16 and 𝑥17 ∧ · · · ∧ 𝑥32 to obtain a com-
mitment to 𝑥1 ∧ · · · ∧ 𝑥32 (by one shuffle):

? ?
︸︷︷︸

𝑥1∧···∧𝑥32

? ?
︸︷︷︸

𝑥33

· · · ? ?
︸︷︷︸

𝑥48

♣ ♥

︸︷︷︸

free

×16 ? ?
︸︷︷︸

garbage

×16.

5. The garbage collection is performed (by one shuffle):

? ?
︸︷︷︸

𝑥1∧···∧𝑥16

? ?
︸︷︷︸

𝑥17∧···∧𝑥32

? ?
︸︷︷︸

𝑥33

· · · ? ?
︸︷︷︸

𝑥48

♣ ♥

︸︷︷︸

free

×32.

6. Execute 8-MSbatching, 4-MSbatching, 2-MSbatching, and 1-MSbatching for
𝑥33, . . . , 𝑥48 in this order to obtain a commitment to 𝑥33 ∧ · · · ∧ 𝑥48 (by four
shuffles):

? ?
︸︷︷︸

𝑥1∧···∧𝑥32

? ?
︸︷︷︸

𝑥33∧···∧𝑥48

♣ ♥

︸︷︷︸

free

×32 ? ?
︸︷︷︸

garbage

×15.

7. Perform 1-MSbatching for 𝑥1 ∧ · · · ∧ 𝑥32 and 𝑥33 ∧ · · · ∧ 𝑥48 to obtain a com-
mitment to 𝑥1 ∧ · · · ∧ 𝑥48 (by one shuffle):

? ?
︸︷︷︸

𝑥1∧···∧𝑥48

♣ ♥

︸︷︷︸

free

×32 ? ?
︸︷︷︸

garbage

×16.

As shown above, the total number of shuffles is 28, which is a significant
reduction from the obvious upper bound of 47 shuffles.

4 Class of MSbatching Protocols and Corresponding
Problem

As seen in Sect. 3, given 𝑛 input commitments and one free pair, we can pro-
duce a commitment to the AND value via a series of MSbatching (including
1-MSbatching) and the garbage collection with fewer shuffles than the obvious
upper bound. In this section, we first formulate the class of two-helping-card
AND protocols, called the “MSbatching protocols,” naturally created by the
combination of MSbatching and the garbage collection. We then introduce the
“MSbatching move-sequence” problem; as seen soon, finding a protocol in the
class corresponds to solving the problem.

Two-Helping-Card Multi-Input AND Protocols 221

4.1 MSbatching Protocols

This subsection clarifies the class of protocols obtained by MSbatching.
First, let 𝑘 ≥ 1 and consider the conditions under which 𝑘-MSbatching can

be performed. As mentioned in Sect. 3.2, at least 𝑘 + 𝑘 �log2 𝑘	 free pairs are
required. Also, to be able to run the MS-AND protocol 𝑘 times in parallel, there
must be at least 2𝑘 input commitments.

Next, if we want to perform the garbage collection on 𝑔 garbage commitments
for 𝑔 ≥ 1, there must be at least 𝑔 garbage commitments. Hereafter, the garbage
collection for 𝑔 garbage commitments is sometimes referred to as 𝑔-GC.

Bearing these in mind, we naturally obtain a class of one-free-pair 𝑛-input
AND protocols, which we call the MSbatching protocols, as follows.

1. 𝑎 := 𝑛, 𝑏 := 1.
2. Now there are 𝑎 commitments and 𝑏 free pairs (and hence, there are 𝑛−𝑎−𝑏+1

garbage commitments). Perform one of the followings.
(a) Apply 𝑘-MSbatching such that 𝑎 ≥ 2𝑘 and 𝑏 ≥ 𝑘 + 𝑘 �log2 𝑘	. In this

case, the number of commitments decreases by 𝑘, the number of garbage
commitments increases by 𝑘, and the number of free pairs remains the
same. Thus, we set

𝑎 := 𝑎 − 𝑘, 𝑏 := 𝑏.

(b) Apply 𝑔-GC such that 1 ≤ 𝑔 ≤ 𝑛− 𝑎− 𝑏 +1. Since 𝑔 free pairs arise, we set

𝑎 := 𝑎, 𝑏 := 𝑏 + 𝑔.

3. If 𝑎 ≥ 2, then return to Step 2.

As described above, determining the strategy of selection in Step 2 stipulates
one protocol. When 𝑎 ≥ 2, 1-MSbatching is always applicable, so it is never
unselectable in Step 2. Note that the number of times Step 2 is executed is
directly the number of shuffles the protocol uses.

4.2 MSbatching Move-Sequence Problem

Each protocol in the class of MSbatching protocols defined in Sect. 4.1 changes
the current number of commitments 𝑎 and the current number of free pairs 𝑏
according to the selection in Step 2. Therefore, let us represent the current state
at each iteration of Step 2 by a pair (𝑎, 𝑏) and consider it as a point (𝑎, 𝑏) on
the 𝑎𝑏-plane.

When 𝑎 = 1, there is exactly one commitment and the protocol terminates;
thus, we call any point (1, 𝑏) a terminal point.

Assume a point (𝑎, 𝑏) which is not terminal; from the point (𝑎, 𝑏), we tran-
sition to another point by either of the following operations.

1. Transition to the point (𝑎− 𝑘, 𝑏) by 𝑘-MSbatching (provided that 𝑎 ≥ 2𝑘 and
𝑏 ≥ 𝑘 + 𝑘 �log2 𝑘). Denote this by 𝐵𝑘

(𝑎, 𝑏) = (𝑎 − 𝑘, 𝑏).
2. Transition to the point (𝑎, 𝑏+𝑔) by 𝑔-GC (provided that 1 ≤ 𝑔 ≤ 𝑛−𝑎−𝑏+1).

Denote this by 𝐺𝐶𝑔
(𝑎, 𝑏) = (𝑎, 𝑏 + 𝑔).

222 T. Yoshida et al.

Fig. 1. The 48-input MSbatching protocol given in Sect. 3.3

In the 𝑎𝑏-plane, starting from point (𝑛, 1), the current state (𝑎, 𝑏) moves by
Transition 1 or 2. Transition 1 moves horizontally (left) and Transition (2) moves
vertically (up). The number of transitions required to reach a terminal point
from the start (𝑛, 1) corresponds to the number of shuffles. That is, the length
of the move-sequence connecting the start and terminal points corresponds to
the number of shuffles used in the corresponding protocol. Figure 1 shows the
move-sequence corresponding to the protocol illustrated in Sect. 3.3.

Figure 2 illustrates the area to which Transition 1 can be applied. From the
lightest color to the darkest, they represent the regions to which 𝑘-MSbatching
can be applied with 𝑘 = 2, 3, . . . , 9.

The MSbatching move-sequence problem is defined as easily imagined: given
a start point (𝑛, 1), find a move-sequence to an terminal point on the 𝑎𝑏-plane
where only Transitions 1 and 2 are applicable. Such a move-sequence uniquely
corresponds an MSbatching protocol, and the length of the move-sequence cor-
responds to the number of shuffles. Therefore, finding a shortest move-sequence
is equivalent to constructing an optimal MSbatching protocol in terms of the
number of shuffles.

5 Proposed Protocol

In this section, we propose a generic construction for an 𝑛-input MSbatching
protocol by giving how to choose Transitions 1 and 2.

Two-Helping-Card Multi-Input AND Protocols 223

Fig. 2. The area to which 𝑘-MSbatching can be applied

5.1 Description of Proposed Protocol

First, we explain the idea of how to choose Transitions 1 and 2 in the proposed
protocol. Basically, 𝑘-MSbatching to be applied is limited to those where 𝑘 is a
power of 2. If the garbage collection would allow for a larger MSbatching size
compared to the currently applicable MSbatching, then perform the garbage
collection.

To describe the above idea formally, the proposed protocol chooses a transi-
tion for a point (𝑎, 𝑏) such that 𝑎 ≥ 2 as follows, where let 𝑘𝑏 be the maximum
value of 𝑘 that satisfies 𝑎 ≥ 2𝑘 and 𝑏 ≥ 𝑘 + 𝑘 �log2 𝑘	, and let 𝑘𝑏+𝑔 be the
maximum value of 𝑘 that satisfies 𝑎 ≥ 2𝑘 and 𝑏 + 𝑔 ≥ 𝑘 + 𝑘 �log2 𝑘	.

– If 𝑘𝑏+𝑔 > 𝑘𝑏 and 𝑘𝑏+𝑔 = 2𝑖 for some integer 𝑖, perform (𝑛 − 𝑎 − 𝑏 + 1)-GC and
transition to 𝐺𝐶 (𝑛−𝑎−𝑏+1)

(𝑎, 𝑏) = (𝑎, 𝑛 − 𝑎 + 1).
– Otherwise, perform 𝑘𝑏-MSbatching and transition to 𝐵𝑘𝑏

(𝑎, 𝑏) = (𝑎 − 𝑘𝑏, 𝑏).

5.2 Proposed Protocol for 𝒏 = 48

Here, we illustrate the proposed protocol for the case of 𝑛 = 48 as an example.
That is, Fig. 3 shows the move-sequence of the proposed protocol in the case of
48 inputs.

For further explanation, 1-MSbatching is performed until enough garbage
commitments have been accumulated for 2-MSbatching, i.e., for 𝑎 = 48, 47, 46.

224 T. Yoshida et al.

Fig. 3. Proposed protocol for 𝑛 = 48

Next, after performing 3-GC when 𝑎 = 45 is reached, 2-MSbatching is applied.
Then, 2-MSbatching is performed until enough garbage commitments are accu-
mulated for 4-MSbatching, i.e., until 𝑎 = 39. When 𝑎 = 37 is reached, 8-GC
is performed and then 4-MSbatching is applied. In the same way, continue 4-
MSbatching for a while and apply 8-MSbatching at 𝑎 = 17. Then apply 4-
MSbatching, 2-MSbatching, and 1-MSbatching for 𝑎 = 9, 5, 3, 2.

Since the number of transitions above is 20, the number of shuffles in the
proposed protocol is 20. Since the number of shuffles for the protocol introduced
in Sect. 3.3 is 28, it is a successful improvement.

We show the number of shuffles in our protocol for 2 ≤ 𝑛 ≤ 50 in Fig. 4.

6 Search for Optimal Protocols

In this section, we verify whether the protocol proposed in Sect. 5 is optimal
in the sense that it minimizes the number of shuffles among all the MSbatching
protocols. Specifically, we find shortest move-sequences in the MSbatching move-
sequence problem by a dynamic programming algorithm in the range up to
𝑛 = 500.

First, in Sect. 6.1, two lemmas are given to narrow the space where we have
to search. Next, in Sect. 6.2, we present the strategy for finding shortest move-
sequences. After that, in Sect. 6.3, we compare the number of shuffles in the
proposed protocol with the minimum number of shuffles.

Two-Helping-Card Multi-Input AND Protocols 225

Fig. 4. Number of shuffles in our protocol for 2 ≤ 𝑛 ≤ 50

6.1 Lemmas to Narrow Search Space

When searching for shortest move-sequences in the MSbatching move-sequence
problem presented in Sect. 4, the following two lemmas imply that there are tran-
sitions that do not need to be considered, narrowing the search space. Hereafter,
𝑛 is fixed and 𝑀 (𝑎, 𝑏) denotes the shortest move-sequence length from point
(𝑎, 𝑏) to a terminal point.

The following Lemma 1 indicates that whenever the garbage collection is
performed, it should be done on all the remaining garbage commitments.

Lemma 1. For any 𝑔 and 𝑔′ such that 1 ≤ 𝑔 < 𝑔′ ≤ 𝑛 − 𝑎 − 𝑏 + 1, 𝑀 (𝑎, 𝑏 + 𝑔) ≥
𝑀 (𝑎, 𝑏 + 𝑔′).

Proof. We prove that 𝑀 (𝑎, 𝑏 + 𝑔) ≥ 𝑀 (𝑎, 𝑏 + 𝑔 + 1) because it implies the lemma.
Let 𝑃 be a shortest move-sequence from point (𝑎, 𝑏 + 𝑔) to a terminal point, and
use induction on the length of 𝑃. When 𝑃 has length 1, (𝑎, 𝑏+𝑔) is terminated by
some 𝑘-MSbatching. Since the same 𝑘-MSbatching can be applied to (𝑎, 𝑏+𝑔+1),
𝑀 (𝑎, 𝑏 + 𝑔) = 𝑀 (𝑎, 𝑏 + 𝑔 + 1) = 1 and the claim holds. Assume inductively
that when 𝑃 has length 2 or more, the claim holds for those having a smaller
length. When the first move of 𝑃 transitions upward from the point (𝑎, 𝑏 + 𝑔) to
𝐺𝐶𝑔′′

(𝑎, 𝑏) = (𝑎, 𝑏 + 𝑔′′), the point (𝑎, 𝑏 + 𝑔 + 1) can also transition to the same
point (𝑎, 𝑏+𝑔′′) (or 𝑏+𝑔+1 = 𝑏+𝑔′′), and hence, 𝑀 (𝑎, 𝑏+𝑔) = 𝑀 (𝑎, 𝑏+𝑔′′) +1 and
𝑀 (𝑎, 𝑏+𝑔+1) ≤ 𝑀 (𝑎, 𝑏+𝑔′′) +1, from which we have 𝑀 (𝑎, 𝑏+𝑔) ≥ 𝑀 (𝑎, 𝑏+𝑔+1)
as desired. When the first move of 𝑃 is leftward, some 𝑘-MSbatching transitions

226 T. Yoshida et al.

to 𝐵𝑘
(𝑎, 𝑏 + 𝑔) = (𝑎− 𝑘, 𝑏 + 𝑔) and 𝑀 (𝑎, 𝑏 + 𝑔) = 𝑀 (𝑎− 𝑘, 𝑏 + 𝑔) +1. Since the same

𝑘-MSbatching can be applied to the point (𝑎, 𝑏 + 𝑔 + 1) and 𝐵𝑘
(𝑎, 𝑏 + 𝑔 + 1) =

(𝑎 − 𝑘, 𝑏 + 𝑔 + 1), we have 𝑀 (𝑎, 𝑏 + 𝑔 + 1) ≤ 𝑀 (𝑎 − 𝑘, 𝑏 + 𝑔 + 1) + 1. Also, from the
induction assumption, 𝑀 (𝑎 − 𝑘, 𝑏 + 𝑔) ≥ 𝑀 (𝑎 − 𝑘, 𝑏 + 𝑔 + 1). Therefore, the claim
holds. �

The following Lemma 2 indicates that when MSbatching is perfomed, it
should be the largest size.

Lemma 2. If 𝑎 < 𝑎′, then 𝑀 (𝑎, 𝑏) ≤ 𝑀 (𝑎′, 𝑏).

Proof. We prove that 𝑀 (𝑎, 𝑏) ≤ 𝑀 (𝑎 + 1, 𝑏) because it implies the lemma. Let
𝑃 be a shortest move-sequence from point (𝑎 + 1, 𝑏) to a terminal point, and
use induction on the length of 𝑃. When 𝑃 has length 1, we have 𝑎 + 1 = 2, i.e.,
𝑎 = 1. Therefore, since 𝑀 (𝑎, 𝑏) = 0, the claim holds. Assume inductively that
when 𝑃 has length 2 or more, the claim holds for those having a smaller length.
When the first move of 𝑃 is upward, there exists some 𝑔 such that 𝑀 (𝑎 + 1, 𝑏) =
𝑀 (𝑎+1, 𝑏+𝑔)+1. Also, from the induction assumption, 𝑀 (𝑎, 𝑏+𝑔) ≤ 𝑀 (𝑎+1, 𝑏+𝑔).
Since 𝑀 (𝑎, 𝑏) ≤ 𝑀 (𝑎, 𝑏 + 𝑔) + 1, the claim holds. When the first move of 𝑃 is
leftward, by some 𝑘-MSbatching, 𝑀 (𝑎 + 1, 𝑏) = 𝑀 (𝑎− 𝑘 + 1, 𝑏) + 1 and 𝑎 + 1 ≥ 2𝑘.
Therefore, 𝑀 (𝑎, 𝑏) ≤ 𝑀 (𝑎 − (𝑘 − 1), 𝑏) + 1 = 𝑀 (𝑎 − 𝑘 + 1, 𝑏) + 1 since (𝑘 − 1)-
MSbatching can be applied to the point (𝑎, 𝑏). Therefore, the claim holds. �

6.2 Shortest Move-Sequence Search

Here, the shortest move-sequence length for each 𝑛 ≤ 500 is obtained by running
a dynamic programming algorithm for the search space of the MSbatching move-
sequence problem, which is narrowed by Lemmas 1 and 2 in Sect. 6.1. The pseudo
code for the search is shown in Algorithm 1. The algorithm is explained below.

To search the entire move-sequence space from point (𝑛, 1) to a terminal
point, we define a 2-dimensional array named SMS (Shortest Move Sequence) in
Line 3 of Algorithm 1.

First, the search range is explained. Since it is assumed that the move-
sequence is explored in reverse, 𝑎 is processed in ascending order over the range of
1 ≤ 𝑎 ≤ 𝑛 and 𝑏 is processed in descending order over the range of 1 ≤ 𝑏 ≤ 𝑛−𝑎+1.
When 𝑏 = 𝑛 − 𝑎 + 1, it means that there is no garbage commitment, which is the
boundary. Figure 5 shows the search area (boundary) when 𝑛 = 48, for example.

Next, the transition selection method is explained. Line 6 is the condition
on the boundary 𝑏 = 𝑛 − 𝑎 + 1 shown in Fig. 5. Since no further GC can be
performed on the boundary, add 1 to the value at the transition moved to the
left by 𝑘𝑏-MSbatching, i.e., SMS[𝑎 − 𝑘𝑏] [𝑏]. The conditions from Line 8 are
about the inside of the search area. Line 9 adds 1 to SMS[𝑎] [𝑛 − 𝑎 + 1] since
Transition 2 is better. Line 11 adds 1 to SMS[𝑎 − 𝑘𝑏] [𝑏] because Transition 1 is
better.

This algorithm was executed on a computer for up to 𝑛 = 500.

Two-Helping-Card Multi-Input AND Protocols 227

Algorithm 1. Shortest move-sequence search
.
1: function MIN_ COST(𝑛)
2: 𝑛 ← number of inputs
3: SMS[𝑛] [𝑛 + 1]
4: for 1 ≤ 𝑎 ≤ 𝑛 do
5: for 𝑛 − 𝑎 + 1 ≥ 𝑏 ≥ 1 do
6: if 𝑏 == 𝑛 − 𝑎 + 1 then
7: SMS[𝑎] [𝑏] = SMS[𝑎 − 𝑘𝑏] [𝑏] + 1
8: else if 𝑏 < 𝑛 − 𝑎 + 1 then
9: if SMS[𝑎] [𝑛 − 𝑎 + 1] ≤ SMS[𝑎 − 𝑘𝑏] [𝑏] then

10: SMS[𝑎] [𝑏] = SMS[𝑎] [𝑛 − 𝑎 + 1] + 1
11: else
12: SMS[𝑎] [𝑏] = SMS[𝑎 − 𝑘𝑏] [𝑏] + 1
13: end if
14: end if
15: end for
16: end for
17: end function

Fig. 5. Possible points to visit for 𝑛 = 48

6.3 Comparison

Here, we compare the number of shuffles for the protocol proposed in Sect. 5
with the shortest move-sequence length calculated in Sect. 6.2.

228 T. Yoshida et al.

Table 2. Numbers of inputs that do not minimize the number of shuffles in the pro-
posed protocol

Number of inputs 𝑛 Proposed protocol’s shuffles Shortest length
48–49 20 19
56 21 20
104 27 26
112–115 28 27
128–129 29 28
240–247 36 35
256–271 37 36
288–295 38 37
320–323 39 38
352 40 39

As mentioned above, the search was performed within 𝑛 ≤ 500 of inputs, and
the shortest move-sequence lengths were obtained by a computer. Compared to
the number of shuffles for the proposed protocol in Sect. 5, in many cases they
are consistent and the proposed protocol is optimal. On the other hand, in some
cases, the proposed protocol is not optimal, and specifically, there is a protocol
that is better than the proposed protocol at 𝑛 as shown in Table 2.

As shown in Table 2, the number of shuffles of the proposed protocol is found
to be minimum or only one more than the minimum. Although only the shortest
lengths are shown in Table 2 when the proposed protocol is not optimal, the
shortest move-sequences themselves were of course obtained for all the range
𝑛 ≤ 500.

No rule of thumb has been found for cases where the proposed protocol is
not optimal. Nor is the specific procedure for giving an optimal protocol known.
While it is interesting to consider these issues, since card-based cryptography is
expected to be performed by human hands, it may be sufficient to have optimal
protocols up to 𝑛 = 500 figured out.

7 Conclusion

In this paper, we gave a natural class of committed-format two-helping-card 𝑛-
input AND protocols based on the batching technique and the MS-AND proto-
col, and showed optimal protocols among them in terms of the minimum number
of shuffles up to 𝑛 = 500.

Note that the “optimality” here was discussed within the class of MSbatching
protocols, and hence, it is still open to determine whether the upper bounds on
the number of shuffles obtained in this paper are also lower bounds on the number

Two-Helping-Card Multi-Input AND Protocols 229

of shuffles for any committed-format two-helping-card AND protocols (that are
not necessarily based on the MS-AND protocol or the batching technique).

Acknowledgements. We thank the anonymous referees, whose comments have
helped us to improve the presentation of the paper. This work was supported in part
by JSPS KAKENHI Grant Numbers JP21K11881 and JP23H00479.

References

1. Abe, Y., et al.: Efficient card-based majority voting protocols. New Gener. Comput.
1–26 (2022). https://doi.org/10.1007/s00354-022-00161-7

2. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2_27

3. Haga, R., Hayashi, Y., Miyahara, D., Mizuki, T.: Card-minimal protocols for three-
input functions with standard playing cards. In: Batina, L., Daemen, J. (eds.)
Progress in Cryptology – AFRICACRYPT 2022. AFRICACRYPT 2022. LNCS,
vol. 13503, pp. 448–468. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-17433-9_19

4. Hand, S., Koch, A., Lafourcade, P., Miyahara, D., Robert, L.: Check alternating
patterns: a physical zero-knowledge proof for Moon-or-Sun. In: Shikata, J., Kuzuno,
H. (eds.) Advances in Information and Computer Security. IWSEC 2023. LNCS,
vol. 14128, pp. 255–272. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-41326-1_14

5. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9_16

6. Isuzugawa, R., Toyoda, K., Sasaki, Yu., Miyahara, D., Mizuki, T.: A card-minimal
three-input AND protocol using two shuffles. In: Chen, C.-Y., Hon, W.-K., Hung,
L.-J., Lee, C.-W. (eds.) COCOON 2021. LNCS, vol. 13025, pp. 668–679. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-89543-3_55

7. Koch, A.: The landscape of security from physical assumptions. In: IEEE Infor-
mation Theory Workshop, pp. 1–6. IEEE, NY (2021). https://doi.org/10.1109/
ITW48936.2021.9611501

8. Koch, A.: The landscape of optimal card-based protocols. Math. Cryptol. 1(2),
115–131 (2022). https://journals.flvc.org/mathcryptology/article/view/130529

9. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6_32

10. Komano, Y., Mizuki, T.: Card-based zero-knowledge proof protocol for pancake
sorting. In: Bella, G., Doinea, M., Janicke, H. (eds.) Innovative Security Solu-
tions for Information Technology and Communications. SecITC 2022. LNCS, vol.
13809, pp. 222–239. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
32636-3_13

11. Kuzuma, T., Toyoda, K., Miyahara, D., Mizuki, T.: Card-based single-shuffle pro-
tocols for secure multiple-input AND and XOR computations. In: ASIA Public-
Key Cryptography, pp. 51–58. ACM, NY (2022). https://doi.org/10.1145/3494105.
3526236

https://doi.org/10.1007/s00354-022-00161-7
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/978-3-031-17433-9_19
https://doi.org/10.1007/978-3-031-17433-9_19
https://doi.org/10.1007/978-3-031-41326-1_14
https://doi.org/10.1007/978-3-031-41326-1_14
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-030-89543-3_55
https://doi.org/10.1109/ITW48936.2021.9611501
https://doi.org/10.1109/ITW48936.2021.9611501
https://journals.flvc.org/mathcryptology/article/view/130529
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-031-32636-3_13
https://doi.org/10.1007/978-3-031-32636-3_13
https://doi.org/10.1145/3494105.3526236
https://doi.org/10.1145/3494105.3526236

230 T. Yoshida et al.

12. Manabe, Y., Ono, H.: Card-based cryptographic protocols with malicious players
using private operations. New Gener. Comput. 40, 67–93 (2022). https://doi.org/
10.1007/s00354-021-00148-w

13. Miyahara, D., Mizuki, T.: Secure computations through checking suits of playing
cards. In: Li, M., Sun, X. (eds.) Frontiers of Algorithmic Wisdom. IJTCS-FAW
2022. LNCS, vol. 13461, pp. 110–128. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-20796-9_9

14. Miyamoto, K., Shinagawa, K.: Graph automorphism shuffles from pile-scramble
shuffles. New Gener. Comput. 1–25 (2022). https://doi.org/10.1007/s00354-022-
00164-4

15. Mizuki, T.: Card-based protocols for securely computing the conjunction of multi-
ple variables. Theor. Comput. Sci. 622(C), 34–44 (2016). https://doi.org/10.1016/
j.tcs.2016.01.039

16. Mizuki, T.: Preface: special issue on card-based cryptography. New Gener. Comput.
39(1), 1–2 (2021). https://doi.org/10.1007/s00354-021-00127-1

17. Mizuki, T.: Preface: special issue on card-based cryptography 2. New Gener. Com-
put. (1), 1–2 (2022). https://doi.org/10.1007/s00354-022-00170-6

18. Mizuki, T., Komano, Y.: Information leakage due to operative errors in card-
based protocols. Inf. Comput. 285, 104910 (2022). https://doi.org/10.1016/j.ic.
2022.104910

19. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic proto-
cols and its applications. IEICE Trans. Fundam. E100.A(1), 3–11 (2017). https://
doi.org/10.1587/transfun.E100.A.3

20. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

21. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: Secure computation
for threshold functions with physical cards: power of private permutations. New
Gener. Comput. 40, 95–113 (2022). https://doi.org/10.1007/s00354-022-00153-7

22. Niemi, V., Renvall, A.: Secure multiparty computations without computers.
Theor. Comput. Sci. 191(1–2), 173–183 (1998). https://doi.org/10.1016/S0304-
3975(97)00107-2

23. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical ZKP protocols for
Nurimisaki and Kurodoko. Theor. Comput. Sci. 972, 114071 (2023). https://doi.
org/10.1016/j.tcs.2023.114071

24. Ruangwises, S.: Physical zero-knowledge proof for ball sort puzzle. In: Della
Vedova, G., Dundua, B., Lempp, S., Manea, F. (eds.) Unity of Logic and Compu-
tation. CiE 2023. LNCS, vol. 13967, pp. 246–257. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-36978-0_20

25. Ruangwises, S., Itoh, T.: AND protocols using only uniform shuffles. In: van Bev-
ern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 349–358. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-19955-5_30

26. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with
2n cards. Theor. Comput. Sci. 887, 99–110 (2021). https://doi.org/10.1016/j.tcs.
2021.07.007

27. Shikata, H., Miyahara, D., Mizuki, T.: Few-helping-card protocols for some wider
class of symmetric Boolean functions with arbitrary ranges. In: 10th ACM Asia
Public-Key Cryptography Workshop, pp. 33–41. APKC ’23, ACM, New York
(2023). https://doi.org/10.1145/3591866.3593073

https://doi.org/10.1007/s00354-021-00148-w
https://doi.org/10.1007/s00354-021-00148-w
https://doi.org/10.1007/978-3-031-20796-9_9
https://doi.org/10.1007/978-3-031-20796-9_9
https://doi.org/10.1007/s00354-022-00164-4
https://doi.org/10.1007/s00354-022-00164-4
https://doi.org/10.1016/j.tcs.2016.01.039
https://doi.org/10.1016/j.tcs.2016.01.039
https://doi.org/10.1007/s00354-021-00127-1
https://doi.org/10.1007/s00354-022-00170-6
https://doi.org/10.1016/j.ic.2022.104910
https://doi.org/10.1016/j.ic.2022.104910
https://doi.org/10.1587/transfun.E100.A.3
https://doi.org/10.1587/transfun.E100.A.3
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/s00354-022-00153-7
https://doi.org/10.1016/S0304-3975(97)00107-2
https://doi.org/10.1016/S0304-3975(97)00107-2
https://doi.org/10.1016/j.tcs.2023.114071
https://doi.org/10.1016/j.tcs.2023.114071
https://doi.org/10.1007/978-3-031-36978-0_20
https://doi.org/10.1007/978-3-031-36978-0_20
https://doi.org/10.1007/978-3-030-19955-5_30
https://doi.org/10.1016/j.tcs.2021.07.007
https://doi.org/10.1016/j.tcs.2021.07.007
https://doi.org/10.1145/3591866.3593073

Two-Helping-Card Multi-Input AND Protocols 231

28. Shikata, H., Toyoda, K., Miyahara, D., Mizuki, T.: Card-minimal protocols for
symmetric Boolean functions of more than seven inputs. In: Seidl, H., Liu, Z.,
Pasareanu, C.S. (eds.) Theoretical Aspects of Computing – ICTAC 2022. ICTAC
2022. LNCS, vol. 13572, pp. 388–406. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-17715-6_25

29. Shimano, M., Sakiyama, K., Miyahara, D.: Towards verifying physical assumption
in card-based cryptography. In: Bella, G., Doinea, M., Janicke, H. (eds.) Innovative
Security Solutions for Information Technology and Communications. SecITC 2022.
LNCS, vol. 13809, pp. 289–305. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-32636-3_17

30. Shinagawa, K., Miyamoto, K.: Automorphism shuffles for graphs and hypergraphs
and its applications. IEICE Trans. Fundam. E106.A(3), 306–314 (2023). https://
doi.org/10.1587/transfun.2022CIP0020

31. Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based compu-
tation of any Boolean circuit. Discret. Appl. Math. 289, 248–261 (2021). https://
doi.org/10.1016/j.dam.2020.10.013

32. Shinagawa, K., Nuida, K.: Single-shuffle full-open card-based protocols imply pri-
vate simultaneous messages protocols. Cryptology ePrint Archive, Paper 2022/1306
(2022). https://eprint.iacr.org/2022/1306, https://eprint.iacr.org/2022/1306

33. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1–2),
671–678 (2001). https://doi.org/10.1016/S0304-3975(00)00409--6

34. Suga, Y.: A classification proof for commutative three-element semigroups with
local AND structure and its application to card-based protocols. In: 2022 IEEE
International Conference on Consumer Electronics - Taiwan, pp. 171–172. IEEE,
NY (2022). https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869063

35. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure
implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452
(2019). https://doi.org/10.1007/s10207-019-00463-w

36. Yao, A.C.: Protocols for secure computations. In: Foundations of Computer Sci-
ence, pp. 160–164. IEEE Computer Society, Washington, DC, USA (1982). https://
doi.org/10.1109/SFCS.1982.88

https://doi.org/10.1007/978-3-031-17715-6_25
https://doi.org/10.1007/978-3-031-17715-6_25
https://doi.org/10.1007/978-3-031-32636-3_17
https://doi.org/10.1007/978-3-031-32636-3_17
https://doi.org/10.1587/transfun.2022CIP0020
https://doi.org/10.1587/transfun.2022CIP0020
https://doi.org/10.1016/j.dam.2020.10.013
https://doi.org/10.1016/j.dam.2020.10.013
https://eprint.iacr.org/2022/1306
https://eprint.iacr.org/2022/1306
https://doi.org/10.1016/S0304-3975(00)00409--6
https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869063
https://doi.org/10.1007/s10207-019-00463-w
https://doi.org/10.1109/SFCS.1982.88
https://doi.org/10.1109/SFCS.1982.88

Free-XOR in Card-Based Garbled
Circuits

Yoshifumi Manabe1(B) and Kazumasa Shinagawa2,3

1 School of Informatics, Kogakuin University, Tokyo, Japan
manabe@cc.kogakuin.ac.jp

2 Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
kazumasa.shinagawa.np92@vc.ibaraki.ac.jp

3 National Institute of Advanced Industrial Science and Technology (AIST),

2-3-26 Aomi, Koto, Tokyo 135-0064, Japan

Abstract. This paper shows a free-XOR technique in card-based gar-
bled circuits. Card-based cryptographic protocols were proposed as a
secure multiparty computation using physical cards instead of comput-
ers. They can be used when users cannot trust software on computers.
Shinagawa and Nuida proposed card-based garbled circuits that com-
pute any Boolean functions using a single shuffle. Their protocol uses
24g + 2n cards, where g is the number of gates and n is the number of
inputs. Tozawa et al. reduced the number of cards to 8g+2n. This paper
introduces the free-XOR technique for standard garbled circuits to card-
based garbled circuits. It is unnecessary to prepare a garbled table for
XOR gates. The number of cards is reduced to 8g1+2g2+2n, where g1 is
the number of gates other than XOR and g2 is the number of XOR gates
whose output is used as a final output. The card-based garbled circuits
proposed by Shinagawa and Nuida have one restriction the final outputs
cannot be used for inputs to the other gates. This paper eliminates the
restriction with two different techniques. The second technique uses the
idea in free-XOR.

Keywords: Card-based cryptographic protocols · secure multiparty
computation · garbled circuits · exclusive or · free-XOR

1 Introduction

Card-based cryptographic protocols [15,31,32] were proposed in which physical
cards are used instead of computers to securely compute values. They can be
used when computers cannot be used or users cannot trust the software on the
computer. Also, the protocols are easy to understand, thus the protocols can be
used to teach the basics of cryptography [4,27] to accelerate the social imple-
mentation of advanced cryptography [8]. den Boer [5] first showed a five-card

The first author was supported by JSPS KAKENHI Grant Number JP23H00479. The
second author was supported during this work by JSPS KAKENHI Grant Numbers
JP21K17702 and JP23H00479, and JST CREST Grant Number JPMJCR22M1.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 232–248, 2023.
https://doi.org/10.1007/978-981-99-7563-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_11&domain=pdf
http://orcid.org/0000-0002-6312-257X
https://doi.org/10.1007/978-981-99-7563-1_11

Free-XOR in Card-Based Garbled Circuits 233

protocol to securely compute the logical AND of two inputs. Since then, many
protocols have been proposed to realize primitives to compute any Boolean func-
tions [14,17,22,33,38,44,45,52,53] and specific computations such as a specific
class of Boolean functions [2,3,7,13,19–21,23,28,30,39,42,47,48,51,57], univer-
sal computation such as Turing machines [6,16], millionaires’ problem [24,35,43],
voting [1,29,36,37,40,56,60], random permutation [9,11,12,34], grouping [10],
ranking [55], lottery [54], and so on.

Shinagawa and Nuida [53] proposed a protocol to compute any Boolean func-
tions using the garbled circuit technique [61]. The number of shuffles used in the
protocol is one. Their protocol uses 24g + 2n cards, where g is the number of
gates and n is the number of inputs. Tozawa et al. [58] reduced the number of
cards to 8g + 2n.

To reduce the size of standard garbled tables, free-XOR technique [18] was
shown, in which no garbled table is necessary for XOR gates. This paper intro-
duces the technique to card-based garbled circuits. We show that garbled tables
are also unnecessary for XOR gates in card-based garbled circuits. Thus no cards
are necessary for internal XOR gates, where, the output of an XOR gate is not
a final output. When the output of an XOR gate is a final output, two cards are
necessary. The number of cards is thus reduced to 8g1 + 2g2 + 2n, where g1 is
the number of gates other than XOR and g2 is the number of XOR gates whose
output is a final output. The number of shuffles is kept to one.

The card-based garbled circuits proposed by Shinagawa and Nuida [53] have
one restriction the final outputs cannot be used for inputs to the other gates.
Though each input value in the garbled tables is randomized to hide the value,
the output data must not be randomized. That is the reason for the restriction.
This paper considers eliminating the restriction with two different techniques.
The first technique is preparing a copy of garbled table entries that is used
for final outputs. The second technique is remembering the random value and
undoing the randomization, whose idea is the same as the one in free-XOR.
Though the former technique needs more cards, the total number of shuffles is
kept to one. The latter technique needs one additional shuffle.

Section 2 shows basic notations and definitions of card-based cryptographic
protocols. Section 3 shows Shinagawa-Nuida card-based garbled circuit whose
size is reduced by [46]. Section 4 shows the new free-XOR technique for card-
based garbled circuits. Section 5 discusses eliminating the output restriction in
[53]. Section 6 concludes the paper.

2 Preliminaries

This section gives the notations and basic definitions of card-based cryptographic
protocols. Most of the results are based on a two-color card model. In the two-
color card model, there are two kinds of marks, ♣ and ♥ . Cards of the same
marks cannot be distinguished. In addition, the back of both types of cards is
? . It is impossible to determine the mark on the back of a given card of ? .

One-bit data is represented by two cards as follows: ♣ ♥ = 0 and ♥ ♣ = 1.

234 Y. Manabe and K. Shinagawa

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is
called a commitment of x, and denoted as commit(x). It is written as ? ?

︸ ︷︷ ︸

x

.

Note that when these two cards are swapped, commit(x̄) can be obtained. Thus,
logical negation can be easily computed.

A set of cards placed in a row is called a sequence of cards. A sequence of
cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card
of the sequence. S = ?

︸︷︷︸

s1

?
︸︷︷︸

s2

?
︸︷︷︸

s3

. . . , ?
︸︷︷︸

sn

.

All protocols are executed by two players, Alice and Bob. The players are
semi-honest, that is, they obey the rule of the protocol, but they try to obtain
secret values.

Next, we discuss the inputs and outputs of the protocols. Most protocols
have committed inputs, that is, the inputs are given to the players in a commit-
ted manner. The players do not know the input values and they might try to
obtain the input values during the protocol execution. The other type of proto-
col considers the case when each player inputs his/her input value that must be
hidden from the other player. They are called non-committed input protocols.
Note that committed-input protocols can be used when the players input their
own values. Each player makes a commitment to his/her input in advance and
they are used as inputs. Thus, committed-input protocols are desirable. On the
other hand, non-committed input protocols can be simple and might reduce the
number of cards used in the protocol.

Most protocols output the result in a committed manner. They are called
committed-output protocols. On the other hand, several protocols terminate by
opening some cards and obtaining the result from the sequence of the opened
cards. Such protocols are called non-committed output protocols. Committed-
output protocols are desirable since the committed output can be used as input
for further secure computations.

Next, we show operations on the cards. Opening a card is turning a face-down
card into a face-up, thus the players can see the mark on the card. Face-down a
card is turning a face-up card to face-down. Rearrangement is a permutation of
a sequence of cards, that is, the position of a given sequence of cards is changed.

A shuffle is executed on a sequence of cards S. Its parameter is (Π,F), where
Π is a set of permutations on S and F is a probability distribution on Π. For a
given sequence S, each permutation π ∈ Π is selected by the probability distri-
bution F and π is applied to S. If π is applied on S = s1, s2, . . . , sn, the result is
sπ−1(1), sπ−1(2), . . . , sπ−1(n). Since π is selected from Π, the result is not deter-
ministic. Non-deterministic execution is necessary for card-based protocols. If
all operations are deterministic, the relation between the committed input value
and the committed output value is known to the players. When the commit-
ted output cards are opened to see the final output, the private input data is
known to the players using the relation between the input and the output. Thus
non-deterministic execution is necessary to hide the private input values.

Free-XOR in Card-Based Garbled Circuits 235

We show examples of shuffles used in the protocols shown below. A random
shuffle is randomly changing the positions of the cards for the given sequence
of cards. When S = s1, s2, s3, the result of a random shuffle is S1 = s1, s2, s3,
S2 = s1, s3, s2, S3 = s2, s1, s3, S4 = s2, s3, s1, S5 = s3, s1, s2, or S6 = s3, s2, s1.
The probability of obtaining each result is 1/|S|!.

A shuffle is uniform if F is a uniform distribution, that is, π ∈ Π is selected
uniformly at random. A shuffle is closed if multiple executions of a shuffle are also
the same shuffle. Non-uniform shuffles are not desirable since they are difficult
to execute by human hands. Using some additional cards or tools, protocols to
execute any kinds of shuffles were shown [26,41,49,50,59].

Closed shuffles are desirable since each one of Alice and Bob can execute one
instance of the shuffle to obtain one shuffle result. Even if Alice and Bob are
not honest and each player knows the result of his/her shuffle, the final result of
the two shuffles is unknown to the players. The random shuffle shown above is
uniform and closed.

Next, we introduce piles of cards. A pile of cards is a sequence of cards whose
order cannot be changed using some additional tools such as clips or envelopes.
For example, consider a case when cards si,j(i = 1, 2, . . . , n, j = 1, 2, . . . m)
are given. The players make piles of cards such that Pi = si,1, si,2, . . . , si,m(i =
1, 2, . . . , n) using clips or envelopes. The players treat each pile Pi just like a
single card during shuffle operations. The order of cards in a pile cannot be
changed because of the clip or envelope. Consider the case shuffle π is executed
on the above piles Pi(i = 1, 2, . . . , n). The result is Pπ−1(1), Pπ−1(2), . . . , Pπ−1(n),
where Pπ−1(i) = sπ−1(i),1, sπ−1(i),2, . . . , sπ−1(i),m. Random shuffles on piles are
called pile-scramble shuffles.

Last, the efficiency of the protocol is evaluated by the number of cards used
by the protocol. It corresponds to the space complexity of programs.

The number of shuffles is used to evaluate the time complexity of the proto-
cols since the other operations are simple [25].

3 Card-Based Garbled Circuits

Garbled circuits [61] are a fundamental technique to securely compute any func-
tion by two semi-honest players. The original garbled circuits consider the case
when Alice has input value x and Bob has input y. They want to compute f(x, y)
together without revealing each player’s input value to the other player.

Shinagawa and Nuida [53] proposed a card-based cryptographic protocol to
compute any Boolean functions using a single shuffle by using the garbled cir-
cuit technique. The problem definition differs from the above one. Alice and
Bob have functions fi(x1, x2, . . . , xn)(i = 1, 2, . . . ,m) to compute from input
x1, x2, . . . , xn. The inputs are given by cards in a committed manner. The out-
puts must be given in a committed manner. The number of cards used for each
gate is 24.

Tozawa et al. [58] reduced the number of cards. Their protocol uses eight
cards for each gate.

236 Y. Manabe and K. Shinagawa

First, we show the outline of the computation with no security and the secure
protocol shown in [58].

For each two-input logic gate, Alice and Bob prepare a table that represents
the relation between the inputs and the output as in Fig. 1, which shows the
case of g1 = x1 ⊕ x2. The first (or second) row has the values when x1 = 0 (or
1), respectively. The first (or second) column has the values when x2 = 0 (or 1),
respectively.

Fig. 1. Table to compute g1 = x1 ⊕ x2

All the cards are then set to face-down to hide the values of the table. Con-
sider the simple case when x1, x2 are private inputs given to the players and
g1 = x1 ⊕x2 is a final output. The input value x1 and x2 are given by face-down
cards. The players open the cards and search for the entry that corresponds to
the input values. For example, if x1 = 1 (♥ ♣) and x2 = 0 (♣ ♥), the entry
at the second row and the first column has the result. If the cards are opened,
the value is ♥ ♣ , which is the correct result of x1 ⊕ x2. The result is obtained
in a committed manner. Further computation of the other gates can be similarly
executed. The final output can be obtained in a committed manner.

Since the players open the input values, the security of inputs is not realized.
To solve the problem, Alice and Bob randomize the inputs of the tables and
input values together. For each garbled table, make two piles P1 and P2. P1(P2)
consists of the first (second) row of the table and the left (right) card of input
x1, respectively. P1 and P2 consist of five cards. Alice and Bob execute a pile-
scramble shuffle on P1 and P2 as in Fig. 2. With probability 1/2, P1 and P2 are
swapped. With probability 1/2, they are unchanged. After the shuffle, the cards
are set back to each position. The result can be represented by a random value
r1 ∈ {0, 1} as follows: the cards that have the input x1 is changed to x1 ⊕ r1 and
the first row of the garbled table has the values when the input is r1.

Another pile-scramble shuffle is similarly executed for the input x2 and the
two columns of the table, as shown in Fig. 3. The result can be similarly repre-
sented by another random value r2 ∈ {0, 1}. The cards that have the input x2

is changed to x2 ⊕ r2 and the first column of the garbled table has the values
when the input is r2.

Free-XOR in Card-Based Garbled Circuits 237

Fig. 2. Randomization for input x1 Fig. 3. Randomization for input x2

When we execute the computation after the pile-scramble shuffles, the play-
ers can obtain the correct result of the computation of the gate. For example,
consider the case when x1 = 1, x2 = 0, r1 = 1, and r2 = 0. The players see
0 = x1 ⊕ r1 and 0 = x2 ⊕ r2 when the input cards are opened. Thus the players
select the element in the first row and the first column in the table. The result
is correct since the entry was initially at the second row and the first column
before the shuffles. The security of the input values is achieved because r1 and
r2 are random values unknown to Alice and Bob.

Note that input x1 might also be an input of another gate g2, g3, . . . , gk. In
this case, when the players make piles P1 and P2, the entries of the table for
g2, g3, . . . , gk must also be added.

When the output of g1 is the final output, the computation is finished and
the players obtain the committed result. When the output of g1 is an input of
another gate, further computation is necessary. Let g′

1, g
′
2, . . . , g

′
i be the gates

that input g1’s output. In this case, since the output cards of g1 must be opened
to select entries of gj ’s garbled table, g1’s output value must also be randomized
in advance to hide the output value. The randomization of the output must be
executed together with the tables of g′

1, g
′
2, . . . , g

′
i.

For example, Fig. 4 shows the case when the output of g1 is used as the row
input x3 of gate g2. Similar to the above case, the players make two piles P1

and P2. P1 (P2) consist of the left (right) card of each entry of table g1 and the
first (second) row of the table g2, respectively. Execute a pile-scramble shuffle
on P1 and P2 and the cards are set back to each position. Using a random value
r ∈ {0, 1}, the output of g1 is changed as g1 ⊕ r. When the players open the
output card of g1, the players obtain no information about the output since the
value is randomized by r. In addition, the computation of g2 is still correct since
the entries of the tables are randomized using the same random value r.

Note that all shuffles of the inputs and table entries are executed in advance
to compute.

In summary, the protocol is executed as follows.

238 Y. Manabe and K. Shinagawa

Fig. 4. Randomization when g2’s input x3 is the output of g1.

1. Prepare one table for each gate that is used to compute fi(i = 1, 2, . . . ,m).
2. When a value x (an input value or the output of a garbled table) is used for

the row input of gate g1, g2, . . . , gk and the column input of gate g′
1, g

′
2, . . . , g

′
k′ ,

make two piles P1 (P2) with the left (right) card(s) of x, the first (second)
row of the garbled table of gate g1, g2, . . . , gk, and the first (second) column of
the garbled table of gate g′

1, g
′
2, . . . , g

′
k′ , respectively. Execute a pile-scramble

shuffle to P1 and P2. Set back the cards to the initial positions. Execute the
above procedure for every value x that will be opened during computation.

3. For each gate, open (randomized) input cards and select the row and column
entry that matches the opened value and obtain the committed output of the
gate.

4. The final output cards are not opened and they are used as the result.

Though in this example the cards are set as a 2 × 2 table, they can also be set
as one sequence of cards, for example, the output cards for input (0,0), (0,1)
(1,0), and (1,1) can be placed in this order as in [58]. Since the players know
each position, they can make two piles to be shuffled using the positions.

Note that any kind and any number of shuffles can be combined into one
shuffle [53], thus the total number of shuffles is one. Since the final output must
not be randomized, the output must not be used as an input of another gate.

4 Free-XOR in Card-Based Garbled Circuits

Free-XOR [18] is a technique for garbled circuits. It is unnecessary to prepare a
garbled table for each XOR gate. This section shows that a garbled table is also
unnecessary for XOR gates in the above card-based garbled circuits. Two cards
are necessary when the output of an XOR gate is a final output. No cards are
necessary when the output of an XOR gate is input to the other gates.

Before showing the protocol, we need to simplify the discussion. We need to
eliminate the case when the output of an XOR gate is an input of another XOR
gate. The output of an XOR gate g1 = x1 ⊕ x2 might be used as an input of
another XOR gate such as g2 = g1 ⊕ x3. g2 can be written as g2 = x1 ⊕ x2 ⊕ x3

to eliminate the case when the output of an XOR gate is an input of another
XOR gate. A similar transformation can be executed when g2 is also an input
of another XOR gate. Thus, the cases to be considered are: the output of an

Free-XOR in Card-Based Garbled Circuits 239

XOR gate is (1) a final output value or (2) an input of a non-XOR gate, where
the number of inputs of the XOR gate is arbitrary (> 1) and the inputs of the
XOR gate are not an output of another XOR gate, that is, they are initially-
given inputs or outputs of a non-XOR gate. In the above example of g1 and g2,
when g2 is the final output and g1 is an input of a non-XOR gate g3, we need to
compute (1) the output of g1 = x1 ⊕x2 ⊕x3 is a final output and (2) the output
of g2 = x1 ⊕ x2 is an input of non-XOR gate g3.

Note that the negation of an XOR might be needed. For example, consider
the case when the players compute g4 = x1 ⊕ x2. We note that we do not need
to consider negation of the XOR gates1. As shown above, g4 is a final output or
an input of another non-XOR gate, for example, g5 = g4∧x3. In the former case,
swap the pair of the cards that have the output x1 ⊕ x2 and we can compute
g4. In the latter case, we can prepare a garbled table for g5 in which the input
of the first element is negated, just as x̄ ∧ x3. Thus, we do not need to consider
the negation of XOR gates.

Before showing the detail of the protocol, we show the basic idea. In the
garbled circuits, every input value must be randomized in advance. Let us con-
sider the case when we compute g = x1 ⊕ x2. x1 and x2 are randomized as
x1 ⊕ r1 and x2 ⊕ r2 where r1, r2 ∈ {0, 1}. We prepare one pair of cards G for g,
which initially has 0(♣ ♥). When x1 is randomized using r1, G is included in
the randomization. When x2 is randomized using r2, G is included in the ran-
domization. G has r1 ⊕ r2 after the randomizations since 0 ⊕ r1 ⊕ r2 = r1 ⊕ r2.
When the randomized input values, x1 ⊕ r1 and x2 ⊕ r2 are opened, swap G if
(x1 ⊕ r1)⊕ (x2 ⊕ r2) = 1. Since G has r1 ⊕ r2 after the randomizations, the value
after the swap is (r1 ⊕ r2) ⊕ ((x1 ⊕ r1) ⊕ (x2 ⊕ r2)) = x1 ⊕ x2. Thus we can
compute g without a garbled table. When the output of g is used as an input
of non-XOR gate g′, the input rows/columns of g′’s garbled table can be used
instead of the two cards of G.

First, consider the case when the output of XOR gate g is a final output
value. Let x1, x2, . . . , xk be inputs to compute g =

⊕k
i=1 xi. xi(1 ≤ i ≤ k) are

initially-given inputs or outputs of non-XOR garbled tables.
The protocol for XOR gate g is the following steps.

– For the computation of g, prepare one pair of cards, denoted as G. Initially,
G is ♣ ♥ and it is turned into a committed value.

– In Step 2 of the above protocol, when the left card and the right card for value
xi are included in a pile P1 and P2, the left card of G is also set into P1 and
the right card of G is also set into P2 then a pile-scramble shuffle is executed.
For each input xi(1 ≤ i ≤ k), the above procedure is executed. Figure 5 shows
the randomization of g = x1 ⊕ x2, where x1 and x2 are input values. Make
P1 (P2) be the left (right) cards of G and x1, respectively. Execute a Pile-
scramble shuffle to P1 and P2. Then, make P ′

1 (P ′
2) be the left (right) cards

of G and x2, respectively. Execute a Pile-scramble shuffle to P ′
1 and P ′

2.

1 By a similar argument, we can see that negation of gates is unnecessary for any
gates.

240 Y. Manabe and K. Shinagawa

Note that when xi is an output of a garbled table, P1 (P2) consists of the left
(right) cards of the garbled table.

Fig. 5. Randomization of g = x1 ⊕ x2’s input x1 and x2.

– When the players compute the gate g =
⊕k

i=1 xi, the appropriate cards that
have xi are opened. Note that the value opened, x′

i, might not be xi because
of the randomization. Swap the two cards of G if the opened values x′

i satisfy
⊕k

i=1 x′
i = 1. The final committed pair G is used as the result of g =

⊕k
i=1 xi.

Theorem 1. The above protocol correctly computes g =
⊕k

i=1 xi.

Proof. Initially, G has value 0. By the pile-scramble shuffle of input xi, the
value is randomized as xi ⊕ ri for some ri ∈ {0, 1}. At the same time, G is also
randomized using ri thus the value is changed from 0 to 0⊕(

⊕k
i=1 ri) =

⊕k
i=1 ri.

When the gate g is computed, cards of the inputs are opened. The opened values
are xi ⊕ri. The two cards of G are swapped if

⊕k
i=1(xi ⊕ri) = 1. Thus the value

of G is changed from
⊕k

i=1 ri to
⊕k

i=1 ri ⊕ (
⊕k

i=1(xi ⊕ ri)) =
⊕k

i=1 xi. Thus the
result is correct. �	

Next, consider the case when the output of g =
⊕k

i=1 xi is used as an input
of another gate g′. The following protocol shows the case when g is the row input
of g′. The case when g is the column input of g′ can be similarly shown.

The protocol for XOR gate g is the following steps.

– For the computation of g =
⊕k

i=1 xi, no cards are prepared. Instead, the
cards for the input of g′ are used. Suppose that g is the row input of g′.

– In Step 2 of the above protocol, when the left (right) card(s) of value xi are
included in a pile P1 (P2), respectively, the first (second) row of the table of g′

is also set into P1 (P2), respectively. Then a pile-scramble shuffle is executed.
For each input xi(1 ≤ i ≤ k), the above procedure is executed. Figure 6 shows
the randomization of g = x1 ⊕ x2, where x1 and x2 are input values and g is

Free-XOR in Card-Based Garbled Circuits 241

the row input of g′. Make pile P1 (P2) by the left (right) card of x1 and first
(second) row of g′, respectively. Execute pile-scramble shuffle to P1 and P2.
Next. make pile P ′

1 (P ′
2) by the left (right) card of x2 and first (second) row

of g′, respectively.
Note that when xi is an output of a garbled table, P1 (P2) consists of the left
(right) cards of the garbled table.

Fig. 6. Randomization of g = x1 ⊕ x2’s input x1 and x2 when g is the row input of g′

– When the players compute the gate g′, The appropriate cards that have xi

are opened. Note that the value opened, x′
i, might not be xi because of the

randomization. The first row is used to compute g′ if
⊕k

i=1 x′
i = 0. Otherwise,

the second row is used. Note that the selection of the column of the garbled
table g′ is done using the value x4 (in Fig. 6).

The output g might be inputs of multiple gates g1, g2, . . . , gm. In this case, all
appropriate rows or columns of the tables for gate g1, g2, . . . , gm are included to
pile P1 and P2 to shuffle each input xi.

Theorem 2. The above protocol correctly computes the input value g =
⊕k

i=1 xi

of gate g′.

Proof. This proof assumes that g is the row input of gate g′. The case when g
is the column input can be similarly proved. Initially, the first (or second) row
of g′’s garbled table has the values when the input is 0 (or 1), respectively.

By the pile-scramble shuffle of input xi, the value is randomized as xi ⊕ ri

for some ri ∈ {0, 1}. At the same time, the rows of g′ are also randomized using
ri thus the first row has the values when the input 0⊕ (

⊕k
i=1 ri) =

⊕k
i=1 ri is 0.

When the gate g′ is computed, cards of g’s inputs are opened. The opened values
are xi ⊕ri. The players use the first row if

⊕k
i=1(xi ⊕ri) = 0, otherwise, they use

the second row to compute g′.
⊕k

i=1(xi⊕ri) = 0 implies that
⊕k

i=1 xi =
⊕k

i=1 ri.
Thus, when the players select the first row, the first row has the values when the
input

⊕k
i=1 ri is 0, that is,

⊕k
i=1 xi is 0. Therefore, the selection is correct. �	

242 Y. Manabe and K. Shinagawa

We need to show the detail of the shuffle operations. Even in our free-XOR
protocol, each single shuffle is the same as the one in the original garbled cir-
cuit protocol: for each value x that will be opened during the computation,
make two pile P1 and P2 and execute a pile-scramble shuffle (swap them or
do nothing). It is possible to combine these shuffles into a single shuffle. Note
that the combined single shuffle becomes complicated since a pair of cards is
included in shuffles of multiple inputs. For example, consider the simple case
when x3 = x1 ⊕ x2 needs to be computed, where x1, x2 are inputs and x3 is
the final output. Let ci,j(i ∈ {1, 2, 3}, j ∈ {0, 1}) be the cards for xi, where
(ci,0, ci,1) has the value of xi. Initially, the sequence of these cards are writ-
ten as (c1,0, c1,1, c2,0, c2,1, c3,0, c3,1), where (c3,0, c3,1) = (♣ ♥). The result of
the combined shuffle for x1 and x2 must be one of the following sequences:
(c1,0, c1,1, c2,0, c2,1, c3,0, c3,1), (c1,1, c1,0, c2,0, c2,1, c3,1, c3,0),
(c1,0, c1,1, c2,1, c2,0, c3,1, c3,0), and (c1,1, c1,0, c2,1, c2,0, c3,0, c3,1). The probability
of each result is 1/4.

However, these shuffles can be executed by a single shuffle since any combi-
nation of shuffles can be executed by a single shuffle [53]. The combined single
shuffle is uniform and closed since each shuffle swaps two elements by the prob-
ability of 1/2. The single shuffle can be executed with additional cards using the
technique in [49]. Note that for the single shuffles for the garbled circuits in [53]
and [58], no method to execute the shuffles only using human hands is known
so far, thus additional cards are necessary to execute the shuffles.

The number of cards used by the protocol is 8g1 + 2g2 + 2n, where g1 is the
number of non-XOR gates and g2 is the number of XOR gates whose output is
a final output.

5 Eliminating Restriction for Outputs

As shown above, the Shinagawa-Nuida protocol has a restriction that the output
values cannot be used for inputs to the other circuits. This section discusses
eliminating the restriction.

This section discusses the functions in the following form:

fi(x1, x2, . . . , xn, f1, f2, . . . , fi−1)(i = 1, 2, . . . , m)

The definition considers the outputs f1, f2, . . . , fi−1 can be used as inputs of
fi. It is unnecessary to use the outputs of some functions as inputs of another
function, but it might reduce the number of logic gates. For example, consider
the case when we need to compute f1 = x1 ∨x2 and f2 = (x1 ∨x2)∧x3. We can
compute f2 by f2 = f1 ∧ x3.

Note that fj(j > i) cannot be used in fi to avoid circular definition such as
f2 = f1 ∧ x1 and f1 = f2 ∧ x2.

In the garbled circuits, each input of a gate must be randomized because
the input cards are opened and the value is known to the players. On the other
hand, the output value must not be randomized. Thus, Shinagawa and Nuida

Free-XOR in Card-Based Garbled Circuits 243

added the restriction that output cannot be used as an input of another gate.
There are two ways to eliminate this restriction. The first technique is preparing
cards for a non-randomized value and the second one is undoing randomization.

Before showing the technique, let us consider the case when the output of an
XOR gate g is the final output. As shown in the previous section, no additional
cards are necessary to input the output of g to a non-XOR gate or another XOR
gate. Thus, we discuss the case when the output of a non-XOR gate is a final
output.

The first technique is simple. If the output of a gate is a final output and
input of another gate, prepare two pairs of each output value in the garbled
table as in Fig. 7, where gi,O are cards for the output and gi,I are cards for
the input of gate g′

1, g
′
2, . . . , g

′
k. When g′

1, g
′
2, . . . , g

′
k’s inputs are simultaneously

randomized, gi,I are included in the randomization, but gi,O are not included.
Note that gi,O are included in the shuffles of the rows or columns of the table
of gi. The values in gi,O are used as the final output, and the values in gi,I are
used for the garbled table lookup. Since the value gi,O are not randomized, gi,O

can be used as the output. Since the values in gi,I are randomized, gi,I can be
opened for the garbled table lookup.

Fig. 7. Table for output gate gi

The second technique is undoing randomization, whose basic idea is just the
same as the one in free-XOR. If an output of a gate gi is a final output and an
input of another gate, prepare one pair of cards Oi whose initial value is ♣ ♥ .
The cards are set face-down. The change of the protocol is as follows.

– In Step 2 of the above protocol, when the left (right) card of the output of
gate gi are included in a pile P1 (P2), respectively, the left (right) card of Oi

is also set into P1 (P2), respectively. Then a pile-scramble shuffle is executed.
For example, Oi for gate gi and their randomization is shown in Fig. 8.

– During the computation of gate gi, one pair of cards, Gi, is selected as the
output and opened because the value is used as an input of another gate.
After the computation is finished, the cards for Gi are turned face-down.

– Make pile Pi,1 (Pi,2) that consists of the left (right) cards of Oi and Gi,
respectively. Execute a pile-scramble shuffle on Pi,1 and Pi,2, as in Fig. 9,
which shows the case when the output is the second row and the second
column.

244 Y. Manabe and K. Shinagawa

Fig. 8. Oi for output of gate gi and randomization.

Open Oi and swap two cards of Gi if Oi has value 1, as shown in Fig. 10. Gi

is used as a final output.

Fig. 9. Randomization of Gi and Oi.

Theorem 3. The above protocol is secure and correctly outputs gi.

Proof. During the randomization of the output value of gi, Oi is also randomized.
The value that the output card Gi has is gi ⊕ri for some unknown random value
ri. At the same time, the cards Oi have ri since 0 ⊕ ri = ri. After Gi is turned
face-down again, Gi and Oi are randomized using a random value r′

i ∈ {0, 1}. Gi

has gi ⊕ ri ⊕ r′
i and Oi has ri ⊕ r′

i. Then the players open Oi and swap the two
cards of Gi if Oi = 1. The output is correct since Gi has gi⊕ri⊕r′

i⊕(ri⊕r′
i) = gi.

The protocol is secure since the players see gi ⊕ ri and ri ⊕ r′
i. The value gi

cannot be known from these values. �	
Since the randomization of output Gi must be executed after the garbled

table lookup, two shuffles are necessary for the total. Note that the shuffles for
each Oi are combined into one shuffle.

The first technique needs eight cards for each output. The number of shuffles
is one. The second technique needs two cards for each output, though the number
of shuffles becomes two.

Free-XOR in Card-Based Garbled Circuits 245

Fig. 10. Computation of the output using Gi and Oi.

6 Conclusion

This paper showed the free-XOR technique in card-based garbled circuits. The
number of cards is reduced though the shuffle becomes complicated. This paper
then showed techniques to eliminate the restriction that an output value cannot
be used as an input of another gate. The remaining problem includes executing
the combined single shuffle efficiently.

References

1. Abe, Y., et al.: Efficient card-based majority voting protocols. N. Gener. Comput.
40(1), 173–198 (2022)

2. Abe, Y., Hayashi, Y.I., Mizuki, T., Sone, H.: Five-card and computations in com-
mitted format using only uniform cyclic shuffles. New Gener. Comput. 39(1), 97–
114 (2021)

3. Abe, Y., Mizuki, T., Sone, H.: Committed-format and protocol using only random
cuts. Nat. Comput. 20, 63–645 (2021)

4. Cheung, E., Hawthorne, C., Lee, P.: Cs 758 project: secure computation with
playing cards (2013). http://cdchawthorne.com/writings/secure playing cards.pdf

5. den Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 23

6. Dvořák, P., Kouckỳ, M.: Barrington plays cards: the complexity of card-based
protocols. arXiv preprint arXiv:2010.08445 (2020)

7. Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary
and sufficient numbers of cards for securely computing two-bit output functions.
In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 193–211.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61273-7 10

8. Hanaoka, G., et al.: Physical and visual cryptography to accelerate social imple-
mentation of advanced cryptographic technologies. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. 214–228 (2023). (In Japanese)

9. Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward
finite-runtime card-based protocol for generating hidden random permutation
without fixed points. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
101-A(9), 1503–1511 (2018)

10. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure group-
ing protocol using a deck of cards. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. 101(9), 1512–1524 (2018)

http://cdchawthorne.com/writings/secure_playing_cards.pdf
https://doi.org/10.1007/3-540-46885-4_23
http://arxiv.org/abs/2010.08445
https://doi.org/10.1007/978-3-319-61273-7_10

246 Y. Manabe and K. Shinagawa

11. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a
random permutation without fixed points. In: Proceedings of the 3rd International
Conference on Mathematics and Computers in Sciences and in Industry (MCSI
2016), pp. 252–257 (2016)

12. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9 16

13. Isuzugawa, R., Toyoda, K., Sasaki, Yu., Miyahara, D., Mizuki, T.: A card-minimal
three-input and protocol using two shuffles. In: Chen, C.-Y., Hon, W.-K., Hung,
L.-J., Lee, C.-W. (eds.) COCOON 2021. LNCS, vol. 13025, pp. 668–679. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-89543-3 55

14. Kastner, J., et al.: The minimum number of cards in practical card-based protocols.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 126–155.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 5

15. Koch, A.: The landscape of optimal card-based protocols. Math. Cryptology 1(2),
115–131 (2021)

16. Koch, A., Walzer, S.: Private function evaluation with cards. N. Gener. Comput.
40(1), 115–147 (2022)

17. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 32

18. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

19. Koyama, H., Toyoda, K., Miyahara, D., Mizuki, T.: New card-based copy proto-
cols using only random cuts. In: Proceedings of the 8th ACM on ASIA Public-
Key Cryptography Workshop, pp. 13–22. APKC 2021, Association for Computing
Machinery, New York, NY, USA (2021)

20. Kuzuma, T., Isuzugawa, R., Toyoda, K., Miyahara, D., Mizuki, T.: Card-based
single-shuffle protocols for secure multiple-input and and XOR computations. In:
Proceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop, pp.
51–58 (2022)

21. Manabe, Y., Ono, H.: Card-based cryptographic protocols for three-input functions
using private operations. In: Flocchini, P., Moura, L. (eds.) IWOCA 2021. LNCS,
vol. 12757, pp. 469–484. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-79987-8 33

22. Manabe, Y., Ono, H.: Card-based cryptographic protocols with a standard deck of
cards using private operations. In: Cerone, A., Ölveczky, P.C. (eds.) ICTAC 2021.
LNCS, vol. 12819, pp. 256–274. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85315-0 15

23. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. In: IACR
Cryptology ePrint Archive, Report 2015/1031 (2015)

24. Miyahara, D., Hayashi, Y.I., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of Yao’s millionaire protocol. Theoret. Comput. Sci. 803, 207–221 (2020)

25. Miyahara, D., Ueda, I., Hayashi, Y.I., Mizuki, T., Sone, H.: Evaluating card-based
protocols in terms of execution time. Int. J. Inf. Secur. 20(5), 729–740 (2021)

26. Miyamoto, K., Shinagawa, K.: Graph automorphism shuffles from pile-scramble
shuffles. N. Gener. Comput. 40(1), 199–223 (2022)

https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-030-89543-3_55
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-030-79987-8_33
https://doi.org/10.1007/978-3-030-79987-8_33
https://doi.org/10.1007/978-3-030-85315-0_15
https://doi.org/10.1007/978-3-030-85315-0_15

Free-XOR in Card-Based Garbled Circuits 247

27. Mizuki, T.: Applications of card-based cryptography to education. In: IEICE Tech-
nical Report ISEC2016-53, pp. 13–17 (2016). (In Japanese)

28. Mizuki, T.: Card-based protocols for securely computing the conjunction of mul-
tiple variables. Theoret. Comput. Sci. 622, 34–44 (2016)

29. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS,
vol. 7956, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39074-6 16

30. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–
606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 36

31. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via
abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2014)

32. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic proto-
cols and its applications. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
100(1), 3–11 (2017)

33. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

34. Murata, S., Miyahara, D., Mizuki, T., Sone, H.: Efficient generation of a card-based
uniformly distributed random derangement. In: Uehara, R., Hong, S.-H., Nandy,
S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 78–89. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-68211-8 7

35. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve mil-
lionaires’ problem with two kinds of cards. N. Gener. Comput. 39(1), 73–96 (2021)

36. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-
based three-input voting protocol utilizing private permutations. In: Shikata, J.
(ed.) ICITS 2017. LNCS, vol. 10681, pp. 153–165. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-72089-0 9

37. Nakai, T., Shirouchi, S., Tokushige, Y., Iwamoto, M., Ohta, K.: Secure computation
for threshold functions with physical cards: power of private permutations. N.
Gener. Comput. 40(1), 95–113 (2022)

38. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any
Boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 110–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17142-5 11

39. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input
functions with eight cards. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 98(6), 1145–1152 (2015)

40. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority
function with eight cards. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B., Vega-
Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-45008-2 16

41. Nishimura, A., Hayashi, Y.I., Mizuki, T., Sone, H.: Pile-shifting scramble for card-
based protocols. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101(9),
1494–1502 (2018)

42. Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols
using unequal division shuffles. Soft. Comput. 22(2), 361–371 (2018)

43. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the million-
aires’ problem using private input operations. In: Proceedings of the 13th Asia
Joint Conference on Information Security(AsiaJCIS 2018), pp. 23–28 (2018)

https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-030-68211-8_7
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-642-45008-2_16

248 Y. Manabe and K. Shinagawa

44. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private
operations. N. Gener. Comput. 39(1), 19–40 (2021)

45. Ono, H., Manabe, Y.: Minimum round card-based cryptographic protocols using
private operations. Cryptography 5(3), 17 (2021)

46. Ono, T., Nakai, T., Watanabe, Y., Iwamoto, M.: An efficient card-based protocol
of any Boolean circuit using private operations. In: Proceedings of the Computer
Security Symposium, pp. 72–77 (2022). (In Japanese)

47. Ruangwises, S., Itoh, T.: AND protocols using only uniform shuffles. In: van Bev-
ern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 349–358. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-19955-5 30

48. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with
2n cards. Theoret. Comput. Sci. 887, 99–110 (2021)

49. Saito, T., Miyahara, D., Abe, Y., Mizuki, T., Shizuya, H.: How to implement a non-
uniform or non-closed shuffle. In: Mart́ın-Vide, C., Vega-Rodŕıguez, M.A., Yang,
M.-S. (eds.) TPNC 2020. LNCS, vol. 12494, pp. 107–118. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63000-3 9

50. Shinagawa, K., Miyamoto, K.: Automorphism shuffles for graphs and hypergraphs
and its applications. arXiv preprint arXiv:2205.04774 (2022)

51. Shinagawa, K., Mizuki, T.: The six-card trick: secure computation of three-input
equality. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 123–131. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-12146-4 8

52. Shinagawa, K., Mizuki, T.: Secure computation of any Boolean function based
on any deck of cards. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS,
vol. 11458, pp. 63–75. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
18126-0 6

53. Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based compu-
tation of any Boolean circuit. Discret. Appl. Math. 289, 248–261 (2021)

54. Shinoda, Y., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based covert
lottery. In: Maimut, D., Oprina, A.-G., Sauveron, D. (eds.) SecITC 2020. LNCS,
vol. 12596, pp. 257–270. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-69255-1 17

55. Takashima, K., et al.: Card-based protocols for secure ranking computations. The-
oret. Comput. Sci. 845, 122–135 (2020)

56. Toyoda, K., Miyahara, D., Mizuki, T.: Another use of the five-card trick: card-
minimal secure three-input majority function evaluation. In: Adhikari, A., Küsters,
R., Preneel, B. (eds.) INDOCRYPT 2021. LNCS, vol. 13143, pp. 536–555. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92518-5 24

57. Toyoda, K., Miyahara, D., Mizuki, T., Sone, H.: Six-card finite-runtime XOR pro-
tocol with only random cut. In: Proceedings of the 7th ACM Workshop on ASIA
Public-Key Cryptography, pp. 2–8 (2020)

58. Tozawa, K., Morita, H., Mizuki, T.: Single-shuffle card-based protocol with eight
cards per gate. In: Genova, D., Kari, J. (eds.) UCNC 2023. LNCS, vol. 14003, pp.
171–185. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34034-5 12

59. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y.I., Mizuki, T., Sone, H.: Secure
implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452 (2020)

60. Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-
based majority voting protocols with three inputs using three cards. In: Proceed-
ings of the 2018 International Symposium on Information Theory and Its Appli-
cations (ISITA), pp. 218–222. IEEE (2018)

61. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE (1986)

https://doi.org/10.1007/978-3-030-19955-5_30
https://doi.org/10.1007/978-3-030-63000-3_9
http://arxiv.org/abs/2205.04774
https://doi.org/10.1007/978-3-030-12146-4_8
https://doi.org/10.1007/978-3-030-18126-0_6
https://doi.org/10.1007/978-3-030-18126-0_6
https://doi.org/10.1007/978-3-030-69255-1_17
https://doi.org/10.1007/978-3-030-69255-1_17
https://doi.org/10.1007/978-3-030-92518-5_24
https://doi.org/10.1007/978-3-031-34034-5_12

Cryptanalysis

Hidden Stream Ciphers and TMTO
Attacks on TLS 1.3, DTLS 1.3, QUIC,

and Signal

John Preuß Mattsson(B)

Ericsson Research, Stockholm, Sweden
john.mattsson@ericsson.com

Abstract. Transport Layer Security (TLS) 1.3 and the Signal protocol
are very important and widely used security protocols. We show that the
key update function in TLS 1.3 and the symmetric key ratchet in Signal
can be modeled as non-additive synchronous stream ciphers. This means
that the efficient Time Memory Tradeoff Attacks for stream ciphers can
be applied. The implication is that TLS 1.3, QUIC, DTLS 1.3, and Signal
offer a lower security level against TMTO attacks than expected from the
key sizes. We provide detailed analyses of the key update mechanisms in
TLS 1.3 and Signal, illustrate the importance of ephemeral key exchange,
and show that the process that DTLS 1.3 and QUIC use to calculate
AEAD limits is flawed. We provide many concrete recommendations for
the analyzed protocols.

Keywords: TLS 1.3 · QUIC · DTLS 1.3 · Signal · Secret-key
Cryptography · Key Derivation · Ratchet · Key Chain · Stream
Cipher · Key Space · TMTO

1 Introduction

Transport Layer Security (TLS) is the single most important security protocol
in the information and communications technology industry. The latest version,
TLS 1.3 [26] is already widely deployed and is the default version on the Web and
in many other industries. Several other very important protocols such as QUIC
[16], EAP-TLS 1.3 [25], DTLS 1.3 [28], DTLS-SRTP [20], and DTLS/SCTP [32]
are based on the TLS 1.3 handshake. The US National Institute of Standards
and Technology (NIST) requires support for TLS 1.3 by January 1, 2024 [21].
Two nodes that support TLS 1.3 will never negotiate the obsolete TLS 1.2.

The Signal protocol [31] is very popular for end-to-end encryption of voice
calls and instant messaging conversations. In addition to the Signal messaging
service itself, the Signal protocol is used in WhatsApp, Meta Messenger, and
Android Messages. The Signal messaging service is approved for use by the U.S.
Senate and is recommended for the staff at the European Commission.

For efficient forward secure symmetric rekeying without Diffie-Hellman, TLS
1.3 and the Signal protocol use symmetric key ratchets in which a deterministic
Key Derivation Function (KDF) H() is frequently used to update and replace
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 251–267, 2023.
https://doi.org/10.1007/978-981-99-7563-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_12&domain=pdf
https://orcid.org/0009-0005-3807-7665
https://doi.org/10.1007/978-981-99-7563-1_12

252 J. Preuß Mattsson

the current key k = H(k). In Sect. 3 we show that the key update function
in TLS 1.3 and the symmetric key ratchet in Signal can be modeled as non-
additive synchronous stream ciphers. This means that the efficient Time Memory
Tradeoff Attacks for stream ciphers can be applied [3,8]. The implication is that
TLS 1.3, QUIC, DTLS 1.3, and Signal offer a lower security level against TMTO
attacks than expected from the key sizes. In Sects. 4 and 5 we provide detailed
analyses of the key update mechanisms in TLS 1.3 and Signal, illustrate the
importance of ephemeral key exchange, and show that the process that DTLS
1.3 and QUIC use to calculate AEAD limits is flawed. We provide many concrete
recommendations for the analyzed protocols. The upcoming revisions of the TLS
1.3 protocol [27] and DTLS/SCTP [33] have already been updated based on this
work, see Sect. 5.2.

2 Preliminaries

2.1 Signal Protocol and the Symmetric-Key Ratchet

The Signal protocol [7,9,31] consists of the Extended Triple Diffie-Hellman
(X3DH) key agreement protocol and the Double Ratchet algorithm. The Dou-
ble Ratchet algorithm consists of a symmetric-key ratchet and a Diffie-Hellman
ratchet. After the X3DH handshake is finished and at least one step of the Double
Ratchet has been performed, a 256-bit initial chain key k0 is derived (to sim-
plify things we only discuss one of the directions). A chain of keys k0, k1, k2 . . .
derived from the initial chain key k0 are used to protect all future messages
sent in one direction until the Diffie-Hellman ratchet is used again. Message i
is encrypted using a 256-bit message key Ki and an AEAD algorithm without
nonce. Each message key Ki is only used once. The associated data contains
identity information for both parties.

Before each message is sent, the message key and the next chain key are
computed using the symmetric-key ratchet [31]. The message key Ki and the
next chain key ki+1 are computed using a Key Derivation Function (KDF) as

Ki = H ′(ki) = KDF(ki, label1, n2) ,

ki+1 = H(ki) = KDF(ki, label2, n) .
(1)

Shortly after the symmetric-key ratchet, the old chain key ki is deleted, which
gives forward secrecy. Compromise of ki+1 does not allow an attacker to calcu-
late ki. The Signal Protocol does not mandate any specific KDF and labels but
recommends HMAC-SHA256 or HMAC-SHA512 and suggests 0x01 and 0x02.
The Signal Protocol does not mandate any specific AEAD algorithm but recom-
mends AES-256-CBC with HMAC-SHA256 or HMAC-SHA512. Irrespectively of
the used algorithms, the size n of the chain keys and the size n2 of the message
key are always 256 bits, i.e.,

n = n2 = 256 . (2)

Signal mandates that the symmetric-key ratchet is used for each message.
When to use the Diffie-Hellman ratchet to derive a new initial chain key k0 is

Hidden Stream Ciphers in TLS 1.3 and Signal 253

left for the implementation. The Signal technical specification [31] does not give
any recommendations or limits. Deriving a new initial chain key k0 for each
message or never deriving any new chain keys are both allowed according to the
specification but the Double Ratchet algorithm is designed for quite frequent use
of ephemeral Diffie-Hellman. Part of an example Double Ratchet key hierarchy
is shown in Fig. 1.

K0

K1

k0

k1

k2

...
k3K2

Fig. 1. Part of an example Double Ratchet key hierarchy.

2.2 TLS 1.3 and the Key Update Mechanism

TLS 1.3 [26] consists of a handshake protocol based on the theoretical SIGMA-I
protocol [18] and a record protocol. After the TLS handshake is finished an initial
traffic secret k0 = application_traffic_secret_0 is derived (to simplify things we
only discuss one of the directions). A chain of keys k0, k1, k2 . . . derived from
the initial traffic secret k0 are used by the record protocol to protect all future
messages sent in one direction over the connection including application data,
post-handshake messages, and alerts. The size of the traffic secrets depends on
the output size n of the hash function in the selected cipher suite. The five initial
TLS 1.3 cipher suites registered by the TLS 1.3 specification [26] are listed in
Table 1. As there are two senders (client and server) each connection has two
traffic secrets, one for each direction. For the rest of the connection, the keys in
the two directions are independent of each other and in the rest of the paper we
will only discuss one of the directions.

Once the handshake is complete, it is possible to update the traffic secret
using the key update mechanism. The next traffic secret ki+1 is computed using
a KDF based on HKDF-Expand [17] as

ki+1 = H(ki) = KDF(ki, "traffic upd", n) . (3)

254 J. Preuß Mattsson

Shortly after key update, the old traffic secret ki is deleted, which gives forward
secrecy. Compromise of ki+1 does not allow an attacker to calculate ki. The TLS
1.3 record protocol only uses ciphers with an Authenticated Encryption with
Associated Data (AEAD) interface. The AEAD key Ki and initialization vector
IVi are derived from ki as

Ki = KDF(ki, "key", n2) ,

IVi = KDF(ki, "iv", 96) .
(4)

The AEAD nonce for each record is calculated as IVi XOR S where S is the
record sequence number. The size of the key Ki depends on the AEAD key length
n2 in the selected cipher suite and is not equal to n as in the Signal Protocol.
The size of the nonce is 96 bits for all the cipher suites listed in Table 1. The
64-bit sequence number S is initially set to 0, increased for each message, and
then reset to 0 every time the key update mechanism is used.

Table 1. The five initial cipher suites in TLS 1.3 [26]

Cipher suite n n2

TLS_AES_128_GCM_SHA256 256 128
TLS_AES_256_GCM_SHA384 384 256
TLS_CHACHA20_POLY1305_SHA256 256 256
TLS_AES_128_CCM_SHA256 256 128
TLS_AES_128_CCM_8_SHA256 256 128

A single AEAD key Ki is typically used to protect many record protocol
messages. For each cipher suite, TLS 1.3 has a limit for the number of encryption
queries q. Key update is recommended before the limit is reached (every 224.5

records for AES-GCM), see Sect. 5.5 of [26]. Frequent use of the key update
mechanism is therefore expected in connections where a large amount of data is
transferred. TLS 1.3 does not restrict the number of key updates.

DTLS 1.3. Datagram Transport Layer Security (DTLS) 1.3 [28] is a datagram
security protocol that uses the TLS 1.3 handshake and cipher suites. The only
change to the key update mechanism is that DTLS 1.3 restricts the number of
key updates to 248. DTLS 1.3 also increases the requirements on key usage limits
to apply to both the sending and receiving side, i.e., key update is recommended
based on both the number of encryption queries q and the number of failed
decryption queries v.

Hidden Stream Ciphers in TLS 1.3 and Signal 255

QUIC. QUIC [16] is a general-purpose transport layer protocol with built in
security used in e.g., HTTP/3. QUIC uses the TLS 1.3 handshake and cipher
suites. Key update and key derivation are done in the same way as Eqs. (3)
and (4) but with the labels "quic ku", "quic key", and "quic iv" and that both
directions always do a key update at the same time instead of independently as
in TLS 1.3 and DTLS 1.3. QUIC does not restrict the number of key updates.
QUIC has similar key usage limits and requirements as DTLS 1.3.

3 Hidden Stream Ciphers and TMTO Attacks

3.1 Synchronous Stream Ciphers

As described in e.g., [19] the keystream zi in a synchronous stream cipher
depends only on the initial state σ0 and the position i but is independent of
the plaintexts p and the ciphertexts c. The output cycle of a synchronous stream
cipher can be described by the equations

σi+1 = f(σi) ,

zi = g(σi) , (5)
ci = h(zi, pi) ,

where σ0 is the initial state, f is the next-state (or update) function, g is the
output function, and h is the function used to combine the keystream with the
plaintext. In a binary additive stream cipher the function h is the exclusive or
function (XOR). The schematic can be seen in Fig. 2.

g zi

fσi
σi state = ki
zi keystream = (Ki, IVi)

σ0

Fig. 2. Initiation and output cycle of a synchronous stream cipher.

It turns out that the symmetric-key ratchet in Signal [31] and the key update
mechanism in TLS 1.3 [26] can be modeled as such (non-additive) synchronous
stream ciphers. The initial internal state is k0, the next-state function ki+1 =
H(ki) modifies the inner state, the output function zi = (Ki, IVi) = g(ki) uses

256 J. Preuß Mattsson

the inner state to produce “keystream” z0, z1, . . . , and the ciphertexts are a
function ci = h(zi, pi) of “keystream” and plaintext, where pi is all the application
data encrypted with the key Ki.

3.2 Time Memory Trade-Off Attacks

Stream ciphers with internal states are vulnerable to Time Memory Trade-
Off (TMTO) attacks. There are various TMTO attacks on synchronous stream
ciphers such as Babbage-Golić [3] and Biryukov-Shamir [8]. These attacks take
advantage of the internal state and apply to the Signal symmetric-key ratchet
and the TLS 1.3 key update as well. TMTO attacks allow an attacker to find
an internal state ki from a set of output strings y0, y1, . . . , yD−1. When the
state ki is found, the attacker can derive all the future states ki+1, ki+2, . . . , key
material (Ki, IVi), (Ki+1, IVi+1), . . . , and plaintexts pi, pi+1, . . . by running the
keystream generator forward from the known state ki. Both TMTO attacks are
summarized in [8].

Babbage-Golić. In Babbage-Golić [3], the attacker tries to find one of the
many internal states instead of the key. The attacker generates M random
states k0, k1, . . . , kM−1 from the total number of states N , calculates an out-
put string yj for each state kj , and stores the pairs (kj , yj) ordered by yj . In the
real-time phase the attacker collects D output strings y0, y1, . . . , yi, . . . , yD−1.
Requirements on the output strings are explained in Sect. 3.3. By the birthday
paradox the attacker can find a collision yi = yj and recover an inner state ki
in time T = N/M , memory M , data D, and preprocessing time P = M , where
1 ≤ T ≤ D. Example points on this tradeoff relation is P = T = M = D = N1/2,
as well as and T = D = N1/4 and P = M = N3/4. This is very similar to a
normal birthday attack where an attacker can recover a single key with the same
complexities. The difference is that in the Babbage-Golić attack, the attacker,
on average, recovers the last D/2 states ki, . . . , kD−2, kD−1 as well as any future
states. If D is limited, a reasonable assessment (given that the attacker recovers
≈ D states) is that the security is reduced by

min(d, n/2) , (6)

where d = log2 D and n = log2 N . If D is unlimited the security is reduced by
n/2 bits when the attacker uses the tradeoff P = T = M = D = N1/2.

Biryukov-Shamir. In Hellman’s attack on block ciphers [12], the attacker
generates tables covering the N possible keys, but only stores the leftmost
and rightmost columns in the table. Biryukov-Shamir [8] combines the Hell-
man and Babbage-Golić attacks. The attacker generates tables covering N/D
states instead of N keys in Hellman’s attack [12]. In the real-time phase the
attacker collects D output strings y0, y1, . . . , yi, . . . , yD−1 and can recover an
inner state ki in time T = N2/(M2D2) and preprocessing time P = N/D,

Hidden Stream Ciphers in TLS 1.3 and Signal 257

where D2 ≤ T ≤ N . Example points on this tradeoff relation is P = T = N2/3

and M = D = N1/3, as well as P = N3/4, D = N1/4, and M = T = N1/2.
Compared to Hellman’s attack on block ciphers [12], Biryukov-Shamir’s attack
on stream ciphers runs D2 times faster and the attacker, on average, recovers the
last D/2 states ki, . . . , kD−2, kD−1 as well as any future states. If D is unlimited
the security is reduced by n/2 bits.

3.3 TMTO Attacks on Signal and TLS 1.3

The effective stream cipher specific time memory trade-offs (TMTO) will be
possible as long as the state size is less than twice the security level. As the name
implies, the trade-off attacks give the attacker many possibilities. In addition to
the discussion above, an attacker might also launch attacks where the probability
of recovering a key is notably less than 1.

Based on these attacks, modern stream ciphers such as SNOW-V [10] follow
the design principle that the security level is at most n/2 and that the state size
in bits n should therefore be at least twice the security level. In his attack paper,
Babbage [3] states that this principle is desirable. Zenner [34] states that a state
size at least twice the security level is a necessary requirement for security. This
is a reasonable requirement, especially if the number of key updates is unlimited.

The requirements on the output strings y0, y1, . . . , yD−1 depend on the func-
tion h() used to combine the keystream with the plaintext ci = h(zi, pi). If
h() like AES-GCM, AES-CCM, and ChaCha20-Poly1305 is a combination of an
additive stream cipher and a MAC the attack can be done with partially known
and different plaintexts where yi is a substring of ci ⊕pi. If h() is AES-CBC, the
attack requires that all the plaintexts have the same known prefix and yi is a
prefix of the ciphertext ci. See Sect. 3.4 for a discussion on the practicality of the
equal plaintext prefix model. The standard requirement today is that protocols
should provide confidentiality against adaptive chosen ciphertext attacks.

TLS 1.3 and Signal do not explicitly state the intended security level, but
the key length of the AEAD key can typically be seen as the intended security
level. If we use the key length of the AEAD keys Ki as the security level, we
see that TLS 1.3 and Signal do not follow design principles for stream ciphers.
The reason for this is likely that the non-obvious stream cipher structure was
overseen. The state size in Signal is always equal to the security level and the
state size in TLS 1.3 is in some cases equal or 1.5 times the security level. As a
result, TLS 1.3 and Signal offer far less than the expected security against these
types of TMTO attacks.

3.4 Equal Plaintext Prefix

Being able to make stronger assumptions than that plaintexts are in English,
Italian, German, or some other language can significantly improve cryptanalysis.
The cryptanalysis of Enigma ciphertext was e.g., improved by the assumption
that certain German messages were likely to be the stereotypical phrase “Keine
besonderen Ereignisse” or begin with the stereotypical prefix “An die Gruppe”.

258 J. Preuß Mattsson

In the computer age we can almost always make such stronger assumptions.
The application data sent over TLS is almost always using some protocol, which
most likely has (known) fixed information fields such as headers. One of many
examples is HTTP/1.1 [11] where the header for each request and response might
begin with a lot of partly known data elements such as

GET /somewhere/fun/ HTTP/1.1
Host: www.example.com
User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l
Accept-Language: sv, tlh

HTTP/1.1 200 OK
Date: Thu, 12 August 2021 04:16:35 GMT
Server: Apache
Last-Modified: Mon, 5 August 2019 11:00:26 GMT
ETag: "34aa387-d-1568eb00"
Accept-Ranges: bytes
Content-Length: 51
Vary: Accept-Encoding
Content-Type: text/plain

Assuming partially known different plaintexts or that all the prefixes of the
plaintexts are the same are very reasonable assumptions that are likely to apply
in practice and can be used by an attacker. But note that protocols that do not
provide confidentiality against adaptive chosen ciphertext attacks are typically
to be considered broken.

4 Signal Protocol - Analysis and Recommendations

The Signal technical specification [31] does not aim for interoperability between
different implementations and therefore has fewer details than the TLS 1.3 spec-
ification [26]. As the Signal protocol documentation does not give any recom-
mendations or limits on how many times the symmetric-key ratchet can be used
before the Diffie-Hellman ratchet is used we have to assume that in the worst
case the symmetric-key ratchet can be used an unlimited number of times. We
have not analyzed any implementations but even if attempts are made to trans-
mit fresh ephemeral Diffie-Hellman keys as soon as possible, an attacker can
hinder Diffie-Hellman to happen by blocking communication in one direction. In
this case the Signal protocol gives a theoretical security level of 128 bits against
TMTO attacks irrespectively of the used algorithms. This aligns with some of
the recommended algorithms such as X25519 and SHA-256, but not other rec-
ommended algorithms such as X448, SHA-512, and AES-256, and not with the
256-bit key length of the message keys Ki.

A significant problem with the X3DH protocol [31] is that is does not mandate
ephemeral Diffie-Hellman (as stated in the specification, the server might be all
out of one-time Diffie-Hellman keys) and when ephemeral Diffie-Hellman is used

Hidden Stream Ciphers in TLS 1.3 and Signal 259

the ephemeral Diffie-Hellman keys might be quite old. The X3DH specification
[31] explains that this can be mitigated by quickly performing ephemeral Diffie-
Hellman post-X3DH, but this is not mandated or even clearly recommended.
The Double ratchet does not help as the initiating party can send messages
before receiving an ephemeral public key from the responding party. Such mes-
sages provide neither forward secrecy with respect to long-term keys nor replay
protection. Old ephemeral Diffie-Hellman keys are problematic as they are to
be considered long term-keys and therefore cannot be used to provide forward
secrecy with respect to long-term keys, which often is a desired property, promised
for example by the TLS 1.3 handshake, see Appendix E.1 of [26].

As a first step we recommend that the Signal protocol documentation man-
dates a low limit on the number of times the symmetric-key ratchet can be used
and gives clear security levels provided by the Signal protocol for different choices
of algorithms. A limit on the number of times the symmetric-key ratchet can be
used puts a limit on the data variable D, which following Eq. (6) improves the
security level against TMTO attacks. With a low limit, the Signal protocol would
provide a theoretical security level close to 256 bits when 256-bit algorithms are
used, see Table 2.

We recommends that the Signal protocol documentation mandates quickly
performing ephemeral Diffie-Hellman post-X3DH if the X3DH protocol did not
include ephemeral Diffie-Hellman with recently generated keys. Before ephemeral
Diffie-Hellman with fresh keys has been performed, the Initiator should restrict
the type of messages that can be sent similar to zero round-trip time (0-RTT)
data in TLS 1.3 [26], where HTTPS implementations typically only allow GET
requests with no query parameters.

Mandating frequent use of ephemeral Diffie-Hellman also limits the impact
of key compromise and forces an attacker to do dynamic exfiltration [5]. For
IPsec, ANSSI [1] recommends enforcing periodic rekeying with ephemeral Diffie-
Hellman every hour and every 100 GB of data, but we think that the Signal
Protocol can and should have much stricter requirements than so. The impact of
static key exfiltration with different rekeying mechanisms in TLS 1.3 is illustrated
in Fig. 3. The symmetric-key ratchet in Signal has similar properties as the TLS
1.3 key_update and the Diffie-Hellman ratchet has similar properties as the TLS
1.3 rekeying with (EC)DHE.

We also recommend that the Signal protocol allows and recommends use of
512-bit chain keys together with the 256-bit message keys.

5 TLS 1.3 Family - Analysis and Recommendations

5.1 Time Memory Trade-Off Attacks

As TLS 1.3 [26] and QUIC [16] do not give any recommendations or limits on
how many times key update can be used we have to assume that in the worst
case the symmetric-key ratchet can be used an unlimited number of times (we
have not analyzed any implementations). In this case TLS 1.3 and QUIC with
TLS_CHACHA20_POLY1305_SHA256 gives a theoretical security level of 128

260 J. Preuß Mattsson

Table 2. Security level as a function of D

N D Security level

2256 ∞ 128
2256 264 192
2256 232 224
2256 216 240
2256 20 256

bits against TMTO attacks and TLS_AES_256_GCM_SHA384 gives a maxi-
mum theoretical security level of 192 bits against TMTO attacks irrespectively
of the used key exchange algorithm. This does not align with the 256-bit key
length of the traffic secrets Ki. As stated in [24], the ChaCha20 cipher is designed
to provide 256-bit security.

As DTLS 1.3 [28] restricts the number of key updates to 248, DTLS 1.3 with
TLS_CHACHA20_POLY1305_SHA256 gives a theoretical security level of 208
bits, which does not align with the 256-bit key length of the traffic secrets Ki.
Due to the restricted number of key updates, we assert that DTLS 1.3 with
TLS_AES_256 _GCM_SHA384 gives 256 bits security if it is used with an
equally secure key exchange algorithm.

As a first step we recommend that TLS 1.3 [26] and QUIC [16] man-
date the same 248 limit as DTLS 1.3 on the number of times a key update
can be used and give clear security levels provided by different choices of
algorithms. A limit on the number of key updates puts a limit on the
data variable D, which following Eq. (6) improves the security level against
TMTO attacks. With a 248 limit, TLS 1.3 and QUIC would provide a the-
oretical security equal to the length of the traffic secrets Ki for all cipher
suites except TLS_CHACHA20_POLY1305_SHA256. Note that the cipher
CHACHA20_POLY1305_SHA256 does give 256-bit security in TLS 1.3 when
key update is not used. CHACHA20_POLY1305_SHA256 also provides 256-bit
security in TLS 1.2 when used with the rekeying mechanism renegotiation. We
recommend that a new cipher suite TLS_CHACHA20_POLY1305_SHA512 is
standardized for use with TLS 1.3.

TLS 1.3 should clearly state the intended security levels. We also recommend
that TLS 1.3 mandates traffic secrets twice the AEAD key size for new cipher
suites. As an alternative, the transcript hash could be used as context in the key
update instead of the empty context used today.

5.2 Key Exfiltration Attacks and Frequent Ephemeral
Diffie-Hellman

Instances of large-scale monitoring attacks involving key exfiltration have been
documented [15]. Moreover, it’s highly probable that numerous additional occur-
rences have transpired clandestinely, escaping public acknowledgment. The

Hidden Stream Ciphers in TLS 1.3 and Signal 261

avenues through which malicious entities can acquire keys are diverse, encom-
passing methods such as physical attacks, hacking, social engineering attacks,
espionage, or by simply demanding access to keying material with or without
a court order. Exfiltration attacks pose a significant and pressing cybersecurity
threat [2].

The impact of static key exfiltration [5] with different rekeying mechanisms
in TLS 1.3 is illustrated in Fig. 3. As can be seen the key update mechanism gives
significantly worse protection against key exfiltration attacks than ECDHE. An
attacker can perform a single static key exfiltration and then passively eavesdrop
on all information sent over the connection even if the key update mechanism
is used. With frequent ephemeral key exchange such as ECDHE, an attacker
is forced to do active man-in-the-middle attacks or to do dynamic key exfiltra-
tion, which significantly increases the risk of discovery for the attacker [5]. The
cost and risk associated with discovery is intricately tied to deployment specifics
and the nature of the employed attack. In instances of a compromised system,
automating key exfiltration could normalize costs between static and dynamic
approaches. However, an augmented risk still stems from increased amounts of
traffic volumes and log entries. Contrarily, in attack scenarios like side-channel
attacks on Internet of Things (IoT) devices mandating physical proximity, the
distinction between static and dynamic key exfiltration is substantial - encom-
passing both cost implications and the risk of discovery.

Fig. 3. TLS 1.3 - Impact of static key exfiltration in time period T3 when psk_ke,
key_update, and (EC)DHE are used.

262 J. Preuß Mattsson

Two essential zero trust principles are to assume that breach is inevitable or
has likely already occurred [23], and to minimize impact when breach occur [22].
One type of breach is key compromise or key exfiltration. As the key update
mechanism gives significantly worse protection against key exfiltration attacks
than ECDHE, TLS 1.3, DTLS 1.3, and QUIC should mandate frequent use of
ephemeral Diffie-Hellman. For IPsec, ANSSI [1] recommends enforcing periodic
rekeying with ephemeral Diffie-Hellman every hour and every 100 GB of data,
we recommend the TLS 1.3 handshake to recommend this for non-constrained
implementations. Constrained implementations should also mandate periodic
rekeying with ephemeral Diffie-Hellman but could have a maximum period of
1 day, 1week, or 1month depending on how constrained the device and the radio
is.

From what we can gather from IETF mailing lists, the standardization of
TLS 1.3 might have placed too much emphasis on forward secrecy, possibly
overlooking the significance of the additional security properties offered by fre-
quent ephemeral key exchanges. In addition to ephemeral key exchange during
a connection, TLS 1.3 also removed the possibility to perform post-handshake
server authentication. The implications are that TLS 1.3, DTLS 1.3, and QUIC
are unsuitable for long-lived connections and that protocols like DTLS/SCTP
have to be redesigned to be able to frequently set up new connections. The
upcoming revisions of the TLS 1.3 protocol and DTLS/SCTP have already been
updated with descriptions and recommendations for frequent use of ephemeral
Diffie-Hellman based on this work. See Appendix F.1 of [27] and Sects. 3.4 and
9.1 of [33].

5.3 Analysis of the Procedure Used to Calculate AEAD Limits

As specified in the TLS 1.3 and DTLS 1.3 specifications, implementations should
do a key update before reaching the limits given in Sect. 5.5 of [26] and Sect. 4.5.3
of [16]. In QUIC key update must be done before the limits in Sect. 6.6 of [16]
have been reached.

In TLS 1.3 the limits are just given without much further explanation. In
DTLS 1.3 and QUIC procedures used to calculate the rekeying limits given in
Appendix B of [16,28]. The DTLS 1.3 procedure specified in Appendix B of
[28] suggest rekeying when the single-key confidentiality advantage (IND-CPA)
is greater than 2−60 or when the single-key integrity advantage (IND-CTXT) is
greater than 2−57. QUIC has a similar procedure.

Our analysis is that these procedures are flawed both theoretical and in
practice. The procedures uses single-key advantages to suggest rekeying which
transform the problem to a multi-key problem and invalidates the single-key cal-
culation used to suggest the rekeying. Doing rekeying too early before the confi-
dentiality or integrity of the algorithm decreases significantly faster than linear
lowers the practical security and can create denial-of-service problems. The exact
multi-key advantage depends on the algorithm but could be as much as m times
its single-key advantage where m is the number of keys [6]. Multi-key advantages
for the use of AES-GCM in TLS 1.3 is given by [6,13], which concludes that

Hidden Stream Ciphers in TLS 1.3 and Signal 263

the nonce randomization do improve multi-key security for AES-GCM. We note
that the nonce randomization do not improve security for ChaCha20-Poly1305 as
n = n2 and the 256-bit key Ki and the 96-bit IV are both derived from a 256-bit
key ki without any additional entropy. CHACHA20_POLY1305_SHA256 was
suitable for TLS 1.2 but is not suitable for TLS 1.3. Requiring rekeying after
a low number of forgery attempts might be a denial-of-service problem as an
attacker can affect availability with a small number of forgeries.

In general, an algorithm with a confidentiality advantage that is linear in
the number of encryption queries q, e.g., CA = q/297, and with an integrity
advantage that is linear in the number of failed decryption queries v, e.g., IA =
v/2103, does not need rekeying because of the advantages. But as explained in
Sect. 5.2, rekeying is beneficial to limit the impact of a key compromise.

The confidentiality rekeying limits for AES-GCM [26] and AES-CCM [28]
and the integrity rekeying limit for AES-CCM [28] coincides pretty well with
when the confidentiality and integrity advantages starts to grow significantly
faster than linear. These rekeying limits do significantly improve security. We do
not know if this was luck or if the magic numbers 2−60 and 2−57 were chosen to
achieve this.

The integrity limits for AES-GCM and ChaCha20-Poly1305 do not improve
security as the single-key integrity advantages are bounded by a function lin-
ear in v, the number of forgery attempts. The forgery probability is therefore
independent of the rekeying. Rekeying likely lowers the multi-key security but is
unlikely to happen in practice as the limits are 236 forgery attempts.

For CCM_8 the procedure gives illogical results unsuitable for practical use.
Looking at the bound for the CCM_8 integrity advantage it is easy to see that
CCM_8 performs very close to an ideal MAC for quite large number of failed
decryption queries v. CCM_8 in itself is not a security problem for use cases
such as media encryption or the Internet of Things, but the recommendations
in [28] and [16] for CCM_8 are significant security problems as they introduce a
denial-of-service problem, lowers security against TMTO attacks, and likely low-
ers the multi-key security. The denial-of-service problem comes from the DTLS
1.3 procedure recommending rekeying after 128 forgery attempts instead of the
correct value v ≈ 236 when the CCM_8 integrity advantage starts to grow sig-
nificantly faster than linear. Applying the procedure on an ideal MAC with tag
length 64 bits, i.e., an algorithm with integrity advantage v/264, gives the same
illogical result, that the ideal MAC should be rekeyed extremely often.

While the rekeying recommendations for CCM_8 are illogical, we do agree
with the decision to make CCM_8 with its 64-bit tags not recommended for
general usage. For constrained IoT, we do however not see any practical problems
whatsoever. To have a 50% change of a single forgery, an attacker would need to
send one billion packets per second for 300 years. This is completely unfeasible
for constrained radio systems and the chance of this happening is negligible
compared to the risk of data corruption due to hardware failure or cosmic rays.

We suggest that the procedures in Appendix B of [28] and [16] are deprecated
in future versions. If any future procedure is needed it should be based on security

264 J. Preuß Mattsson

per packet/byte/time instead of the practically irrelevant measures security per
key/connection. Keeping some limit low per key or connection and then suggest
rekeying or setting up a new connection will not increase practical security. If no
good procedure can be found it is much better to just state limits as was done
in [26], that is at least not wrong.

6 Conclusions, Recommendations, and Future Work

While we do not believe that the TMTO attacks pose a practical attack vec-
tor today, the attacks points to a fundamental design flaw in the key update
mechanisms in TLS 1.3 and Signal, alternatively a lack of clearly stated security
levels.

We find the design of the Signal protocol with a symmetric-key ratchet
combined with a Diffie-Hellman ratchet very appealing as the protocol seems
designed for frequent use of ephemeral Diffie-Hellman. It is possible that actual
implementations already have hard limits on the number of times the symmetric-
key ratchet can be used, meaning that they do provide close to 256-bit security
and follows best practice when it comes to limit the impact of a key compromise.

We find several of the design choices in the TLS 1.3 handshake non-optimal
resulting in that TLS 1.3 is problematic to use as a drop-in replacement of TLS
1.2. The standardization of TLS 1.3 might have placed too much emphasis on
forward secrecy, possibly overlooking the significance of the additional security
properties offered by frequent ephemeral key exchanges. Renegotiation was essen-
tial for frequent re-authentication and rekeying with ECDHE in DTLS/SCTP
and the fourth flight in TLS 1.2 was essential for EAP-TLS. These problems can
be overcome by using application data as a fourth flight [25] and by setting up
new connections instead of using renegotiation [32].
Based on the analysis we recommend the Signal Protocol to:

– Introduce strict limits on the use of the symmetric-key ratchet.
– Mandate frequent use of the Diffie-Hellman ratchet based on time and data.
– Mandate ephemeral Diffie-Hellman with fresh keys before sending messages.
– Allow and recommend use of 512-bit chain keys.
– Clearly state the intended security level.

Based on the analysis we recommend TLS 1.3, DTLS 1.3, and QUIC to:

– Introduce strict limits on the use of the key update mechanism.
– Mandate frequent rekeying with EC(DHE) based on time and data.
– Standardize TLS_CHACHA20_POLY1305_SHA512.
– Mandate traffic secrets twice the AEAD key size for new cipher suites.
– Deprecate the procedure used for DTLS 1.3 and QUIC to calculate key limits.
– Clearly state the intended security levels.

Future work could evaluate the impact of this work on other protocols using
symmetric ratchets such as MLS [4], EDHOC [29], and Key Update for OSCORE

Hidden Stream Ciphers in TLS 1.3 and Signal 265

[14,30] which have recently been standardized or are currently undergoing stan-
dardization. Future work should also evaluate implementations and deployments
of the protocols. There is often significant differences between a specification,
implementations of the specification, and actual deployments. One important
aspect to investigate would be how often actual deployments perform symmetric
key update and ephemeral Diffie-Hellman and if an active attacker can influence
the frequency.

Acknowledgements. The authors would like to thank Patrik Ekdahl, Loïc Ferreira,
Alexander Maximov, Ben Smeets, Erik Thormarker, and other reviewers for their help-
ful comments and suggestions.

References

1. Agence nationale de la sécurité des systèmes d’information: Recommendations for
securing networks with IPsec (2015). https://www.ssi.gouv.fr/uploads/2015/09/
NT_IPsec_EN.pdf

2. APNIC: how to: detect and prevent common data exfiltration attacks. https://blog.
apnic.net/2022/03/31/how-to-detect-and-prevent-common-data-exfiltration-
attacks/

3. Babbage, S.: Improved “exhaustive search” attacks on stream ciphers. In: 1995
European Convention on Security and Detection, pp. 161–166 (1995). https://doi.
org/10.1049/cp:19950490

4. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon,
K.: The Messaging Layer Security (MLS) Protocol. RFC 9420 (2023). https://doi.
org/10.17487/RFC9420

5. Barnes, R., et al.: Confidentiality in the face of pervasive surveillance: a threat
model and problem statement. RFC 7624 (2015). https://doi.org/10.17487/
RFC7624

6. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 247–276. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4_10

7. Bienstock, A., Fairoze, J., Garg, S., Mukherjee, P., Raghuraman, S.: A more com-
plete analysis of the signal double ratchet algorithm. Cryptology ePrint Archive,
Report 2022/355 (2022). https://eprint.iacr.org/2022/355

8. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_1

9. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal secu-
rity analysis of the signal messaging protocol. Cryptology ePrint Archive, Report
2016/1013 (2016). https://eprint.iacr.org/2016/1013

10. Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: SNOW-Vi: an extreme per-
formance variant of SNOW-V for lower grade CPUs. Cryptology ePrint Archive,
Report 2021/236 (2021). https://eprint.iacr.org/2021/236

11. Fielding, R.T., Nottingham, M., Reschke, J.: HTTP Semantics. RFC 9110 (2022).
https://doi.org/10.17487/RFC9110

12. Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980). https://ee.stanford.edu/~hellman/publications/36.pdf

https://www.ssi.gouv.fr/uploads/2015/09/NT_IPsec_EN.pdf
https://www.ssi.gouv.fr/uploads/2015/09/NT_IPsec_EN.pdf
https://blog.apnic.net/2022/03/31/how-to-detect-and-prevent-common-data-exfiltration-attacks/
https://blog.apnic.net/2022/03/31/how-to-detect-and-prevent-common-data-exfiltration-attacks/
https://blog.apnic.net/2022/03/31/how-to-detect-and-prevent-common-data-exfiltration-attacks/
https://doi.org/10.1049/cp:19950490
https://doi.org/10.1049/cp:19950490
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC7624
https://doi.org/10.17487/RFC7624
https://doi.org/10.1007/978-3-662-53018-4_10
https://doi.org/10.1007/978-3-662-53018-4_10
https://eprint.iacr.org/2022/355
https://doi.org/10.1007/3-540-44448-3_1
https://eprint.iacr.org/2016/1013
https://eprint.iacr.org/2021/236
https://doi.org/10.17487/RFC9110
https://ee.stanford.edu/~hellman/publications/36.pdf

266 J. Preuß Mattsson

13. Hoang, V.T., Tessaro, S., Thiruvengadam, A.: The multi-user security of GCM,
revisited: tight bounds for nonce randomization. In: Lie, D., Mannan, M., Backes,
M., Wang, X. (eds.) ACM CCS 2018: 25th Conference on Computer and Com-
munications Security, pp. 1429–1440. ACM Press, Toronto, ON, Canada, 15–19
October 2018. https://doi.org/10.1145/3243734.3243816

14. Höglund, R., Tiloca, M.: Key update for OSCORE (KUDOS). Internet-Draft draft-
ietf-core-oscore-key-update-05, Internet Engineering Task Force (2023). https://
datatracker.ietf.org/doc/draft-ietf-core-oscore-key-update/05/, work in Progress

15. Intercept, T.: How spies stole the keys to the encryption castle. https://
theintercept.com/2015/02/19/great-sim-heist/

16. Iyengar, J., Thomson, M.: QUIC: a UDP-based multiplexed and secure transport.
RFC 9000 (2021). https://doi.org/10.17487/RFC9000

17. Krawczyk, D.H., Eronen, P.: HMAC-based extract-and-expand key derivation func-
tion (HKDF). RFC 5869 (2010). https://doi.org/10.17487/RFC5869

18. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4_24

19. Mattsson, J.: Stream cipher design - an evaluation of the eSTREAM candidate
Polar Bear. Master’s thesis, Royal Institute of Technology (2006). https://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.108.40

20. McGrew, D., Rescorla, E.: Datagram transport layer security (DTLS) extension
to establish keys for the secure real-time transport protocol (SRTP). RFC 5764
(2010). https://doi.org/10.17487/RFC5764

21. McKay, K., Cooper, D.: Guidelines for the selection, configuration, and use of
transport layer security (TLS) implementations (2019). https://doi.org/10.6028/
NIST.SP.800-52r2

22. National Institute of Standards and Technology: Implementing a zero trust
architecture (2023). https://www.nccoe.nist.gov/sites/default/files/2023-07/zta-
nist-sp-1800-35b-preliminary-draft-3.pdf

23. National Security Agency: Embracing a zero trust security model (2021). https://
media.defense.gov/2021/Feb/25/2002588479/-1/-1/0/CSI_EMBRACING_ZT_
SECURITY_MODEL_UOO115131-21.PDF

24. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF protocols. RFC 8439
(2018). https://doi.org/10.17487/RFC8439

25. Preuß Mattsson, J., Sethi, M.: EAP-TLS 1.3: using the extensible authentication
protocol with TLS 1.3. RFC 9190 (2022). https://doi.org/10.17487/RFC9190

26. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446
(2018). https://doi.org/10.17487/RFC8446

27. Rescorla, E.: The Transport layer security (TLS) protocol version 1.3. Internet-
Draft draft-ietf-tls-rfc8446bis-09, Internet Engineering Task Force (2023). https://
datatracker.ietf.org/doc/draft-ietf-tls-rfc8446bis/09/, work in Progress

28. Rescorla, E., Tschofenig, H., Modadugu, N.: The datagram transport layer secu-
rity (DTLS) protocol version 1.3. RFC 9147 (2022). https://doi.org/10.17487/
RFC9147

29. Selander, G., Preuß Mattsson, J., Palombini, F.: Ephemeral Diffie-Hellman
over COSE (EDHOC). Internet-Draft draft-ietf-lake-edhoc-22, Internet Engineer-
ing Task Force (2023). https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/22/,
work in Progress

https://doi.org/10.1145/3243734.3243816
https://datatracker.ietf.org/doc/draft-ietf-core-oscore-key-update/05/
https://datatracker.ietf.org/doc/draft-ietf-core-oscore-key-update/05/
https://theintercept.com/2015/02/19/great-sim-heist/
https://theintercept.com/2015/02/19/great-sim-heist/
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC5869
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.40
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.40
https://doi.org/10.17487/RFC5764
https://doi.org/10.6028/NIST.SP.800-52r2
https://doi.org/10.6028/NIST.SP.800-52r2
https://www.nccoe.nist.gov/sites/default/files/2023-07/zta-nist-sp-1800-35b-preliminary-draft-3.pdf
https://www.nccoe.nist.gov/sites/default/files/2023-07/zta-nist-sp-1800-35b-preliminary-draft-3.pdf
https://media.defense.gov/2021/Feb/25/2002588479/-1/-1/0/CSI_EMBRACING_ZT_SECURITY_MODEL_UOO115131-21.PDF
https://media.defense.gov/2021/Feb/25/2002588479/-1/-1/0/CSI_EMBRACING_ZT_SECURITY_MODEL_UOO115131-21.PDF
https://media.defense.gov/2021/Feb/25/2002588479/-1/-1/0/CSI_EMBRACING_ZT_SECURITY_MODEL_UOO115131-21.PDF
https://doi.org/10.17487/RFC8439
https://doi.org/10.17487/RFC9190
https://doi.org/10.17487/RFC8446
https://datatracker.ietf.org/doc/draft-ietf-tls-rfc8446bis/09/
https://datatracker.ietf.org/doc/draft-ietf-tls-rfc8446bis/09/
https://doi.org/10.17487/RFC9147
https://doi.org/10.17487/RFC9147
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/22/

Hidden Stream Ciphers in TLS 1.3 and Signal 267

30. Selander, G., Preuß Mattsson, J., Palombini, F., Seitz, L.: Object security for
constrained RESTful environments (OSCORE). RFC 8613 (2019). https://doi.
org/10.17487/RFC8613

31. Signal: signal technical documentation. https://signal.org/docs/
32. Tüxen, M., Rescorla, E., Seggelmann, R.: Datagram transport layer security

(DTLS) for stream control transmission protocol (SCTP). RFC 6083 (2011).
https://doi.org/10.17487/RFC6083

33. Westerlund, M., Preuß Mattsson, J., Porfiri, C.: Datagram transport layer security
(DTLS) over stream control transmission protocol (SCTP). Internet-Draft draft-
ietf-tsvwg-dtls-over-sctp-bis-06, Internet Engineering Task Force (2023). https://
datatracker.ietf.org/doc/draft-ietf-tsvwg-dtls-over-sctp-bis/06/, work in Progress

34. Zenner, E.: On the role of the inner state size in stream ciphers. Cryptology ePrint
Archive, Report 2004/003 (2004). https://eprint.iacr.org/2004/003

https://doi.org/10.17487/RFC8613
https://doi.org/10.17487/RFC8613
https://signal.org/docs/
https://doi.org/10.17487/RFC6083
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-dtls-over-sctp-bis/06/
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-dtls-over-sctp-bis/06/
https://eprint.iacr.org/2004/003

Differential Cryptanalysis with SAT,
SMT, MILP, and CP: A Detailed

Comparison for Bit-Oriented Primitives

Emanuele Bellini2(B) , Alessandro De Piccoli1 , Mattia Formenti2 ,
David Gerault2 , Paul Huynh2 , Simone Pelizzola1 , Sergio Polese1,

and Andrea Visconti1

1 Università degli Studi di Milano, Milan, Italy
{alessandro.depiccoli,simone.pelizzola,sergio.polese,

andrea.visconti}@unimi.it
2 Technology Innovation Institute, Abu Dhabi, UAE

{emanuele.bellini,mattia.formenti,david.gerault,
paul.huynh}@tii.ae

Abstract. SAT, SMT, MILP, and CP, have become prominent in the
differential cryptanalysis of cryptographic primitives. In this paper, we
review the techniques for constructing differential characteristic search
models in these four formalisms. Additionally, we perform a system-
atic comparison encompassing over 20 cryptographic primitives and 16
solvers, on both easy and hard instances of optimisation, enumeration
and differential probability estimation problems.

Keywords: Differential cryptanalysis · SAT · SMT · MILP · CP

1 Introduction

The design and analysis of block ciphers is a time-consuming and error-prone
task that involves tracing the propagation of bit-level or word-level patterns of
all sorts, following intricate rules. Automatic tools have made such tasks signifi-
cantly easier. In the case of differential cryptanalysis [9], one of the most widely
used analysis technique, the studied patterns (differential characteristics) repre-
sent the propagation of a XOR difference between the inputs through the cipher,
and are studied through the following methods: (1) ad hoc (include search algo-
rithms implemented from scratch in general purpose programming languages,
e.g. Matsui algorithm [34]); (2) Boolean Satisfiability and Satisfiability Modulo
Theory (SAT/SMT); (3) Mixed-Integer Linear Programming (MILP); (4) Con-
straint Programming (CP). In this paper, we provide an extensive review and
performance comparison for the last three techniques for the search of differential
characteristics for various ciphers.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 268–292, 2023.
https://doi.org/10.1007/978-981-99-7563-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_13&domain=pdf
http://orcid.org/0000-0002-2349-0247
http://orcid.org/0000-0002-6399-3164
http://orcid.org/0009-0001-0069-6146
http://orcid.org/0000-0001-8583-0668
http://orcid.org/0000-0002-6965-3427
http://orcid.org/0009-0006-3991-1161
http://orcid.org/0000-0001-5689-8575
https://doi.org/10.1007/978-981-99-7563-1_13

Cryptanalysis with SAT, SMT, MILP, and CP 269

Contributions. Our contributions are twofold:

– We provide an extensive review of modeling techniques in SAT, SMT, MILP
and CP for the search of differential characteristics, in Sect. 3;

– We extensively compare these 4 methods on 3 different tasks: finding one
optimal differential characteristic, enumerating all optimal differential char-
acteristics, and estimating the probability of a differential. These tests are
performed with 7 SAT solvers, 3 SMT solvers, 2 MILP solvers, 4 CP solvers,
on over 20 primitives, resulting in the largest scale comparison of differential
cryptanalysis models to date. The results are presented in Sect. 4.

The research community stands to benefit greatly from this extensive review
and comparison of techniques, which provides a further steps towards a better
understanding of how to solve the instances that are still out of reach.

2 Preliminaries

A symmetric cryptographic primitive is usually a sequence of linear and nonlinear
components transforming a plaintext (possibly with a key) into a ciphertext,
usually by applying a simple round function to update the state for a number
of rounds, each round using a round key derived from a key schedule algorithm.

Differential cryptanalysis focuses on studying the probability of differentials,
which map an XOR difference in the plaintexts to a differences in the ciphertexts.
This probability is usually bounded by the probability of a differential charac-
teristics, i.e., a sequence of expected differences at each round (as described in
Sect. A); the probability of the corresponding differential is related to the com-
bined probabilities of all differential characteristics sharing the corresponding
input and output differences, but varying in the internal rounds. Finding the
optimal (highest probability) differential characteristic, or enumerating differ-
ential characteristics with given properties, is a highly combinatorial problem.
In recent years, it has increasingly been tackled through declarative approaches
(Sect. B), where the cryptographer describes the problem and leaves its reso-
lution to a solver, usually SAT, SMT (Satisfiability Modulo Theories), MILP
(Mixed Integer Linear Programming) and CP (Constraint Programming).

The search typically involves one set of variables per round to hold the dif-
ference state after each component of the primitive, as well as a set of variable
for the probabilities. These variables usually contain the weights (base 2 loga-
rithm of the reciprocal of the probabilities) for practical reasons. The problem
of finding an optimal differential characteristic can then be expressed as assign-
ing values for all state variables, such that known difference propagation rules
are satisfied, and the sum of the probability weights is minimised, following the
Markov cipher assumption of independent rounds.

The representation of these variables, and the expression of the propagation
rules, vary between SAT, SMT, MILP and CP.

The propagation rules for linear components are simple, as differences prop-
agate deterministically through them:

270 E. Bellini et al.

Proposition 1. Let f : {0, 1}m → {0, 1}n be a linear function and let Δ�x ∈
{0, 1}m be an input difference; then Δ�y = f(Δ�x). (Proof: f(�x + Δ�x) = f(�x) +
f(Δ�x))

On the other hand, propagation through non-linear operations are stochastic,
and represent the main difficulty of the problem, due to the resulting combinato-
rial explosion. In Sect. 3, we detail the models used for propagation of the linear
and nonlinear components used by the analyzed ciphers.

Related Work. Differential cryptanalysis using declarative frameworks (SAT,
SMT, MILP or CP) was introduced through MILP in [37], and has since then
been an active research field (a review of techniques is given in Sect. 3). It is
known [53] that the modeling choices for the search problem, independently of
the chosen declarative framework, have a significant impact on the performance
of the search. Additionally, within a given framework, it is difficult to predict
what specific solver performs best: competitions such as the SAT competition [27]
or the MiniZinc challenge for Constraint Programming solvers [36] pit existing
solvers against each other on vast ranges of problems, but rarely cryptography-
related ones. The choice of a model and a solver having such drastic impact on the
ability to solve relevant differential cryptanalysis problems, research comparing
the available options is important.

In [24,51], the authors use Constraint Programming tools to test the effec-
tiveness of four solvers on PRESENT and AES, showing that for best differential
characteristic search Chuffed is the best-performing solver on small instances,
while Gurobi and Picat-SAT scale better. In [50], different SAT solvers are com-
pared against a divide-and-conquer-based MILP model from [54] on a wide range
of ciphers. In [18], the authors compare different models for the search of the
best differential trails of SKINNY, including one for MILP, one for SAT, and one
for CP. Following a two-stage search, their analysis showed that, in this case,
this search is better performed with a MILP model in the first stage (enumerate
the truncated trails with the smallest number of active S-box). CP performed
best for the second stage, in which the truncated trails of the first stage are
instantiated.

Despite extensive research in the area, many problems, such as the probabil-
ities of differential characteristics for over 9 rounds of SPECK128 [50], are still
out of reach. It is our hope that our large-scale comparison between solvers and
modeling techniques will help chosing the right techniques to solving these.

3 Cipher Components Models

In this section, we review existing techniques to model different operations, in
each of the studied declarative frameworks.

We use the following notation: x denotes inputs, y outputs and w weight;
superscripts denote input numbers and subscripts bit positions. If no input
number is given, the input is only one; if no bit position is given, the vari-
able is intended to be a single bit. Finally, we will use the vector notation

Cryptanalysis with SAT, SMT, MILP, and CP 271

�x = (x0, . . . , xn−1) to denote the whole input, using 0 as the index of the Most
Significant Bit (MSB). The models described in this section are bit-based, rather
than word-based.

3.1 XOR Component

XOR is a linear function and Proposition 1 applies, so that we can directly apply

the bitwise model Δy =
n−1⊕

i=0

Δxi.

– SAT: for n = 2, the CNF is

(¬Δx0,Δx1,Δy)∧(Δx0,¬Δx1,Δy)∧(Δx0,Δx1,¬Δy)∧(¬Δx0,¬Δx1,¬Δy).
(1)

When n > 2, one can operate in the following two ways: the first consists of
the direct encoding without any additional variables; the second consists of
performing a sequence of only two inputs XORs using intermediate variables
that we will call di in the following way:

d0 = Δx0⊕Δx1, di = Δxi+1⊕di−1 for 1 ≤ i ≤ n−3, Δy = Δxn−1⊕dn−3.
(2)

Note that the CNF in Eq. 1 represents every possible assignment verifying
Δy = Δx0 ⊕ Δx1. Therefore, a direct encoding of an XOR involving n vari-
ables will have 2n clauses. In our analysis, when n > 2, we have preferred
to use a sequential XOR, as depicted in Eq. 2, keeping the number of clauses
linear in the number of variables, i.e. 4(n − 1) clauses [50].

– SMT: a XOR theory is natively present for n = 2 or more.
– MILP: 2-input XOR is commonly modeled with four inequalities:

{Δx0 + Δx1 ≥ Δy}, {Δx0 + Δy ≥ Δx1}, {Δx1 + Δy ≥ Δx0}, {Δx0 + Δx1 + Δy ≤ 2}.

(3)

We also considered an alternative, with a dummy variable, which can easily
be generalized to any arbitrary number of inputs:

{Δx0 + · · · + Δxn−1 + Δy = 2d} (4)

While this results in a smaller and constant number of inequalities, the LP-
relaxation of the resulting problem—that is, the same optimization prob-
lem without integrality constraint on the variables—is weaker than the one
obtained with Eq. 3. Indeed, any fractional solution of Eq. 3 is also a solu-
tion of Eq. 4. However, the converse is not true. For instance, for n = 2,
Δx0 = Δx1 = 1

5 ,Δy = 1
2 is a solution for Eq. 4 when d = 9

20 but does not
satisfy Eq. 3. For this reason, we favored Eq. 3 over the more concise expres-
sion of Eq. 4. This was also backed by our experiments Midori64, whose linear
layer contains several n-XORs: even though both expressions seemed to yield
similar performance for 2 and 3 rounds, a difference started to be noticeable
for 4 rounds as the search for the optimal trail with Gurobi took less than
2 min using Eq. 3, while it took more than 30 min with Eq. 4.

272 E. Bellini et al.

– CP: the XOR can be seen as the addition modulo 2, i.e. Δy = Δx0 + Δx1

(mod 2). The same can be applied when dealing with more than 2 inputs:

Δy = Δx0 + Δx1 + . . . + Δxn−1 (mod 2).

3.2 Rotation and Shift Components

Rotation and shift are linear functions to which Proposition 1 directly applies.

– SAT: an equality can be translated in an if-and-only-if logic, so, the model
that we have used is (Δyi ∨ ¬f(Δxi)) ∧ (¬Δyi ∨ f(Δxi)).

– MILP: the equality is expressed as two inequalities: {Δyi ≥ f(Δxi), Δyi ≤
f(Δxi)}.

– SMT, CP: both formalisms natively include equality constraints.

3.3 Linear Layer Component

For the linear layer, Proposition 1 directly applies. Considering the linear func-
tion f represented as a vector-matrix product, the linear layer is simply a set of
equalities of the form Δy = Δx0 ⊕ Δx1 ⊕ . . . ⊕ Δxn−1.

If n = 1, then, we have no XOR and we can directly encode the equality. If
n ≥ 2, we refer to the XOR component for encoding the equality.

3.4 S-Box Component

An S-box is a nonlinear vectorial Boolean function that transforms an m-bit
input into an n-bit output. Commonly, m = n and usual values for n are up
to 8. For instance, we take the 3-bit S-box defined as S = (S0, S1, . . . , S7) =
(3, 2, 7, 0, 4, 1, 6, 5), meaning that S(i) = Si.

In order to study the differential of the S-box, it is usually affordable to
consider its Difference Distribution Table (DDT). We start from a m × n table
filled with zeros and for each input pair (i, j), we compute Δ�x = i ⊕ j and
Δ�y = Si ⊕ Sj and increase the (Δ�x,Δ�y) entry by one. Our SAT, SMT and
MILP models also operate on other tables related to the DDT:

– ∗-DDT, using the same notation of [1], a truncated DDT, in which all the
non-zero entries of the DDT are replaced by 1.

– w-DDT, which contains the weights1 of the probability of the (Δ�x,Δ�y) entry.

Considering the previous 3-bit S-box S, we show its DDT in Table 1a and
the associated w-DDT and ∗-DDT in Table 1b and Table 1c respectively.

1 It should be noted that the entries of this table are not always integers, as a DDT
might contain entries that are not powers of 2.

Cryptanalysis with SAT, SMT, MILP, and CP 273

Table 1. DDT of the S-box S = (3, 2, 7, 0, 4, 1, 6, 5) and its associated tables.

(a) DDT

Δ�x

Δ�y
0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 2 0 2 0 2 0 2

2 0 0 4 0 4 0 0 0

3 0 2 0 2 0 2 0 2

4 0 2 0 2 0 2 0 2

5 0 0 4 0 0 0 4 0

6 0 2 0 2 0 2 0 2

7 0 0 0 0 4 0 4 0

(b) w-DDT

Δ�x

Δ�y
0 1 2 3 4 5 6 7

0 0 · · · · · · ·
1 · 2 · 2 · 2 · 2

2 · · 1 · 1 · · ·
3 · 2 · 2 · 2 · 2

4 · 2 · 2 · 2 · 2

5 · · 1 · · · 1 ·
6 · 2 · 2 · 2 · 2

7 · · · · 1 · 1 ·

(c) ∗-DDT

Δ�x

Δ�y
0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1

2 0 0 1 0 1 0 0 0

3 0 1 0 1 0 1 0 1

4 0 1 0 1 0 1 0 1

5 0 0 1 0 0 0 1 0

6 0 1 0 1 0 1 0 1

7 0 0 0 0 1 0 1 0

– SAT: we will refer to the S-box presented above for concrete examples,
thus, in the following, we will use the bit representation of values, i.e.
Δ�x = (Δx0,Δx1,Δx2), Δ�y = (Δy0,Δy1,Δy2) and �w = (w0, w1). The value
for the weight has only two bits since from Table 1b, it is clear that the maxi-
mum weight wmax here is 2, so two bits will be enough to represent the weight.
Generally speaking, we need
log2(wmax)� bits to encode the weight.
Ankele and Kölbl presented a method to compute the CNF representing the
w-DDT of an S-box [3]. Basically, they compute the ∗-DDT and, for every
(Δ�x,Δ�y) having the relative entry equal to 0, they encode the constraint

¬(Δ�x ∧ Δ�y ∧ w) ⇒ ¬Δ�x ∨ ¬Δ�y ∨ ¬w

for every possible weight. For instance, for the pair (2, 3) in w-DDT, we use

¬(¬Δx0 ∧ Δx1 ∧ ¬Δx2 ∧ ¬Δy0 ∧ Δy1 ∧ Δy2 ∧ w0 ∧ w1)

to avoid the triplet (Δ�x,Δ�y, �w) = (2, 3, 2). The procedure must be repeated
for every triplet that is not present in Table 1b. Summing up, we can say that
they build the complementary set of the possible triplets shown in Table 1b.
For a high number of cipher rounds, this method results in a number of
constraints, i.e. clauses, which is not handy for SAT solvers.
In order to reduce the number of constraints, we model the w-DDT as a
sum of products. In this way, we directly encode only all allowed triplets. For
instance, considering the triplet (2, 4, 1) in w-DDT, we use as a model

(¬Δx0 ∧ Δx1 ∧ ¬Δx2 ∧ Δy0 ∧ ¬Δy1 ∧ ¬Δy2 ∧ ¬w0 ∧ w1)
∨ (¬Δx0 ∧ Δx1 ∧ ¬Δx2 ∧ ¬Δy0 ∧ Δy1 ∧ Δy2 ∧ w0 ∧ ¬w1)

Clearly, a SAT solver can not handle a sum of products. Therefore we have
used the heuristic Espresso algorithm [11] in order to reduce it to a product-
of-sum, i.e. a CNF. As already pointed out in [3], this technique is only
applicable to DDTs containing entries that are powers of 2.

– SMT: we use the same model presented for SAT.

274 E. Bellini et al.

– MILP: The bitwise modeling of a differential propagation through an S-
box of size greater than 6 bits remained a hard problem until the work of
Abdelkhalek et al. was published [1]. Their approach relies on logical condition
modeling, already introduced by Sun et al. [52], and uses the product-of-sums
representation of the indicator function of the ∗-DDT, as in SAT and SMT.
Taking the example again from Table 1a, let f be the 6-bit to 1-bit boolean
function associated with the ∗-DDT shown in Table 1c. That is, f(Δ�x,Δ�y)
= 1 only if the propagation is possible, where Δ�x = (Δx0, . . . ,Δxn−1) and
Δ�y = (Δy0, . . . ,Δyn−1) denote the input and output difference, respectively.
The product-of-sums representation of f is as follows:

f(Δ�x,Δ�y) = (Δx0 ∨ Δx1 ∨ Δx2 ∨ Δy0 ∨ Δy1 ∨ Δy2)

∧ · · · ∧ (Δx0 ∨ Δx1 ∨ Δx2 ∨ Δy0 ∨ Δy1 ∨ Δy2),

where Δa is the negation of Δa. Each term of the product represents one
impossible transition in the ∗-DDT. For instance, the first term (Δx0∨Δx1∨
Δx2 ∨Δy0 ∨Δy1 ∨Δy2) corresponds to the impossible propagation 0 × 0 →
0 × 1. This means that the number of terms corresponds to the number of
null entries in the ∗-DDT, which can be rather high for an 8-bit S-box. For
this reason, finding a minimal, equivalent set of inequalities is a crucial step
in the modeling of large S-boxes. Several algorithms have been described for
the Boolean function minimization problem, such as the Quine-McCluskey
algorithm [35,44,45] or the heuristic Espresso algorithm, already mentioned
for SAT. Once a simplified product-of-sum is returned, each term can be
rewritten as a linear inequality. For instance, (Δx0 ∨ Δx1 ∨ Δx2 ∨ Δy0 ∨
Δy1 ∨ Δy2) = 1 becomes:

Δx0 + Δx1 + Δx2 + Δy0 + Δy1 + (1 − Δy2) ≥ 1.

After removing all impossible propagation for a given ∗-DDT table, the actual
probabilities of the differential transitions of the S-box need to be taken into
account. To do so, [1] proposed to separate the ∗-DDT into multiple wk-DDT
tables, such that wk-DDT only contains entries with the same weight wk,
that is: wk-DDT[i, j] = 1 if w-DDT[i, j] = wk and 0 otherwise.
The use of indicator constraints (such as the big-M method) ensures that only
a single wk-DDT is active:

• for each S-box, we introduce a binary variable Q equal to 1 if the S-box
is active, 0 otherwise;

• similarly, for each wk-DDT, a binary variable Qwk
that equals 1 when the

set of inequalities representing the wk-DDT need to be effective.
Setting

∑
Qwk

= Q ensures that whenever an S-box is active, only one wk-
DDT is effective; and the weight of the S-box can be modeled as

∑
wk · Qwk

.
– CP: table constraints allow for a straightforward representation of the S-

box component. Indeed, they enforce a tuple of variables to take its value
among a list of allowed tuples, explicitly defined as the rows of a table. In
particular, each row will contain the following three elements concatenated:

Cryptanalysis with SAT, SMT, MILP, and CP 275

an input difference, an output difference, and the weight of the probability
for the input/output difference pair. In our bitwise representation, the input
and output differences are the concatenations of m and n single-bit variables,
respectively. An entry of the table is thus a m + n + 1 tuple.

Remark 1. We highlight that the S-box constraints represent a considerable
amount of the constraints in SAT, SMT and MILP formalisms. In fact, the
PRESENT S-box (4 bits) constraints are roughly one-half of the total con-
straints.

3.5 AND/OR Component

As the AND and OR are bitwise operations, one can easily build their DDTs.
Indeed, they can be seen as 2-to-1 S-boxes repeated in parallel for as many times
as the bit length of the inputs. This is equivalent to the approach explained in [2,
Section 3].

– SAT: we reuse the techniques described in Subsect. 3.4 obtaining:

(¬Δy ∨ w) ∧ (Δx0 ∨ Δx1 ∨ ¬w) ∧ (¬Δx0 ∨ w) ∧ (¬Δx1 ∨ w).

– SMT: since satisfying a sum-of-products is easier than satisfying a product-
of-sum, we encoded the AND component with the following model for a single
bit:

(¬Δx0 ∧ ¬Δx1 ∧ ¬Δy ∧ ¬w) ∨ (Δx0 ∧ w) ∨ (Δx1 ∧ w).

– MILP, CP: we reuse the techniques described in Subsect. 3.4 to model its
DDT.

3.6 Modular Addition Component

Due to the intractable size of the DDT, even if using wordsize equal to 32 bits, the
method adopted for the modular addition is the Lipmaa Moriai algorithm [31],
based on two conditions:

1. eq(Δ�x0 1,Δ�x1 1,Δ�y 1) ∧ (Δ�x0 ⊕ Δ�x1 ⊕ Δ�y ⊕ (Δ�x1 1)) �= 0
2. 2− hw(¬ eq(Δ�x0,Δ�x1,Δ�y)∧mask(n−1))

with eq(x, y, z) := (¬x ⊕ y) ∧ (¬x ⊕ z), that is, eq(x, y, z) = 1 ⇔ x = y = z, and
for any n, mask(n) := 2n − 1.

– SAT: first of all, observe that eq(Δx0
i ,Δx1

i ,Δyi) for 1 ≤ i ≤ n − 1 is used
in both conditions, therefore, using w for the Hamming weight variable, we
model

wi = ¬ eq(Δx0
i ,Δx1

i ,Δyi) (5)

276 E. Bellini et al.

using the following CNF

(Δx0
i ∨ ¬Δyi ∨ wi) ∧ (Δx1

i ∨ ¬Δx0
i ∨ wi) ∧ (Δyi ∨ ¬Δx1

i ∨ wi)

∧ (Δx0
i ∨ Δx1

i ∨ Δyi ∨ ¬wi) ∧ (¬Δx0
i ∨ ¬Δx1

i ∨ ¬Δyi ∨ ¬wi)

which is exhaustive for the second condition. By only considering the Least
Significant Bit, the first condition can be encoded as

Δx0
n−1 ⊕ Δx1

n−1 ⊕ Δyn−1 = 0 ⇒ Δyn−1 = Δx0
n−1 ⊕ Δx1

n−1 (6)

for which we refer to the XOR component. Finally, taking the advantage of
Eq. 5 and using a dummy variable, for 0 ≤ i ≤ n − 2, we need

(¬wi ∧ (di ⊕ Δx1
i) = 0) ∧ (di = Δx0

i+1 ⊕ Δx1
i+1 ⊕ Δyi+1) (7)

which turns into the following CNF

(Δx1
i ∨ ¬d ∨ w) ∧ (¬Δx1

i ∨ d ∨ w)
∧(Δx0

i+1 ∨ Δx1
i+1 ∨ d ∨ ¬Δyi+1) ∧ (Δx0

i+1 ∨ Δx1
i+1 ∨ ¬d ∨ Δyi+1)

∧(Δx0
i+1 ∨ ¬Δx1

i+1 ∨ d ∨ Δyi+1) ∧ (¬Δx0
i+1 ∨ Δx1

i+1 ∨ d ∨ Δyi+1)
∧(Δx0

i+1 ∨ ¬Δx1
i+1 ∨ ¬d ∨ ¬Δyi+1) ∧ (¬Δx0

i+1 ∨ Δx1
i+1 ∨ ¬d ∨ ¬Δyi+1)

∧(¬Δx0
i+1 ∨ ¬Δx1

i+1 ∨ d ∨ ¬Δyi+1) ∧ (¬Δx0
i+1 ∨ ¬Δx1

i+1 ∨ ¬d ∨ Δyi+1)

Note that this is a different approach from the one in [50]. Indeed, although
our model has two more clauses in comparison, the number of variables per
clause is reduced and can thus speed up the SAT solving process.

– SMT: since SMT has more expressive capability, we have encoded a bitwise
model in a similar way to SAT. We simply report the implementation details:

• we have used ¬wi = (Δx0
i = Δx1

i = Δyi) instead of Eq. 5;
• we have directly used Δyi ⊕ Δx0

i ⊕ Δx1
i = 0 in Eq. 6;

• we have used wi ∨ ¬(Δx0
i+1 ⊕ Δx1

i+1 ⊕ Δyi+1 ⊕ Δx1
i) instead of Eq. 7.

– MILP: implementing the Lipmaa-Moriai as is in MILP would be rather inef-
ficient, as expressing simple if-then-else statements requires extra variables
and constraints. Instead, it is possible to directly derive a small set of linear
constraints by listing all valid patterns for (Δ�x0,Δ�x1,Δ�y,Δ�x0 1,Δ�x1
1,Δ�y 1) that satisfy the conditions imposed by the Lipmaa-Moriai algo-
rithm, as done by Fu et al. [21]. In their paper, the authors obtained 65 linear
inequalities for each bit. This set of constraints was then reduced by using a
greedy algorithm or the Espresso minimizer. As such, the differential behav-
ior of addition modulo 2n could be represented using 13(n − 1) + 5 linear
inequalities in total.

– CP: in the CP model, the constraints for modular addition involve the pre-
liminary step of declaring three shifted arrays representing the carry (the
shifts in the first condition) and an additional array eq with the results of
the eq function. The constraint is then a straightforward implementation of
the Lipmaa-Moriai algorithm. The eq function is easily defined thanks to the
all equal() global constraint. Then, the output difference constraints are
derived from the first condition:

Cryptanalysis with SAT, SMT, MILP, and CP 277

• if the eq constraint is satisfied, then the difference propagation is deter-
ministic and its constraint is given by the second part of the condition, i.e.
Δ�x0 ⊕ Δ�x1 ⊕ Δ�y ⊕ (Δ�x1 1) = 0. In other words, the output difference
is the XOR of the inputs and carry differences;

• otherwise, no more constraints are needed, and the transition will have
weight 1. The weight variable is constrained to be n − sum(eq).

4 Experimental Results

In this section, we present a comparison of formalisms and solvers for differential
cryptanalysis problems. In particular, we examine the 3 following tasks:

1. Task 1 the search for an optimal differential trail (easy and difficult
instances);

2. Task 2 the enumeration of all optimal trails;
3. Task 3 the estimation of the probability of a differential.

For these three tasks we will present the results we obtained on different
ciphers, based on the data available in literature and how accurately the cor-
responding graph would present the experimental comparison between the best
solvers for each formalism.

It has been observed in previous works, such as [17], that the fastest solver
on small instances does not always scale up to more difficult instances of the
same problem; therefore, we study both cases for the search of an optimal trail.

In the first two cases, no constraints are imposed on the input and output;
in the third case, the weight, or objective function, is fixed to the optimal value;
in the last case, the input and output differences are fixed, and all trails with a
probability greater than a fixed lower bound are enumerated.

Optimization is natively supported for CP and MILP, whereas increasing
objective values are tested until the problem is satisfiable for SAT and SMT.
The enumeration of solutions is performed natively in CP, by adding constraints
forbidding each new solution after it is found for the other formalisms.
All tests were run on a server with the following configuration, on which no more
than half the threads were used at any given time:

– CPU: 2 x Intel(R) Xeon(R) Gold 6258R;
– Number of Cores/Threads: 2× 28 Cores/2 × 56 Threads
– Base/Max CPU frequency achievable: 2.7 GHz / 4.0 GHz
– Cache: 38.5 Mb
– Memory: 768GB @2933 MHz;
– Operating System: Ubuntu 18.04.5 LTS.

In this framework, many algorithms are taken into account, considering block
ciphers, stream ciphers and hash functions. In particular, the following families
of ciphers have been analyzed:

278 E. Bellini et al.

– Block ciphers: Simon and Speck, Threefish, LEA, DES, Midori, PRESENT,
TEA, XTEA;

– Permutations: Gift, Gimli, Keccak, Ascon, ChaCha, Xoodoo,
– Hash functions: SHA1, SHA-224, SHA-256, SHA-384, SHA-512, Blake,

Blake2, MD5.

For each cipher, we tested several rounds. We did not use results found in
smaller rounds for the higher round case.

4.1 Choice of Solvers

In our testing activities, we not only compare formalisms but also try to identify
which solver performs best for a given formalism and a given problem. Below is
the list of solvers we used for each formalism.

– SAT Solvers: CaDiCal (1.5.3) [7]; CryptoMiniSat (5.11.4) [49]; Glucose
Syrup (4.1) [4]; Kissat (3.0.0) [7]; MathSAT (5.6.9) [13]; Minisat (2.2.1) [20];
Yices2 (2.6.4) [19]. All solvers were run with their default parameters and
options.

– SMT Solvers: MathSAT (5.6.9) [13]; Yices2 (2.6.4) [19]; Z3 (4.8.12) [38].
All solvers were run with their default parameters and options. Note that the
SMT models developed in Sect. 3 need the QF UF logic in SMT-LIB standard,
therefore we excluded Boolector [40] and STP [22].

– MILP Solvers: GLPK [41], Gurobi [26]. SCIP [6] was considered, but since
our MILP models were written using the solver interfaces provided by the
SageMath MILP module, which do not include SCIP, it was not included.

– CP Solvers: Chuffed [12], Gecode [47], OR-tools [25], Choco [43]. Our model
are written in the MiniZinc [39] language, which interfaces to these solvers.

4.2 Comparison for Task 1

The first problem of this comparison is that of the optimal objective value (and
a satisfying trail).

We considered representatives of block ciphers, permutations and hash func-
tions and fixed the number of rounds with two different ideas in mind: we wanted
to compare the performances of the different formalisms and solvers on easier
problems, obtained by considering instances of various ciphers on a low num-
ber of rounds (2 to 6). To make our results meaningful we set a minimum time
threshold of 2 s: if any solver is able to finish the 6-round instance in less than
that, we repeat the test for a higher number of rounds, until this threshold is
crossed. These will be called quick tests. In addition, we ran a comparison on
slow tests, composed of more difficult instances of Simon, Speck, and PRESENT.

For each test we measured the solving time (time to solve the model) and
the building time (time to build the model). The sum of building and solving
time will be referred to as the combined time.

Cryptanalysis with SAT, SMT, MILP, and CP 279

Quick Tests. In this section, we present a comparison of solvers on easy cryp-
tographic instances for all the primitives mentioned in Sect. 4. The solver with
the lowest combined time for a given instance is awarded a win. The best solver
for each cipher is the one with the highest number of wins. The winner of our
competition (for every formalism) is the solver that performs best for the highest
number of ciphers (more than 20, each from round 2 to 6).

Ca
Di
Ca
l

Cr
yp
to
M
ini
Sa
t

Gl
uc
os
e

Ki
ssa
t

M
at
hS
AT

M
ini
sa
t

Yi
ce
s2

0

10

20

30

40

w
in
s

MathSAT Yices2 Z3
0

20

40

w
in
s

GLPK Gurobi
0

20

40

w
in
s

Ch OR
-T
oo
ls

Ch
oc
o

Ge
co
de

0

10

20

30

w
in
s

(a) SAT (b) SMT

(c) MILP (d) CP

Fig. 1. Comparison of the number of victories of each solver, per formalism, on the set
of easy instances.

The graphs in Fig. 1 report the results of these competitions:

– Among SAT solvers, Kissat and Yices2 emerge as the clear winners. It should
also be noted that the timings reported from Glucose are computed taking
multithreading into account, and thus do not faithfully represent the real time
needed to obtain the results;

– In the SMT solvers category, Z3 and MathSAT are always inferior to Yices2,
which is thus clearly the best SMT solver in our testing;

280 E. Bellini et al.

– In CP and MILP, the difference between different solvers is not as clear cut:
while Gecode and Gurobi are the fastest solvers overall, Chuffed and GLPK
often manage to be at least equal to them in their respective models.

In Fig. 2, we present the results of the quick tests for Simon32, Speck32,
PRESENT, Gimli, and BLAKE2, for the best solver of each formalism we found
before. These tests were run with a timeout of 10 min, which was extended by
another 10 min if no solver returned within the first time slot. We refer to Sect. C
for the exhaustive list of timings. In all these cases, SAT consistently appears as
the superior option.

2 3 4 5 6

0

5

10

15

20

Rounds

ti
m
e

Kissat
Yices2
Gurobi
Ch

2 3 4 5 6

0

20

40

60

80

Rounds

ti
m
e

Yices2-SAT
Yices2-SMT

Gurobi
Gecode

2 3 4 5 6

0

500

1,000

1,500

Rounds

ti
m
e

Kissat
Yices2
Gurobi
Ch

2 3 4 5 6

0

50

100

150

200

250

300

Rounds

ti
m
e

Kissat
Yices2
Gurobi
Ch

2 3 4 5 6

0

100

200

300

400

Rounds

ti
m
e

Kissat
Yices2-SMT

Gurobi
Gecode

(a) Simon32 (b) Speck32 (c) Gimli

(d) BLAKE (e) PRESENT

Fig. 2. Graph comparisons between the best solvers for each formalism on different
ciphers testing the function find lowest weight trail.

Figure 2a and Fig. 2b show very similar performances between SAT and SMT
for Simon and Speck; the detailed times are given in Table 5 and 6 of Sect. C.
On the other hand, SAT dominated on a primitive with a larger state, Gimli, as
shown in Fig. 2c and Fig. 2d: SAT is the only formalism to complete the 6-round
test within the 10 min time limit.

2 As an example, we selected, respectively, three small state block ciphers, (one
AndRX, one ARX, one S-Box based), one large state permutation (384 bits) and
one large state ARX hash (512 bits).

Cryptanalysis with SAT, SMT, MILP, and CP 281

Slow Tests. In this section, we run a comparison on longer instances, described
in Table 2, with a timeout of 24 h.

Table 2. The instances of our long tests set; optimal weight for a fixed number of
rounds is found and compared to known results for correctness.

Cipher Rounds Weight Reference

PRESENT 18 78 [50]

Simon32 12 34 [33]

Simon64 19 64 [33]

Speck32 9 30 [5]

Speck64 13 55 [5]

The results are reported in Table 3; solving and building time are expressed
in seconds, while the memory used is in megabytes. In the table, inf is reported
when the solver does not provide a reliable way to measure its memory usage.

These tests were ran for all paradigms, but the solvers that returned within
the 24 h timeout were mostly SAT, showing a clear advantage on this problem;
MILP only finished within the timeout once (and came out on top) for SIMON32.
We ran all tests with the best current known techniques for each for each for-
malism, except for MILP for which we use techniques from [1], even though we
are aware of the improvements from [10,30] and plan to add them in the future.
Chances are that the improvements from [10,30] will yield better performances
for MILP solvers.

For 9 rounds of SPECK32, the known best trail was retrieved, but only SAT
and SMT solvers finished within the time limit. For PRESENT and SPECK64,
only SAT solvers finished within the time limit, with a clear advantage for Kissat.

These results contrast with the quick tests: Yices2, which was the best overall
solver on the quick tests, is not able to find the Speck32 or Present64 trail, while
CaDiCal, CryptoMiniSat and Glucose can.

We also see a notable increase in time when the state size is increased: while
some SAT solvers can find the lowest known trail for Speck64 on 13 rounds, we
can see that the time needed is much higher than the one needed for Speck32,
and no solver among all formalisms is able to find the lowest weight trail for
Speck128 within the timeout of 24 h.

4.3 Comparison for Task 2

It has been shown that a solver being fast at finding one solution is not always as
fast for enumerating solutions with fixed variables, such as the objective value;
for instance, in [23], a SAT solver is used to find solution patterns, which are
then explored with a CP solver. In this experiment, we only tested the solvers
that returned within the timeout in the find lowest weight trail experiment.

282 E. Bellini et al.

Table 3. Results on the optimization problems on the difficult instances, for the solvers
that finished within the timeout of 24 h.

(a) PRESENT 64/80, 18 rounds

Formalism Building time Solving time Memory Weight Solver

SAT 0.13 789.75 325.69 78 Kissat

SAT 0.23 2761.93 311.17 78.0 CaDiCal

SAT 0.14 5757.36 163272.00 78.0 CryptoMiniSat

SAT 0.13 28624.79 inf 78.0 Glucose

(b) Simon 32/64, 12 rounds

Formalism Building time Solving time Memory Weight Solver

MILP 0.95 53.20 0 34.0 Gurobi

SAT 0.03 86.43 208.72 34.0 CaDiCal

SAT 0.03 93.24 218.80 34.0 Kissat

SAT 0.03 132.63 inf 34.0 Glucose

SAT 0.03 432.77 14.39 34.0 Yices2

SAT 0.03 439.43 55.56 34.0 CryptoMiniSat

SMT 0.03 896.70 54.81 34.0 Z3

SAT 0.03 393369.00 56.82 34.0 MathSAT

SMT 0.03 469589.00 21277.00 34.0 Yices2

SMT 0.03 518824.00 100809.00 34.0 MathSAT

(c) Simon 64/128, 19 rounds

Formalism Building time Solving time Memory Weight Solver

SAT 0.11 533.09 257.62 64.0 Kissat

SAT 0.13 64929.70 410.49 64.0 CaDiCal

SAT 0.07 346522.15 inf 64.0 Glucose

(d) Speck 32/64, 9 rounds

Formalism Building time Solving time Memory Weight Solver

SAT 0.04 99.01 220.45 30.0 Kissat

SAT 0.03 764.28 209.79 30.0 CaDiCal

SAT 0.03 1963.10 inf 30.0 Glucose

SAT 0.03 3266.48 100.24 30.0 CryptoMiniSat

SMT 0.04 75977876.00 817426.00 30.0 MathSAT

(e) Speck 64/128, 13 rounds

Formalism Building time Solving time Memory Weight Solver

SAT 0.12 437.96 259.22 50.0 Kissat

SAT 0.12 67051.43 300.97 50.0 CaDiCal

As we can see in Fig. 3a and Fig. 3b, SAT is still a suitable formalism for this
problem, though with a different top performer (Yices over Kissat). Furthermore,
this time CP’s performances improve greatly and in Fig. 3c CP is actually the
sole formalism to finish within the timeout.

Cryptanalysis with SAT, SMT, MILP, and CP 283

2 3 4 5 6

0

10

20

30

40

Rounds

ti
m
e

Yices2-SAT
Yices2-SMT

Ch

2 3 4 5 6

0

1

2

3

4

5

Rounds

ti
m
e

Yices2-SAT
Yices2-SMT

Gurobi
Ch

2 3 4 5 6
0

20

40

60

Rounds

ti
m
e

Ch

(a) Simon32 (b) Speck32 (c) Gimli

Fig. 3. Graph comparisons between the best solvers for each formalism on different
ciphers testing find all trails function.

4.4 Comparison for Task 3

Our final test compares the time taken to estimate the probability of a differ-
ential: the input and output differences were fixed, along with a bound on the
probability, and all satisfying trails were enumerated. We used the differentials
reported in [3]; in particular, we tested the ones reported for 7 rounds of Speck64,
and 14 rounds of Simon32. In addition, we ran this test on 4 rounds of Midori128
to evaluate the influence of a large S-box, which typically favors CP and its table
constraints. The results, under a timeout of 6 h, are reported in Table 4.

For the case of SIMON, we were not able to enumerate all the weights
reported in [28] within the timeout, so we only enumerated trails with weights
between 38 and 49. As expected, due to the 8-bit S-box, CP was the fastest for
Midori128, with all 4 solvers finishing under 12 s (Table 4a), followed by SAT
solvers, from CryptoMiniSat, which runs in about 13 min to MiniSAT (1h24m).
Lastly, SMT solvers exhibit even slower performance. With the exception of
Yices2, where the performance difference between using SAT or SMT as a formal-
ism is relatively small, all other solvers take over 2 h to complete, and MathSAT
even times out. SPECK, an ARX block cipher, behaves differently: in Table 4b,
the only formalism to finish the tests within the timeout is SAT, with the fastest
being CaDiCal, which takes around 46 min. Due to the inherently boolean nature
of ARX operations, an advantage for SAT was expected.

4.5 Speeding up CryptoMiniSat

In a final batch of experiments, we tested the differential probability estimation
experiment using the maxsol option in CryptoMiniSat; this option lets Cryp-
toMiniSat enumerate solutions up to a given maximum number. In this set of
experiments, we set this number of solutions to 106, which is arbitrarily higher
than the highest number of solutions we observed.

For the 3 ciphers under study, CryptoMiniSat becomes the fastest solver of
all the tested ones with this strategy and finishes within 3 s for Midori, 40 min

284 E. Bellini et al.

Table 4. Timing results on the differential probability estimation experiments.

(a) MIDORI 64/128
4 rounds
Δ�x = 0x0002002000002000

Δ�y = 0x0000022222022022

896 trails, − log2(p) = 23.7905

Formalism Time Solver

CP 10.00 Chuffed

CP 10.28 Gecode

CP 10.49 OR Tools

CP 11.26 Choco

SAT 795.71 CryptoMiniSat

SAT 846.49 Yices2

SMT 874.31 Yices2

SAT 941.33 Kissat

SAT 960.07 CaDiCal

SAT 1168.56 Glucose

SAT 1206.09 MathSAT

SAT 5092.36 MiniSAT

SMT 8366.91 Z3

(b) SPECK 64/128
7 rounds
Δ�x = 0x4000409210420040

Δ�y = 0x8080a0808481a4a0

75 trails, − log2(p) = 20.9538

Formalism Time Solver

SAT 2789.58 CaDiCal

SAT 3400.27 Kissat

SAT 3416.21 Glucose

SAT 8785.10 CryptoMiniSat

for SPECK64, and 30 min for SIMON32. The significant increase in speed allows
us to test larger weights, with a maximum of 58 in this experiment. As a result,
we can enumerate a significantly greater number of trails than in our previous
experiments, while still maintaining much faster solving times.

5 Conclusion

Differential cryptanalysis is one of the main techniques when testing the strength
of symmetric ciphers, and fast evaluation helps designers set the parameters of
new primitives; this paper reviews the existing modeling techniques for SAT,
SMT, MILP and CP, and compares their performances through different solvers.

In the comparison, solvers from all categories were tested on finding an opti-
mal differential trail, enumerating optimal trails, and estimating the probability
of a differential, for block ciphers, permutations and hash functions.

Overall, SAT solvers were the winners of this comparison for ARX primitives
and SPNs, such as PRESENT or Midori. In terms of solvers, Kissat dominated
the SAT category, Yices2 the SMT pool, Gurobi in MILP and Chuffed won CP.

Even though SAT was the winner in most cases, CP obtained a victory when
enumerating the trails of a differential for Midori, in line with previously observed
results. On the other hand, when using the maxsol option, CryptoMiniSat took
the win for enumeration problems.

Cryptanalysis with SAT, SMT, MILP, and CP 285

This work is one further step towards a better understanding of what meth-
ods to use for solving differential cryptanalysis problems. A systematic study,
with more primitives and more problems, would be extremely beneficial to the
community. Indeed, in future works, we plan to extend similar comparisons for
(1) other families of ciphers (such as SPNs or ciphers with large state) and (2) for
other types of cryptanalysis, such as linear, differential-linear, and rotational-xor
cryptanalysis.

A Differential Cryptanalysis

Differential cryptanalysis, first proposed by Biham and Shamir in 1990 [9], is
a statistical cryptanalysis technique, very effective against many cryptographic
primitives, such as block or stream ciphers or hash functions. Given two inputs
to the primitive with difference Δx through a chosen operation (we use the XOR,
the most common) the technique studies how this value propagates through the
iterated operations to reach an output difference Δy.

The differential probability of a given input/output pair of differences for a
vectorial Boolean function is the probability for that pair to yield over all the
possible pairs of inputs with said input difference. For a function f and two
differences Δx and Δy, we will denote this probability with dpf (Δx → Δy).

It is currently infeasible to compute the output difference for a block cipher
for all the possible pairs of inputs, considering its large size, and building the
table with all the frequencies for each pair of input/output difference (that is
called Difference Distribution Table, in short DDT). To facilitate the analysis,
we can use the fact that block ciphers are often iterative functions, i.e. they are
the composition fr−1 ◦ . . . ◦ f0 of simpler keyed round functions fi’s.

We define a r-round differential trail (or characteristic) for an iterative func-
tion f = fr−1 ◦ . . . ◦ f1 ◦ f0, as a sequence of differences

Δ0
f0−→ Δ1

f1−→ . . . → Δr−1
fr−1−−−→ Δr

and a differential as a pair of input/output differences. In the case of the whole
composite primitive, the differential

Δx
f0◦...◦fr−1−−−−−−−→ Δy.

has probability equal to the sum of the probabilities of all the differential char-
acteristics with Δ0 = Δx and Δr = Δy, where the probability of the charac-
teristic is usually computed as the product of the probabilities of each interme-
diate differential of the chain. In particular, one can rely on the assumption of
independence between each differential so that the resulting probability, when
considering the composition of vectorial Boolean functions, is computed by the
following:

286 E. Bellini et al.

Proposition 2. Let f1 and f2 be two vectorial Boolean functions

f1 : {0, 1}l → {0, 1}m , f2 : {0, 1}m → {0, 1}n.

and let Δ�x ∈ {0, 1}l, Δ�y ∈ {0, 1}m and Δ�z ∈ {0, 1}n be three differences such
that

dpf1(Δ�x → Δ�y) = p1 dpf2(Δ�y → Δ�z) = p2.

Then, we have
dpf2◦f1(Δ�x → Δ�z) = p1 · p2.

To simplify the search for the most probable differential trail, it is common
to search for the best differential characteristic instead, assuming its probability
to be a good approximation of the target one, even if this is not always true [3].

In general, there is no efficient way to compute the precise probability of a
differential characteristics. To do so, some fundamental assumptions on block
ciphers are commonly used, such as the Markov cipher assumption, the Hypoth-
esis of stochastic equivalence and the Hypothesis of independent round keys (see
e.g. [32, Section 2.2.1]).

B Formalisms

In order to search for differential trails having the highest possible probability,
we will make use of several constraints problems solvers adopting 4 different
formalisms. The problem underlying the search of differential trails can be set
from a general point of view.

Problem 1. Given a set of variables (unknown elements with a fixed domain) and
a set of constraints (e.g. relations representing the propagation of the difference
through the cipher), it is required to find an assignment of the variables to values
in their domains, that is a mapping associating to each variable a value in its
domain, that satisfies all the constraints.

We will call the resolution process procedure. In the following, we specialize
the general terminology for each of the 4 formalisms we have used.

B.1 Satisfiability (SAT)

The terminology is as follows:

– variables are Boolean unknowns; a literal is either an unknown Boolean quan-
tity vi or its negation ¬vi;

– constraints are clauses; a clause is a disjunction of literals,
∨n−1

i=0 xi; the set of
clauses is called Conjunctive Normal Form (CNF) and it is the conjunction
of all the clauses,

∧m−1
j=0

(∨nj

i=0 xij

)
;

– the main procedures are DPLL [15,16] or CDCL [48], improved in the actual
implementations.

Cryptanalysis with SAT, SMT, MILP, and CP 287

B.2 Satisfiability Modulo Theories (SMT)

The terminology is as follows:

– variables are unknown Booleans xi coming from the quantifier free theory,
i.e. the Boolean logic;

– constraints are formulae in the chosen theory involving Boolean symbols;
– the main procedures are Lazy or Eager [8]; due to the simplicity of implemen-

tation, Lazy is the most widely implemented.

B.3 Mixed-Integer Linear Programming (MILP)

The terminology is as follows:

– variables are unknown quantities xi that can either be booleans, integers (Z)
or continuous (R);

– constraints are linear inequalities of the form a0x0+a1x1+· · ·+an−1xn−1 ≤ b
with ai, b ∈ Q; moreover we have an objective function of the form z =
c0x0 + c1x1 + · · · + cn−1xn−1 to be maximized or minimized, with ci ∈ Q;

– the main procedures are the Simplex algorithm [14], Branch-and-bound [29]
and Branch-and-cut [42].

B.4 Constraint Programming (CP)

The terminology is as follows:

– variables are unknown quantities belonging to a specific domain, i.e. pairs
(xi,Di). In our models we will either have Boolean variables (Di = {0, 1}) or
more generic integer variables (Di ⊆ N);

– constraints are relations which involve a subset of the variables. There are
several types of constraints that can be used to model CP problems; in our
models we used linear equations of integer variables (eventually modulo 2),
logical combinations of linear equations of integer variables through the usual
operators (AND, OR, NOT) and table constraints.

– the main procedures are Backtracking search, Local Search and Dynamic pro-
gramming [46].

C Experimental Results Tables

In Table 5, we use the following notation: BT = Building Time, ST = Solving
Time, NR = Number of Rounds, W = Weight, and similarly in Tables 6, 7, 8
and 9.

288 E. Bellini et al.

Table 5. Comparison results on Simon 32/64

Formalism Solver NR=2, W=2 NR=3, W=4 NR=4, W=6 NR=5, W=8 NR=6, W=12

BT ST Memory BT ST Memory BT ST Memory BT ST Memory BT ST Memory

SAT Kissat 0.00 0.00 213.81 0.00 0.02 213.44 0.00 0.04 214.22 0.01 0.11 214.72 0.01 0.36 215.47

SAT CaDiCal 0.00 0.00 203.40 0.00 0.02 203.61 0.00 0.07 204.23 0.01 0.16 205.01 0.02 0.45 206.13

SAT CryptoMiniSat 0.00 0.00 5.59 0.00 0.03 5.80 0.01 0.06 5.82 0.01 0.15 6.12 0.01 0.51 6.84

SAT MiniSAT 0.00 0.04 10.56 0.00 0.07 10.57 0.01 0.21 10.71 0.01 0.42 11.01 0.02 1.25 11.30

SAT Yices2 0.00 0.00 3.50 0.00 0.01 3.63 0.00 0.04 3.76 0.01 0.08 3.76 0.01 0.23 4.02

SAT MathSAT 0.00 0.01 8.60 0.01 0.03 8.60 0.00 0.06 9.11 0.01 0.14 9.37 0.01 0.41 10.14

SAT Glucose 0.00 0.01 inf 0.01 0.04 inf 0.00 0.14 inf 0.01 0.25 inf 0.02 0.85 inf

SMT Yices2 0.00 0.02 6.76 0.00 0.04 6.95 0.01 0.09 7.24 0.01 0.16 7.56 0.01 0.40 8.02

SMT MathSAT 0.00 0.05 15.52 0.00 0.10 16.81 0.01 0.15 18.10 0.00 0.27 19.91 0.01 0.71 23.00

SMT Z3 0.00 0.05 18.63 0.00 0.12 19.04 0.01 0.22 19.63 0.01 0.44 20.55 0.01 1.42 21.77

CP Chuffed 0.00 0.00 0.12 0.00 0.01 0.19 0.00 0.09 0.28 0.00 0.63 0.28 0.00 20.46 0.42

CP Gecode 0.00 0.00 inf 0.00 0.02 inf 0.00 0.16 inf 0.00 1.22 inf 0.00 30.34 inf

CP Choco 0.00 0.03 inf 0.00 0.12 inf 0.00 0.49 inf 0.00 2.76 inf 0.00 63.79 inf

CP OR Tools 0.00 0.02 inf 0.00 0.03 inf 0.00 0.20 inf 0.00 1.29 inf 0.00 33.13 inf

MILP GLPK 0.06 0.11 0.00 0.07 1.03 0.00 2.85 0.19 0.00 2.96 0.41 0.00 - - -

MILP Gurobi 2.78 0.01 0.00 2.92 0.09 0.00 0.08 7.60 0.00 0.15 38.71 0.00 3.07 0.66 0.00

Table 6. Comparison results on Speck 32/64

Formalism Solver NR=2, W=1 NR=3, W=3 NR=4, W=5 NR=5, W=9 NR=6, W=13

BT ST Memory BT ST Memory BT ST Memory BT ST Memory BT ST Memory

SAT Kissat 0.00 0.00 213.46 0.00 0.02 214.79 0.01 0.07 215.38 0.01 0.47 216.47 0.02 2.46 218.04

SAT CaDiCal 0.01 0.00 204.06 0.00 0.03 203.95 0.01 0.09 205.85 0.01 0.54 206.74 0.02 1.92 207.89

SAT CryptoMiniSat 0.00 0.01 5.79 0.00 0.04 5.87 0.01 0.07 6.02 0.02 0.71 7.50 0.02 4.26 11.65

SAT MiniSAT 0.00 0.03 10.56 0.01 0.10 10.73 0.01 0.27 10.84 0.01 1.94 10.30 0.02 15.88 11.54

SAT Yices2 0.01 0.00 3.63 0.00 0.02 3.63 0.01 0.06 3.89 0.02 0.33 4.16 0.02 3.17 4.72

SAT MathSAT 0.00 0.01 8.60 0.00 0.04 9.11 0.01 0.10 9.37 0.01 0.63 10.66 0.02 3.43 13.23

SAT Glucose 0.00 0.01 inf 0.00 0.04 inf 0.01 0.19 inf 0.01 0.69 inf 0.02 3.42 inf

SMT Yices2 0.00 0.01 6.79 0.01 0.04 7.07 0.01 0.10 7.55 0.01 0.66 8.27 0.02 4.38 10.22

SMT MathSAT 0.00 0.03 16.04 0.01 0.14 19.39 0.01 0.41 25.58 0.01 1.53 35.89 0.02 9.25 65.57

SMT Z3 0.00 0.04 18.67 0.01 0.12 19.30 0.01 0.36 20.27 0.01 2.17 22.66 0.02 12.88 26.92

CP Chuffed 0.00 0.00 0.05 0.00 0.04 0.12 0.00 0.81 0.19 0.00 132.69 0.28 - - -

CP Gecode 0.00 0.00 inf 0.00 0.01 inf 0.00 0.33 inf 0.00 74.62 inf - - -

CP Choco 0.00 0.04 inf 0.00 0.24 inf 0.00 17.41 inf - - - - - -

CP OR Tools 0.00 0.02 inf 0.00 0.06 inf 0.00 0.47 inf 0.00 28.44 inf - -

MILP GLPK 0.04 14.92 - - - - - - - - - - - - -

MILP Gurobi 2.70 0.05 0.00 2.93 0.29 0.00 3.02 1.33 0.00 2.84 3.27 0.00 3.09 21.44 0.00

Table 7. Comparison results on Blake 512

Formalism Solver NR=2, W=0 NR=3, W=0 NR=4, W=1 NR=5, W=6 NR=6, W=7

BT ST Memory BT ST Memory BT ST Memory BT ST Memory BT ST Memory

SAT Kissat 0.04 0.02 173.08 0.05 0.03 181.31 0.06 0.21 191.15 0.08 18.40 225.68 0.11 55.87 237.44

SAT CaDiCal 0.03 0.02 162.30 0.05 0.03 171.22 0.06 0.12 184.59 0.08 47.38 208.79 0.11 62.59 230.71

SAT CryptoMiniSat 0.03 0.02 10.18 0.04 0.02 12.15 0.06 0.13 16.20 0.09 73.82 112.40 0.11 83.68 97.73

SAT MiniSAT 0.04 0.21 14.57 0.05 0.31 16.07 0.06 1.01 21.82 0.09 280.28 103.45 0.11 367.98 235.89

SAT Yices2 0.04 0.00 6.29 0.05 0.00 7.69 0.06 0.20 10.02 0.09 84.74 40.92 0.11 150.09 51.24

SAT MathSAT 0.03 0.04 15.43 0.05 0.06 18.27 0.06 0.30 23.42 0.09 162.17 134.20 0.11 284.66 257.83

SAT Glucose 0.04 0.04 119.50 0.05 0.04 124.34 0.06 0.18 inf 0.09 110.01 inf 0.11 166.23 inf

SMT Yices2 0.02 0.05 12.22 0.03 0.07 15.21 0.05 0.21 23.92 0.09 127.53 71.81 0.11 222.02 94.72

SMT MathSAT 0.02 0.28 37.68 0.03 0.81 56.50 0.05 1.01 92.64 0.10 174.88 268.01 0.12 331.54 307.70

SMT Z3 0.02 0.21 37.20 0.03 0.34 68.50 0.05 2.12 76.78 0.09 448.57 163.91 0.13 666.45 254.68

CP Chuffed 0.01 0.01 3.16 0.02 0.03 4.75 0.02 0.07 4.75 - - - - - -

CP Gecode 0.01 0.03 inf 0.01 0.05 inf 0.02 0.26 inf - - - - - -

CP Choco - - - - - - - - - - - - - - -

CP OR Tools - - - - - - - - - - - - - - -

MILP GLPK - - - - - - - - - - - - - - -

MILP Gurobi 0.94 0.44 0.00 3.02 382.40 0.00 - - - - - - - - -

Cryptanalysis with SAT, SMT, MILP, and CP 289

Table 8. Comparison results on Gimli 384

Formalism Solver NR=2, W=4 NR=3, W=6 NR=4, W=10 NR=5, W=16 NR=6, W=28

BT ST Memory BT ST Memory BT ST Memory BT ST Memory BT ST Memory

SAT Kissat 0.04 0.14 225.93 0.05 0.88 233.74 0.09 5.47 245.46 0.08 27.92 262.10 0.12 355.12 302.89

SAT CaDiCal 0.04 0.20 215.73 0.07 1.00 222.27 0.08 4.57 233.96 0.09 23.03 251.19 0.12 484.81 288.71

SAT CryptoMiniSat 0.04 0.42 9.55 0.05 1.61 9.55 0.07 11.40 20.57 0.09 70.18 48.39 - - -

SAT MiniSAT 0.03 1.14 13.90 0.05 3.53 16.64 0.07 24.27 21.23 0.09 217.81 45.50 - - -

SAT Yices2 0.04 0.14 5.70 0.05 1.34 7.70 0.07 12.17 12.64 0.09 81.29 18.93 - - -

SAT MathSAT 0.04 0.34 14.68 0.05 2.06 19.42 0.04 14.44 32.57 0.09 103.20 56.91 - - -

SAT Glucose 0.04 0.21 inf 0.05 0.99 inf 0.07 7.21 inf - - - - - -

SMT Yices2 0.03 0.34 12.98 0.05 1.62 18.63 0.07 9.16 27.50 0.11 75.54 42.49 - - -

SMT MathSAT 0.04 0.87 52.13 0.05 2.89 80.23 0.07 14.35 125.35 0.11 99.44 208.36 - - -

SMT Z3 0.04 1.47 39.06 0.05 5.10 72.12 0.07 33.32 136.04 0.11 569.40 149.982 - - -

CP Chuffed 0.02 0.30 0.94 0.01 22.01 1.41 - - - - - - - - -

CP Gecode 0.02 0.15 inf 0.03 22.39 inf - - - - - - - - -

CP Choco 0.02 46.04 inf - - - - - - - - - - - -

CP OR Tools 0.02 0.72 inf - - - - - - - - - - - -

MILP GLPK 0.57 75.56 0.00 - - - - - - - - - - - -

MILP Gurobi 4.50 1.45 0.00 5.92 22.49 0.00 7.62 452.57 0.00 - - - - - -

Table 9. Comparison results on Present 64/80

Formalism Solver NR=2, W=4 NR=3, W=8 NR=4, W=12 NR=5, W=20 NR=6, W=24

BT ST Memory BT ST Memory BT ST Memory BT ST Memory BT ST Memory

SAT Kissat 0.00 0.03 218.14 0.02 0.14 219.83 0.03 0.46 222.53 0.03 5.64 226.42 0.03 11.02 231.10

SAT CaDiCal 0.02 0.04 207.43 0.02 0.19 209.20 0.02 1.08 212.66 0.03 5.78 216.67 0.04 11.25 220.55

SAT CryptoMiniSat 0.02 0.04 6.08 0.02 0.04 6.08 0.03 0.81 7.99 0.03 9.37 13.23 0.03 31.09 21.76

SAT MiniSAT 0.02 0.21 11.07 0.02 0.21 11.07 0.03 3.43 12.58 0.03 21.28 14.02 0.03 62.39 15.38

SAT Yices2 0.01 0.01 3.89 0.02 0.13 4.29 0.03 0.49 4.73 0.03 5.74 6.04 0.03 18.47 7.27

SAT MathSAT 0.02 0.05 9.37 0.02 0.89 33.57 0.03 0.80 11.95 0.03 7.08 16.59 0.04 18.93 18.91

SAT Glucose 0.02 0.08 inf 0.02 0.42 inf 0.02 1.29 inf 0.03 8.12 inf 0.03 15.87 inf

SMT Yices2 0.02 0.09 7.84 0.02 0.27 9.18 0.03 0.73 11.03 0.04 6.16 14.11 0.05 16.91 18.37

SMT MathSAT 0.02 0.29 25.06 0.02 0.89 33.57 0.03 2.32 47.23 0.04 9.97 71.47 0.05 27.06 91.30

SMT Z3 0.02 0.50 20.94 0.02 1.66 23.75 0.03 4.13 27.24 0.04 18.51 42.50 0.05 42.97 73.78

CP Chuffed 0.01 0.00 0.19 0.01 0.11 0.28 0.01 3.13 0.42 - - - - - -

CP Gecode 0.01 0.00 inf 0.01 0.08 inf 0.01 2.43 inf 0.01 399.94 inf - - -

CP Choco 0.01 0.04 inf 0.01 0.31 inf 0.01 7.12 inf - - - - - -

CP OR Tools 0.01 0.25 inf 0.01 0.47 inf 0.01 4.80 inf - - - - - -

MILP GLPK 0.20 1.01 0.00 - - - - - - - - - - - -

MILP Gurobi 3.08 0.07 0.00 3.20 0.53 0.00 3.37 0.92 0.00 3.44 3.81 0.00 3.64 111.07 0.00

References

1. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP model-
ing for (large) s-boxes to optimize probability of differential characteristics. IACR
Trans. Symmetric Cryptol. 2017(4), 99–129 (2017)

2. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-
reduced Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS,
vol. 8540, pp. 525–545. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46706-0 27

3. Ankele, R., Kölbl, S.: Mind the gap - a closer look at the security of block ciphers
against differential cryptanalysis. In: Cid, C., Jacobson Jr, M. (eds.) SAC 2018.
LNCS, vol. 11349, pp. 163–190. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-10970-7 8

4. Audemard, G., Simon, L.: Glucose and syrup: nine years in the sat competitions.
In: Proceedings of SAT Competition, pp. 24–25 (2018)

https://doi.org/10.1007/978-3-662-46706-0_27
https://doi.org/10.1007/978-3-662-46706-0_27
https://doi.org/10.1007/978-3-030-10970-7_8
https://doi.org/10.1007/978-3-030-10970-7_8

290 E. Bellini et al.

5. Bellini, E., Gérault, D., Protopapa, M., Rossi, M.: Monte Carlo tree search for
automatic differential characteristics search: application to SPECK. In: Isobe, T.,
Sarkar, S. (eds.) INDOCRYPT 2022. LNCS, vol. 13774, pp. 373–397. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-22912-1 17

6. Bestuzheva, K., et al.: The SCIP Optimization Suite 8.0. ZIB-Report 21–41, Zuse
Institute Berlin (2021)

7. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of
the SAT Competition 2020 - Solver and Benchmark Descriptions. Department of
Computer Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki
(2020)

8. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

9. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

10. Boura, C., Coggia, D.: Efficient MILP modelings for sboxes and linear layers of
SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327–361 (2020)

11. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L.:
Logic Minimization Algorithms for VLSI synthesis, The Kluwer International Series
in Engineering and Computer Science, vol. 2. Springer, Heidelberg (1984)

12. Chu, G., Stuckey, P.J., Schutt, A., Ehlers, T., Gange, G., Francis, K.: Chuffed,
a lazy clause generation solver. https://github.com/chuffed/chuffed. Accessed 19
Mar 2023

13. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

14. Dantzig, G.B.: Maximization of a linear function of variables subject to linear
inequalities. Act. Anal. Prod. Allocat. 13, 339–347 (1951)

15. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

16. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

17. Delaune, S., Derbez, P., Huynh, P., Minier, M., Mollimard, V., Prud’homme, C.:
SKINNY with scalpel - comparing tools for differential analysis. IACR Cryptol.
ePrint Arch. 1402 (2020)

18. Delaune, S., Derbez, P., Huynh, P., Minier, M., Mollimard, V., Prud’homme, C.:
Efficient methods to search for best differential characteristics on SKINNY. In:
Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12727, pp. 184–207.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78375-4 8

19. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, 18–22 July 2014. Proceedings. LNCS, vol.
8559, pp. 737–744. Springer, Cham (2014)

20. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

21. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algo-
rithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016.
LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-52993-5 14

https://doi.org/10.1007/978-3-031-22912-1_17
https://github.com/chuffed/chuffed
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-030-78375-4_8
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/978-3-662-52993-5_14

Cryptanalysis with SAT, SMT, MILP, and CP 291

22. Ganesh, V., Dill, D.L.: A Decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3 52

23. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Revisiting AES related-key
differential attacks with constraint programming. Inf. Process. Lett. 139, 24–29
(2018)

24. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Computing AES related-key
differential characteristics with constraint programming. Artif. Intell. 278, 103183
(2020)

25. Google: Or-tools - google optimization tools. https://developers.google.com/
optimization. Accessed 19 Mar 2023

26. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023)
27. Heule, M., Iser, M., Jarvisalo, M., Suda, M., Balyo, T.: Sat competition 2022.

https://satcompetition.github.io/2022/results.html. Accessed 2 Mar 2023
28. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-

ily. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 8

29. Land, A.H., Doig, A.G.: An automatic method for solving discrete programming
problems. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-
2008, pp. 105–132. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
540-68279-0 5

30. Li, T., Sun, Y.: Superball: a new approach for MILP modelings of Boolean func-
tions. IACR Trans. Symmetric Cryptol. 2022(3), 341–367 (2022)

31. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties
of addition. IACR Cryptol. ePrint Arch. 1 (2001)

32. Liu, Y.: Techniques for Block Cipher Cryptanalysis. Ph.D. thesis, KU Leu-
ven, Faculty of Engineering Science (2018). https://www.esat.kuleuven.be/cosic/
publications/thesis-306.pdf

33. Liu, Z., Li, Y., Wang, M.: Optimal differential trails in Simon-like ciphers. IACR
Cryptol. ePrint Arch. 178 (2017)

34. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9 7

35. McCluskey, E.J.: Minimization of Boolean functions. Bell Syst. Tech. J. 35, 1417–
1444 (1956)

36. MiniZinc: Minizinc challenge 2022 results. https://www.minizinc.org/
challenge2022/results2022.html. Accessed 2 Mar 2023

37. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

38. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

39. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

40. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model. Com-
put. 9(1), 53–58 (2014)

https://doi.org/10.1007/978-3-540-73368-3_52
https://developers.google.com/optimization
https://developers.google.com/optimization
https://satcompetition.github.io/2022/results.html
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-540-68279-0_5
https://doi.org/10.1007/978-3-540-68279-0_5
https://www.esat.kuleuven.be/cosic/publications/thesis-306.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-306.pdf
https://doi.org/10.1007/3-540-47555-9_7
https://www.minizinc.org/challenge2022/results2022.html
https://www.minizinc.org/challenge2022/results2022.html
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38

292 E. Bellini et al.

41. Oki, E.: GLPK (gnu linear programming kit) (2012)
42. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-

scale symmetric traveling salesman problems. SIAM Rev. 33(1), 60–100 (1991)
43. Prud’homme, C., Godet, A., Fages, J.G.: choco-solver. https://github.com/

chocoteam/choco-solver. Accessed 19 Mar 2023
44. Quine, W.V.: The problem of simplifying truth functions. Amer. Math. Monthly

59, 521–531 (1952)
45. Quine, W.V.: A way to simplify truth functions. Amer. Math. Monthly 62, 627–631

(1955)
46. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming,

Foundations of Artificial Intelligence, vol. 2. Elsevier (2006)
47. Schulte, C., Tack, G., Lagerkvyst, M.Z.: Gecode. https://www.gecode.org/index.

html. Accessed 19 Mar 2023
48. Silva, J.P.M., Sakallah, K.A.: GRASP: a search algorithm for propositional satis-

fiability. IEEE Trans. Comput. 48(5), 506–521 (1999)
49. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-

lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

50. Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear
characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 2021(1),
269–315 (2021)

51. Sun, S., et al.: Analysis of AES, SKINNY, and others with constraint programming.
IACR Trans. Symmetric Cryptol. 2017(1), 281–306 (2017)

52. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

53. Xu, S., Feng, X., Wang, Y.: On two factors affecting the efficiency of MILP models
in automated cryptanalyses. IACR Cryptol. ePrint Arch. 196 (2023)

54. Zhou, C., Zhang, W., Ding, T., Xiang, Z.: Improving the MILP-based security
evaluation algorithm against differential/linear cryptanalysis using a divide-and-
conquer approach. IACR Trans. Symmetric Cryptol. 2019(4), 438–469 (2019)

https://github.com/chocoteam/choco-solver
https://github.com/chocoteam/choco-solver
https://www.gecode.org/index.html
https://www.gecode.org/index.html
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-662-45611-8_9

Key Filtering in Cube Attacks
from the Implementation Aspect

Hao Fan1, Yonglin Hao2(B), Qingju Wang3, Xinxin Gong2, and Lin Jiao2

1 School of Cyber Science and Technology, Shandong University, Qingdao, China
2 State Key Laboratory of Cryptology, Beijing 100878, China

haoyonglin@yeah.net
3 Telecom Paris, Institut Polytechnique de Paris, Paris, France

Abstract. In cube attacks, key filtering is a basic step of identifying
the correct key candidates by referring to the truth tables of superpolies.
When terms of superpolies get massive, the truth table lookup complex-
ity of key filtering increases significantly. In this paper, we propose the
concept of implementation dependency dividing all cube attacks into two
categories: implementation dependent and implementation independent.
The implementation dependent cube attacks can only be feasible when
the assumption that one encryption oracle query is more complicated
than one table lookup holds. On the contrary, implementation indepen-
dent cube attacks remain feasible in the extreme case where encryption
oracles are implemented in the full codebook manner making one encryp-
tion query equivalent to one table lookup. From this point of view, we
scrutinize existing cube attack results of stream ciphers Trivium, Grain-
128AEAD, Acorn and Kreyvium. As a result, many of them turn out
to be implementation dependent. Combining with the degree evaluation
and divide-and-conquer techniques used for superpoly recovery, we fur-
ther propose new cube attack results on Kreyvium reduced to 898, 899
and 900 rounds. Such new results not only mount to the maximal number
of rounds so far but also are implementation independent.

Keywords: Stream ciphers · Cube attacks · Division property ·
Superpoly · Key filtering

1 Introduction

Cube attack was proposed by Dinur and Shamir in [2] at EUROCRYPT 2009 and
has become one of the most efficient cryptanalysis methods against primitives
taking public initial values (IV) and secret key as inputs. For a cipher with public
IV v = (v0, v1, . . . , vm−1) ∈ F

m
2 and secret key x = (x0, x1, . . . , xn−1) ∈ F

n
2 , an

output bit generated by the cipher can be regarded as a polynomial of v,x
denoted as f(x,v). In cube attacks, a set of IV indices, referred to as the cube
indices, is selected as I = {i0, i1, . . . , i|I|−1} ⊂ {0, 1, . . . ,m − 1}. Such a set
I determines a specific structure called cube, denoted as CI , containing 2|I|

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 293–317, 2023.
https://doi.org/10.1007/978-981-99-7563-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_14&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_14

294 H. Fan et al.

values: the cube variables in {vi0 , vi1 , . . . , vi|I|−1} take all possible combinations
of values while the key and non-cube IV variables are static. It is proved that
the summation of f over the cube CI equals a particular polynomial p(x,v),
commonly referred as the superpoly of cube I, denoted as pI(x,v) or p(x,v) when
I is clear from the context. The superpoly pI also defines a set J ⊆ {0, . . . , n−1}
such that the algebraic normal form ANF of pI is only related to the key bit
variable xj for j ∈ J .

The general process of cube attacks can be naturally summarized into the
4 phases namely superpoly recovery, key filtering, cube sum computation and
exhaustive search. The superpoly recovery recovery phase is carried out offline
for determining I and the ANF (or truth table) of the corresponding superpoly
pI . Then, the cube summation over CI , denoted as θ, is computed by querying
the targeted encryption oracle for 2|I| times. After that, the key filtering phase
filter the correct key candidates satisfying p(x,v) = θ so as to recover 1 bit of
secret key information. Finally, the exhaustive search recovers the remaining key
bits through the exhaustive search with 2n−1 encryption oracle queries.

The superpoly recovery phase is crucial and used to dominate the overall
complexity. Originally, the superpolies in cube attacks can only be recovered
with repeated cube summation experiments restricting the superpoly ANFs to
linear/quadratic form and limiting the cube dimensions within practical reach
[2,13]. Theoretic deduction remains infeasible until the proposal of the divi-
sion property based cube attack [18]: a combination of the division property
[16,17,19,22] and cube attacks. Such a new cryptanalysis method enables us
to conduct cube attacks with the mixed integer linear programming (MILP)–a
mature technique that have been widely in the security evaluations of symmet-
ric primitives against differential, linear and many other cryptanalysis methods
[4,12,14]. The original division property based cube attacks suffer from extremely
high offline complexities and a significant loss of accuracy [20,21]. After years’
development, the state-of-art three-subset division property based cube attack [6]
has been combined with the divide-and-conquer model solving technique [7,9,15]
enabling us to recover the accurate ANFs of superpolies within a practical com-
plexity, even when the superpolies are massive with |J | ≈ n and high algebraic
degrees.

Motivations. Now that the superpoly recovery is no longer the complexity dom-
inant, researchers turn to use smaller dimensional cubes with massive superpolies
so as to conduct cube attacks covering more rounds. Following such a strategy,
the current best cube attacks on Trivium, Grain-128AEAD, Kreyvium and
Acorn, etc. [7,9] are all using massive superpolies related to almost all key bits,
i.e., |J | ≈ n, resulting in 2n truth table lookups in the key filtering phase. Adding
the 2n−1 queries in the exhaustive search phase, there is an obvious challenge
that the overall complexity of cube attacks using massive superpolies may have
exceeded the generic complexity bound of 2n. According to the explanations in
[7,9], the feasibility of such attacks is based on the assumption that 1 query to
the encryption oracle is much more complicated than 1 table lookup: for exam-
ple in [7], 1 query to the 848-round Trivium encryption oracle is regarded as

Key Filtering in Cube Attacks from the Implementation Aspect 295

848× 9 = 7632 XORs while a table lookup only contains 1 XOR. However, from
the adversary’s view, a query to the oracle does not take more effort than the
execution of an XOR operation. Besides, such a bitwise and roundwise imple-
mentation is not the only way to realize cryptographic primitives: the selection
of tags in Trivium naturally supports a 64-time acceleration [1] for fast software
speeds; the time for an unrolled hardware implementation of the full encryption
is exactly 1 clock tick which is equal to that of a XOR. Therefore, the applicabil-
ity of massive superpolies to cube attacks heavily relies on the implementations
so the following 2 questions should be discussed in detail:

1. Whether the existing cube attacks are feasible for arbitrary implementations.
2. Whether there exist implementation-independent cube attacks that can reach

more rounds.

Our Contributions. In this paper, we answer the above questions and scru-
tinize the existing cube attacks on several ciphers. Our contributions can be
summarized as follows:

– We give the concept of implementation dependency and divide cube attacks
into two categories, namely the implementation dependent cube attacks and
the implementation independent cube attacks. Implementation dependent
cube attacks can only be feasible when a query to the encryption oracle is
more expensive than a table lookup while the implementation independent
cube attacks remain feasible in the extreme case where the encryption oracle
is implemented as the full codebook making one oracle query equivalent to
one table lookup.

– Following the above new concepts for cube attacks, we revisit the latest three-
subset division property based cube attacks on several symmetric primitives.
According to our evaluations, many current best results using massive super-
polies, such as all attacks on Trivium in [9], are implementation dependent.

– We also propose new implementation independent results on 898-, 899-, 900-
round Kreyvium using the methods in [7,9]: superior to their massive-
superpoly based, implementation dependent counterparts.

We list all our results in Table 1.
Organization of the Paper. Sect. 2 provides the necessary background infor-
mation. Then, we describe our new three-subset division property based cube
attacks on round-reduced Kreyvium in Sect. 3. After that, we introduce the
concept of implementation dependency and detail the evaluation of an existing
cube attack on Trivium in Sect. 4. Thorough implementation dependency eval-
uations of current best cube attack results for our targeted primitives are given
in Sect. 5 and we conclude the paper in Sect. 6.

2 Preliminary

In this section, we first summarize the general procedure of cube attacks in
Sect. 2.1. Then, we briefly review the technique details of division property based
superpoly recovery (Sect. 2.2) and table-lookup based key filtering (Sect. 2.3).

296 H. Fan et al.

Table 1. The complexity and implementation dependency of cube attacks. The com-
plexities are evaluated with the number of instructions.

Cipher #Rounds Cube
Attack

Exhaustive
Search†

Implement.
Dependency‡

Source

Trivium 843 282.99 281 � [9]
844 282.84 281 � [9]
845 284.92 281 � [9]
846 284.58 281 � [7]
847 284.58 281 � [7]
848 284.58 281 � [7]

Grain-128AEAD 191 2131.55 2129 � [9]
192 2133.17 2129 � [7]

Acorn 776 2128.58 2129 × [7]
Kreyvium 894 2128 2129 × [9]

895 2133.17 2129 � [7]
898 2128.58 2129 × Sect. 3
899 2128.58 2129 × Sect. 3
900 2128.58 2129 × Sect. 3

† One query of the cipher considered is a table lookup and equals two instructions,
then the brute force attack of the cipher needs 2κ+1 instructions where κ is the
key size.
‡ � denotes implementation dependent and × denotes implementation indepen-
dent. The details of our analysis can be found in Sect. 5.

We first define some notations used in the remainder of this paper. We con-
sider the stream ciphers with n-bit secret key x = (x0, . . . , xn−1) and m-bit
public IV v = (v0, . . . , vm−1). For arbitrary positive integer t > 1, we denote the
set of integers {0, . . . , t − 1} as [0, t) hereafter.

2.1 The Main Procedures of Cube Attacks

In cube attacks, the adversary is faced with an encryption oracle of the targeted
stream cipher, denoted as E. The adversary can query E with a public IV vector
v and acquire the key stream bits corresponding to v and an embedded secret
key xe, denoted as z (v,xe) = E(v). When queried with a key-IV pair (x,v),
the oracle E outputs the corresponding key stream bits z (v,x) = E(v,x).
The target for the adversary is to retrieve the embedded key xe within feasi-
ble complexity limits. The procedures of cube attacks for recovering xe can be
summarized as follows:

1. Superpoly Recovery. Recover the ANF of the superpoly pI(x, IV) where
IV is a known constant and pI can be a simple and low-degree polynomial
related to key bits x[J] where J ⊆ [0, n−1]. Such a superpoly can be recovered
with division property based techniques that we will detail in.

2. Cube Sum Computation. For all 2|I| v ∈ CI(IV), query E(v) and sum the
output keystream bits for the exact value of superpoly pI(IV ,xe) = θ.

Key Filtering in Cube Attacks from the Implementation Aspect 297

3. Key Filtering. For involved candidate bits: construct lookup tables for
identifying the correct key candidate xc’s, s.t. pI(IV ,xc) = θ.

4. Exhaustive Search. find the only correct key xe from the remaining keys.

2.2 Division Property Based Superpoly Recoveries

In the view of Boolean function for describing division property, the monomial
prediction technique is developed to evaluate the degree of Boolean functions
and is soon applied to recovery target polynomials, mainly for the polynomials
after many rounds of iteration in stream or block ciphers. Hu et al. proposed the
monomial prediction technique in [10], then developed it to the Nested Frame-
work, which was used to recover the exact ANFs of massive superpolies [9].

(Bit-Based) Division Property. Before giving a brief introduction to division
property, we need some notations for bit-vectors. For any bitvector x ∈ F

m
2 , x[i]

denotes the ith bit of x where i ∈ {0, 1, . . . ,m−1}. Given two bitvectors x ∈ F
m
2

and u ∈ F
m
2 , πu (x) = xu =

∏m−1
i=0 x[i]u[i]. Moreover, x � u denotes x[i] ≥ u[i]

for all i ∈ {0, 1, . . . ,m − 1}; otherwise we denote x �� u.
The (conventional) division property, a.k.a two-subset division property, was

proposed at Eurocrypt 2015 [17], and it is regarded as the generalization of the
integral property.

Definition 1 (Two-subset division property). Let X be a multiset whose
elements take a value of Fm

2 , and K = {k | k ∈ F
m
2 } be a set of m-dimension

bit vectors. When the multiset X has the division property D1m

K
, it fulfills the

following conditions:

⊕

x∈X

xu =

{
unknown if there are k ∈ K s.t. u � k,

0 otherwise.

To improve the accuracy of the division property propagation, the three-
subset division property was proposed in [19], where the number of divided
subsets is extended from two to three.

Definition 2 (Three-subset division property). Let X be a multiset whose
elements take a value of Fm

2 , and K = {k | k ∈ F
m
2 } and L = {� | � ∈ F

m
2 } be

two sets of m-dimension bit vectors. Define xu :=
∏m−1

i=0 xui
i , u ∈ F

m
2 . When

the multiset X has the three-subset division property D1m

K,L, it fulfills the following
conditions:

⊕

x∈X

xu =

⎧
⎪⎨

⎪⎩

unknown if there are k ∈ K s.t. u � k,

1 else if there is � ∈ L s.t. u = �,

0 otherwise.

Xiang et al. introduced MILP-based method to automatically search integral
distinguishers (based on two-subset division property) for several block ciphers
[22]. They modeled the propagation rules of basic operations such as COPY,

298 H. Fan et al.

AND, and XOR by MILP. Later the MILP division property method was fur-
ther applied to cube attacks on stream ciphers [18,20]. For the three-subset
division property and the variant without unknown (removing the unknown set
K from the Definition 2 for make cube attacks based on three-subset division
property infeasible and/or practical), the detailed propagation rules and the
MILP modelings can be found in [6,21].

Monomial Prediction. The monomial prediction technique [10] can be used
to determine that the coefficient of an involved monomial is 0 or 1 in the ANF
of a given Boolean function, which can be applied to the construction of SAT
models for block ciphers taking the key schedule into consideration in order to
find refined integral distinguishers [5], or to recover the ANF of the superpoly
of the cube attacks. In this paper, we focus on the latter application.

Let f : Fn
2 → F2 be a Boolean function whose algebraic normal form (ANF) is

f(x) = f(x0, x1, . . . , xn−1) =
⊕

u∈F
n
2

auπu (x)

where au ∈ F2, πu (x) =
∏n−1

i=0 xui
i is defined as before and is a monomial.

Let f : F
n
2 → F

m
2 be a vectorial Boolean function with y =

(y0, y1, . . . , ym−1) = f(x) = (f0(x), f1(x), . . . , fm−1(x)), where fi : Fn
2 → F2

is a Boolean function. For u ∈ F
n
2 and v ∈ F

m
2 , we use xu → yv to denote that

monomial xu appears in yv .
We are interested in the following case: Let f be a composition of a sequence

of r vectorial Boolean functions

y = f(x) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x).

For 0 ≤ i ≤ r−1, suppose x(i) ∈ F
ni
2 and x(i+1) ∈ F

ni+1
2 are the input and output

of the ith component function f (i). We are interested in whether a monomial
of x(0), say πu(0)(x(0)), appears in one monomial of x(r), i.e., πu(0)(x(0)) →
πu(r)(x(r)). To make it happen, for one monomial in πu(i)(x(i)), there must exist
at least one monomial in πu(i+1)(x(i+1)), i.e., for every 0 ≤ i ≤ r−1, a transition
πu(i)(x(i)) → πu(i+1)(x(i+1)) must be guaranteed.

Definition 3 (Monomial Trail [10]). Let x(i+1) = f (i)(x(i)) for 0 ≤ i ≤ r−1.
We call a sequence of monomials (πu(0)(x(0)), πu(1)(x(1)), . . . , πu(r)(x(r))) an r-
round monomial trail connecting πu(0)(x(0)) and πu(r)(x(r)) under the composite
function f(x) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0) if there exist

πu(0)(x(0)) → · · · πu(i)(x(i)) → · · · → πu(r)(x(r)).

If there exist at least one monomial trail connecting πu(0)(x(0)) and
πu(r)(x(r)), we write πu(0)(x(0)) � πu(r)(x(r)). Otherwise, πu(0)(x(0)) ��
πu(r)(x(r)).

We describe the following theorem that is integrated from [6,8,10].

Theorem 1. Let f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0) defined as above. Denote
all the trails from πu(0)(x(0)) to πu(r)(x(r)) by πu(0)(x(0)) � πu(r)(x(r)). Then
πu(0)(x(0)) � πu(r)(x(r)) if and only if

Key Filtering in Cube Attacks from the Implementation Aspect 299

|πu(0)(x(0)) � πu(r)(x(r))| ≡ 1 (mod 2).

Degree Evaluation for Superpoly. The technique of the superpoly degree
evaluation for cube attacks was proposed in [20], to avoid constructing the whole
truth table of the superpoly using cube summations which can eventually reduce
the entire complexity of cube attacks.

Based on the MILP-aided two-subset division property, the upper bound for
the algebraic degree, denoted as d, of the superpoly can be derived. With the
knowledge of its degree d (and J as the set of the indices of key involved), the
superpoly can be completely represented with its

(|J|
≤d

)
coefficients rather than

the whole truth table, where
(|J|
≤d

)
:=

∑d
i=0

(|J|
i

)
. If d < |J |, which is true for

lightweight ciphers because the algebraic degrees of their round functions are
usually quite low, the coefficients of the monomials with degrees higher than
d are constantly 0. Thus, the complexity of superpoly recovery can be reduced
from 2|I|+|J| to 2|I| × (|J|

≤d

)
. Therefore, the degrees d are often much smaller than

|J |, especially when high-dimensional cubes are used.
Although such degree d’s are only upper bounds for the degree of superpolies,

the superpolies with a lower degree are more likely to be simpler than those with
higher ones. This technique is used to help us heuristically filter out superpolies
with a higher degree which potentially lead to massive superpolies. The effective-
ness of using this technique is verified by simple superpolies we finally obtained
for more rounds of Kreyvium in Sect. 3.

Divide-and-Conquer Strategy for Recovering ANFs of Superpolies. As
the number of rounds evaluated grows, the superpolies for certain cubes become
increasingly complex. Many existing methods for superpoly recovery quickly hit
their bottlenecks. Motivated by this, Hu et al. [9] proposed a framework with
nested monomial predictions that scales well for massive superpoly recovery. The
nested method actually is a hybrid of four popular methods in this area, namely
Wang et al.’s pruning method [21], Ye and Tian’s algebraic method [24], Tian’s
recursively-expressing method [23] and Hao et al.’s PoolSearchMode method
[6]. Later, He et al. [7] improved the nested monomial prediction framework to
further simplify the MILP model and speed up the model solving. Sun [15] also
used a similar technique to handle the heavy search in the superpoly recovery. In
this paper, we do not go deep into their respective details and uniformly called
them the divide-and-conquer techniques, and we briefly describe the main idea
of the strategy they follow.

In this kind of frameworks, the targeted output bit is first expressed as a
polynomial of the bits of some intermediate state. For each term appearing in
the polynomial, the monomial prediction technique is applied to determine its
superpoly if the corresponding MILP model can be solved within a given time
limit. Terms that cannot be resolved within the time limit are further expanded
as polynomials of the bits of some deeper intermediate states with symbolic
computation, whose terms are again processed with monomial predictions. The
above procedure is iterated until all terms are resolved. Finally, all the sub-
superpolies are collected and assembled into the superpoly of the targeted bit.

300 H. Fan et al.

2.3 Table Lookup Based Key Filtering Techniques

In order to identify the xc’s satisfying pI(x, IV) = θ, one has to refer to the truth
table of pI , denoted as TI . Such TI is of size 2|J|. It also takes 2|J| table lookups
so as to identify the x[J] candidates. However, for the massive superpolies with
J = [0, n), tricks can be played to avoid storing and traversing the whole TI .
In [9], the disjoint set was used to decompose the whole superpoly into several
sub-superpolies, thus the task of constructing a huge truth table for a massive
superpoly can be divided into several smaller scale tasks of constructing smaller
truth tables, which reduces the entirety of the complexity. We recall the idea of
superpoly recovery using a disjoint set briefly in the following.

Disjoint Set Based Key Filtering. Given a polynomial p(x) with n variables,
if for 0 ≤ i �= j < n, xi and xj are never multiplied mutually in all monomials
of p(x), then we say xi and xj are disjoint. For a subset of variables D ⊆
{x0, x1, · · · , xn−1}, if every pair of variables like (xi, xj) ∈ D are disjoint, we
call D a disjoint set. Given the disjoint set D = {x0, x1, . . . , x�−1}, denote the
set of the rest of the key variables not in D as D = {x0, x1, . . . , xn−1}\D, the
superpoly can be re-written as a linear combination:

p(x) = x0 · p0(D) + x1 · p1(D) + · · · + x�−1 · p�−1(D) + p�(D) ,

where p(D) is a polynomial of the variables only in D, which is usually simplier
than p(x). By this the huge truth table of p(x) can be replaced by smaller
sub-tables corresponding to p0(D), p1(D), . . . , p�−1(D) and the residue p�(D).
In the key filtering phase, the bits in disjoint set are guessed and refer to the
corresponding sub-tables sequentially.

The key filtering procedures based on a single superpoly can easily be
extended to multiple superpolies. In addition to the key filtering method based
on the disjoint set, improvement was further proposed in [7] for key filtering:
they choose to guess some key bits for simplifying the massive superpoly and
construct truth tables on the fly for filtering keys.

Note that all truth tables are constructed using the Möbius transformation
technique in [9]: for a Boolean function with n variables, the Möbius transfor-
mation algorithm can be used to construct its truth table with n · 2n−1 XOR
operations.

3 New Attacks on Kreyvium

So far, cube attacks on stream ciphers are conducted the following two main
strategies:

– The massive superpoly strategy uses low dimensional cubes but the super-
polies are usually complicated;

– On the contrary, the conventional strategy turns to using high dimensional
cubes so as to acquire low-degree superpolies related to very few key bits.

Key Filtering in Cube Attacks from the Implementation Aspect 301

In the high-level view, our new cube attacks on 898-, 899- and 900-round
Kreyvium follow the conventional strategy. The reason we choose this strat-
egy will be given in Sect. 4.1. In the low-level view, we propose our own specific
procedures for constructing the cubes utilized in our cube attacks on Kreyvium.
We summarize them in the following:

– Since the key and IV of Kreyvium share the same length of 128 bits, we
decide to use the largest possible dimension of cubes as |I| = m − 2 = 126.

– The cube indices are selected so as to result in lower superpoly degrees which
are evaluated naturally with the two-subset division property based degree
evaluation technique [20].

– After finding cubes with low-degree superpolies, the superpolies recovery can
be accomplished directly with the methods in [7,9].

In the following, we give the 898-, 899- and 900-round cube attacks on
Kreyvium, with the corresponding balanced superpolies. So far as we know,
these are the best cube attacks on Kreyvium.

3.1 New Results for 898-Round Kreyvium

For 898-round Kreyvium, there are plenty of 126-dimensional cubes with sim-
ple superpolies so we randomly pick several 126-dimensional cubes, run degree
evaluation procedures and select the cubes with the lowest degrees. After exam-
ining several trials, we find two cubes, denoted as I0 and I1 respectively, with
degree evaluations 2 and 3. The cube I0 is defined as I0 = [0, 127]\{5, 56}, the
superpoly pI0(x,0) of 898-round Kreyvium is determined as the follows

pI0(x,0) = x11 + x13 + x28 + x37 + x38 + x39 + x53 + x53x54 + x55 + x62x63 + x70+

x72 + x87 + x97 + x98 + x112 + x54x112 + x113 + x53x113 + x112x113 + x114 + x123.

The definition of I1 is I1 = [0, 127]\{38, 86} and the superpoly pI1(x,0) is
derived as Eq. (7) in Appendix A.2.

3.2 New Results for 899-Round Kreyvium

Following the procedure for the 898-round case, we still hope to find a cube of
dimension 126 whose superpoly has a considerably lower degree, for instance, 2
or 3. However, when we ran similar procedures directly for 899-round Kreyvium,
we found that low-degree superpolies became quite rare given 126-dimensional
cubes. Instead of constructing a 126-dimensional cube directly, we have to exploit
new methods.

First, wes run degree evaluation procedure for all 127-dimensional cubes so
as to find good indices for further exclusions. To be more specific, for all the
128 cubes Iλ = [0, 127]\{λ} with λ = 0, . . . , 127, we acquire the degree upper
bounds of their corresponding superpolies, denoted as deg(pIλ

), using the degree
evaluation based on the conventional division property in [20]. We find that only
13 λ’s satisfy deg(pIλ

) ≤ 3 and we store such 13 λ’s in the set Λ below:

Λ = {λ ∈ [0, 127] : deg(pIλ) ≤ 3} = {28, 29, 41, 47, 48, 49, 52, 55, 60, 61, 70, 74, 75, 79}.

302 H. Fan et al.

Details of the 128 deg(pIλ
)’s can be seen in Table 2 of Appendix A.1.

Next, we further construct the 126-dimensional cube I = [0, 127]\{29, 47}
and the degree evaluation gives deg(pI) = 3. Therefore, we are able to recover
pI using the method of [9]. The ANF of pI(x,0) is as follows:

pI(x,0) = x2 + x3 + x8 + x10 + x11 + x10x11 + x15 + x18 + x19 + x20 + x6x20+

x21 + x24 + x28 + x29 + x6x30 + x28x34 + x20x37 + x30x37 + x34x37 + x24x38 + x39+

x20x40 + x30x40 + x41 + x28x44 + x37x44 + x45 + x51 + x52 + x39x52 + x51x52+

x34x53 + x44x53 + x34x54 + x38x54 + x44x54 + x52x54 + x34x53x54 + x44x53x54+

x34x55 + x44x55 + x20x56 + x30x56 + x62 + x54x62 + x61x62 + x63 + x34x62x63+

x44x62x63 + x34x64 + x44x64 + x63x64 + x24x63x64 + x20x65 + x24x65 + x30x65+

x20x66 + x30x66 + x66x67 + x68 + x71 + x70x71 + x72 + x74 + x77 + x78 + x77x78+

x39x77x78 + x39x79 + x80 + x79x80 + x38x79x80 + x52x79x80 + x62x79x80 + x81+

x38x81 + x52x81 + x62x81 + x83 + x38x83 + x63x64x83 + x65x83 + x86 + x87 + x34x87+

x44x87 + x88 + x87x88 + x89 + x6x89 + x37x89 + x40x89 + x56x89 + x65x89 + x66x89+

x90x91 + x92 + x95 + x20x96 + x30x96 + x89x96 + x97 + x54x97 + x79x80x97 + x81x97+

x98 + x52x98 + x77x78x98 + x79x98 + x20x99 + x30x99 + x89x99 + x28x103 + x37x103+

x53x103 + x54x103 + x53x54x103 + x55x103 + x62x63x103 + x64x103 + x87x103 + x111+

x53x111 + x112 + x34x112 + x44x112 + x52x112 + x34x54x112 + x44x54x112 + x103x112+

x54x103x112 + x111x112 + x34x113 + x44x113 + x34x53x113 + x44x53x113 + x103x113+

x53x103x113 + x34x112x113 + x44x112x113 + x103x112x113 + x34x114 + x44x114+

x103x114 + x120 + x121 + x54x121 + x79x80x121 + x81x121 + x20x124 + x30x124+

x89x124 + x20x125 + x30x125 + x89x125.

3.3 New Results for 900-Round Kreyvium

As for 900-round Kreyvium, the cube construction follows the same steps as
899-round in Sect. 3.2. The superpoly recovery is accomplished using the method
in [7]. We take I = [0, 127]\{38, 86} as the cube for 900-round Kreyvium, and
the superpoly pI(x,0) is given in Appendix A.2.

4 Implementation Dependency

The stream cipher E in Sect. 2.1 can be implemented in many different ways.
In codebook implementations, E is simply a lookup table storing all key-IV
pairs (x,v)’s along with the corresponding keystream z(x,v) values. In round-
wise implementations, E is simply executed by sequential assembly instructions
describing the round functions of stream ciphers. In this case, E is implemented
round by round so a query of E seems more complicated than a table lookup.
However, for E’s implemented in a codebook manner, a query of E is simply a
table lookup. Therefore, for cube attacks, we propose the concept of implemen-
tation dependency revealing whether it can be feasible for both round-wise and
codebook implementation oracles.

Key Filtering in Cube Attacks from the Implementation Aspect 303

Implementation Dependent Cube Attacks. When the number of table
lookups in the key filtering phase approaches the exhaustive search complexity,
the cube attack may become infeasible for codebook-implemented oracles. We
refer to the cube attacks that only work for round-wise implementations as
implementation dependent cube attacks.

Implementation Independent Cube Attacks. On the contrary, those cube
attacks work for both round-wise and codebook implementation attacks are
therefore called the implementation independent cube attacks.

Consider a cube attack using � cubes I0, . . . , I�−1 with superpolies correlated
to key bits J0, . . . , J�−1. The cube attack in Sect. 2.1 requires 2|I0| + . . .+2|I�−1|

oracle queries for Cube Sum Computation procedure, at least 2|J0|+ . . .+2|J�−1|

table lookups in Key Filtering and another 2n−� oracle queries for the last
Exhaustive Search procedure.

In fact, a table lookup takes two assembly instructions: one addition and one
comparison. We further assume that the implementation of querying E takes
α instructions. Besides, there may also involve basic operations such as XOR,
for constructing the lookup tables used in the Key Filtering phase and the
number of instructions for the table construction is denoted as β. Therefore, the
complexity of the cube attack in Sect. 2.1 has now become:

Cnew =
�−1∑

j=0

2|Ij | + 2n−� +
2
α

�−1∑

j=0

2|Jj | +
β

α
(1)

The attack can only work when Cnew < 2n.

4.1 An Implementation Dependency Analysis Example

According to the concepts of implementation dependency, we find that the cube
attack on 845-round Trivium given in [9] is implementation dependent. We detail
such an implementation dependency analysis here as an example and leave the
same analysis of other cube attack results in Sect. 5.1.

Trivium [1] is a hardware oriented stream cipher. It has been selected as
part of the eSTREAM portfolio [3] and specified as an International Standard
under ISO/IEC 29192-3 [11]. Then key and IV of Trivium are both of 80 bits.
Both key and IV are first loaded in a 288-bit internal state and run 1152-round
initialization afterwards. The whole initialization process can be summarized as
follows:

(s0, s1, . . . , s92) ← (K0, K1, . . . , K79, 0, . . . , 0)

(s93, s95, . . . , s177) ← (IV0, IV1, . . . , IV79, 0, . . . , 0)

(s177, s179, . . . , s287) ← (0, . . . , 0, 1, 1, 1)

for i = 0 to 1151 do
t1 ← s65 ⊕ s90 · s91 ⊕ s92 ⊕ s170 (2)
t2 ← s161 ⊕ s174 · s175 ⊕ s176 ⊕ s263 (3)

304 H. Fan et al.

t3 ← s242 ⊕ s285 · s286 ⊕ s287 ⊕ s68 (4)
(s0, s1, . . . , s92) ← (t3, s0, s1, . . . , s91)

(s93, s95, . . . , s177 ← (t1, s93, s94, . . . , s175)

(s177, s179, . . . , s287) ← (t2, s177, s178 . . . , s286)

end for

After the initialization phase, one key stream bit is generated by

z = s65 ⊕ s92 ⊕ s161 ⊕ s176 ⊕ s242 ⊕ s287. (5)

When we say r-round Trivium, we mean after r times of updates in the initial-
ization phase, one key bit denoted by zr is generated.

If implementing Trivium bit-wisely, we can get quickly from Eqs. (2) to (5)
that each round of Trivium (one initialization and one keystream bit genera-
tion) requires 14 XORs, 3 ANDs and 288 rotates instructions, thus a total of
305 instructions. In fact, using parallel computing in a hardware environment
could give 64 times speed up for the iterations, which leads to about just 4.8
instructions for each round. So considering a codebook-implemented oracle, one
query of the Trivium is just a table lookup.

In [9], Hu et al. found two cubes I2 and I3 (notations exactly follow [9])
which have the same disjoint set D = {k1, k10}, then they used 2 corresponding
equations for the key recovery procedure of 845-round Trivium, where |I2| = 55
and |I3| = 54. Obviously, we can filter keys by half for the remaining keys once
we get another equation (if the equation is balanced). So three quarters of keys
will be filtered by two equations. For the 845-round attack on Trivium, the two
equations are:

{
p(2) = k1 · p

(2)
0 ⊕ k10 · p

(2)
1 ⊕ p

(2)
2

p(3) = k1 · p
(3)
0 ⊕ k10 · p

(3)
1 ⊕ p

(3)
2

(6)

There are 6 truth tables in the equations and recovering them needs using
Möbius transformation technique. There are 3 tables for p(2) and 3 tables for
p(3). Let T1, T2, T0 are truth tables for p

(2)
1 , p

(2)
2 , p

(2)
0 , the size of them are 278,

277 and 278, and the probability of p(2) being balanced is 0.5. And there are
four tables of 278 size and 2 of 277 size in the 6 tables. In the table constructing
phase, the number of XORs is 4 · 78 · 276 + 2 · 77 · 275 ≈ 1.51 · 284.

In the Cube Sum Computation phase, totally 255 + 254 = 1.5 · 255 queries
and XORs are used to get p(2) = θ2 and p(3) = θ3, and this complexity could be
ignored comparing with the Key Filtering and the Exhaustive Search phase.
After we get the values of p(2) and p(3) by doing the Cube Sum Computation in
the online phase, we can filter and search 280 keys with the given equations.
We simply consider the complexity of lookup for one equation (that is to say
just use one single cube) first and then extend to that of two equations. There
are totally four cases for the table lookup: (k1, k10) = (0, 0), (0, 1), (1, 0), (1, 1).
Consider three kinds of operations: lookup, XOR and judgement. Let k be a
key which is filtered, and k = ∗k1 ∗ ∗ ∗ k10 ∗ ∗∗, where ∗ represents a bit not

Key Filtering in Cube Attacks from the Implementation Aspect 305

belonging to the disjoint set. That is to say, we should give three lookups each
for T0, T1 and T2. Firstly, consider the first equation in Eq. (6). For the four
(k1, k10) situations in , we should compute the results and compare them with
p(2), and if one key leads to p(2) = θ2 ⊕ 1, there is no need to do anything for
the other equation with this key.

So the number of instructions of the first equation consists of three parts
according to three kind of operations we considered:

1. Table lookups for T0, T1 and T2. Totally 278 + 277 + 278 = 1.25 · 279 lookups,
and 1.25 · 280 instructions.

2. XORs in equation evaluation calculation. The four (k1, k10) cases need 0, 1, 1
and 2 XORs respectively. In total, there are 278+278+2·278 = 280instructions.

3. Judgements. After calculating k1 · p(2)0 ⊕ k10 · p(2)1 ⊕ p
(2)
2 , give a judgement to

check if it equals to p(2) so as to filter keys. There are totally 280 judgements
needed.

Now consider the situation for other equations. We need only to process the
keys that are filtered by the first equation, about 279 keys. This leads to a half
number of XORs and half number of the judgements but full table lookups for
the second equation. Totally it costs about 1.25 · 280 instructions for lookups,
279 instructions for XORs and 279 instructions for judgements.

After key filtering, we should exhaustively search the remaining (1/4) · 280
keys, which needs (1/4) · 280 oracle queries, scilicet, 279 instructions.

Totally, the process of key filtering and searching uses 1.5 · 282 instructions
and the full attack uses 1.89 · 284 = 284.92 instructions. Instead, using brute
force attack for the cipher needs 280 oracle queries. One query of the Trivium
is a table lookup and equals 2 instructions, then the full brute force attack
of Trivium needs 281 instructions. It means cube attack does not work for
codebook implementation Trivium over 845-round. We also find some other
cases to illustrate the universality of this phenomenon, and we put them in
Sect. 5.1.

5 Further Analysis for Cube Attacks

Similar to the analysis in Sect. 4.1, we further scrutinize existing cube attack
results of stream ciphers Trivium, Grain-128AEAD, Acorn and Kreyvium in
Sect. 5.1 to see whether they are implementation independent. We also discuss if
using multiple cubes (superpolies) can reduce the complexity of the key recovery
in Sect. 5.2. For the convenience of the explanation, we give a brief introduction
to Trivium in Sect. 4.1. However, due to page limits, we refer the specifications
for Kreyvium, Grain-128AEAD and Acorn to the respective design papers.

5.1 Analysis for More Cases of Cube Attacks

We recall the corresponding relationship between operations and the number of
instructions. All operations considered are: oracle query, table lookup, XOR, and
judgment.

306 H. Fan et al.

As has been explicit in Sect. 2.1, there are four procedures in cube attacks,
namely Superpoly Recovery, Cube Sum Computation, Key Filtering and
Exhaustive Search. Now that we consider the complexity between oracle and
key filtering, which is important to justify what steps should be considered.

Oracle implementation is querying a stream cipher through a table lookup.
One query for one key so that total 2L queries for a cipher with an L-bit length
key. One oracle query equals m-instructions so there are total m ·2L instructions
for the whole search. And in this section we let one oracle query equal to one
table lookup, then we get m = 2. So in our analysis, we keep using: 1 oracle
query ≈ 1 table lookup ≈ 2 instructions.

– The step Superpoly Recovery uses the nest framework [9] in the offline phase
so its complexity is not involved.

– The step Cube Sum Computation needs to query the oracle 2|I| times where
|I| is the number of indices of the cube. For someone who has much smaller
cube sizes than L , the time cost for cube sum can be ignored. However, for
those using heavy cubes , the time cost should be considered.

– The step Key Filtering uses superpoly and its value to eliminate wrong
keys. One superpoly can filter half keys of the remaining keys (in most cases
the balancedness of a superpoly is 0.5).
Calculating instructions of the table lookups is easy, while the number of
XORs is calculated as follows: Suppose the superpoly can be re-written using
the common disjoint set containing � keys k0, . . . , k�−1, it means 2� keys share
the same table and just change the values of k0, . . . , k�−1. Obviously, there
are � · 2�/2 XORs for 2� keys, so on average �/2 XORs for each key.

– Finally, we should execute Exhaustive Search procedure for the remaining
keys. For one equation situation, there are still half of the total keys.

Note that for Trivium, we follow the same notations in [9]. The complexity
of the steps of Cube Sum Computation in cube attacks for 843- and 848-round
Trivium is negligible due to the small size of cubes.
The attack on 843-round Trivium in [9] uses three cubes I0, I2 and I3 with
sizes 56, 55, 54, and the corresponding superpolies p0, p2 and p3 all have 5 sub
truth tables(separated by their disjoint sets). The biggest truth table sizes of the
three superpolies are 75, 74 and 75 respectively, so the number of instructions
for table construction is 2 · 75 · 273 + 74 · 272= 1.46 · 280 .

The Key Filtering uses three superpoly equations: the 1st equation involves
5 · 279 XORs, 275 table lookups and 280 judgements which is 3.5625 · 280 instruc-
tions in total; the 2nd involves 0.5·5·279 XORs, 0.5·280 judgements and 274 table
lookups so there are 1.78125 ·280 instructions; the 3rd involves 0.25 ·5 ·279 XORs,
0.25 · 280 judgements and 275 table lookups, totally 0.9375 · 280 instructions.

The Exhaustive Search for the remaining 1/8 · 280 keys requires 1/8 · 280
encryption oracle queries which is equivalent to 1/4 · 280 instructions.

To sum up, the total amount of instructions for the whole attack is (1.46 +
3.5625 + 1.78125 + 0.9375 + 0.25) · 280 = 282.99 which is higher than that of the
exhaustive search. So this is an implementation dependent result.

Key Filtering in Cube Attacks from the Implementation Aspect 307

The attack on 844-round Trivium in [9] uses 2 cubes I2 and I3 with size
55, 54, and the superpolies p2 and p3 have the same disjoint set with size 6. The
truth table sizes of the two superpolies are both 74 respectively, so the number
of instructions for table construction is 2 · 74 · 272 = 0.58 · 280.

The Key Filtering uses two superpoly equations : the 1st equation involves
6·279 XORs, 274 table lookups and 280 judgements which is 4.03·280 instructions
in total; the 2nd involves 0.5 · 6 · 279 XORs, 0.5 · 280 judgements and 274 table
lookups, totally 2.03 · 280 instructions.

The Exhaustive Search for the remaining 1/4 · 280 keys requires 1/4 · 280
encryption oracle queries which is equivalent to 1/2 · 280 instructions.

To sum up, the total amount of instructions for the whole attack is (0.58 +
4.03 + 2.03 + 0.5) · 280 = 282.84 which is higher than that of exhaustive search.
So this is an implementation dependent result.
The attacks on 846-, 847- and 848-round Trivium in [7] use the same
cube I with size 53, and the sizes of the corresponding superpolies are all 80 so
the number of instructions for table construction is 80 · 278 = 20 · 280.

The Key Filtering uses one superpoly equation: the equation involves 280

table lookups and 280 judgements, totally 3.5625 · 280 instructions.
The Exhaustive Search for the remaining 1/2 · 280 keys requires 1/2 · 280

encryption oracle queries which is equivalent to 280 instructions.
To sum up, the total amount of instructions for the whole attack is (20+3+

1) · 280 = 284.58 which is higher than that of the exhaustive search. So these are
implementation dependent results.
The attacks on 191-round Grain-128AEAD in [9] uses 2 cubes I0 and I1
with size 96 and 95, and the corresponding superpolies p0 and p1 have the same
disjoint set with size 12. The biggest truth table sizes of the two superpolies are
both 116 respectively, so the number of instructions for table construction can
be ignored.

The Key Filtering uses two superpoly equations: the 1st equation involves
12 · 2127 XORs, 2 · 2116+2115 table lookups and 2128 judgements which is 7 · 2128
instructions in total; the 2nd involves 0.58 ·12 ·2127 XORs, 0.58 ·2128 judgements
and 2 · 2116 + 2115 table lookups, totally 0.58 · 7 · 2128 = 4.06 · 2128 instructions.

The Exhaustive Search for the remaining (1 − 0.42)2 · 2128 keys requires
(1 − 0.42)2 · 2128 encryption oracle queries which is equivalent to 0.67 · 2128
instructions.

To sum up, the total amount of instructions for the whole attack is 7 · 2128 +
4.06 · 2128 + 0.67 · 2128 = 2131.55 which is higher than that of the exhaustive
search. So this is an implementation dependent result.

Remark 1. The balancedness for p0 is 0.31 and 0.30 for p1, so using the knowl-
edge of classical models of probability, we can filter 0.3 · 0.7 + 0.7 · 0.3 = 0.42 of
the total keys using one equation with the mathematic expectation (more details
referring to [9]). And it means the best balancedness is 0.5 in this attack.

308 H. Fan et al.

The attacks on 192-round Grain-128AEAD [7] uses one cube I with size 94,
and the size of the corresponding superpoly is 128 so the number of instructions
for table construction is 128 · 2126 = 32 · 2128.

The Key Filtering uses one superpoly equation: the equation involves 2128

table lookups and 2128 judgements, totally 3 · 2128 instructions.
The Exhaustive Search for the remaining 1/2 · 2128 keys requires 1/2 · 2128

encryption oracle queries which is equivalent to 2128 instructions.
To sum up, the total amount of instructions for the whole attack is (32+3+

1) · 2128 = 2133.17 which is higher than that of the exhaustive search. So this is
an implementation dependent result.
The attacks on 776-roundAcorn in [7] uses 2 cubes I1 and I2 with both size
126, so the complexity of the two cubes sum computation is 2 · 2126 encryption
oracle queries which is equivalent to 2128 instructions, and the corresponding
superpolies are p0 and p1. The biggest truth table sizes of the two superpolies
are 120 and 119, so the number of instructions for table construction could be
ignored and so as the Key Filtering.

The Exhaustive Search for the remaining (1/4) · 2128 keys requires (1/4) ·
2128 encryption oracle queries which is equivalent to (1/2) · 2128 instructions.

To sum up, the total amount of instructions for the whole attack is 2128 +
(1/2) · 2128 = 2128.58 which is lower than that of the exhaustive search. So this
is an implementation independent result.
The attacks on 894-round Kreyvium in [9] uses 1 cube I with size 119, and
the corresponding superpoly is p. The truth table size of the superpoly is 77, so
the number of instructions for table construction could be ignored and so as the
Key Filtering.

The Exhaustive Search for the remaining 1/2 · 2128 keys requires 1/2 · 2128
encryption oracle queries which is equivalent to 2128 instructions.

To sum up, the total amount of instructions for the whole attack is 2128

which is lower than that of the exhaustive search. So this is an implementation
independent result.
The attacks on 895-round Kreyvium in [7] uses one cube I with size 120,
and the corresponding superpoly p has a single truth table. The truth table size
of the superpoly is 128, so the number of instructions for table construction is
128 · 2126 = 32 · 2128.

The Key Filtering uses one superpoly equation: the equation involves 2128

table lookups and 2128 judgements, totally 3 · 2128 instructions.
The Exhaustive Search for the remaining 1/2 · 2128 keys requires 1/2 · 2128

encryption oracle queries which is equivalent to 2128 instructions.
To sum up, the total amount of instructions for the whole attack is the equa-

tion involves 2128 table lookups and 2128 judgements, totally 3 ·2128 instructions,
which is higher than that of the exhaustive search. So this is an implementation
dependent result.

Key Filtering in Cube Attacks from the Implementation Aspect 309

The attack on 898-round Kreyvium in this paper uses two cubes I0 and I1
with sizes both 126, so the complexity of the two cubes sum computation requires
2 ·2126 encryption oracle queries which is equivalent to 2128 instructions, and the
corresponding superpolies p0 and p1 both have one truth table. The truth table
sizes of the superpolies are far smaller than 128, so the number of instructions
for table construction can be ignored and so as the Key Filtering.

The Exhaustive Search for the remaining 1/4 · 2128 keys requires 1/4 · 2128
encryption oracle queries which is equivalent to (1/2) · 2128 instructions.

To sum up, the total amount of instructions for the whole attack is 2128 +
(1/2)·2128 = 1.5·2128 = 2128.58 which is lower than that of the exhaustive search.
So this is an implementation independent result.
The attack on 899-round Kreyvium in this paper uses one cube I with
size 126, so the complexity of the cube sum computation requires 2126 encryption
oracle queries which is equivalent to 2127 instructions, and the corresponding
superpoly p have one truth table. The truth table size of the superpoly is far
smaller than 128, so the number of instructions for table construction can be
ignored and so as the Key Filtering.

The Exhaustive Search for the remaining 1/2 · 2128 keys requires 1/2 · 2128
encryption oracle queries which is equivalent to 2128 instructions.

To sum up, the total amount of instructions for the whole attack is (1/2) ·
2128+2128 = 1.5·2128 = 2128.58 which is lower than that of the exhaustive search.
So this is an implementation independent result.
The attack on 900-round Kreyvium in this paper uses one cube I with
size 126, so the complexity of the cube sum computation requires 2126 encryption
oracle queries which is equivalent to 2127 instructions, and the corresponding
superpoly p have one truth table. The truth table size of the superpoly is far
smaller than 128, so the number of instructions for table construction can be
ignored and so as the Key Filtering.

The Exhaustive Search for the remaining 1/2 · 2128 keys requires 1/2 · 2128
encryption oracle queries which is equivalent to 2128 instructions.

To sum up, the total amount of instructions for the whole attack is (1/2) ·
2128+2128 = 1.5·2128 = 2128.58 which is lower than that of the exhaustive search.
So this is an implementation independent result.

A summary of all the analyzed results is given in Table 1 in the Introduction.

5.2 Multiple Cubes Vs Single Cube

We find using multiple cubes may not result in more efficient key recoveries than
its single-cube counterpart, and examples are 843, 844, 845-Round Trivium,
898-round Kreyvium and 776-round Acorn.

310 H. Fan et al.

We find the interesting property firstly in studying key filtering. For a cipher
with several cubes that can be exploited, such as N cubes, which correspond
to N equations. Each equation could reduce half of the remaining keys. That
means for an equation in the latter of the key filtering procedure, the cost of
constructing its truth table and doing the cube summation might be unbearable.
Though we handle corresponding fewer key bits for the equation in the back, we
must pay for full time constructing its truth table and doing cube sum just like
what we did for the first equation. And we give several examples.

The cube attack on 843-round Trivium uses 3 cubes, which means the third
equation could only filter 1/8 keys from the remaining 1/4 keys but should pay
the whole expenses of truth table constructions.The cost is 75 · 273 = 1.17 · 279
XORs while the exhaustive search for (1/8) keys costs only (1/8) · 280 oracle
queries, equals to 0.5 · 279 instructions. And this does not consider the cost of
table lookups, XORs and judgments for the third equation.

843, 844 and 845-round Trivium are typical cases. And unexpectedly, even
in the feasible cube attack on 898-round Kreyvium, though the total complexity
is less than exhaustive search, its second equation corresponds to a cube of size
126, which queries 2126 times Kreyvium, and it just filters half of the rest keys,
that is 2126 keys. And querying the Kreyvium 2126 times is just the same as
the exhaustive search. So using multiple cubes may not surpass using a single
cube. A similar situation happens to the attack on 776-round Acorn, as the
cube sum invokes oracle as that for an exhaustive search.

6 Conclusions

In this paper, we focused on the real performance of cube attacks for ciphers
with massive superpolies or heavy cubes. We analyzed a dozen recent cube
attack results on Trivium, Kreyvium, Grain-128AEAD and Acorn, and found
cube attacks are ineffective against some of them in the situation of code-book
implementation. We also gave some new results on 898-, 899- and 900-round
Kreyvium. In addition, we discussed the efficiency of cube attacks between
multiple cubes and one single cube, and found sometimes the number of cubes
used should be limited.

Acknowledgments. The authors thank all reviewers for their suggestions. This work
is supported by the National Key Research and Development Program of China (Grant
No. 2022YFA1004900), and by the National Natural Science Foundation of China
(Grant No. 62002024, 62202062).

Key Filtering in Cube Attacks from the Implementation Aspect 311

Appendix

A Details of Our Attacks on Kreyvium

A.1 Degree Evaluations of 899-Round Kreyvium

Table 2. The upper bound degree deg(pIλ) of superpolies pIλ for 899-round
Kreyvium, with cube dimension 127.

λ deg(pIλ) λ deg(pIλ) λ deg(pIλ) λ deg(pIλ)

0 5 32 6 64 4 96 4
1 6 33 5 65 5 97 5
2 6 34 4 66 6 98 4
3 4 35 5 67 4 99 5
4 4 36 4 68 4 100 4
5 5 37 5 69 4 101 5
6 5 38 5 70 3 102 5
7 4 39 4 71 4 103 6
8 7 40 4 72 4 104 6
9 6 41 3 73 4 105 5
10 4 42 4 74 3 106 5
11 5 43 4 75 2 107 6
12 4 44 4 76 4 108 4
13 5 45 5 77 5 109 4
14 4 46 4 78 5 110 4
15 5 47 2 79 3 111 4
16 5 48 3 80 4 112 4
17 5 49 3 81 4 113 6
18 5 50 4 82 6 114 6
19 5 51 4 83 7 115 6
20 5 52 3 84 5 116 6
21 6 53 4 85 4 117 5
22 5 54 4 86 4 118 5
23 4 55 3 87 4 119 5
24 6 56 4 88 5 120 4
25 6 57 4 89 4 121 5
26 6 58 4 90 5 122 5
27 4 59 4 91 5 123 6
28 3 60 2 92 5 124 5
29 3 61 3 93 4 125 4
30 5 62 4 94 6 126 4
31 4 63 5 95 6 127 4

312 H. Fan et al.

A.2 The ANFs of Superpolies Corresponding to Attacks on 898-
And 900-Round Kreyvium

For I1 = [0, 127]\{38, 86}, the superpoly pI1(x,0) for 898-round Kreyvium is
as Eq. (7)

pI1(x,0) = x12 + x20 + x21 + x20x21 + x23 + x31 + x36 + x11x36 + x12x36 + x26x36

+ x37 + x11x37 + x12x37 + x26x37 + x38 + x11x38 + x12x38 + x26x38 + x36x38

+ x37x38 + x41 + x45 + x45x46 + x47 + x46x47 + x48 + x47x48 + x49 + x48x49 + x50

+ x11x55 + x12x55 + x26x55 + x38x55 + x56 + x11x56 + x12x56 + x26x56 + x38x56

+ x57 + x58 + x59 + x64x65 + x66 + x67 + x66x67 + x68 + x36x70 + x37x70 + x38x70

+ x55x70 + x56x70 + x71 + x36x71 + x37x71 + x38x71 + x55x71 + x56x71 + x80x81

+ x11x80x81 + x12x80x81 + x26x80x81 + x38x80x81 + x70x80x81 + x71x80x81 + x82

+ x11x82 + x12x82 + x26x82 + x38x82 + x70x82 + x71x82 + x81x82 + x11x81x82

+ x12x81x82 + x26x81x82 + x38x81x82 + x70x81x82 + x71x81x82 + x83 + x11x83

+ x12x83 + x26x83 + x38x83 + x70x83 + x71x83 + x83x84 + x85 + x84x85 + x87 + x90

+ x89x90 + x91 + x95 + x11x95 + x12x95 + x26x95 + x38x95 + x70x95 + x71x95 + x96

+ x11x96 + x12x96 + x26x96 + x38x96 + x70x96 + x71x96 + x97 + x11x97 + x12x97

+ x26x97 + x36x97 + x37x97 + x55x97 + x56x97 + x70x97 + x71x97 + x80x81x97

+ x82x97 + x81x82x97 + x83x97 + x95x97 + x96x97 + x98 + x114 + x123 + x126. (7)

For I = [0, 127]\{38, 86}, the superpoly pI(x,0) for 900-round Kreyvium is
as Eq. (8).

pI(x,0) = x125 + x122 + x121 + x116 + x113x124 + x112 + x111 + x111x112x124+

x110x124 + x110x111x124 + x106 + x105x124 + x104 + x103 + x101 + x98x125 + x98x113+

x98x111x112 + x98x110 + x98x110x111 + x98x105 + x97x124 + x97x98 + x96 + x96x120+

x96x97 + x95 + x95x123 + x94 + x92 + x92x124 + x92x98 + x91x124 + x91x98 + x90+

x90x91 + x90x91x124 + x90x91x98 + x89x121 + x89x97 + x89x96 + x89x90 + x89x90x124+

x89x90x98 + x88 + x87 + x87x88 + x87x88x121 + x87x88x97 + x87x88x96 + x87x88x95+

x86 + x86x124 + x86x98 + x85 + x85x124 + x85x98 + x84 + x83 + x82x91 + x82x89x90+

x80x81x98 + x80x81x91 + x80x81x89x90 + x80x81x83 + x80x81x82 + x79x124 + x79x98+

x79x89 + x79x88 + x79x87x88 + x79x80 + x78x89 + x77x124 + x77x98 + x77x78+

x77x78x124 + x77x78x98 + x77x78x89 + x77x78x87x88 + x76x124 + x76x98 + x76x77+

x75x76 + x75x76x78 + x75x76x77 + x73 + x72 + x72x73 + x70 + x70x89 + x70x87x88+

x70x82 + x70x80x81 + x68x125 + x68x124 + x68x121 + x68x113x124 + x68x111x112x124+

x68x110x124 + x68x110x111x124 + x68x105x124 + x68x98x125 + x68x98x113+

x68x98x111x112 + x68x98x110 + x68x98x110x111 + x68x98x105 + x68x97 + x68x92x124+

x68x92x98 + x68x91x124 + x68x91x98 + x68x90x91x124 + x68x90x91x98+

x68x89x90x124 + x68x89x90x98 + x68x86x124 + x68x86x98 + x68x85x124 + x68x85x98+

x68x80 + x68x77x124 + x68x77x98 + x68x76x124 + x68x76x98 + x67x68 + x66 + x66x98+

Key Filtering in Cube Attacks from the Implementation Aspect 313

x66x91 + x66x89x90 + x66x88 + x66x70 + x66x68 + x66x68x98 + x65x124 + x65x113+

x65x111x112 + x65x110 + x65x110x111 + x65x105 + x65x98 + x65x97 + x65x92 + x65x91+

x65x90x91 + x65x89x90 + x65x85 + x65x79 + x65x77 + x65x77x78 + x65x76 + x65x70+

x65x68x124 + x65x68x113 + x65x68x111x112 + x65x68x110 + x65x68x110x111+

x65x68x105 + x65x68x98 + x65x68x92 + x65x68x91 + x65x68x90x91 + x65x68x89x90+

x65x68x86 + x65x68x85 + x65x68x77 + x65x68x76 + x64x124 + x64x98 + x64x95+

x64x82 + x64x80x81 + x64x68x124 + x64x68x98 + x64x66 + x64x65x91 + x64x65x89x90+

x64x65x88 + x64x65x70 + x64x65x68 + x63 + x63x124 + x63x98 + x63x68x124+

x63x68x98 + x63x65 + x63x65x68 + x63x64x86 + x63x64x70 + x63x64x66 + x63x64x65+

x62 + x62x124 + x62x121 + x62x98 + x62x97 + x62x96 + x62x95 + x62x89 + x62x87x88+

x62x79 + x62x77x78 + x62x70 + x62x68 + x62x68x124 + x62x68x98 + x62x65+

x62x65x68 + x62x63 + x61x96 + x61x62x124 + x61x62x98 + x61x62x68x124+

x61x62x68x98 + x61x62x65 + x61x62x65x68 + x60 + x60x61x124 + x60x61x98+

x60x61x68x124 + x60x61x68x98 + x60x61x65 + x60x61x65x68 + x58x59 + x56x98+

x56x82 + x56x80x81 + x56x68 + x56x68x98 + x55 + x55x113 + x55x111x112 + x55x110+

x55x110x111 + x55x105 + x55x98 + x55x97 + x55x92 + x55x90x91 + x55x86 + x55x85+

x55x83 + x55x81x82 + x55x79 + x55x77 + x55x77x78 + x55x76 + x55x70 + x55x68+

x55x68x113 + x55x68x111x112 + x55x68x110 + x55x68x110x111 + x55x68x105+

x55x68x92 + x55x68x91 + x55x68x90x91 + x55x68x89x90 + x55x68x86 + x55x68x85+

x55x68x77 + x55x68x76 + x55x65 + x55x65x68 + x55x64x68 + x55x63 + x55x63x68+

x55x62 + x55x62x68 + x55x61x62 + x55x61x62x68 + x55x60x61 + x55x60x61x68+

x55x56 + x54 + x54x124 + x54x98 + x54x68x124 + x54x68x98 + x54x65 + x54x65x68+

x54x55 + x54x55x68 + x53 + x53x111x124 + x53x98x111 + x53x68x111x124+

x53x68x98x111 + x53x65x111 + x53x65x68x111 + x53x55x111 + x53x55x68x111 + x52+

x52x124 + x52x112x124 + x52x110x124 + x52x98 + x52x98x112 + x52x98x110 + x52x68+

x52x68x112x124 + x52x68x110x124 + x52x68x98x112 + x52x68x98x110 + x52x65+

x52x65x112 + x52x65x110 + x52x65x68x112 + x52x65x68x110 + x52x55 + x52x55x112+

x52x55x110 + x52x55x68x112 + x52x55x68x110 + x52x53x124 + x52x53x98+

x52x53x68x124 + x52x53x68x98 + x52x53x65 + x52x53x65x68 + x52x53x55+

x52x53x55x68 + x51x124 + x51x111x124 + x51x98 + x51x98x111 + x51x96 + x51x77+

x51x75x76 + x51x68x124 + x51x68x111x124 + x51x68x98 + x51x68x98x111 + x51x65+

x51x65x111 + x51x65x68 + x51x65x68x111 + x51x55 + x51x55x111 + x51x55x68+

x51x55x68x111 + x51x52x124 + x51x52x98 + x51x52x68x124 + x51x52x68x98+

x51x52x65 + x51x52x65x68 + x51x52x55 + x51x52x55x68 + x50 + x50x78 + x50x76x77+

x49 + x48 + x47x48 + x46x124 + x46x98 + x46x68x124 + x46x68x98 + x46x65+

x46x65x68 + x46x55 + x46x55x68 + x46x47 + x45 + x44 + x42 + x40 + x39 + x39x125+

x39x113 + x39x111x112 + x39x110 + x39x110x111 + x39x105 + x39x97 + x39x92+

x39x90x91 + x39x88 + x39x86 + x39x85 + x39x80x81 + x39x79 + x39x77 + x39x77x78+

x39x76 + x39x70 + x39x68x125 + x39x68x113 + x39x68x111x112 + x39x68x110+

314 H. Fan et al.

x39x68x110x111 + x39x68x105 + x39x68x92 + x39x68x91 + x39x68x90x91+

x39x68x89x90 + x39x68x86 + x39x68x85 + x39x68x77 + x39x68x76 + x39x66+

x39x66x68 + x39x65x68 + x39x64x68 + x39x63 + x39x63x68 + x39x63x64 + x39x62+

x39x62x68 + x39x61x62 + x39x61x62x68 + x39x60x61 + x39x60x61x68 + x39x56+

x39x56x68 + x39x55 + x39x54 + x39x54x68 + x39x53x111 + x39x53x68x111 + x39x52+

x39x52x112 + x39x52x110 + x39x52x68x112 + x39x52x68x110 + x39x52x53+

x39x52x53x68 + x39x51 + x39x51x111 + x39x51x68 + x39x51x68x111 + x39x51x52+

x39x51x52x68 + x39x46 + x39x46x68 + x38x124 + x38x98 + x38x96 + x38x89+

x38x87x88 + x38x86 + x38x70 + x38x68 + x38x66 + x38x65 + x38x64x65 + x38x62+

x38x55 + x37x120 + x37x97 + x37x89 + x37x87x88 + x37x62 + x37x61 + x37x51+

x37x38 + x36 + x36x123 + x36x87x88 + x36x64 + x36x62 + x35x124 + x35x98+

x35x68x124 + x35x68x98 + x35x65 + x35x65x68 + x35x55 + x35x55x68 + x35x39+

x35x39x68 + x34 + x33 + x32 + x31 + x30x95 + x30x78 + x30x36 + x29x79 + x29x66+

x29x64x65 + x29x39 + x28 + x27 + x27x124 + x27x98 + x27x68x124 + x27x68x98+

x27x65x68 + x27x63x64 + x27x55 + x27x55x68 + x27x39 + x27x39x68 + x27x38 + x26+

x26x124 + x26x98 + x26x68x124 + x26x68x98 + x26x65 + x26x65x68 + x26x55+

x26x55x68 + x26x39 + x26x39x68 + x25 + x23 + x23x98 + x23x39 + x22 + x21 + x21x68+

x20x95 + x20x88 + x20x78 + x20x36 + x20x29 + x19x89 + x19x30 + x19x20 + x18x124+

x18x98 + x18x68x124 + x18x68x98 + x18x65 + x18x65x68 + x18x55 + x18x55x68+

x18x39 + x18x39x68 + x17x124 + x17x98 + x17x68x124 + x17x68x98 + x17x65+

x17x65x68 + x17x55 + x17x55x68 + x17x39 + x17x39x68 + x15 + x14 + x13 + x11x89+

x11x87x88 + x11x82 + x11x80x81 + x11x68 + x11x66 + x11x65 + x11x64x65+

x11x63x64 + x11x62 + x11x55 + x11x39 + x11x38 + x10x88 + x10x29 + x9x125 + x9x124+

x9x121 + x9x113x124 + x9x111x112x124 + x9x110x124 + x9x110x111x124 + x9x105x124+

x9x98x125 + x9x98x113 + x9x98x111x112 + x9x98x110 + x9x98x110x111 + x9x98x105+

x9x97 + x9x92x124 + x9x92x98 + x9x91x124 + x9x91x98 + x9x90x91x124+

x9x90x91x98 + x9x89 + x9x89x90x124 + x9x89x90x98 + x9x86x124 + x9x86x98+

x9x85x124 + x9x85x98 + x9x80 + x9x77x124 + x9x77x98 + x9x76x124 + x9x76x98+

x9x66 + x9x66x98 + x9x65x124 + x9x65x113 + x9x65x111x112 + x9x65x110+

x9x65x110x111 + x9x65x105 + x9x65x98 + x9x65x92 + x9x65x91 + x9x65x90x91+

x9x65x89x90 + x9x65x86 + x9x65x85 + x9x65x77 + x9x65x76 + x9x64x124 + x9x64x98+

x9x64x65 + x9x63x124 + x9x63x98 + x9x63x65 + x9x62 + x9x62x124 + x9x62x98+

x9x62x65 + x9x61x62x124 + x9x61x62x98 + x9x61x62x65 + x9x60x61x124+

x9x60x61x98 + x9x60x61x65 + x9x56 + x9x56x98 + x9x55 + x9x55x113+

x9x55x111x112 + x9x55x110 + x9x55x110x111 + x9x55x105 + x9x55x92 + x9x55x91+

x9x55x90x91 + x9x55x89x90 + x9x55x86 + x9x55x85 + x9x55x77 + x9x55x76+

x9x55x65 + x9x55x64 + x9x55x63 + x9x55x62 + x9x55x61x62 + x9x55x60x61+

x9x54x124 + x9x54x98 + x9x54x65 + x9x54x55 + x9x53x111x124 + x9x53x98x111+

x9x53x65x111 + x9x53x55x111 + x9x52 + x9x52x112x124 + x9x52x110x124+

Key Filtering in Cube Attacks from the Implementation Aspect 315

x9x52x98x112 + x9x52x98x110 + x9x52x65x112 + x9x52x65x110 + x9x52x55x112+

x9x52x55x110 + x9x52x53x124 + x9x52x53x98 + x9x52x53x65 + x9x52x53x55+

x9x51x124 + x9x51x111x124 + x9x51x98 + x9x51x98x111 + x9x51x65 + x9x51x65x111+

x9x51x55 + x9x51x55x111 + x9x51x52x124 + x9x51x52x98 + x9x51x52x65+

x9x51x52x55 + x9x46x124 + x9x46x98 + x9x46x65 + x9x46x55 + x9x39x125+

x9x39x113 + x9x39x111x112 + x9x39x110 + x9x39x110x111 + x9x39x105 + x9x39x92+

x9x39x91 + x9x39x90x91 + x9x39x89x90 + x9x39x86 + x9x39x85 + x9x39x77+

x9x39x76 + x9x39x66 + x9x39x65 + x9x39x64 + x9x39x63 + x9x39x62 + x9x39x61x62+

x9x39x60x61 + x9x39x56 + x9x39x54 + x9x39x53x111 + x9x39x52x112 + x9x39x52x110+

x9x39x52x53 + x9x39x51 + x9x39x51x111 + x9x39x51x52 + x9x39x46 + x9x38+

x9x35x124 + x9x35x98 + x9x35x65 + x9x35x55 + x9x35x39 + x9x30 + x9x27x124+

x9x27x98 + x9x27x65 + x9x27x55 + x9x27x39 + x9x26x124 + x9x26x98 + x9x26x65+

x9x26x55 + x9x26x39 + x9x21 + x9x20 + x9x18x124 + x9x18x98 + x9x18x65+

x9x18x55 + x9x18x39 + x9x17x124 + x9x17x98 + x9x17x65 + x9x17x55 + x9x17x39+

x9x11 + x8x124 + x8x98 + x8x68x124 + x8x68x98 + x8x65 + x8x65x68 + x8x55+

x8x55x68 + x8x39 + x8x39x68 + x8x9x124 + x8x9x98 + x8x9x65 + x8x9x55 + x8x9x39+

x7 + x7x124 + x7x98 + x7x68x124 + x7x68x98 + x7x65 + x7x65x68 + x7x55 + x7x55x68+

x7x39 + x7x39x68 + x7x9x124 + x7x9x98 + x7x9x65 + x7x9x55 + x7x9x39 + x6+

x5x95 + x5x36. (8)

References

1. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68351-3_18

2. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9_16

3. eSTREAM: the ECRYPT stream cipher project (2018). https://www.ecrypt.eu.
org/stream/. Accessed 23 Mar 2021

4. Hadipour, H., Eichlseder, M.: Autoguess: a tool for finding guess-and-determine
attacks and key bridges. In: Ateniese, G., Venturi, D. (eds.) ACNS 22. LNCS, vol.
13269, pp. 230–250. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-09234-3_12

5. Hadipour, H., Eichlseder, M.: Integral cryptanalysis of WARP based on monomial
prediction. IACR Trans. Symmetric Cryptol. 2022(2), 92–112 (2022). https://doi.
org/10.46586/tosc.v2022.i2.92-112

6. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12105, pp. 466–495. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1_17

https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-642-01001-9_16
https://www.ecrypt.eu.org/stream/
https://www.ecrypt.eu.org/stream/
https://doi.org/10.1007/978-3-031-09234-3_12
https://doi.org/10.1007/978-3-031-09234-3_12
https://doi.org/10.46586/tosc.v2022.i2.92-112
https://doi.org/10.46586/tosc.v2022.i2.92-112
https://doi.org/10.1007/978-3-030-45721-1_17

316 H. Fan et al.

7. He, J., Hu, K., Preneel, B., Wang, M.: Stretching cube attacks: improved meth-
ods to recover massive superpolies. In: ASIACRYPT 2022, Part IV. LNCS, vol.
13794, pp. 537–566. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-22972-5_19

8. Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Lower bounds on the degree of
block ciphers. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part I. LNCS,
vol. 12491, pp. 537–566. Springer, Heidelberg (2020). https://doi.org/10.1007/978-
3-030-64837-4_18

9. Hu, K., Sun, S., Todo, Y., Wang, M., Wang, Q.: Massive superpoly recovery with
nested monomial predictions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021,
Part I. LNCS, vol. 13090, pp. 392–421. Springer, Heidelberg (2021). https://doi.
org/10.1007/978-3-030-92062-3_14

10. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division
property: revisiting degree evaluations, cube attacks, and key-independent sums.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 446–476.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_15

11. ISO/IEC: 29192–3:2012: Information technology - Security techniques -
Lightweight cryptography - part 3: Stream ciphers. https://www.iso.org/standard/
56426.html

12. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7_5

13. Mroczkowski, P., Szmidt, J.: The cube attack on stream cipher trivium and
quadraticity tests. Fundam. Inform. 114(3–4), 309–318 (2012). https://doi.org/
10.3233/FI-2012-631

14. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9

15. Sun, Y.: Cube attack against 843-round trivium. Cryptology ePrint Archive,
Report 2021/547 (2021). https://eprint.iacr.org/2021/547

16. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6_20

17. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12

18. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9_9

19. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5_18

20. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 275–305. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_10

https://doi.org/10.1007/978-3-031-22972-5_19
https://doi.org/10.1007/978-3-031-22972-5_19
https://doi.org/10.1007/978-3-030-64837-4_18
https://doi.org/10.1007/978-3-030-64837-4_18
https://doi.org/10.1007/978-3-030-92062-3_14
https://doi.org/10.1007/978-3-030-92062-3_14
https://doi.org/10.1007/978-3-030-64837-4_15
https://www.iso.org/standard/56426.html
https://www.iso.org/standard/56426.html
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.3233/FI-2012-631
https://doi.org/10.3233/FI-2012-631
https://doi.org/10.1007/978-3-662-45611-8_9
https://eprint.iacr.org/2021/547
https://doi.org/10.1007/978-3-662-47989-6_20
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-319-96884-1_10

Key Filtering in Cube Attacks from the Implementation Aspect 317

21. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP-aided method of search-
ing division property using three subsets and applications. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 398–427. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_14

22. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24

23. Ye, C.D., Tian, T.: Revisit division property based cube attacks: key-recovery
or distinguishing attacks? IACR Trans. Symm. Cryptol. 2019(3), 81–102 (2019).
https://doi.org/10.13154/tosc.v2019.i3.81-102

24. Ye, C.D., Tian, T.: Algebraic method to recover superpolies in cube attacks. IET
Inf. Secur. 14(4), 430–441 (2020)

https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.13154/tosc.v2019.i3.81-102

New Techniques for Modeling SBoxes: An
MILP Approach

Debranjan Pal(B), Vishal Pankaj Chandratreya,
and Dipanwita Roy Chowdhury

Crypto Research Lab, IIT Kharagpur, Kharagpur, India

debranjanpal@iitkgp.ac.in, vpaijc@kgpian.iitkgp.ac.in, drc@cse.iitkgp.ac.in

Abstract. Mixed Integer Linear Programming (MILP) is a well-known
approach for the cryptanalysis of a symmetric cipher. A number of MILP-
based security analyses have been reported for non-linear (SBoxes) and lin-
ear layers. Researchers proposed word- and bit-wise SBox modeling tech-
niques using a set of inequalities which helps in searching differential trails
for a cipher.

In this paper, we propose two new techniques to reduce the number of
inequalities to represent the valid differential transitions for SBoxes. Our
first technique chooses the best greedy solution with a random tiebreaker
and achieves improved results for the 4-bit SBoxes of MIBS, LBlock, and
Serpent over the existing results of Sun et al. [26]. Subset addition, our
second approach, is an improvement over the algorithm proposed by
Boura and Coggia. Subset addition technique is faster than Boura and
Coggia [10] and also improves the count of inequalities. Our algorithm
emulates the existing results for the 4-bit SBoxes of Minalpher, LBlock,
Serpent, Prince, and Rectangle. The subset addition method also works
for 5-bit and 6-bit SBoxes. We improve the boundary of minimum num-
ber inequalities from the existing results for 5-bit SBoxes of ASCON
and SC2000. Application of subset addition technique for 6-bit SBoxes
of APN, FIDES, and SC2000 enhances the existing results. By applying
multithreading, we reduce the execution time needed to find the mini-
mum inequality set over the existing techniques.

Keywords: Mixed Integer Linear Programming · Symmetric Key ·
Block Cipher · Active SBox · Differential Cryptanalysis · Convex Hull

1 Introduction

Differential cryptanalysis [7] and linear cryptanalysis [19] are the two most valu-
able methods in the cryptanalysis domain of symmetric-key cryptography. Dif-
ferential cryptanalysis for block ciphers demonstrates the mapping of input dif-
ferences in the plaintext to output differences in the ciphertext. The probabilistic
linear relationships between the plaintext, ciphertext and key are expressed by
linear cryptanalysis, on the other hand. For developing a distinguisher or identi-
fying a key-recovery attack, we leverage the feature that an ideal cipher behaves
differently from a random cipher for differential or linear cryptanalysis.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 318–340, 2023.
https://doi.org/10.1007/978-981-99-7563-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_15&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_15

New Techniques for Modeling SBoxes: An MILP Approach 319

For new ciphers, enforcing resistance against the linear and differential crypt-
analysis is a common design criterion during the analysis of the cipher. The wide
trail design [13] technique for block ciphers leads to prove the security against lin-
ear and differential cryptanalysis. Finding the minimum number of active SBoxes
within the cipher is a useful way to assess the security of the scheme against dif-
ferential attacks. Calculating the minimal amount of active SBoxes for block
ciphers has received a lot of attention. But the time and effort by humans as
well as by programs required to apply those techniques is huge. Here, MILP can
be used to solve these issues. MILP is an optimization problem that restricts
some of its variables to integral value. MILP offers a powerful and adaptable
approach for handling large, significant and complicated problems. The attacker
uses linear inequalities to define potential differential propagation patterns in a
round function for differential search using MILP. The attacker then executes
an MILP solver (in parallel), which yields the minimal number of active SBoxes
for the specified propagation patterns. After generating a lower bound for the
quantity of active SBoxes in differential and linear cryptanalysis, one may cal-
culate an upper bound for the likelihood of the best characteristic by utilising
the maximum differential probability (MDP) of the SBoxes. The probability of
the best characteristic can be used to calculate the differential probability with
accuracy by summing up all matching characteristics probabilities.

Typically, a cryptographic component’s (like SBox) propagation characteris-
tic can be expressed using Boolean functions. To model a Boolean function using
the MILP method, a set of inequalities must be computed. Then some solutions
to these inequalities also calculated which precisely corresponds to support the
boolean function. In order to calculate a solution model of any boolean func-
tion, we must resolve two issues. To efficiently model a boolean function a set of
inequalities to be created. Selecting a minimal set of possible inequalities which
perfectly model the boolean function, if the first issue is resolved. To solve the
these problems researchers proposes different techniques [10,18,20,21,24–26].

MILP models are frequently used in cryptanalysis, it is crucial to increase
the effectiveness of MILP model solutions. Which kind of comprehensive model,
though, would be the most effective is still a mystery. Different kinds of proposed
models should be built and thoroughly investigated in order to fix this issue.
Since different models are built from a varieties of possible inequalities, the first
move towards achieving this goal is to generate a variety of inequalities.

To get optimized MILP model researchers observe reduction in number of
inequalities by at least one unit is itself important. Because in a larger view, for
a full round cipher, the total number of inequalities impacts a lot with respect
to the computing resources and the timing requirements for the MILP solver.

1.1 Related Work

Mouha et al. [20] first described the problem of finding the smallest number
of active SBoxes that can be modelled using MILP for assessing word-oriented
ciphers. There are other ciphers that are not word-oriented, such as PRESENT,
which applies a 4-bit SBox and then switches four bits from one SBox to four
separate SBoxes using a bit-permutation.

320 D. Pal et al.

Sun et al. [26] established a way to simulate all possible differential propa-
gations bit by bit even for the SBox in order to apply MILP to such a struc-
ture. They used MILP-based techniques to assess a block cipher’s security for
related-key differential attacks. The methods are mainly applied for searching
single-key or related-key differential [5] characteristics on PRESENT80, LBlock,
SIMON48, DESL and PRESENT128. Sun et al. [26] report different methods to
model differential characteristics of an SBox with linear inequalities. In the first
technique, inequalities are produced based on some conditional differential char-
acteristics of an SBox. Another method involves extracting the inequalities from
the H-representation of the convex hull for all possible differential patterns of
the SBox. To choose a certain number of inequalities from the convex hull, they
devise a greedy algorithm for the second technique. They suggest an automated
approach for assessing the security of bit-oriented block ciphers for differential
attack. They propose many ways for getting tighter security limits using these
inequalities along with the MILP methodology.

Sun et al. [25] look into the differential and linear behaviour of a variety of
block ciphers using mixed-integer linear programming (MILP). They point out
that a modest set of linear inequalities can precisely characterize the differential
behaviour of every SBox. For a variety of ciphers, Sun et al. [25] build MILP mod-
els whose feasible zones are exactly the collections of all legitimate differential and
linear properties. Any subset of {0, 1}n ⊂ R

n has an accurate linear-inequality
description, according to them. They provide a technique that may be used to
determine all differential and linear properties with certain specified features by
converting the heuristic approach of Sun et al. [26] for finding differential and linear
characteristics into an accurate one based on these MILP models.

Mouha’s [20] technique is not suitable for SPN ciphers which contain dif-
fusion layers with bitwise permutations, called S-bP structures. The problem
occurs because of avoiding the diffusion effect calculated simultaneously by the
non-linear substitution layers and bitwise permutation layers. Also the MILP
constraints provided by Mouha are not sufficient for modeling the differential
propagation of a linear diffusion layer derived from almost-MDS or non-MDS
matrix. To automatically determine a lower constraint on the number of active
SBoxes for block ciphers with S-bP structures, Sun et al. [24] expanded the
method of Mouha et al. [20] and proposed a new strategy based on mixed-
integer linear programming (MILP). They successfully applied the technique to
PRESENT-80.

In order to automatically look for differential and linear characteristics for
ARX ciphers, Kai Fu et al. [15] built a MILP model. By assuming indepen-
dent inputs to the modular addition and independent rounds, they applied the
differential and linear property of modular addition. They search for the differ-
ential properties and linear approximations of the Speck cipher using the new
MILP model. Their identified differential characteristics for Speck64, Speck96,
and Speck128 are prolonged for one, three, and five rounds, respectively, in com-
parison to the prior best differential characteristics for them, and the differential
characteristic for Speck48 has a greater likelihood. Cui et al. [12] provide a novel

New Techniques for Modeling SBoxes: An MILP Approach 321

automatic method to search impossible differential trails for ciphers containing
SBoxes after taking into account the differential and linear features of non-
linear components, like SBoxes themselves. They expand the tool’s capabilities
to include modulo addition and use it with ARX ciphers. For HIGHT, SHACAL-
2, LEA, and LBlock, the tool enhances the best outcomes currently available.
A new SBox modeling that can handle the likelihood of differential characteris-
tics and reflect a condensed form of the Differential Distribution Table (DDT)
of big SBoxes was presented by Ahmed Abdelkhalek et al. [2]. They increased
the number of rounds needed to resist simple differential distinguishers by one
round after evaluating the upper bound on SKINNY-128’s differential features.
For two AES-round based constructions, the upper bound on differential features
are examined.

1.2 Our Contribution

In this paper we introduce two of MILP-based solutions for valid differential trail
propagation through the non-linear layers, that is, SBoxes. The new approaches
reduce the number of inequalities for modeling 4-bit SBoxes in comparison to
the earlier algorithms [10,21,26,27]. Our techniques help cryptographic designers
for providing a bound on finding minimum number of SBoxes and thus ensure
resistance against differential cryptanalysis attacks.

– Greedy random-tiebreaker algorithm We propose a new algorithm
by randomly choosing from the result of greedy algorithm. Our technique
improves the boundary for minimum number of inequalities for 4-bit SBoxes
of MIBS, LBlock and Serpent over the existing greedy algorithm [26].

– Subset addition approach A subset-addition-based algorithm is proposed
by generating new inequalities from the results of H-representation of the
convex hull. We add k-subset inequalities to generate new inequality, which
removes more impossible propagation. Then replace some subset of old
inequalities by the newer one, which results in an improvement over the exist-
ing algorithms for 4-bit SBoxes of Minalpher, LBlock, Serpent, Prince and
Rectangle. The subset addition algorithm also works for 5- and 6-bit SBoxes.
We also improve the boundary of inequalities for 5-bit SBoxes of ASCON,
and SC2000. For 6-bit SBoxes of APN and SC2000, we reduce the number of
inequalities from the existing results.
We also improve the time for finding the minimum set of inequalities over
Boura and Coggia’s [10] approach by a significant percentage.

1.3 Organization of the Paper

The organization of the paper is as follows. Section 2 explains the background of
our work. We describe the greedy random tiebreaker algorithm and its results in
Sect. 3. In Sect. 4, we present the subset addition approach and the corresponding
implementation process with the results. Section 5 concludes the paper.

322 D. Pal et al.

2 Background

In this section we describe the earlier used methods and algorithms for modeling
SBoxes using inequalities.

2.1 Representation of SBoxes Using Inequalities

An SBox S can be represented as S : Fn
2 → F

n
2 . We can symbolize any opera-

tion on an SBox as x → y with x, y ∈ F
n
2 . Let (x0, . . . , xn−1, y0, . . . , yn−1) ∈

R
2n be a 2n-dimensional vector, where R is the real number field, and

for an SBox the input-output differential pattern is denoted using a point
(x0, . . . , xn−1, y0, . . . , yn−1).

H-Representation of the Convex Hull. The convex hull of a set P of dis-
tance points in R

n is the smallest convex set that contains P . We compute
the H-representation of the convex hull of all possible input-output differential
patterns of the SBox by calculating the DDT. Applying SageMath [1] on the
DDT, we compute the H-representation. From H-representation we get w linear
inequalities, which can be written as

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

...
xn−1

y0

...
yn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ b

where A is a w × 2n matrix. Here, A and b contain only integer values. Every
linear inequality also invalidates some points, which are associated with some
impossible differential propagations. The H-representation also contains redun-
dant inequalities associated with the MILP-based differential trail search; the
reason is that the feasible points are constricted to {0, 1}2n, not R2n As a result,
a lot of extra linear inequalities force the MILP solver to work slower. To elimi-
nate those redundant inequalities, researchers apply different techniques.

Conditional Differential Characteristics Modeling. The logical condition
that (x0, . . . , xm−1) = (δ0, . . . , δm−1) ∈ {0, 1}m ⊆ Z

m implies y = δ ∈ {0, 1} ⊆ Z

can be modeled by using the following linear inequality,

m−1∑
i=0

(−1)δixi + (−1)δ+1y − δ +
m−1∑
i=0

δi ≥ 0 (1)

Let (x0, x1, x2, x3) and (y0, y1, y2, y3) be MILP variables for the input and output
differences of a 4-bit SBox. Let (1010) → (0111) be an impossible propagation
in the DDT corresponding to the SBox. That is, the input difference (1010) is

New Techniques for Modeling SBoxes: An MILP Approach 323

not propagating to (0111). By Eq. 1, the linear inequality which eliminates the
impossible point (1001, 0111) is, −x0 + x1 − x2 + x3 + y0 − y1 − y2 − y3 + 4 ≥ 0.
Corresponding to an SBox, if in a DDT there occur n impossible paths, then
at most n linear inequalities are needed to model the DDT correctly. But one
can reduce the value of n by merging one or more available inequalities and
therefore generating new inequalities. For example if we consider two impossible
propagations (1010) → (0111) and (1010) → (0110), then the linear inequality:
−x0 + x1 − x2 + x3 + y0 − y1 − y2 + y3 ≥ −3 eliminates both the impossible
points together.

Choosing the Best Inequalities from the Convex Hull

Applying an MILP model, generating a feasible solution is not guaranteed to be
a legitimate differential path. We want to reduce the number of active SBoxes
throughout a greater region and the optimal value achieved should be less than
or equal to the actual minimum number of active SBoxes. Hence, we will look for
any linear inequality that may be used to chop out a portion of the MILP model
while maintaining the region of valid differential characteristics. Researchers pro-
posed different algorithms (see Appendix A) for reducing number of inequalities
for an SBox representation.

Greedy Algorithm Based Modeling [26]. The discrete points in the H-
Representation (convex hull) generate a huge number of inequalities. A good
approach is to filter the best valid inequalities which maximize the number of
removed impossible differential patterns from the feasible region of the convex
hull. Algorithm 5 explains the greedy approach proposed by Sun et al.

Modeling by Selecting Random Set of Inequalities [10]. A larger set
of new inequalities (generated by randomly adding k inequalities) are worthless

Choose

Choose

Choose

Choose

Choose

Choose

Choose

Fig. 1. Variation of the output of the greedy algorithm because of a random tiebreaker

324 D. Pal et al.

as most probably they will satisfy the whole space {0, 1}m. If k-hyperplanes of
the H-representation share a vertex on the cube {0, 1}m, then summing corre-
sponding inequalities probably generates a new inequality Qnew. But the hyper-
plane corresponding Qnew should intersect with the cube by at least one point.
In that case, Qnew possibly invalidates a different set of impossible points from H-
representation than the older inequalities. Algorithm 6 briefs the whole procedure.

Algorithm 1. Randomly select inequalities from greedy set (Greedy Random-
Tiebreaker)
Input:
HRep: Inequalities in the H-Representation of the convex hull of an SBox.
ID: The set of all impossible differential paths of an SBox
Output:
ISR: Set of n-best inequalities that generates more stricter feasible region after maxi-
mizing the removed impossible differential paths.

1: IM ← φ, ISR ← φ
2: while ID �= φ do
3: IM ←The inequalities in HRep which maximizes the number of removed impos-

sible differential paths from ID.
4: ID ← ID − {Removed impossible differential paths using IM}
5: if Degree(IM) > 1 then � Returns the number of elements in a set
6: RandI ← ChooseRandomInequality(IM) � Chooses randomly an element

from a set
7: end if
8: HRep ← HRep − RandI

9: ISR ← ISR ∪ RandI

10: end while
11: return ISR

MILP-Based Reduction Algorithm. Sasaki and Todo [21] propose a tech-
nique which generates a minimization problem, which they solve using a standard
MILP solver to get the reduced set of inequalities. First they find all the impos-
sible differential points from DDT of an SBox and generate impossible patterns
applying those points. Next, for a given impossible pattern, check which sub-
set of inequalities invalidates the pattern. Now, they form a constraint: every
impossible pattern should be removed from the possible region by at least one
inequality. They form an MILP problem which minimizes the total set of inequal-
ities applying the constraints and solve it to get the minimized set of inequalities.
Algorithm 4 describes the whole process in a step-wise manner.

3 Filtering Inequalities by Greedy Random-Tiebreaker

We use the original greedy algorithm proposed by S Sun et al. [26]. Our
technique is similar to the original greedy algorithm, except that when mul-
tiple inequalities have the same rank, we choose one of them randomly. We

New Techniques for Modeling SBoxes: An MILP Approach 325

Algorithm 2. Generates a minimal subset of inequalities eliminating all impos-
sible differential paths (Subset Addition)
Input:
HRep: Inequalities in the H-Representation of the convex hull of an SBox.
IP : The set of all possible differential paths of an SBox
ID: The set of all impossible differential paths of an SBox
Output:
ISR: Set of n-best inequalities that generates more stricter feasible region after maxi-
mizing the removed impossible differential paths.

1: ISR ← HRep

2: for p ∈ IP do
3: IH ← all hyperplanes in HRep which the point p lies on
4: for {h1, h2, . . . , hk} ∈ PSet(IH) do
5: h ← h1 + h2 + . . . + hk

6: if h is a good hyperplane (If satisfies condition of Type 1 or Type 2) then
7: ISR ← ISR ∪ {h}
8: end if
9: end for

10: end for
11: return the smallest subset of ISR removing all paths in ID.

Fig. 2. Separating Type 1 and Type 2 inequalities in convex hull

claim that a random tiebreaker could result in a different number of inequal-
ities across multiple runs, and prove it with an instance of the set cover
problem (which is homomorphic to the problem of minimising the MILP
model of an SBox). Consider the set S = {1, 2, 3, 4, 5, 6, 7} and its sub-
sets {{1, 2}, {1, 2, 3}, {2, 3, 5}, {4, 5}, {6}, {6, 7}}, which are to be used to find
a cover of S. Two possible greedy approaches yield covers of sizes three,
{{1, 2, 3}, {4, 5}, {6, 7}} and four {{2, 3, 5}, {4, 5}, {6, 7}, {1, 2}} (see Fig. 1).

After multiple runs of greedy random-tiebreaker, we choose the best
(reduced) set of inequalities that invalidate all the impossible differential pat-

326 D. Pal et al.

terns. Thus, the greedy random-tiebreaker improves the performance of the
greedy algorithm. Table 1 describes a comparative analysis of the number of
reduced inequalities for different 4-bit SBoxes.

The overall technique is described in Algorithm 1. Let HRep be the set of
inequalities that is generated from the SageMath method inequality generator()
as the H-representation of the convex hull of an SBox. Assume ID be the set of all
impossible differential points selected from difference distribution table (DDT)
of an SBox. Let IM stores the hyperplanes in HRep removing greatest number
of paths from ID. If IM have more than one elements, then we are choosing
an inequality randomly from IM by applying ChooseRandomInequality method
and collecting in ISR. The best set of inequalities saved to ISR. We execute the
overall process multiple times to get the best set of inequalities.

3.1 Why Random Tiebreaking Improves the Performance
of the Greedy Algorithm?

Random tiebreaking can improve the performance of a greedy algorithm by
introducing an element of randomness, which helps to avoid certain pitfalls and
issues that arise due to deterministic decision-making. This randomness helps
to prevent the algorithm from getting stuck in predictable patterns, encourages
exploration of different choices, and enables it to escape local optima. By intro-
ducing diversity and reducing sensitivity to input order, random tiebreaking
increases the algorithm’s chances of finding better overall solutions.

In SBox modeling, the greedy algorithm chooses an eligible inequality from the
set of inequalities, which maximizes the number of removed impossible differential
paths. Here, we notice that selecting the suitable inequality from the collection of
possible inequalities affects the whole system’s performance. Hence, instead of tak-
ing inequality greedily, one possible solution is to check the performance of every
potential candidate and choose the best inequality. Thus, the randomness in the
selection scheme improves the greedy algorithm’s performance.

It’s important to note that while random tiebreaking can be beneficial in
some instances, it’s not a guaranteed solution. It can help mitigate some of the
limitations of deterministic greedy algorithms, but it might also introduce chal-
lenges related to reproducibility, stability, and unpredictability. When applying
random tiebreaking, it’s essential to analyze the specific problem, the character-
istics of the input data, and the potential benefits and drawbacks to determine
whether it’s a suitable approach.

3.2 Implementations and Results

We implemented Algorithm 1 in SageMath (on a desktop computer with an Intel
Core i5-6500 4C/4T CPU running Manjaro Linux Sikaris 22.0.0 Xfce Edition 64-
bit) with a flag to randomise the list of inequalities.

Applications on 4-Bit SBoxes. We run our algorithm greedy random-
tiebreaker on a large set 4-bit SBoxes used in ciphers. Now we describe the

New Techniques for Modeling SBoxes: An MILP Approach 327

Table 1. Minimum number of Inequalities for 4-bit SBoxes (Random Greedy-
Tiebreaker)

Cipher SageMath [1] Sun et al. [26] Random Greedy (Our Approach)

GIFT 237 – 22

KLEIN 311 22 22

Lilliput 324 – 26

MIBS 378 27 24

Midori S0 239 – 25

Midori S1 367 – 24

Minalpher 338 – 25

Piccolo 202 23 24

PRESENT 327 22 22

PRIDE 194 – 22

PRINCE 300 26 26

RECTANGLE 267 – 23

SKINNY 202 – 24

TWINE 324 23 25

LBlock S0 205 28 25

LBlock S1 205 27 25

LBlock S2 205 27 25

LBlock S3 205 27 26

LBlock S4 205 28 25

LBlock S5 205 27 25

LBlock S6 205 27 26

LBlock S7 205 27 25

LBlock S8 205 28 26

LBlock S9 205 27 25

Serpent S0 410 23 24

Serpent S1 409 24 25

Serpent S2 408 25 25

Serpent S3 396 31 23

Serpent S4 328 26 24

Serpent S5 336 25 23

Serpent S6 382 22 21

Serpent S7 470 30 21

Serpent S8 364 – 25

Serpent S9 357 – 24

Serpent S10 369 – 27

Serpent S11 399 – 21

Serpent S12 368 – 24

Serpent S13 368 – 24

Serpent S14 368 – 25

Serpent S15 368 – 23

Serpent S16 365 – 25

Serpent S17 393 – 31

Serpent S18 368 – 27

Serpent S19 398 – 23

Serpent S20 351 – 24

Serpent S21 447 – 25

Serpent S22 405 – 25

Serpent S23 328 – 24

Serpent S24 357 – 24

Serpent S25 366 – 22

Serpent S26 368 – 23

Serpent S27 523 – 24

Serpent S28 278 – 23

Serpent S29 394 – 24

Serpent S30 394 – 23

Serpent S31 357 – 27

328 D. Pal et al.

comparison of our results with existing best known result against the minimum
number of inequalities. The first block of Table 1 presents the results for 4-bit
SBoxes for 14 different ciphers. We get mixed results, for instance in case of
MIBS [17] we get 24 inequalities which is lesser in 3 numbers that of Sun et
al. [26]; for Prince [9] the result is same but for other four ciphers it gives com-
parable results. The third block of Table 1 shows the result for all the SBoxes of
Serpent [6]. Among the existing available results of eight SBoxes for four SBoxes
(S3, S4, S5, S7) we are gaining, for S2 the results is same and for the remain-
ing three (S0, S1, S6) we are loosing at most in two numbers. In Table 1 second
block, for LBlock [28] the results are better over Sun et al [26] for all the SBoxes.
For MIBS [17], the reduced 24 inequalities are provided in Appendix B.

4 Filtering Inequalities by Subset Addition

The main issue with the greedy algorithm is an optimal solution to minimisation
problems is not guaranteed. Hence, we used Gurobi Optimizer [16], as described
by Sasaki and Todo [21], to find the optimal solutions, and successfully repli-
cated those results. Noting that solutions found in this manner are merely the
optimal subsets of the H-representation, and not globally optimal, we attempt
to follow the technique proposed by Boura and Coggia [10]. Their algorithm
concentrates on producing a larger starting set of inequalities so that a smaller
subset may more easily be found. They generates new inequalities by adding
k-size subsets of inequalities. The new inequalities represents the hyperplanes
which is the possible differential paths lie on. The newly generated inequalities
are then discarded if they do not remove a new set of impossible differential
paths. This is potentially slow, since it would necessitate comparing the lists of
impossible differential paths removed by each of the constituent inequalities with
that removed by the new inequality. Hence, we propose an alternative algorithm
which differs from [10] in the way new inequalities are assessed. The concept is
to add k inequalities representing the hyperplanes a possible differential path
lies on (h1 through hk), thus generating a new inequality

h =
k∑

i=1

hi

and keep it only if it is good. We propose that h is good if,

– Type 1 New inequality h removes more impossible differential paths than
the inequality in h1, h2, h3, . . . , hk which removes the fewest; or

– Type 2 New inequality h invalidates at least as many impossible differential
paths as the inequality in h1, h2, h3, . . . , hk which removes the most.

Algorithm 2 explains the overall process. Finally, we find an optimal subset
using Gurobi Optimizer. Note that, unlike [10], no regard is given to which
impossible differential paths are removed by h. We only check how many of
them it removes. Examples of the two types of hyperplanes are shown in Fig. 2.

New Techniques for Modeling SBoxes: An MILP Approach 329

Algorithm 3. Subset Addition Algorithm
Input: The SBox and a positive integer k
Output: Minimized set of inequalities ISR

1: ddt ← DDT(SBox) � Create and returns the difference distribution table

2: impPoints ← GetImpossiblePaths (ddt) � Returns the impossible transitions (points)
3: validPoints ← GetValidPaths (ddt) � Returns the valid transitions (points)

4: I ← inequality generator (validPoints) � Returns the inequalities

5: Path ← φ � Each element of Path consists of two parts, an inequality and a point
6: for iq in I do

7: point iq ← φ
8: for point in impPoints do

9: if Evaluate(iq, point) < 0 then
10: point iq ← point iq ∪ point

11: end if
12: end for
13: Path ← Path ∪ {iq, point iq}
14: end for
15: for point in validPoints do
16: for iq in Path do

17: if Evaluate(iq, point) = 0 then � Point lies in the line

18: Ip ← Ip∪ iq
19: end if

20: end for
21: end for

22: Ic ← GetAllkCombinations(Ip, k) � Returns all k combinations from Ip
23: for each iq in Ic do

24: Il ← GetAllSum(iq) � Form a new inequality after summing of k inequalities. It is
also a linear combination of the original inequalities

25: point iq ← φ
26: for point in impPoints do

27: if Evaluate(Il, point) < 0 then
28: point iq ← point iq ∪ point
29: end if

30: end for
31: Path ← Path ∪ {Il, point iq}
32: end for

33: for point in impPoints do
34: for each path in Path do

35: if point is in path then
36: coverMat[Path.inequality][Path.point] ← 1
37: end if

38: end for
39: end for
40: Generate m binary variables such that c1, c2, . . . , cm such that ci = 1 means inequality i

is included in the solution space else ci = 0.

41: constraintSet← φ
42: for each point ∈ impPoints do

43: constraintSet ← constraintSet ∪ {Construct a constraint ck, . . . , cl >= 1 such that p
is removed by at least one inequality using matrix coverMat} � Generate constraints

44: end for
45: Create an objective function

∑m
i=1 ci with constraints constraintSet and solve to get best

inequalities (ISR) that generate a stricter feasible region after maximizing the removed
impossible differential patterns.

46: return ISR

330 D. Pal et al.

These are only illustrative examples, since differential paths lie on the vertices of
the unit hypercube. (h1 + h2 is of type 2 as it removes 12 impossible differential
paths while h1 removes removes 12, and h2, 10; h′

1 +h′
2 is of type 1 as it removes

14 while h′
1 and h′

2 remove 16 and 10 respectively.
Now we describe our algorithm in details (see Algorithm 3). Assume ddt

be the 2D matrix for difference distribution table corresponding to the given
SBox. Define (u, v) as a point corresponding to the input difference (u) and
output difference (v) in a ddt. Let (ū, v̄) be a valid transition and (¯̄u, ¯̄v) be
any impossible transition for an SBox. Divide the ddt into two parts, (ū, v̄) ∈
validPoints and (¯̄u, ¯̄v) ∈ impPoints. Now apply validPoints to the sagemath
method inequality generator(), which returns the inequalities I, corresponding
to the H-representation of validPoints. Assume a set Path, where each element
consists of two parts, an inequality iq and a point (u, v).

Initially the set Path is empty. Traverse each inequality iq from set I. For
each impossible point check if each inequality iq satisfies or not. Assume point iq
stores all the impossible points for an inequality iq. Finally, set Path have all
the inequalities and for each inequality the corresponding impossible points.
Next, for each point in validPoints perform a test if an inequality from set
Path satisfies the point. Collect all such inequalities in set Ip. Now use method
GetAllkCombinations to get all unique k-degree sets Ic. Next take elements from
Ic one by one and compute the sum of all the k inequalities. This will create a
new inequality, which is linear combination of the original inequalities. Let the
resultant inequality (sum) be Il. Again we perform the same satisfiablity checking
for the new inequality Il against all the impossible points from set impPoints.
Assume Il invalidates a subset point iq form the set impPoints. We append Il

with point iq to set Path. Now Path contains the original inequalities as well
as the newly generated inequalities along with the corresponding impossible
differential points. Create a two-dimensional array coverMat indicating which
inequality removes which impossible differential paths.

coverMati,j =

{
1 if ith inequality removes jth impossible point
0 otherwise

Derive an MILP problem to find the minimum subset of those inequalities
which removes all impossible differential paths. We generate m binary variables
c1, c2, . . . , cm such that ci = 1 means inequality i is included in the solution space
else ci = 0. For each point p in impPoints generate a constraint ck, . . . , cl >= 1,
such that p is removed by at least one inequality using matrix coverMat and
store the constraints in constraintSet. Here the objective function is

∑m
i=1 ci

with constraints constraintSet. Now, solve the problem using an MILP tool to
get the optimized set of inequalities ISR, which generate a stricter feasible region
after maximizing the removed impossible differential patterns.

4.1 Comparison with Boura and Coggia’s [10] Approach

To create significant fresh linear inequalities based on the H-representation of the
convex hull, Boura, and Coggia’s observation reveals that when k hyperplanes

New Techniques for Modeling SBoxes: An MILP Approach 331

within this representation intersect at a vertex, representing a potential transi-
tion, the addition of the corresponding k inequalities is likely to result in a new
constraint. This outcome is driven by the associated hyperplane intersecting with
the cube, particularly at this specific vertex. They expect the newly introduced
inequality to eliminate a distinct and potentially broader range of infeasible
transitions compared to the initial inequalities. The concept involves retaining
an inequality if the collection of all points it eliminates is not encompassed within
the set of points eliminated by another inequality. For instance, if an inequality
I1 removes precisely points {(u1, v1), (u2, v2), (u3, v3)}, while inequality I2 only
removes points {(u1, v1), (u2, v2)}, then I2 lacks significance, and we solely retain
I1. On the other hand, the subset addition approach mainly concentrates on the
count of the impossible transitions while comparing the original and newly gen-
erated inequalities rather than checking the entire list of impossible points of
all the original inequalities. The newly introduced inequality either eliminates
a greater number of infeasible differential paths than the initial inequality that
removes the fewest paths or renders an equal or larger number of infeasible paths
invalid as the original inequality that eliminates the most paths.

Boura and Coggia’s process is potentially time-consuming, as it requires com-
paring the lists of excluded differential paths addressed by each of the initial
inequalities and the list managed by the recently introduced inequality. However,
instead of comparing the invalidated impossible paths, we compare the count of
the removed paths. Hence, the running time is reduced in our approach. On the
other way, there are significantly more hyperplanes on the potential differential
path that leads to the origin [0, 0, 0, 0, 0, 0, 0, 0] than on any other path.
However, it produces no fresh inequalities that ultimately make up the ideal
subset. This path can be disregarded immediately, optimizing the overall time
and performance.

4.2 Multithreading and Filtration

Each iteration of the loop (starting at line 4) of Algorithm 2 can run inde-
pendently of any other. Consequently, the algorithm can be implemented in a
multithreaded fashion, using a thread pool. Whenever any thread is free, it picks
up the next available iteration of the loop and starts executing it. In doing so,
we observed that one thread spends a noticeably longer time than the other
threads, irrespective of the cipher under analysis. The reason is that the possi-
ble differential path corresponding to the origin: [0, 0, 0, 0, 0, 0, 0, 0] appears to
lie on significantly more hyperplanes than any other path; however, it does not
generate any new inequalities which eventually form the optimal subset. As a
result, the thread assigned to process it spends the longest amount of time doing
nothing useful so that this path can be ignored from the outset.

4.3 Implementation and Results

We implemented Algorithm 3 in C++ (on a desktop computer with an Intel Core
i5-6500 4C/4T CPU running Manjaro Linux Sikaris 22.0.0 Xfce Edition 64-bit),

332 D. Pal et al.

Table 2. Minimum number of Inequalities for 4-bit SBoxes (Subset Addition)

Cipher Sasaki and
Todo [21]

Boura and
Coggia [10]

Subset Addition
(k = 2) (Our
approach)

Subset Addition
(k = 3) (Our
approach)

GIFT – 17 17 17

KLEIN 21 19 19 19

Lilliput 23 19 20 19

MIBS 23 20 20 20

Midori S0 21 16 17 16

Midori S1 22 20 20 20

Minalpher 22 19 19 18

Piccolo 21 16 16 16

PRESENT 21 17 17 17

PRIDE – 16 17 17

PRINCE 22 19 19 18

RECTANGLE 21 17 17 16

SKINNY 21 16 16 16

TWINE 23 19 20 19

LBlock S0 24 17 17 16

LBlock S1 24 17 17 16

LBlock S2 24 17 17 16

LBlock S3 24 17 17 16

LBlock S4 24 17 17 16

LBlock S5 24 17 17 16

LBlock S6 24 17 17 16

LBlock S7 24 17 17 16

LBlock S8 24 17 17 16

LBlock S9 24 17 17 16

Serpent S0 21 17 18 17

Serpent S1 21 17 19 18

Serpent S2 21 18 18 17

Serpent S3 27 20 16 14

Serpent S4 23 19 19 19

Serpent S5 23 19 17 17

Serpent S6 21 17 16 16

Serpent S7 27 20 16 16

Serpent S8 – – 18 18

Serpent S9 – – 18 17

Serpent S10 – – 17 16

(continued)

New Techniques for Modeling SBoxes: An MILP Approach 333

Table 2. (continued)

Cipher Sasaki and
Todo [21]

Boura and
Coggia [10]

Subset Addition
(k = 2) (Our
approach)

Subset Addition
(k = 3) (Our
approach)

Serpent S11 – – 15 15

Serpent S12 – – 18 18

Serpent S13 – – 18 18

Serpent S14 – – 18 18

Serpent S15 – – 18 18

Serpent S16 – – 17 16

Serpent S17 – – 19 19

Serpent S18 – – 18 18

Serpent S19 – – 18 17

Serpent S20 – – 19 19

Serpent S21 – – 18 17

Serpent S22 – – 17 16

Serpent S23 – – 19 19

Serpent S24 – – 18 17

Serpent S25 – – 17 16

Serpent S26 – – 18 18

Serpent S27 – – 17 16

Serpent S28 – – 17 17

Serpent S29 – – 17 17

Serpent S30 – – 17 17

Serpent S31 – – 18 17

and then extended the program to use Gurobi Optimizer to find the optimal
subset of inequalities. We give the user the option to choose (by defining a macro
while compiling) between good hyperplanes of types 1 and 2. Our experiments
suggest that selecting type 1 is better than or as good as selecting type 2.

Application to 4-Bit SBoxes. Algorithm 3 is successfully applied to most of
the 4-bit SBoxes. Among the 14 4-bit SBoxes provided in first block of Table 2,
we are getting better results for Prince [9], Minalpher [22] and Rectangle [29]
with setting k = 3. For 10 SBoxes the results are same as the existing one. Only
for PRIDE [3] the minimum number of inequalities is one extra.

For all the ten LBlock [28] SBoxes the inequality count is decreased to 16
from 17 [10]. The results for LBlock are provided in block two in Table 2 for
k = 2 and k = 3.

Block three of Table 2) explains the results of 32 Serpent [6] SBoxes. Com-
paring with the existing results of eight Serpent SBoxes (S0 to S7) we improve

334 D. Pal et al.

the results for five (S2, S3, S5, S6, S7) For two SBoxes (S0, S4) the results are
same, though for S2 we are loosing. For the rest of the 24 SBoxes we provide
new results. For Serpent S3 the inequalities are mentioned in Appendix B.

Application to 5- and 6-Bit SBoxes. We have applied Algorithm 3 for
ASCON [14] and SC2000 [23], which use 5-bit SBoxes. In this case, by taking
k = 3, the results are improved. For 6-bit SBoxes of APN [11] and SC2000
with k = 2, we can cross the existing boundary of Boura and Coggia [10]. For
5-bit SBox of FIDES [8] we are getting one extra inequality than the existing
boundary. The results for 5 and 6-bit SBoxes are tabulated in Table 3 comparing
with existing results.

Reducing Running Time over Boura and Coggia [10] Technique. As
mentioned earlier, since each impossible differential path is processed indepen-
dently, parallel processing can be employed to reduce the running time. A worker
thread can independently process a possible differential path at a time.

Table 3. Minimum number of Inequalities for 5- and 6-bit SBoxes

SBox SBox Size SageMath [1] Boura and
Coggia [10]

Subset Addition
k = 2 (Our
approach)

Subset Addition
k = 3 (Our
approach)

ASCON 5 2415 32 31 31

FIDES 910 61 64 62

SC2000 908 64 65 63

APN 6 5481 167 163 –

FIDES 7403 180 184

SC2000 11920 214 189

For multithreading, we used the C++ POSIX Threads API (which is
wrapped in the thread library). In Table 4 we have tabulated the running time
of our algorithm (Algorithm 3) for some Sboxes. For LBlock S0 through S9
and Serpent S0 through S7, average running times are reported. In general, it
appears that larger values of k lead to smaller subsets of inequalities. However,
we were unable to confirm this. While k = 3 usually produced smaller subsets
than k = 2 in our experiments, testing with k = 4 proved difficult. For Lil-
liput [4], MIBS [17] and Serpent S3, the outputs did not improve with k = 4,
but the memory requirement shot up to around 10 GiB. We could not test any
other ciphers because of this.

New Techniques for Modeling SBoxes: An MILP Approach 335

Boura and Coggia [10] reported that for k = 2, their algorithm implemen-
tation took a few minutes, while for k = 3, it took a few hours. They have yet
to provide an exact running time estimation of different Sboxes for their app-
roach. We have tried to regenerate their results, but it is taking longer running
time than expected in our system. Still, we compare our algorithm for k = 2
and k = 3 with that of Boura and Coggia [10], and our results are provided
in Table 4. Our implementation is faster by two orders of magnitude and gives
comparable results. We achieve much better running times after making all the
earlier mentioned optimizations in our program.

Table 4. Approximate running time of Subset Addition Algorithm

SBox Required Time for Algorithm 3 (in sec)

No. of Inequality, k = 2 No. of Inequality, k = 3

Klein 0.16 2.5

LBlock S* 0.19 2.2

MIBS 1.9 4.5

Piccolo 0.15 2.0

PRESENT 0.28 3.9

PRINCE 0.17 4.8

Serpent S* 0.49 8.3

TWINE 0.16 3.4

5 Conclusion

In this paper, we propose two MILP-based techniques for finding the minimum
set of inequalities for modeling differential propagations of an SBox. The algo-
rithms we introduce for modeling the DDT of an SBox are more efficient than
the other existing algorithms. Noting that a greedy algorithm is only complete
with the notion of a tiebreaker, we implemented a new version of the greedy app-
roach based on a random tiebreaker. The results of the greedy random tiebreaker
outperform the original greedy one for some of the SBoxes. The subset addition
algorithm can successfully model SBoxes up to 6-bit. The approach also pro-
vides better or almost identical results for most SBoxes. We also improved the
execution time to find the minimized inequalities concerning the previous imple-
mentations.

336 D. Pal et al.

A Existing Algorithm for Choosing Best Inequalities

Algorithm 4. MILP based reduction [21]
Inputs:

IDP : Impossible differential patterns corresponding to the impossible transitions from the DDT

of an SBox.

P : Input set corresponding to the possible transitions in an SBox

Output:

ISR: Set of inequalities that generates more stricter feasible region after maximizing the removed

impossible differential patterns.

1: H ← ConvHull(P)

2: RI ← H

3: Create a table PIT of size |RI| × |IDP| where PITi,j = 1 if inequality RIi removes pattern

IDPj , else set PITi,j = 0

4: Set m = |RI|
5: Generate m binary variables such that c1, c2, . . . , cm such that ci = 1 means inequality i is

included in the solution space else ci = 0.

6: constraintSet← φ

7: for each point ∈ IDP do

8: constraintSet ← constraintSet ∪ {Construct a constraint ck, . . . , cl >= 1 such that p is

removed by at least one inequality applying table PIT} � Generate constraints

9: end for

10: Create an objective function
∑m

i=1 ci with constraints constraintSet and solve to get best

inequalities (ISR) that generate a stricter feasible region after maximizing the removed impos-

sible differential patterns.

11: return ISR

Algorithm 5. Greedy Based Approach [26]
Input:

HI : Inequalities in the H-Representation of the convex hull of an SBox.

ID: The set of all impossible differential patterns of an SBox

Output:

RI: Set of inequalities that generates a stricter feasible region after maximizing the removed

impossible differential patterns.

1: l ← φ,RI ← φ

2: while ID �= φ do

3: l ← The inequality in HI which maximizes the number of removed impossible differential

patterns from ID.

4: ID ← ID − {Removed impossible differential patterns using l}
5: HI ← HI − {l}
6: RI ← RI ∪ {l}
7: end while

8: return RI

New Techniques for Modeling SBoxes: An MILP Approach 337

Algorithm 6. Modeling by selecting random set of inequalities [10]
Inputs:
P : Input set corresponding to the possible transitions in an SBox.

k: The number of inequalities to be added together.
Output:
RI: Set of inequalities that generates more stricter feasible region after maximizing the removed
impossible differential patterns.

1: H ← ConvHull(P)

2: RI ← H

3: for all p ∈ P do
4: Choose k inequalities such that p belongs to the hyperplanes of Q1, Q2, . . . , Qk

5: Qnew = Q1 + . . . + Qk

6: if Qnew removes new impossible transitions

7: RI ← RI ∪{Qnew}
8: end if
9: end for

10: return RI

B Sample Reduced Inequalities

Applying random greedy tiebreaker Algorithm 1 for MIBS [17], the reduced 24
inequalities are as follows,

- 1x3 - 2x2 - 2x1 - 1x0 + 4y3 + 5y2 + 5y1 + 5y0 >= 0
+ 5x3 + 4x2 + 4x1 + 3x0 - 1y3 - 2y2 + 1y1 - 2y0 >= 0
- 2x3 + 2x2 + 4x1 + 1x0 + 3y3 + 1y2 - 3y1 - 3y0 >= -4
- 1x3 - 4x2 + 3x1 + 2x0 - 1y3 - 3y2 + 4y1 + 2y0 >= -5
- 2x3 + 1x2 - 3x1 - 1x0 - 1y3 - 3y2 - 2y1 - 2y0 >= -11
- 1x3 - 2x2 - 4x1 + 4x0 - 4y3 + 2y2 + 1y1 - 3y0 >= -10
+ 2x3 - 1x2 + 3x1 + 1x0 - 2y3 + 2y2 - 3y1 + 1y0 >= -3
+ 1x3 + 2x2 - 4x1 + 2x0 + 3y3 + 1y2 + 2y1 + 4y0 >= 0
+ 1x3 + 3x2 - 2x1 - 3x0 + 1y3 + 3y2 + 2y1 - 1y0 >= -3
+ 2x3 - 1x2 - 2x1 - 2x0 - 1y3 - 1y2 - 2y1 + 0y0 >= -7
+ 0x3 + 2x2 + 2x1 - 1x0 + 1y3 + 1y2 - 1y1 + 1y0 >= 0
- 3x3 - 3x2 + 1x1 - 2x0 + 1y3 - 2y2 + 1y1 + 2y0 >= -7
+ 2x3 - 1x2 + 2x1 - 1x0 + 1y3 + 1y2 + 2y1 - 1y0 >= -1
+ 1x3 - 2x2 - 2x1 + 2x0 + 1y3 + 1y2 - 1y1 - 2y0 >= -5
- 1x3 + 2x2 - 1x1 + 1x0 + 2y3 - 2y2 + 1y1 - 1y0 >= -3
- 1x3 + 1x2 + 0x1 - 1x0 - 1y3 - 1y2 + 0y1 + 1y0 >= -3
+ 1x3 - 2x2 - 1x1 - 1x0 + 1y3 - 2y2 - 2y1 + 1y0 >= -6
+ 2x3 - 1x2 + 0x1 - 2x0 - 2y3 + 2y2 - 1y1 + 1y0 >= -4
- 1x3 - 1x2 + 1x1 - 1x0 - 1y3 + 0y2 - 1y1 - 1y0 >= -5
- 1x3 + 1x2 - 1x1 + 2x0 + 1y3 + 2y2 - 1y1 + 2y0 >= -1
+ 2x3 + 1x2 + 2x1 + 3x0 - 2y3 - 1y2 - 1y1 + 2y0 >= -1
- 3x3 - 2x2 + 1x1 + 3x0 - 1y3 + 1y2 + 2y1 + 3y0 >= -3
+ 1x3 - 1x2 - 2x1 - 2x0 - 1y3 - 1y2 - 1y1 - 1y0 >= -7
- 1x3 + 1x2 + 0x1 - 1x0 - 1y3 + 1y2 + 1y1 - 1y0 >= -3

338 D. Pal et al.

Applying subset addition Algorithm 3 for Serpent S3 the 14 inequalities are
as follows,

- 5x3 + 4x2 + 4x1 - 5x0 + 2y3 + 10y2 + 3y1 + 10y0 >= 0
+ 6x3 - 1x2 - 2x1 + 2x0 + 1y3 + 7y2 - 3y1 + 7y0 >= 0
- 2x3 + 0x2 - 3x1 - 3x0 - 2y3 - 4y2 - 1y1 + 4y0 >= -11
+ 3x3 + 0x2 + 3x1 + 2x0 + 1y3 - 4y2 + 2y1 + 4y0 >= 0
- 3x3 - 3x2 + 0x1 - 2x0 - 1y3 + 4y2 - 2y1 - 4y0 >= -11
- 4x3 - 4x2 - 1x1 - 3x0 + 1y3 + 2y2 - 1y1 - 4y0 >= -13
+ 2x3 - 2x2 + 1x1 - 4x0 - 4y3 + 3y2 + 2y1 - 4y0 >= -10
+ 2x3 + 6x2 + 2x1 + 1x0 - 3y3 - 4y2 - 4y1 - 4y0 >= -10
- 2x3 + 8x2 + 4x1 - 1x0 + 5y3 - 7y2 + 6y1 - 7y0 >= -10
- 2x3 - 5x2 - 1x1 + 2x0 - 3y3 - 5y2 + 3y1 - 5y0 >= -17
+ 2x3 + 3x2 + 0x1 + 3x0 + 2y3 + 4y2 + 1y1 - 4y0 >= 0
+ 4x3 - 3x2 - 2x1 + 0x0 + 2y3 - 3y2 - 1y1 - 3y0 >= -9
- 2x3 - 1x2 + 2x1 + 4x0 + 4y3 - 4y2 - 2y1 + 3y0 >= -5
+ 0x3 - 1x2 - 1x1 + 5x0 - 2y3 + 5y2 + 2y1 + 5y0 >= 0

Applying subset addition Algorithm 3 for ASCON SBox the 31 inequalities
are as follows,

- 9x5 + 8x4 + 6x3 + 11x2 - 6x1 + 4y5 - 5y4 - 3y3 - 1y2 + 3y1 >= 12

- 1x5 + 5x4 + 8x3 + 7x2 - 3x1 + 8y5 + 7y4 - 2y3 + 1y2 - 2y1 >= 0

+ 1x5 + 2x4 + 4x3 + 2x2 - 2x1 - 4y5 - 3y4 - 2y3 + 0y2 - 4y1 >= 11

+ 5x5 + 11x4 + 4x3 + 11x2 + 6x1 - 3y5 + 2y4 - 1y3 + 0y2 - 7y1 >= 0

+ 5x5 + 7x4 - 6x3 + 3x2 - 3x1 + 6y5 - 1y4 - 1y3 + 4y2 + 1y1 >= 4

- 1x5 + 7x4 + 7x3 + 9x2 - 3x1 + 9y5 - 3y4 - 2y3 - 1y2 + 9y1 >= 0

- 1x5 - 2x4 + 0x3 + 2x2 - 1x1 - 3y5 - 3y4 + 2y3 + 1y2 + 2y1 >= 7

- 1x5 + 7x4 + 9x3 + 8x2 - 3x1 - 3y5 + 9y4 - 2y3 - 1y2 + 10y1 >= 0

- 2x5 + 5x4 + 2x3 - 5x2 - 3x1 - 2y5 + 0y4 + 0y3 - 1y2 - 3y1 >= 11

+ 1x5 - 2x4 + 0x3 - 1x2 + 2x1 + 0y5 + 1y4 + 2y3 - 2y2 - 2y1 >= 5

+ 2x5 - 1x4 + 0x3 + 1x2 + 2x1 + 0y5 + 0y4 - 2y3 + 2y2 - 1y1 >= 2

+ 3x5 + 2x4 + 0x3 - 3x2 + 1x1 - 2y5 + 0y4 - 1y3 - 2y2 + 3y1 >= 5

+ 3x5 + 5x4 + 4x3 - 4x2 + 2x1 + 3y5 + 0y4 - 1y3 - 1y2 + 3y1 >= 0

- 2x5 + 0x4 - 1x3 - 2x2 - 2x1 + 1y5 + 1y4 + 3y3 + 3y2 + 0y1 >= 4

+ 2x5 - 3x4 + 3x3 - 3x2 - 2x1 + 0y5 + 0y4 + 1y3 + 3y2 + 1y1 >= 5

+ 2x5 + 2x4 - 2x3 - 2x2 - 1x1 + 0y5 + 0y4 + 0y3 + 2y2 + 1y1 >= 3

+ 1x5 - 4x4 - 4x3 + 3x2 + 2x1 + 2y5 + 2y4 - 1y3 - 1y2 + 2y1 >= 6

- 1x5 - 3x4 - 12x3 + 10x2 + 4x1 - 9y5 + 8y4 - 5y3 + 1y2 - 7y1 >= 25

- 3x5 - 1x4 - 6x3 + 6x2 - 1x1 - 5y5 - 5y4 - 3y3 + 2y2 + 7y1 >= 17

+ 0x5 + 3x4 - 2x3 + 3x2 + 2x1 - 1y5 - 1y4 + 2y3 + 0y2 - 1y1 >= 2

- 1x5 + 4x4 - 2x3 + 10x2 - 6x1 + 5y5 + 5y4 + 4y3 - 1y2 + 6y1 >= 0

- 2x5 + 2x4 - 2x3 - 2x2 + 1x1 + 2y5 + 0y4 + 0y3 + 0y2 - 1y1 >= 5

+ 6x5 - 5x4 - 6x3 - 2x2 + 3x1 - 1y5 - 6y4 + 0y3 - 3y2 + 1y1 >= 17

+ 2x5 - 2x4 - 2x3 - 3x2 - 2x1 + 0y5 + 3y4 + 1y3 + 1y2 + 1y1 >= 6

- 2x5 - 1x4 - 1x3 - 3x2 - 3x1 + 0y5 - 1y4 - 2y3 - 2y2 + 0y1 >= 12

+ 0x5 - 2x4 - 1x3 + 2x2 + 0x1 + 2y5 - 2y4 + 1y3 + 0y2 - 2y1 >= 5

+ 0x5 - 2x4 + 3x3 + 4x2 + 3x1 - 1y5 + 1y4 + 4y3 + 0y2 - 1y1 >= 0

- 2x5 - 2x4 + 2x3 - 1x2 + 1x1 + 0y5 - 2y4 + 1y3 + 2y2 - 2y1 >= 7

- 2x5 - 1x4 + 2x3 - 2x2 + 2x1 + 1y5 - 2y4 + 0y3 - 2y2 + 2y1 >= 7

- 3x5 - 3x4 - 1x3 - 1x2 - 2x1 + 0y5 + 2y4 - 4y3 - 4y2 - 3y1 >= 17

- 2x5 - 2x4 - 1x3 - 2x2 + 2x1 + 0y5 + 2y4 + 0y3 + 1y2 + 1y1 >= 5

New Techniques for Modeling SBoxes: An MILP Approach 339

References

1. The sage developers. sagemath, the sage mathematics software system (version
9.0) (2020). https://www.sagemath.org

2. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP model-
ing for (large) s-boxes to optimize probability of differential characteristics. IACR
Trans. Symmetric Cryptol. 2017(4), 99–129 (2017). https://doi.org/10.13154/tosc.
v2017.i4.99-129

3. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2 4

4. Berger, T.P., Francq, J., Minier, M., Thomas, G.: Extended generalized feistel
networks using matrix representation to propose a new lightweight block cipher:
lilliput. IEEE Trans. Comput. 65(7), 2074–2089 (2016). https://doi.org/10.1109/
TC.2015.2468218

5. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48285-7 34

6. Biham, E., Anderson, R., Knudsen, L.: Serpent: a new block cipher proposal. In:
Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-69710-1 15

7. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993). https://doi.org/10.1007/978-1-4613-9314-6

8. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: lightweight
authenticated cipher with side-channel resistance for constrained hardware. In:
Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1 9

9. Borghoff, J., et al.: PRINCE - a low-latency block cipher for pervasive computing
applications (full version). IACR Cryptol. ePrint Arch. 529 (2012)

10. Boura, C., Coggia, D.: Efficient MILP modelings for Sboxes and linear layers of
SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327–361 (2020). https://
doi.org/10.13154/tosc.v2020.i3.327-361

11. Browning, K., Dillon, J., McQuistan, M., Wolfe., A.: APN permutation in dimen-
sion six. In: Postproceedings of the 9th International Conference on Finite Fields
and Their Applications (2010)

12. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for impos-
sible differentials and zero-correlation linear approximations. IACR Cryptol. ePrint
Arch. 689 (2016), http://eprint.iacr.org/2016/689

13. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45325-3 20

14. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: lightweight
authenticated encryption and hashing. J. Cryptol. 34(3), 1–42 (2021). https://doi.
org/10.1007/s00145-021-09398-9

15. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algo-
rithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016.
LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-52993-5 14

https://www.sagemath.org
https://doi.org/10.13154/tosc.v2017.i4.99-129
https://doi.org/10.13154/tosc.v2017.i4.99-129
https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1109/TC.2015.2468218
https://doi.org/10.1109/TC.2015.2468218
https://doi.org/10.1007/3-540-48285-7_34
https://doi.org/10.1007/3-540-69710-1_15
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-3-642-40349-1_9
https://doi.org/10.13154/tosc.v2020.i3.327-361
https://doi.org/10.13154/tosc.v2020.i3.327-361
http://eprint.iacr.org/2016/689
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/978-3-662-52993-5_14

340 D. Pal et al.

16. Gurobi Optimization LLC.: Gurobi optimizer reference manual. 9.5.2 (2022).
https://www.gurobi.com/, https://www.gurobi.com/

17. Izadi, M., Sadeghiyan, B., Sadeghian, S.S., Khanooki, H.A.: MIBS: a new
lightweight block cipher. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS
2009. LNCS, vol. 5888, pp. 334–348. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10433-6 22

18. Li, T., Sun, Y.: Superball: a new approach for MILP modelings of Boolean func-
tions. IACR Trans. Symmetric Cryptol. 2022(3), 341–367 (2022)

19. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9 7

20. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

21. Sasaki, Yu., Todo, Y.: New algorithm for modeling S-box in MILP based differential
and division trail search. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS,
vol. 10543, pp. 150–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69284-5 11

22. Sasaki, Y., et al.: Minalpher. In: Directions in Authenticated Ciphers
(DIAC 2014), pp. 23–24 (2014). https://info.isl.ntt.co.jp/crypt/minalpher/files/
minalpher-diac2014.pdf

23. Shimoyama, T., et al.: The block cipher SC2000. In: Matsui, M. (ed.) FSE 2001.
LNCS, vol. 2355, pp. 312–327. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45473-X 26

24. Sun, S., Hu, L., Song, L., Xie, Y., Wang, P.: Automatic security evaluation of block
ciphers with S-bP structures against related-key differential attacks. In: Lin, D.,
Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS, vol. 8567, pp. 39–51. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12087-4 3

25. Sun, S., et al.: Towards finding the best characteristics of some bit-oriented block
ciphers and automatic enumeration of (related-key) differential and linear charac-
teristics with predefined properties. Cryptology ePrint Archive, Paper 2014/747
(2014). https://eprint.iacr.org/2014/747

26. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

27. Udovenko, A.: MILP modeling of Boolean functions by minimum number of
inequalities. IACR Cryptol. ePrint Arch. 1099 (2021). https://eprint.iacr.org/
2021/1099

28. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21554-4 19

29. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE:
a bit-slice ultra-lightweight block cipher suitable for multiple platforms. IACR
Cryptol. ePrint Arch. 84 (2014)

https://www.gurobi.com/
https://www.gurobi.com/
https://doi.org/10.1007/978-3-642-10433-6_22
https://doi.org/10.1007/978-3-642-10433-6_22
https://doi.org/10.1007/3-540-47555-9_7
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-319-69284-5_11
https://info.isl.ntt.co.jp/crypt/minalpher/files/minalpher-diac2014.pdf
https://info.isl.ntt.co.jp/crypt/minalpher/files/minalpher-diac2014.pdf
https://doi.org/10.1007/3-540-45473-X_26
https://doi.org/10.1007/3-540-45473-X_26
https://doi.org/10.1007/978-3-319-12087-4_3
https://eprint.iacr.org/2014/747
https://doi.org/10.1007/978-3-662-45611-8_9
https://eprint.iacr.org/2021/1099
https://eprint.iacr.org/2021/1099
https://doi.org/10.1007/978-3-642-21554-4_19

Blockchain

LucidiTEE: Scalable Policy-Based
Multiparty Computation with Fairness

Sivanarayana Gaddam1, Ranjit Kumaresan2, Srinivasan Raghuraman2,3(B),
and Rohit Sinha4

1 Cohesity Inc., San Jose, USA
2 Visa Research, Foster City, USA

srini131293@gmail.com
3 MIT, Cambridge, USA
4 Swirlds Labs, Dallas, USA

Abstract. Motivated by recent advances in exploring the power of
hybridized TEE-blockchain systems, we present LucidiTEE, a unified
framework for confidential, policy-compliant computing that guarantees
fair output delivery. For context:

– Ekiden (EuroS&P’19) and FastKitten (Sec’19) use enclave-ledger
interactions to enable privacy-preserving smart contracts. However,
they store the contract’s inputs on-chain, and therefore, are imprac-
tical for applications that process large volumes of data or serve
large number of users. In contrast, LucidiTEE implements privacy-
preserving computation while storing inputs, outputs, and state off-
chain, using the ledger only to enforce policies on computation.

– Chaudhuri et al. (CCS’17) showed that enclave-ledger interactions
enable fair secure multiparty computation. In a setting with n pro-
cessors each of which possesses a TEE, they show how to realize fair
secure computation tolerating up to t corrupt parties for any t < n.
We improve upon their result by showing a novel protocol which
requires only t out of the n processors to possess a TEE.

– Kaptchuk et al. (NDSS’19) showed that enclave-ledger interactions
can enable applications such as one-time programs and rate limited
logging. We generalize their ideas to enforcing arbitrary history-based
policies within and across several multi-step computations, and for-
mally specify a new functionality for policy-compliant multiparty
computation.

Summarizing, LucidiTEE enables multiple parties to jointly compute on
private data, while enforcing history-based policies even when input
providers are offline, and fairness to all output recipients, in a malicious
setting. LucidiTEE uses the ledger only to enforce policies; i.e., it does not
store inputs, outputs, or state on the ledger, letting it scale to big data
computation. We show novel applications including a personal finance
app, collaborative machine learning, and policy-based surveys amongst
an apriori-unknown set of participants.

Keywords: TEE · blockchain · policy compliance

Work done while all authors were at Visa Research.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 343–367, 2023.
https://doi.org/10.1007/978-981-99-7563-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_16&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_16

344 S. Gaddam et al.

1 Introduction

Alice wishes to analyze her monthly spending behavior using a personal finance
application, such as Mint [2]. Conscious of her privacy, she seeks to gauge,
and even control, how her transaction records are stored, analyzed, and fur-
ther shared with other parties — however, mainstream applications today only
present a privacy policy written in legalese, without any technical means to
enforce them. We discuss Alice’s requirements from a new, transparent personal
finance application that we build in this paper, called Acme.

Alice has the following requirements. Ideally, Alice prevents Acme from view-
ing her raw transaction data, allows computing only select analytics on her data
(e.g. a monthly aggregate summary), and controls who can attain the output
report1. Moreover, she does not wish to provision her own servers, and is expected
to go offline at any time. For privacy, we must allow Acme to run only a single
instance of the analysis, over an entire month’s worth of transactions, as opposed
to multiple, finer-grained analytics that can leak significantly more information
about her spending behavior (this becomes a one-time program [34] policy). For
correctness, we would like all of her transactions to be input to the computation.

As another example, Acme wishes to run a survey to collect feedback from
users (such as Alice), without having to build a survey application but rather
outsourcing it to a third-party service. Ideally, instead of trusting this service to
collect genuine responses, Acme wishes to enforce the following policy: 1) only
accept inputs from enrolled users of Acme; 2) all valid inputs are tallied in the
output.

Alice’s policy is expressed over the inputs and outputs of all computations
in her history with Acme, while Acme’s survey policy is expressed over multiple
concurrent computations (over all users). We call them history-based policies,
and it is an open research problem to efficiently enforce them in a multi-party
setting, where the participants are not known in advance, may not be online,
and may act maliciously.

In addition to enforcing policies, we wish to ensure fair output delivery to
all participants, even when the computation is carried out by malicious parties
(e.g. when Acme computes on Alice’s data, or collaboration between businesses
(see Sect. 7.1). It is an open problem how to provide fairness [22,36] — if any
party gets the output, then so must all honest parties — in a multi-party compu-
tation (malicious setting), where participants have commodity devices without
a trusted execution environment [22], such as end users.

In this work, we build on recent advances in exploring the power of a
hybridized TEE-blockchain system (cf. [21,22,42] and references therein) to
address the problem of policy-compliance on computations over user data. To
that end, we provide a concrete definition for policy-compliant computa-
tion. Our definition takes the form of an ideal functionality FPCC in the UC
framework of [19]. FPCC accepts user data and user-defined policies as inputs,

1 While this is feasible with protocols for multiparty computation (MPC) [63,64], it
requires Alice to remain online during the computation.

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 345

and guarantees (1) confidentiality of inputs on which computations are per-
formed, and (2) fair output delivery to output recipients, and (3) execution of
only policy-compliant computations.

FPCC internally maintains a log of all function evaluations across all con-
current computations, and a computation-specific policy check uses this log to
determine whether to allow any further function evaluation. Additionally, the
interfaces provided by our FPCC abstraction are well-suited to the practical set-
ting of repeated (big data) computations on user data which may grow over
time, thereby expressive enough to enforce policies on this important class of
applications. In more detail, parties provide their input data to FPCC once, and
then bind it to an unbounded number of different computations, and also use
it for an unbounded number of steps within a computation without having to
resupply it. This interface is valuable for Acme, whose input database contains
information of a large number of merchants and spans several GBs. FPCC allows
any (malicious) party to carry out the computation on behalf of the compu-
tation’s input providers (e.g. a cloud compute provider), but the properties of
policy compliance and fairness are ensured.

Next, we present LucidiTEE, a hybrid TEE-blockchain system that exploits
enclave-ledger interactions to provide a practical implementation of the
abstractions provided by FPCC. We assume a method that computes on
encrypted data — for instance, MPC protocols or TEE-based systems such as
VC3 [55], Opaque [66], StealthDB [38], Ryoan [40], Felsen et al. [28], etc. —
and instead describe methods to enforce history-based policies and fair output
delivery. While a variety of advanced cryptographic methods exist to enable
confidentiality of computations [31,33,64], enclaves provide perhaps the most
practical method for achieving this. Pure cryptographic methods also fall short of
guaranteeing fair output delivery [23], or enforcing policies across computations
involving different sets of parties. Also, secure computation does not apply to
settings where participants are not known in advance or are offline or where
confidentiality is required when different sets of users contribute input to different
stages of a single computation [10,11].

Improvements upon Related Work

While enclaves address many of the problems above, they still suffer from other
problems such as rollback protection in a multiparty computation. Prior work
has employed blockchains for addressing state continuity, and also to support
more robust designs involving a distributed network of TEE nodes [21,48]. Our
work continues in the same vein. However, in addition to rollback protection,
we rely on enclave-ledger interactions to (1) enforce policy compliance, and (2)
guarantee fair output delivery. In the following, we first discuss how we extend
ideas from Kaptchuk et al. [42] (see also [16]) to use enclave-ledger interactions
to enforce policies in computations. After that, we discuss how we improve upon
the work of Choudhuri et al. [22] to derive more practical protocols for fair
output delivery and fair exchange. The latter may be of independent interest.

346 S. Gaddam et al.

Kaptchuk et al. [42] showed that enclave-ledger interactions can enable appli-
cations such as one-time programs and “rate limited mandatory logging.” To
support applications such as one-time programs, [42]’s strategy is to record (the
first) execution of the program on the blockchain. Then, the enclave running the
program would first check the blockchain to see if the program was executed
already (in which case it would abort), and if no record of program execution
exists on the blockchain, then continue execution of the program. In the prob-
lem of rate limited mandatory logging, the goal is to log access to sensitive files
before the necessary keys for an encrypted file can be accessed by the user. Here
again, [42]’s strategy is to first check the blockchain to log the file access, and
only then let the enclave release the key.

Extending [42], we provide general techniques to enforce arbitrary history-
based policies within and across several multistage computations. At a high level,
we implement such history-based policies by allowing the enclave executing a
step of a computation to scan through the ledger to identify policies associated
with the computation, and first check if the inputs to the computation step
comply with the policies associated with the computation, and only then pro-
ceed with the execution of the computation step. In the following sections, we
demonstrate several interesting practical applications which exploit the power
of history-based policies. We note that such an extension is not straightforward
from the “Enclave-Ledger Interaction” scheme suggested by [42]—among other
things, concretely, their ExecuteEnclave function takes only a single ledger post,
whereas our policies may involve multiple entries on the blockchain. Further-
more, unlike [42], LucidiTEE enforces policies across several computations. As an
example, consider a survey application where one might wish to enforce a policy
that only those users who have participated in a prior survey may participate in
the current one.

Next, we discuss our contributions to the design of practical fair exchange
and fair computation protocols. By fairness, we mean that either all output
recipients obtain the output of a computation or none do. It is a well-known
result [23] that fairness is impossible to achieve in a setting where a majority of
the participants are corrupt. Faced with this result, several works have explored
relaxed notions of fairness over the last few years [12,37,52]. However, very
recently, Choudhuri et al. [22] showed that enclave-ledger interactions can enable
fair secure computation. (Note that it is not known whether enclaves alone can
enable the standard notion of fairness in secure computation [51].) In a setting
with n processors each of which possesses a TEE, [22] show how to realize fair
computation tolerating up to t corrupt parties for any t < n. We improve upon
their result with a novel protocol which requires only t out of the n processors to
possess a TEE. When n = 2 and t = 1, this provides practical fair computation
in client-server settings, where clients may not possess TEEs. This contribution
is of independent interest.

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 347

System Design

LucidiTEE provides a practical and scalable framework for privacy-preserving,
policy-compliant computations. In our example applications, the inputs span
large databases (see Sect. 7.1), and are provided by a large number of apriori-
unknown users, such as in public surveys (see Sect. 7.1) and applications that
provide a service based on aggregate data of its growing consumer base (see
Sect. 7.1). Finally, the set of computations grow over time as parties enroll in
new computations that consume results from prior computations.

LucidiTEE supports history-based policies with the use of a shared ledger
or blockchain, which plays the role of the log in FPCC — since rollback or
tampering attacks on the log can violate policy compliance and fairness, we
use a shared ledger (accessible by all parties) in lieu of a centralized database.
LucidiTEE achieves scalability by minimizing use of the ledger. To support the
above mentioned applications, we record only commitments (i.e., hash digests,
which support membership queries) of the inputs, outputs, and the updated state
on the ledger after each function evaluation. We note that the recent works of
Ekiden [21] and FastKitten [24] also use enclave-ledger interactions to enable
privacy-preserving smart contracts. However, Ekiden and FastKitten store the
contract’s inputs on-chain (during malicious behavior in the latter’s case). In
contrast, LucidiTEE stores inputs, outputs, and state off-chain (recall only com-
mitments to these go on-chain), using the ledger only to enforce history-based
policies.

We use remote attestation [18,51] to allow any party to act as a compute
provider by providing a genuine TEE-equipped processor. For these reasons, we
say that LucidiTEE embodies “bring-your-own-storage” and “bring-your-own-
compute” paradigms, lending flexibility to the untrusted compute providers to
manage storage and compute resources.

Contributions. In summary, our contributions are:

– formal specification of a functionality FPCC for concurrent, multi-party com-
putation, which guarantees history-based policies for offline parties and fair-
ness for output recipients. For space reasons, we defer the FPCC definition to
the full version [27].

– LucidiTEE, a system that realizes this ideal functionality, using TEEs and a
shared ledger

– protocol for fair n-party output delivery, requiring a shared ledger and t
parties to allocate a TEE, for any corruption threshold t < n. We also prove
security in the UC framework.

– evaluation of several applications, including a personal finance application
(serving millions of users), federated machine learning over crowdsourced
data, and a private survey. We also implement micro-benchmarks including
one-time programs, digital lockboxes, and fair information exchange.

348 S. Gaddam et al.

2 Overview of LucidiTEE

In this section, we introduce the components of our system, using the example
of a personal finance application, called Acme. The design principles behind
our system should be evident even when considering applications from different
domains such as joint machine learning, surveys, etc.

2.1 Running Example: Personal Finance App

Fig. 1. Transparent Personal Finance Application

The open banking initiative [3] has fostered a variety of personal financial appli-
cations, such as Mint [2]. Figure 1 illustrates one such application by Acme, who
provides a service for viewing aggregate spending behavior (i.e., the proportion
of spending across categories for all transactions in a month), along with the
feature to share this aggregate report with third parties. For instance, Alice may
choose to share this report with lending institutions to avail lucrative mortgage
offers.

To perform this joint computation, Acme maintains a proprietary database
mapping merchant ids to category labels; Alice’s data consists of a set of trans-
action records sorted by time, where each record contains several sensitive fields
such as the merchant id, the amount spent, and the timestamp. The aggregation
function (denoted hereon by f) is evaluated over inputs from Alice and Acme,
and the output is shared with Alice and two lending institutions, BankA and
BankB. Alice’s data is either imported manually by her, or more conveniently,
provided by Alice’s bank, via an OAuth-based OFX API [3] that pushes trans-
action data one-by-one as they are generated by her. Today, an application like
Acme often hosts the users’ raw data, and is trusted by them to adhere to a
legalese policy.

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 349

2.2 Requirements of Acme

Privacy Through Transparency
We find that transparency and control — i.e., enforcing which functions can be
evaluated, and with whom the outputs are shared — are necessary for enforc-
ing any measure of privacy. Without this basic enforcement, an attacker can
proliferate arbitrary functions of user data. In our example, Alice wishes that
the approved output recipients only learn the output of f (on one month of
transaction data), and nothing else about her spending profile, such as her daily
behavior or the location patterns. For this reason, f cannot be evaluated by
sharing Alice’s plaintext data with Acme, or vice versa as Acme also wishes to
maintain secrecy of its proprietary database.

Strawman Approach
Both parties first encrypt their data before uploading it to a compute
provider (e.g., Acme or cloud). Next, to allow the agreed-upon evaluation
of function f on their data, both parties establish a secure channel with an
enclave program (on Intel SGX, for example, using remote attestation),
and share the decryption keys to that enclave — enclave is loaded with
f and hosted on an untrusted compute provider’s machine. Then, the
enclave evaluates f , encrypts the output under the output recipients’
public keys, and asks the compute provider to transmit the encrypted
output.

As a first step towards transparency and control, this design ensures that only
f is computed on inputs from Alice and Acme, and that no other party beyond
Alice, BankA, and BankB can observe the output. Note that the input providers
can go offline after providing their inputs, and the output recipients come online
only to retrieve the outputs. There are several TEE-based systems that fit this
general design, such as VC3 [55], Opaque [66], StealthDB [38], Ryoan [40], Felsen
et al. [28], etc., which we can use to implement the function f . To restrict scope,
f is assumed to be safe (e.g., without additional leaks via side channels), so we
execute f as given.

History-Based Policies
While this strawman ensures that only f can be evaluated on Alice’s data, we
argue that this is insufficient for her privacy.

Recall that Alice’s bank (we can treat Alice and her bank as one logical party)
uploads encrypted transaction records to the compute provider (using the OFX
API [3]), one-by-one as they are generated by Alice. The enclave’s host software
is controlled by an untrusted compute provider, who may perform attacks such as
rewinding the persistent storage and launching multiple instances of the enclave
program. Hence, an adversarial compute provider may repeat the computation
with progressively smaller subsets of Alice’s (encrypted) transaction data from
that month (and collude to send the output to a corrupt party) — note that each

350 S. Gaddam et al.

of these computations is independently legal since it evaluates f on an input con-
taining Alice’s transactions that are timestamped to the same calendar month.
By comparing any pair of output reports, the attacker infers more information
about the transactions than what is leaked by the monthly aggregate report; for
instance, one may learn that Alice tends to spend frivolously towards the end of
the month2. In general, this form of a rewind-and-fork attack is detrimental for
applications that maintain a privacy budget [41].

To counter such attacks, we enforce history-based policies, where the decision
to execute the next step in a computation depends on that computation’s history
(and the history of any other computations over the input data) which contains
some metadata about the inputs and outputs of a computation. In Acme’s exam-
ple, Alice uses the following history-based policy φ : all transactions must 1) be
fresh, in that they have never been used by a prior evaluation of f , and 2) belong
to the same month.

History-based policies find use in applications that maintain state, have pri-
vacy budgets, or make decisions based on prior inputs. We urge the reader to look
at history-based policies in Sect. 7.1, such as private surveys amongst unknown
participants with policies across computations (e.g. survey only open to users
who participated in a previous survey, or only open to Acme users) — smart
contracts on Ekiden [21] or FastKitten [24] cannot read the ledger entries (of
other contracts), and therefore cannot implement such applications.

To our knowledge, this is the first work to study such policies in a multi-party
setting (where participants may be offline or act maliciously), and enforcing them
incurs the following challenges. For instance, multiple parties may compute con-
currently, and attempt to append the computation’s history on the shared ledger
— there must be some conflict resolution to enable concurrency across computa-
tions, but also ensure policy compliance. Furthermore, we must develop efficient
methods to check policies such as k-time programs and correct accounting of all
inputs.

Fairness
A policy also enforces the set of output recipients: Alice, BankA, and BankB.
Simply encrypting the output under their public keys ensures that other par-
ties cannot observe the results of the computation (assuming confidentiality of
enclave execution). However, a malicious compute provider can collude with a
subset of output recipients, and deliver the encrypted outputs to only those par-
ties — since all network communication is proxied via the compute provider, an
enclave cannot ensure that an outbound message is sent, and therefore, must
assume lossy links, making reliable message delivery impossible [30].

Without having to trust Acme, Alice wishes to have her monthly reports
sent to a set of chosen banks, perhaps to get lucrative loan offers. For Acme
to be transparent, we argue that it must also ensure fairness: if any party gets
the output, then so must all honest parties. Moreover, a protocol for fair output
delivery should ideally not require Alice to possess a device with a TEE — we
2 While metadata, such as authenticated batched inputs, can remedy this attack,

banks may be unwilling to create this data for each third-party app.

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 351

point out that the enclave-ledger protocol in [22] requires all parties to possess
a TEE.

2.3 Acme on LucidiTEE

Specifying and Creating Computations
A computation’s semantics is specified by a string, which anyone can post to
the ledger for inspection by all parties. In Acme’s case, we use the following
specification:

computation { id: 42, /* unique id */

inp: [("txs": pk_Alice), ("db": pk_Acme)],

out: [("rprt": [pk_Alice, pk_BnkA, pk_BnkB])],

policy: 0xcoff..eeee, /* ∀r∈txs: ¬consumed(r)*/
func: 0x1337...c0de /* aggregate function */ }

Each computation on LucidiTEE has a unique id. The in field lists a set of
named inputs, along with the public key of the input provider (who is expected
to sign those inputs). Similarly, the out field lists a set of named outputs, where
each output has one or more recipients. The evaluation function f and the policy
function φ are implemented as enclave programs, for confidentiality and integrity,
and we uniquely identify them using the hash of the enclave program binary.

A computation progresses via a potentially unbounded sequence of stateful
evaluations of f , guarded by φ, and it is said to be compliant if all constituent
steps use the function f and satisfy φ. Unlike f , φ takes the entire ledger as input.
In our example, φ encodes the freshness property that no transaction within txs
has been consumed by a prior evaluation of f ; we can implement φ by performing
membership test for each transaction (in txs) within the inputs consumed by
prior evaluations of f in computation of id 42, or more efficiently, by maintaining
state containing an accumulator (e.g. a Merkle tree) of all transactions previously
consumed by f .

Enforcing Policies and Performing Computation

History-based Policy via Shared Ledger
We introduce an append-only ledger, which is shared at least between
Alice and Acme, but more generally, a global set of users to enforce poli-
cies across multiple applications that process some data. The ledger fulfills
a dual purpose. First, a protocol (see Sect. 5) forces the compute provider
to record the enclave’s evaluation of f on the ledger before extracting the
output — for each function evaluation, we record a hash-based commit-
ment of the encrypted inputs, outputs, and intermediate state. Second,
enclave programs read the ledger to evaluate the policy φ.

The compute provider allocates a TEE machine, and downloads Alice’s and
Acme’s encrypted inputs onto the machine’s local storage — this expense may
be amortized across several function evaluations. Next, Acme must convince

352 S. Gaddam et al.

an enclave that the requested function on Alice’s inputs is compliant. To that
end, Acme launches an enclave implementing the policy predicate φ, and pro-
vides it with a view of the ledger. Note that a malicious compute provider can
provide a stale view of the ledger (by simply ignoring recent ledger entries),
and our protocol defends against such attacks by requiring a proof that no rel-
evant computation occurred since the ledger height at which φ is evaluated.
On approval from φ, Acme launches an enclave to evaluate f , which gets the
encrypted inputs’ decryption keys from a key manager (also implemented as an
enclave; see Sect. 5), and produces an output encrypted under the public keys of
all output recipients. In Sect. 5, we discuss practical methods to enforce several
classes of policies.

LucidiTEE is oblivious to how or where the encrypted data is stored, and the
ledger size is independent of the size of the inputs. Therefore, we stress that
LucidiTEE uses the ledger only to enforce policies, and embodies a “bring-your-
own-storage” paradigm. Moreover, since LucidiTEE uses trusted enclaves and an
append-only ledger to enforce the policy, any (malicious) compute provider can
bring TEE nodes and evaluate φ and f . Hence, we emphasize that LucidiTEE
also embodies a “bring-your-own-compute” paradigm.

Fair Reconstruction of Outputs
Since fairness is impossible to achieve in a setting where a majority of the par-
ticipants are corrupt [23], several works have explored relaxed notions of fairness
over the last few years [12,22,37,52] — specifically, Choudhuri et al. [22] showed
that enclave-ledger interactions can enable fair secure computation. Our work
continues in the same vein, and improves upon their result.

Inspired by [36,46], we reduce fair computation to fair reconstruction of an
additive secret sharing scheme, as follows. The enclave’s evaluation of f encrypts
the output under a random key k. The enclave also emits shares of k for all
output recipients: Enc(pk Alice, k1), Enc(pk BankA, k2), and Enc(pk BankB, k3),
such that k .= k1 ⊕ k2 ⊕ k3, for random k1, k2, and k3. All output recipients must
engage in the reconstruction protocol with their shares. For best case security,
we set the corruption threshold t in Acme’s example to 2, thus withstanding
byzantine behavior from any 2 of the 3 parties. Our protocol requires t parties
to provide a TEE node (e.g., BankA and BankB).

Protocol for Fair Reconstruction
We develop a protocol that withstands an arbitrary corruption threshold
t < n, and it requires any t recipients to allocate a TEE machine, and all
n parties to access the shared ledger — in contrast, [22] needs all n parties
to allocate a TEE machine and access the ledger, which is cumbersome
for end users.

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 353

3 Building Blocks

3.1 Trusted Execution Environment (TEE)

An enclave program is an isolated region of memory, containing both code and
data, protected by the TEE platform (where trust is only placed in the processor
manufacturer). On TEE platforms such as Intel SGX and Sanctum, the CPU
monitors all memory accesses to ensure that non-enclave software (including OS,
Hypervisor, and BIOS or SMM firmware) cannot access the enclave’s memory
— SGX also thwarts hardware attacks on DRAM by encrypting and integrity-
protecting the enclave’s cache lines. In addition to isolated execution, we assume
that the TEE platform provides a primitive for remote attestation. At any time,
the enclave software may request a signed message (called a quote) binding an
enclave-supplied value to that enclave’s code identity (i.e., its hash-based mea-
surement). We model the TEE hardware as an ideal functionality HW, adapted
from [29]. HW maintains the memory of each enclave program in an internal
variable mem, and has the following interface:

– HW.Load(prog) loads the enclave code, denoted by prog, within the TEE-
protected region. It returns a unique id eid for the loaded enclave program,
and zero-initializes the enclave’s private memory by setting mem[eid] =

−→
0 .

– HW.Run(eid, in) executes enclave eid (from prior state mem[eid]) under input in,
producing an output out while also updating mem[eid]. The command returns
the pair (out, quote), where quote is a signature over μ(prog) ‖ out, attesting
that out originated from an enclave with hash measurement μ(prog) running
on a genuine TEE. We also write the quote as quoteHW(prog, out). We assume
no other information leaks to the adversary, such as from side channels.

– HW.QuoteVerify(quote) verifies the genuineness of quote and returns another
signature σ (such that VerifyHW(σ, quote) = true) that is publicly verifiable.
Any party can check VerifyHW without invoking the HW functionality. For
instance, SGX implements this command using Intel’s attestation service,
which verifies the CPU-produced quote (in a group signature scheme) and
returns a publicly verifiable signature σ over quote ‖ b, where b ∈ {0, 1}
denotes the validity of quote; then, any party can verify σ using Intel’s public
key without contacting Intel.

3.2 Shared, Append-Only Ledger

We borrow the bulletin board abstraction of a shared ledger, defined in [22],
which lets parties get its contents and post arbitrary strings on it. Furthermore,
on successfully publishing the string on the bulletin board, any party can request
a (publicly verifiable) proof that the string was indeed published, and the bulletin
board guarantees that the string will never be modified or deleted. Hence, the
bulletin board is an abstraction of an append-only ledger. We model the shared
ledger as an ideal functionality L, with internal state containing a list of entries,
implementing the following interface:

354 S. Gaddam et al.

– L.getCurrentCounter returns the height of the ledger
– L.post(e) appends e to the ledger and returns (σ, t), where t is the new

height and σ is the proof that e has been successfully posted to the ledger.
Specifically, σ is an authentication tag (also called proof-of-publication in prior
works [21]) over the pair t‖e such that VerifyL(σ, t‖e) = true — here, VerifyL
is a public verification algorithm (e.g., verifying a set of signatures).

– L.getContent(t) returns the ledger entry (σ, e) at height t.

The bulletin board abstraction can be instantiated using fork-less
blockchains, such as permissioned blockchains [6], and potentially by blockchains
based on proof-of-stake [32].

3.3 Cryptographic Primitives and Assumptions

We assume a hash function H (e.g. SHA-2) that is collision-resistant and pre-
image resistant; we also assume a hash-based commitment scheme com with
hiding and binding properties.

We use a IND-CCA2 [39] public key encryption scheme PKE (e.g.
RSA-OAEP) consisting of algorithms PKE.Keygen(1λ), PKE.Enc(pk, m),
PKE.Dec(sk, ct). Moreover, for symmetric key encryption, we use authenticated
encryption AE (e.g. AES-GCM) that provides IND-CCA2 and INT-CTXT [13],
and it consists of polynomial-time algorithms AE.Keygen(1λ), AE.Enc(k,m),
AE.Dec(k, ct).

Finally, we use a EUF-CMA [35] digital signature scheme S (e.g.
ECDSA) consisting of polynomial-time algorithms S.Keygen(1λ), S.Sig(sk,m),
S.Verify(vk, σ,m).

4 Adversary Model

The attacker may corrupt any subset of the parties. We use a static corruption
model wherein a party is said to be corrupt if it deviates from the protocol at
any time. A corrupt party exhibits byzantine behavior, which includes aborts,
and dropping or tampering any communication with other parties or the ledger.
We discuss specific threats below.

TEE Threats. TEE machines can be operated by malicious hosts, who can
abort the TEE’s execution, and delay, tamper, or drop its inputs and outputs
(including the communication with the ledger). The untrusted host can also
launch multiple enclave instances containing the same program. We assume that
the remote attestation scheme is existentially unforgeable under chosen message
attacks [29]. Though side channels pose a realistic threat, we consider their
defenses to be an orthogonal problem. This assumption is discharged in part
by using safer TEEs such as RISC-V Sanctum, which implement defenses for
several hardware side channels, and in part by compiling f and φ using software
defenses (e.g., [54,57,58,60,65]).

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 355

Blockchain Threats. We draw attention to the subtlety of blockchain instanti-
ations. While our fair delivery protocol tolerates an arbitrary corruption thresh-
old of t < n, the ledger admits a weaker adversary (e.g. less than 1/3rd corruption
in PBFT-based permissioned blockchains, or honest majority of collective com-
pute power in permissionless blockchains). In permissioned settings, this means
that the n parties cannot instantiate a shared ledger amongst themselves, and
expect to achieve fairness; they need a larger set of participants on the ledger,
and require more than 2/3rd of that set to be honest — this is reasonable on
recently proposed consortium blockchains such as Libra [9].

With that said, [22] also has the same limitation. Fundamentally, forks on
proof-of-work blockchains can violate policies, as computation records can be
lost. Even the proof-of-publication scheme in Ekiden [21], which uses a trusted
timeserver to enforce the rate of production of ledger entries, offers a probabilistic
guarantee of rollback prevention, which worsens as the attacker’s computational
power increases. We restrict our scope to forkless ledgers (providing the bulletin-
board abstraction L), such as HyperLedger [6] and Tendermint [5], and even
blockchains based on proof-of-stake [32].

5 Policy-Compliant Computation

Fig. 2. Policy enforcement using TEEs and a shared ledger

In this section, we describe how computations are specified and setup, how inputs
are bound to computations, how policies are evaluated prior to the computation,
and how computations are recorded on the shared ledger.

Figure 2 illustrates the primary components of LucidiTEE. Each entry on
the shared ledger records either the creation or revocation of a computation
(along with its specification), or a function evaluation containing hash-based
commitments of inputs, outputs, and state. We stress that the ledger does not
store the inputs or state, and its entries only help us to enforce policies. Com-
putation involves three types of enclave programs: 1) a key manager enclave
Ek (responsible for handling keys that protect the computation’s state and the

356 S. Gaddam et al.

offline users’ input); 2) a policy checker enclave Eφ (responsible for checking
whether a requested evaluation f is compliant with the policy φ); 3) a com-
pute enclave Ef (responsible for evaluating f). These enclaves are run on one
or more physical TEE machines, managed by any untrusted party — hereon
called the compute provider pc — yet our protocols guarantee policy compliance
and fairness to all parties (who may also act maliciously). Computation happens
off-chain, and is decoupled from the ledger’s consensus mechanism.

5.1 Specifying and Creating a Computation

A computation is specified using a structured string, denoted c, such as the one
from Acme’s application in Sect. 2.3. A party p can create a new multi-party
computation by executing:

p → Ek : c ‖ σ, where (σ, t) = L.post(create ‖ c)

Here, upon posting the specification c on the ledger, p contacts the compute
provider pc, who forwards the request to its local key manager enclave Ek. Ek

generates a key ks to encrypt the computation’s state across all function evalu-
ations, using the TEE’s entropy source (e.g. rdrand on SGX). Since c does not
contain any secrets, any party can post it on the ledger, and it is up to the input
providers to examine and choose to bind inputs to c. Any input provider listed
in c can revoke a computation by executing L.post(revoke ‖ c.id).

5.2 Binding Inputs to Computations

LucidiTEE lets a user encrypt her input x and upload to an untrusted storage
provider; from then on, she can bind that input to one or more computations c
by referring only to a hash-based commitment on that input, without needing to
store or upload the data. We have two requirements here: 1) the input provider
must be able to commit to the value of x, in order to prevent any tampering by
the storage or compute provider; and 2) x must only be used for evaluating c.f ,
for each computation c that the user has bound x to.

The cryptographic protection must not only ensure confidentiality, integrity,
and authenticity of the data, but also provide cryptographic binding to the
commitment. To that end, the input provider chooses a random key k, and
computes AE.Enc(k, x). Then, the hash-based commitment h is computed over
the ciphertext, using either plain hashing or accumulators. Accumulators, such
as a Merkle trees, enable membership queries, which we find to be useful when
enforcing policies such as one-time programs and vote counting.

The binding of key k, for input referred by h, to a computation c is established
using an interaction between the input provider p, the compute provider pc who
is running the key manager enclave Ek, and the ledger functionality L:

p : L.post(bind ‖ c.id ‖ h ‖ S.Sig(skp , c.id ‖ h))
pc → p : quoteHW(Ek, pk),where pk ← PKE.Keygen

p → pc : PKE.Enc(pk, c.id ‖ k ‖ S.Sig(skp , c.id ‖ k))

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 357

First, p creates a ledger entry binding the commitment h to computation c
using a signature. Next, p contacts pc, whose instance of Ek generates a fresh
public key pk along with a quote attesting to the genuineness of Ek. Upon ver-
ifying the attestation, p signs and encrypts c.id and k. Ek will later reveal the
key k only to that enclave which is evaluating c.f .

By binding commitments to computations, we reuse inputs across function
evaluations and computations, without having to repeatedly upload data or bind
it on the ledger.

5.3 Enforcing Policy-Compliance

Any party pc can act as a compute provider, and invoke c.f on chosen inputs
(referenced by a vector of commitments Hin). Hence, we implement a protocol
to ensure policy compliance even when input providers are offline and pc acts
maliciously.

Before evaluating f , pc must first launch Eφ to evaluate φ. Next, Eφ must
check whether the requested evaluation of f is compliant with φ, which requires
checking three conditions:

1. active: c is created on the ledger, and not yet revoked
2. bound: data for each h ∈ Hin is bound to computation c
3. compliant: predicate φ(ledger, Hin) over ledger’s contents

To perform these checks, pc must provide Eφ with a read-only view of L,
by downloading the ledger’s contents locally, in which case the enclave-ledger
interaction is mediated by the host software controlled by pc. Although using
VerifyL allows Eφ to detect arbitrary tampering of L’s contents, an adversarial pc

may still present a stale view (i.e., a prefix) of L to Eφ. We mitigate this attack
in Sect. 5.5. For now, we task ourselves with deciding compliance with respect
to a certain (albeit potentially stale) view or height of L.

The policy φ is an arbitrary predicate. As an example, consider the policy
φ from the Acme application: transactions in the input must not have been
consumed by a prior evaluation of c.f . Cryptographic accumulators, such as
Merkle trees, play an important role in efficiently evaluating φ, as they support
efficient membership queries. In Acme’s case, we scan the ledger to construct an
accumulator over the input handles from all prior evaluations of c.f , and check
absence of each input transaction within the accumulator.

Performance Optimizations. It is not practical to process the entire ledger
for each evaluation of c.φ. Specifically, if the ledger L is naively stored as a
sequence of entries, it would force us to perform a linear scan for evaluating the
three aforementioned compliance checks.

Instead, our implementation stores L locally as an authenticated key-value
database, whose index is the computation’s id c.id. Each computation appends
the ledger entry to the current value at c.id. Now, instead of scanning through
the entire ledger, the first compliance check asserts the presence of key c.id, while

358 S. Gaddam et al.

the second check queries the list of records at key c.id. Finally, to evaluate φ,
we maintain an accumulator as state, and update it on each entry of c.id —
we let φ rely on an enclave that persists state, in the form of an authenticated
key-value store [59], across several evaluations of φ. Note that this optimization
does not impact security, as Eφ’s view of L is still controlled by pc, and therefore
potentially stale.

Consider other history-based policies used in apps from Sect. 7.1. In the
survey app (Sect. 7.1), we check that the input includes all votes for which
we find commitments on the ledger (produced by the user’s binding of inputs);
accumulators again suffice for this policy. Both the machine learning app (Sect.
7.1) and PSI apps (Sect. 7.1) compare commitments (i.e., equality check on
hashes) for their policies.

5.4 Producing Encrypted Output

The compute provider launches the compute enclave Ef , who then asks Ek for
the keys to c’s state and all parties’ input. Ek transmits these keys upon verifying
that Ef has the expected hash-based measurement listed in c.

The computation can be performed using any enclave-based data processing
system, such as Opaque [66], Ryoan [40], etc. A randomized f needs an entropy
source. Recall that Ek generated a key ks to protect the computation’s state.
Using a key derived from ks, f can internally seed a pseudo-random generator
(e.g. PRF with key H(t ‖ ks)) to get a fresh pseudo-random bitstream at each
step of the computation. (Note that t uniquely identifies the step.) This ensures
that the random bits are private to Ef , yet allows replaying computation from
the ledger during crash recovery.

5.5 Recording Computation on Ledger

Recording the computation (specifically the commitments) on the ledger is a
precursor to extracting the output, and is also necessary for enforcing our history-
based policies.

Recall that Eφ checked compliance of φ with respect to a certain height of
the ledger. Since a malicious compute provider pc can present a stale view of the
ledger to Eφ, we show how we defend against this attack at the time of recording
the computation on the ledger. The protocol works as follows. We first request
the instance of Eφ (from Sect. 5.3) for the ledger height t and input commitments
Hin with which it evaluated c.φ; Eφ sends these values as part of a quote.

Eφ → Ef : quoteHW(Eφ, t ‖ Hin)

Next, to extract the encrypted output, the compute provider pc must record
the compliant evaluation of c.f on L by posting the following messages emitted
by Ef and Eφ:

quoteHW(Eφ, t ‖ Hin) ‖ quoteHW(Ef , c.id ‖ t ‖ hs′ ‖ Hout)

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 359

The use of quoteHW ensures that the compute provider evaluated the func-
tions c.f and c.φ within a genuine TEE. It also ensures that the compute
provider used inputs with commitments Hin, and produced outputs with com-
mitments Hout and the next state with commitment hs′ .

However, by the time L receives the post command from pc, it may have
advanced by several entries from t to t′. This can be caused by a combination of
reasons including: 1) ledger entries from concurrent evaluations of c and other
computations on LucidiTEE; and, 2) malicious pc providing a stale view of L to Eφ.
This potentially invalidates Eφ’s check, but instead of rejecting the computation,
which would unnecessarily limit concurrency even during honest behavior, we
assert a validity predicate on the ledger’s contents:

∀t, t′, t∗. t′ = L.getCurrentCounter ∧ t < t∗ < t′ ⇒
¬((σ, e) = L.getContent(t∗) ∧ VerifyL(σ, t∗‖e) ∧

(∃a ∈ {compute, bind, revoke}. e = a ‖ c.id ‖ . . .))

Here, we check that the computation c is still active and that no new function
evaluation or bind for c is performed in between t and the current height t′. The
computation is rejected if the check fails, and no entry is recorded on L. This
validity predicate may be checked by the ledger’s participants before appending
any entry, but that would be outside the scope of the bulletin-board abstraction;
instead, we rely on our trusted enclaves, Eφ and Ef (and Er) to assert the validity
predicate, and abort any further computation or protocol execution atop an
invalid ledger.

5.6 Fair Output Delivery

For lack of space, please see the full version [27].

6 Implementation

To help developers write enclave functions, we developed an enclave program-
ming library libmoat, providing a narrow POSIX-style interface for common ser-
vices such as file system, key-value databases, and channel establishment with
other enclaves. libmoat is statically linked with application-specific enclave code,
φ and f , which together form the enclaves, Eφ and Ef respectively. libmoat trans-
parently encrypts and authenticates all operations to the files and databases.
LucidiTEE provides fixed implementations of Er and Ek, whose measurements are
hard-coded within libmoat. Furthermore, libmoat implements the ledger interface
L, which verifies signatures (VerifyL) and TEE attestation of ledger entries. lib-
moat contains 3K LOC, in addition to Intel’s SGX SDK [1].

We instantiate the ledger with a permissioned blockchain, and evaluate
using both Hyperledger [6] and Tendermint [5]. The ledger participant’s logic
is implemented as a smart contract (in 200 lines of Go), which internally uses
RocksDB [4].

360 S. Gaddam et al.

7 Evaluation

7.1 Case Studies

We demonstrate applications which demonstrate novel history-based policies,
and require fairness of output delivery. Though omitted for space reasons, we also
build one-time programs [34], digital lockbox, and 2-party contract signing [14].

Personal Finance Application. We implement Acme’s personal finance
application, which Alice uses to generate a monthly report. The application
uses a history-based policy that transaction records are fresh, i.e., they are not
used in a prior evaluation of Acme’s function (which would otherwise violate
Alice’s privacy). Acme’s input is encoded as a key-value database indexed by
the merchant id — with over 50 million merchants worldwide, this database can
grow to a size of several GBs (we use a 1.6 GB synthetic database of 50 million
merchants). We also built a client that uses the OFX API [3] to download the
user’s transactions from a bank, and encrypt and upload them to a public S3
bucket. This encrypted file is later decrypted within an enclave during compute.

Private Survey. Acme would like to conduct a privacy-preserving survey, such
that Acme only learns the aggregate summary of the survey rather than indi-
vidual responses. However, to maintain the integrity of the survey, we use a
history-based policy consisting of two predicates. First, the survey is open only
to users of their finance application to avoid fake reviews — specifically, the user
(identified by her public key) that participates in the survey must have a ledger
entry of type bind input with Acme’s finance application. Second, the survey’s
result must aggregate all submitted votes, until Acme closes the survey using
another ledger entry.

Federated Machine Learning. A hospital sets up a service for any user to avail
the prediction of a model (specifically the ECG class of a patient), in exchange
for submitting their data for use in subsequent retraining of the model — we
require a fair exchange of user’s ECG data and the model’s output, which our
protocol achieves while only requiring the hospital to provision a TEE node. The
service is split into two chained computations: training and inference. Retraining
happens on successive batches of new users’ data, so when a user submits their
ECG data, they wish to use the output model from the latest evaluation of the
retraining function — this acts as our history-based policy. For the experiment,
we use the UCI Machine Learning Repository [25], and the side-channel resistant
k-means clustering algorithm from [20].

One-Time Private Set Intersection. Two hospitals share prescription
records about their common patients using private set intersection (PSI). More-
over, they require a guarantee of fair output delivery, and use a one-time pro-
gram policy to prevent repeated (mis)use of their data. We implement oblivious
set intersection by adapting Signal’s private contact discovery service [47]. Our
experiment uses a synthetic dataset with 1 million records for each hospital
(totalling 15 GB).

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 361

7.2 Performance Measurement

We study the performance of our applications, and compare to a baseline version
where the application runs without a ledger, and without our policy compliance
and fairness protocols. The baseline versions of Acme, survey, ML, and PSI
apps take on average 0.02, 0.41, 0.006, and 8.24 s, respectively, for each function
evaluation of f (including the policy check φ), using the aforementioned inputs
for each application.

Fig. 3. Latency and Throughput Measurements

End-to-End Latency and Throughput. Figure 3 reports the latency and
throughput (results aggregated over 100 runs) on both HyperLedger [6] and Ten-
dermint [5] ledgers (running with 4 peers), with 500 enclave clients concurrently
querying and posting ledger entries — we use a 4 core CPU to run the ledger,
and a cluster with 56 CPU cores to run the enclaves. We measure end-to-end
latency, from launching Eφ to terminating Er. Recall that each evaluation on
LucidiTEE performs at least one read query (often more in order to evaluate
φ) and two writes (to record the compute and deliver entry) to the ledger.
We found throughput to be bound by the performance of the ledger, which was
highly dependent on parameters such as the batch size and batch timeout [6],
with the exception of the PSI application which was compute bound (as each
function evaluation took roughly 8.2 s). The latency also suffered by several sec-
onds, as the ledger faced a high volume of concurrent read and write requests.
We also evaluate on a “centralized” ledger, essentially a key-value store, thus
demonstrating performance with an ideally-performant ledger on a single trusted
node.

Application Ledger Input Output State

Acme Finance 2155 B 1.6 GB 1872 B 136 B
Federated ML 1835 B 132 KB 1088 B -

Policy-based PSI 1835 B 30 MB 8 MB -
Private Survey 100.1 MB 954.4 MB 2 KB -

Fig. 4. On-chain and Off-chain Storage Requirements

362 S. Gaddam et al.

Storage. Figure 4 shows the off-chain and on-chain ledger storage cost on each
function evaluation; the ledger storage includes entries due to binding input,
recording computation, and fair reconstruction protocol. Observe that the survey
amongst 1 million participants incurred 1 million calls to bind input, incurring a
high on-chain storage cost. In other applications, inputs are orders of magnitude
larger than the ledger storage. Since, Ekiden [21] and FastKitten [24] store inputs
and state on-chain, LucidiTEE has orders of magnitude improvement.

8 Related Work

TEEs, such as Intel SGX, are finding use in systems for outsourced computing,
such as M2R [26], VC3 [55], Ryoan [40], Opaque [66], EnclaveDB [53], etc. Felsen
et al. [28] use TEEs for secure function evaluation in the multi-party setting. We
find these systems to be complementary, in that they can be used to compute over
encrypted data within enclaves, while LucidiTEE handles policies and fairness.

ROTE [48], Ariadne [61], Memoir [50], and Brandenburger et al. [17] address
rollback attacks on TEEs. Similarly, Kaptchuk et al. [41] address rollback attacks
by augmenting enclaves with ledgers. We extend their ideas to general history-
based policies.

Ekiden [21], FastKitten [24], CCF [56], and Private Data Objects (PDO) [16]
are closest to our work. FastKitten [24] provides fair distribution of coins in
multi-round contracts such as poker and lotteries. Ekiden and PDO execute
smart contracts within SGX enclaves, connected to a blockchain for persisting
the contract’s state. To our knowledge, none of these systems ([16,21,24,56])
provide complete fairness [22] or the expressivity of history-based policies. On the
practical front, LucidiTEE improves efficiency by not placing inputs or state on
the ledger, which is used only to enforce policies. In addition to the performance
improvements, our history-based policies are expressed over the entire ledger,
spanning multiple computations, whereas Ekiden, FastKitten, and CCF only
support contract-specific state.

Hawk [44] and Zexe [15] enable parties to perform limited forms of private
computation, while proving correctness by posting zero knowledge proofs on the
ledger. In addition to Hawk, several works, namely [7,8,14,45], and [43], use
Bitcoin [49] to ensure financial fairness in MPC applications.

MPC [63] [64] [62] protocols implement a secure computation functionality,
but require parties to be online or trust one or more third parties. Choudhuri et
al. [22] proposed a fair MPC protocol requiring each of the n parties to possess
a TEE. We improve their result by requiring t < n (for corruption threshold t)
parties to possess a TEE. Moreover, [22] requires all parties to be online, and
only considers one-shot MPC as opposed to stateful computation with policies.

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 363

9 Conclusion

We developed LucidiTEE, a TEE-blockchain system for policy-based, fair multi-
party computation amongst possibly offline participants. Using novel use cases,
we show that LucidiTEE scales to big data applications and large number of
users.

Disclaimer

Case studies, comparisons, statistics, research and recommendations are pro-
vided “AS IS” and intended for informational purposes only and should not be
relied upon for operational, marketing, legal, technical, tax, financial or other
advice. Visa Inc. neither makes any warranty or representation as to the com-
pleteness or accuracy of the information within this document, nor assumes any
liability or responsibility that may result from reliance on such information. The
Information contained herein is not intended as investment or legal advice, and
readers are encouraged to seek the advice of a competent professional where such
advice is required.

These materials and best practice recommendations are provided for infor-
mational purposes only and should not be relied upon for marketing, legal, reg-
ulatory or other advice. Recommended marketing materials should be indepen-
dently evaluated in light of your specific business needs and any applicable laws
and regulations. Visa is not responsible for your use of the marketing materials,
best practice recommendations, or other information, including errors of any
kind, contained in this document.

References

1. Intel SGX for linux. https://github.com/intel/linux-sgx
2. Mint. https://www.mint.com
3. OFX: The payments API that lets you scale, simplify and save. https://developer.

ofx.com/
4. Rocksdb. https://github.com/facebook/rocksdb
5. Tendermint core in go. https://github.com/tendermint/tendermint
6. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-

missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, pp. 30:1–30:15. ACM, New York, NY, US (2018)

7. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: Security and Privacy (SP), 2014 IEEE Sympo-
sium on, pp. 443–458. IEEE (2014)

8. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair two-party
computations via bitcoin deposits. Cryptology ePrint Archive, Report 2013/837
(2013). https://eprint.iacr.org/2013/837

9. Baudet, M., et al.: State machine replication in the libra blockchain (2019)

https://github.com/intel/linux-sgx
https://www.mint.com
https://developer.ofx.com/
https://developer.ofx.com/
https://github.com/facebook/rocksdb
https://github.com/tendermint/tendermint
https://eprint.iacr.org/2013/837

364 S. Gaddam et al.

10. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44381-1 22

11. Beimel, A., Ishai, Y., Kushilevitz, E.: Ad Hoc PSM protocols: secure computation
without coordination. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 580–608. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 20

12. Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computa-
tion without honest majority and the best of both worlds. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 16

13. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008)

14. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

15. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.. Zexe: enabling
decentralized private computation. Cryptology ePrint Archive, Report 2018/962
(2018). https://eprint.iacr.org/2018/962

16. Bowman, M., Miele, A., Steiner, M., Vavala, B.: Private data objects: an overview.
arXiv preprint arXiv:1807.05686 (2018)

17. Brandenburger, M., Cachin, C., Lorenz, M., Kapitza, Rü.: Rollback and forking
detection for trusted execution environments using lightweight collective memory.
In: 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 157–168. IEEE (2017)

18. Brickell, E., Li, J.: Enhanced privacy id from bilinear pairing. Cryptology ePrint
Archive, Report 2009/095 (2009)

19. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

20. Chandra, S., Karande, V., Lin, Z., Khan, L., Kantarcioglu, M., Thuraisingham, B.:
Securing data analytics on SGX with randomization. In: Foley, S.N., Gollmann,
D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 352–369. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 21

21. Cheng, R., et al.: Ekiden: a platform for confidentiality-preserving, trustworthy,
and performant smart contract execution. CoRR, abs/1804.05141 (2018)

22. Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair
world: Fair multiparty computation from public bulletin boards. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, pp. 719–728. ACM, New York, NY, USA (2017)

23. Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In:
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
STOC 1986, pp. 364–369. ACM, New York, NY, USA (1986)

24. Das, P., et al.: FastKitten: practical smart contracts on bitcoin. In: 28th USENIX
Security Symposium (USENIX Security 19), pp. 801–818. USENIX Association,
Santa Clara, CA (2019)

25. Dheeru, D., Taniskidou, E.K.: UCI machine learning repository (2017)
26. Dinh, T.T.A., Saxena, P., Chang, E.C., Ooi, B.C., Zhang, C.: M2R: enabling

stronger privacy in mapreduce computation. In: USENIX Security Symposium,
pp. 447–462 (2015)

https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-319-56617-7_20
https://doi.org/10.1007/978-3-319-56617-7_20
https://doi.org/10.1007/978-3-642-22792-9_16
https://doi.org/10.1007/978-3-662-44381-1_24
https://eprint.iacr.org/2018/962
http://arxiv.org/abs/1807.05686
https://doi.org/10.1007/978-3-319-66402-6_21

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 365

27. Gaddam, S., et al.: LucidiTEE: a tee-blockchain system for policy-compliant mul-
tiparty computation with fairness. Cryptology ePrint Archive, Report 2019/178
(2019)

28. Felsen, S., Kiss, Á., Schneider, T., Weinert, C.: Secure and private function evalu-
ation with intel SGX (2019)

29. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: functional encryp-
tion using intel SGX. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, pp. 765–782. ACM, New York,
NY, USA (2017)

30. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

31. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: Stoc, vol.
9, pp. 169–178 (2009)

32. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP 2017, pp. 51–68. ACM, New York, NY,
USA (2017)

33. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

34. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 3

35. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

36. Gordon, D., Ishai, Y., Moran, T., Ostrovsky, R., Sahai, A.: On complete primitives
for fairness. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 91–108.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 7

37. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In:
Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Monaco/French
Riviera, May 30 - June 3, 2010. Proceedings, pp. 157–176 (2010)

38. Gribov, A., Vinayagamurthy, D., Gorbunov, S.: StealthDB: a scalable encrypted
database with full SQL query support. Proc. Priv. Enhancing Technol. 2019(3),
370–388 (2019)

39. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. Cryptology ePrint Archive, Report 2017/604 (2017). https://
eprint.iacr.org/2017/604

40. Hunt, T., Zhu, Z., Xu, Y., Peter, S., Witchel, E.: Ryoan: a distributed sandbox
for untrusted computation on secret data. In: Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, OSDI 2016, pp.
533–549. USENIX Association, Berkeley, CA, USA (2016)

41. Kaptchuk, G., Miers, I., Green, M.: Giving state to the stateless: augmenting trust-
worthy computation with ledgers. In: 26th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2019, San Diego, California, USA, 24–27 February
2019 (2019)

42. Kaptchuk, G., Miers, I., Green, M.: Giving state to the stateless: augmenting trust-
worthy computation with ledgers (2019)

43. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT

https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-642-11799-2_7
https://eprint.iacr.org/2017/604
https://eprint.iacr.org/2017/604

366 S. Gaddam et al.

2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 25

44. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 839–858. IEEE (2016)

45. Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct computa-
tions. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pp. 30–41. ACM 2014

46. Kumaresan, R., Vaikuntanathan, V., Vasudevan, P.N.: Improvements to secure
computation with penalties. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, 24–28 October 2016,
pp. 406–417 (2016)

47. Marlinspike, M.: Private contact discovery for signal (2017)
48. Matetic, S., et al.: ROTE: rollback protection for trusted execution. In: 26th

USENIX Security Symposium (USENIX Security 2017), pp. 1289–1306. USENIX
Association, Vancouver, BC (2017)

49. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
50. Parno, B., Lorch, J.R., Douceur, J.R., Mickens, J., McCune, J.M.: Memoir: prac-

tical state continuity for protected modules. In: Proceedings of the 2011 IEEE
Symposium on Security and Privacy, SP 2011, pp. 379–394. IEEE Computer Soci-
ety, Washington, DC, USA (2011)

51. Pass, R., Shi, E., Tramèr, F.: Formal abstractions for attested execution secure
processors. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 260–289. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 10

52. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-39200-9 6

53. Priebe, C., Vaswani, K., Costa, M.: EnclaveDB: a secure database using SGX. In:
EnclaveDB: A Secure Database Using SGX. IEEE (2018)

54. Rane, A., Lin, C., Tiwari, M.: Raccoon: closing digital side-channels through obfus-
cated execution. In: 24th USENIX Security Symposium (USENIX Security 2015),
pp. 431–446. USENIX Association, Washington, D.C. (2015)

55. Schuster, F., et al.: VC3: trustworthy data analytics in the cloud using SGX. In:
Proceedings of the IEEE Symposium on Security and Privacy (2015)

56. Shamis, A., et al.: CCF: a framework for building confidential verifiable replicated
services. Technical report MSR-TR-2019-16, Microsoft (2019)

57. Shih, M.-W., Lee, S., Kim, T., Peinado, M.: T-SGX: eradicating controlled-channel
attacks against enclave programs (2017)

58. Shinde, S., Chua, Z.L., Narayanan, V., Saxena, P.: Preventing page faults from
telling your secrets. In: Proceedings of the 11th ACM on Asia Conference on Com-
puter and Communications Security, ASIA CCS 2016, pp. 317–328. ACM, New
York, NY, USA (2016)

59. Sinha, R., Christodorescu, M.: VeritasDB: high throughput key-value store with
integrity. Cryptology ePrint Archive, Report 2018/251 (2018). https://eprint.iacr.
org/2018/251

60. Sinha, R., Rajamani, S., Seshia, S.A.: A compiler and verifier for page access obliv-
ious computation. In: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, pp. 649–660. ACM, New York, NY,
USA (2017)

https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-319-56620-7_10
https://doi.org/10.1007/978-3-319-56620-7_10
https://doi.org/10.1007/3-540-39200-9_6
https://doi.org/10.1007/3-540-39200-9_6
https://eprint.iacr.org/2018/251
https://eprint.iacr.org/2018/251

LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness 367

61. Strackx, R., Piessens, F.: Ariadne: a minimal approach to state continuity. In: 25th
USENIX Security Symposium (USENIX Security 2016), pp. 875–892. USENIX
Association, Austin, TX (2016)

62. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2017, pp. 39–56. ACM, New York, NY, USA (2017)

63. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer
Society, Washington, DC, USA (1982)

64. Yao, A.C.C.: How to generate and exchange secrets. In: Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, SFCS 1986, pp. 162–167.
IEEE Computer Society, Washington, DC, USA (1986)

65. Zhang, D., Askarov, A., Myers, A.C.: Predictive mitigation of timing channels
in interactive systems. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS 2011, pp. 563–574. ACM, New York, NY, USA
(2011)

66. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.:
Opaque: an oblivious and encrypted distributed analytics platform. In: Proceedings
of the 14th USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI 2017, pp. 283–298. USENIX Association, Berkeley, CA (2017)

Improving Privacy of Anonymous
Proof-of-Stake Protocols

Shichen Wu1,2, Zhiying Song1,2, Puwen Wei1,2,3(B), Peng Tang1,2,
and Quan Yuan4

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Qingdao, China

{shichenw,szyyz}@mail.sdu.edu.cn
2 School of Cyber Science and Technology, Shandong University, Qingdao, China

{pwei,tangpeng}@sdu.edu.cn
3 Quancheng Laboratory, Jinan, China

4 The University of Tokyo, Tokyo, Japan
yuanquan@g.ecc.u-tokyo.ac.jp

Abstract. The proof of stake (PoS) mechanism, which allows stakehold-
ers to issue a block with a probability proportional to their wealth instead
of computational power, is believed to be an energy-efficient alternative
to the proof of work (PoW). The privacy concern of PoS, however, is more
subtle than that of PoW. Recent research has shown that current anony-
mous PoS (APoS) protocols do not suffice to protect the stakeholder’s
identity and stake, and the loss of privacy is theoretically inherent for
any (deterministic) PoS protocol that provides liveness guarantees. In
this paper, we consider the concrete stake privacy of PoS when con-
sidering the limitations of attacks in practice. To quantify the concrete
stake privacy of PoS, we introduce the notion of (T, δ, ε)-privacy. Our
analysis of (T, δ, ε)-privacy on Cardano shows to what extent the stake
privacy can be broken in practice, which also implies possible parame-
ters setting of rational (T, δ, ε)-privacy for PoS in the real world. The
data analysis of Cardano demonstrates that the (T, δ, ε)-privacy of cur-
rent APoS is not satisfactory, mainly due to the deterministic leader
election predicate in current PoS constructions. Inspired by the differen-
tial privacy technique, we propose an efficient non-deterministic leader
election predicate, which can be used as a plugin to APoS protocols to
protect stakes against frequency analysis. Based on our leader election
predicate, we construct anonymous PoS with noise (APoS-N), which can
offer better (T, δ, ε)-privacy than state-of-the-art works. Furthermore, we
propose a method of proving the basic security properties of PoS in the
noise setting, which can minimize the impact of the noise on the security
threshold. This method can also be applied to the setting of PoS with
variable stakes, which is of independent interest.

Keywords: Blockchain · Proof of stake · Privacy · Verifiable random
function

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 368–391, 2023.
https://doi.org/10.1007/978-981-99-7563-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_17&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_17

Improving Privacy of Anonymous Proof-of-Stake Protocols 369

1 Introduction

Proof of work (PoW) based blockchain protocols, such as bitcoin [1], provide a
novel way to achieve consensus among users in a permissionless setting. However,
one of the main concerns of PoW is its high energy consumption. To address
this issue, Proof of Stake (PoS) protocols have emerged as a promising, energy-
efficient alternative. In PoS protocols, users participate in a process to elect a
leader who will propose the next block. The probability of a user winning the
election is proportional to their wealth or relative stakes at any given time.
The rationale behind PoS is that users with higher relative stakes have more
economic incentives to keep the PoS system running, and their stakes would lose
value if the system fails. In the past decade, a series of solid works focused on
the candidates of PoS protocols [2–10]. In particular, [5–10] have presented PoS
with rigorous security proofs and formal security models.

Due to the public nature of the permissionless setting, privacy has become
a significant concern for blockchain users. For PoW based blockchains, privacy-
preserving solutions such as ZCash [11] and Monero [12] have been developed to
provide privacy protection for transactions, including the payer/payee identities
and transaction amounts. However, achieving privacy in PoS based blockchains
is more challenging. This is because in PoS, privacy not only needs to be ensured
for transactions and identities but also for the leaders’ stakes. In particular, a PoS
user (or stakeholder) needs to provide public verifiable proof of his leadership,
which is verified based on his public key and stakes. Even if this proof is realized
in a zero-knowledge manner, as in the PoW setting, the number of times an
anonymous leader wins the election implies an approximation of his stakes. To
protect the stakeholders’ identities and stakes, anonymous PoS protocols have
been proposed [10,13,14].

Nevertheless, [15] has pointed out that current anonymous PoS protocols do
not suffice to protect the stakeholder’s identity and stake, and has shown the the-
oretical impossibility of a PoS blockchain protocol that guarantees both liveness
and anonymity. Specifically, they introduce the tagging attack, which can lever-
age the network delay to distinguish the target stakeholder from others. Once
the adversary can launch the tagging attack for the target stakeholder “enough”
times, they can reveal the target stakeholder’s stake since the frequency of win-
ning the election is determined by participants’ stakes in PoS. Theoretically,
such leakage is inherent for deterministic PoS protocols when considering the
network delay. In fact, the security loss through frequency attack (or frequency
analysis) is inherent for any deterministic cryptographic schemes. To mitigate
the tagging attack, [15] provides possible countermeasures, such as sanitization
protocol and reliable broadcast mechanisms, which aim to ensure that all parties
have the same view. These strategies, however, rely on additional assumptions
on the network and have limitations on either privacy or practicality and scala-
bility. As mentioned in [15], new technologies are needed to protect stakeholders’
privacy against any potential network adversary.

It is worth noting that network attacks in the real world have limitations,
as it takes time for an adversary to launch an attack, and the attack is not

370 S. Wu et al.

always successful. For instance, the success probability of eclipse attacks [16]
is about 84%, and the attack may be stopped once the target user restarts
the server. That means that the adversary of tagging attack may not be able
to collect enough information to determine the target stakeholder’s stake due
to the limited duration of the attack. Therefore, it is natural to question the
extent to which the frequency attacks (including tagging attack) can break the
stake privacy of current anonymous PoS protocols and how to enhance the stake
privacy of anonymous PoS against frequency attacks while preserving efficiency
and scalability.

Our Contributions. In this work, we answer this question by proposing an
effective method to enhance the privacy of stakes of anonymous PoS protocols.
To that end, we first analyze the success probability of estimating the target
stakeholder’s stake using frequency attacks, such as repeated (reverse) tagging
attacks or any attacks that exploit frequency analysis. We note that the esti-
mation accuracy is heavily influenced by the number of attacks and the success
probability of leader election in PoS system. The small number of attacks and
success probability of leader election could lead to large estimation errors due to
the inherent limitation of statistical methods. We then introduce the notion of
(T, δ, ε)-privacy to quantify the concrete stake privacy of PoS. In particular, we
analyze the (T, δ, ε)-privacy of Cardano, which is one of the largest PoS systems
by market capitalization. Our results show that for the stake pools of Cardano
with small relative stake, say ≤ 0.05%, the (T, δ, ε)-privacy it can achieve is
T = 432000 slots, δ = 10% and ε = 60.95%. That is, if the attack duration is
restricted in one epoch (432000 slots), the probability that the adversary can
approximate the target stake pool’s stake with an error δ = 10% is as high as
60.95%.

Furthermore, we find that the crux of the stake estimation by frequency
analysis is the deterministic relation between the stakeholder’s stake and his
success probability of leader election. Inspired by the differential privacy tech-
nique [17,18], we propose an efficient non-deterministic leader election function
that can randomize this relation by adding noise with a particular distribu-
tion such that the resulting stake estimation error can be increased significantly.
Based on our noisy leader election function, we provide an anonymous PoS pro-
tocol with noise (APoS-N), which can enhance the stake privacy while preserving
the stakeholders’ long-term benefits. The main idea is to add “random” noise
to the stakeholders’ stakes, and the leader election function is evaluated using
the noisy stake, where the expectation of the noise distribution is 0. Following
Ganesh et al.’s framework [13] of constructing anonymous PoS, we can construct
APoS-N by implementing the underlying leader election function with our noisy
version. Due to the interference of the noise, it is difficult for the adversary to get
the target stakeholder’s accurate stake in APoS-N, resulting in better (T, δ, ε)-
privacy being achieved. In addition, the privacy requirements defined by [13] are
preserved in our APoS-N, as it follows the framework of [13].

Improving Privacy of Anonymous Proof-of-Stake Protocols 371

The main challenge, however, is that the basic security properties of the
underlying PoS blockchain, i.e., common prefix, chain growth and chain quality,
may not hold due to the random noise. For instance, the noisy stakes of either all
stakeholders or the adversary may be larger than the original one, which means
the original threshold of adversarial relative stakes, say 1/2, could be broken
in APoS-N. To address this problem, we improve the security analysis in [7,8],
called characteristic string, to adapt to our noise setting. This improvement can
minimize the impact of the noise on the security threshold. Our results show
that the basic security properties of PoS can still be preserved in APoS-N if the
noise is upper-bounded properly. It is worth noting that our proof can be applied
to the setting of PoS with variable stakes, such as when the total active stakes
of some slots are less than expected due to the absent stakeholders. This result
is of independent interest.

Related Work. Our work is independent of another work by Wang et al. [19].
Their work extends the tagging attack model of [15] to the randomized PoS pro-
tocol and presents a practical stake inference attack with sublinear complexity.
In our work, the analysis of frequency attack considers the concrete cost and
accuracy of stake estimation, which are applicable to any attacks that rely on
sampling frequency. Wang et al. [19] also propose a private PoS protocol using
differential privacy techniques. However, we note that their protocol has security
flaws. Specifically, we present an attack that allows the adversary to amplify his
noisy stakes and gain more profits than required, breaking chain quality, which
is one of the fundamental security requirements of the underlying PoS [8]. Even
worse, this also implies the break of safety discussed in [8]. The presence of
security flaws in Wang et al.’s approach is due to a limitation of the UC frame-
work, which makes it difficult to capture all desired security requirements in
the ideal functionality explicitly. In contrast, our protocol carefully controls the
noisy stakes to preserve the fundamental security requirements of PoS, including
common prefix, chain growth and chain quality. By explicitly considering these
requirements, our protocol can provide stronger security guarantees than the
approach used by Wang et al. [19].

2 Preliminaries

Notations. Let N denote the set of all natural numbers. Let B(n, p) denote
the binomial distribution with parameters n and p, where n denotes the total
number of independent trials and p denotes the success probability of each trial.
Be(a, b) denotes the beta distribution with parameters a and b. U(a, b) represents
the uniform distribution on the interval [a, b]. We write X ∼ D to denote the
random variable X following the distribution D.

Ouroboros Praos. We briefly recall Ouroboros Praos [8] and its anonymous
version [13], which are typical PoS protocols with rigorous security proofs.

372 S. Wu et al.

Ouroboros Praos works as follows: Suppose that n stakeholders U1, . . . , Un

interact throughout the protocol. The stakeholders’ initial stakes and related
public keys, say {(stki, pki)}n

i=1, are hardcoded into the genesis block. Let STK
denote the total stakes of the PoS system. During the execution, the time is
divided into discrete units called slots, and a set of ne adjacent slots is called
an epoch. Stakeholders participate in the leader election protocol in each slot
to decide who is eligible to issue a block. In the process of leader election, each
stakeholder locally evaluates a special verifiable random function (VRF) on the
current slot and a nonce that is determined for an epoch. Let (y, π) denote
the output of VRF, where y is pseudorandom and π is the proof. If y is less
than a function of their stakes, then that stakeholder wins the election and can
generate a new block. The probability of winning an election is proportional
to the stakeholder’s relative stake. More specifically, the leader election process
can be captured by Lottery ProtocolE,LE [13], where E is the set of the allowed
entry parameters. The core of Lottery ProtocolE,LE is a leader election predicate
LE(·, ·). A stakeholder wins an election in a slot sl iff his LE(stk, y) = 1, where
stk is the stakeholder’s stake. The LE predicate has the following form:

LE(stk, y) =

{
1, if y < 2�α · (1 − (1 − f)

stki
ST K)

0, otherwise.

stki

STK is the stakeholder’s relative stake. �α denotes the output length of the
VRF and f is called the active slots coefficient, which is the probability that a
hypothetical party with 100% relative stake would be elected leader in a slot.
A critical property of LE is that the probability of a stakeholder becoming a
slot leader depends on his stake, whether this stakeholder acts as a single party
or splits his stake among several virtual parties. Once a leader proposes a new
block, all the stakeholders can check the validity of the block using the leader’s
public information, say stake, public key, π, etc., and update their local state by
following the longest chain rule, which enables the honest users to converge to a
unique view.

Anonymous PoS protocols (APoS) [10,13] focus on establishing a privacy-
preserving election process that can protect the leader’s identity and stakes. In
order to hide the stakes, the stakeholders in APoS need to generate commitments
to their stakes. Using these commitments and the list of all stakeholders’ identi-
ties (ID), the stakeholder can execute Lottery ProtocolE,LE in a zero-knowledge
manner, which means all the users can check the validity of the leader election
(or the block) without knowing the leader’s identity and stake.

The related Lottery ProtocolE are described assuming hybrid access to ideal
functionalities such as FCom

Init , Fcrs, FCom
V RF and FΔ

ABC . The functionality FCom
Init

initially contains a list of stakeholder’s ID and their stakes. It computes the
commitments to each stakeholder’s stake and generates the corresponding pub-
lic/secret key pairs. The functionality Fcrs provides the common reference string
for zero-knowledge proofs. To hide the identity of the sender, anonymous PoS
protocols [10,13] need to rely on an ideal anonymous broadcast channel, which is
captured by the functionality FΔ

ABC . It takes as input a message m from a user

Improving Privacy of Anonymous Proof-of-Stake Protocols 373

and adds m to all users’ buffers, where the adversary can influence the buffer of
the user by introducing bounded delays. In particular, the adversary is allowed
to send anonymous messages to specific users and impose an upper bound delay
Δ on specific messages. Stakeholders use the functionality FCom

V RF to generate
the randomness for the leader election. For each stakeholder, FCom

V RF generates a
unique key as a private identity for accessing FCom

V RF and a commitment to ran-
domness y, which the stakeholder uses for the leader election. The commitment
is used by users to check the validity of the claimed FCom

V RF evaluation. More
details of the above functionalities are shown in Appendix D.

Threat Model. The threat model in our paper is similar to that of [8], where
the adversary A’s capabilities are defined in the following three aspects:
Corruption: A is able to corrupt a set of stakeholders adaptively without delay
and control these corrupted stakeholders to take any actions beyond the protocol,
such as withholding blocks or publishing multiple blocks when they are leaders.
In each slot, the fraction of the stake controlled by A cannot be greater than
50%, otherwise, the security of the PoS protocol can be broken directly.
Propagation: A can arbitrarily manipulate the propagation of honest messages
within Δ slots. Specifically, for any honest message m sent in slot i, the adversary
A can choose the time when each honest stakeholder receives m, but all honest
must have received m at the end of slot i + Δ. Notice that the messages sent by
honest stakeholders could be new blocks, transactions, or other information.
Limitation: A has limited computing power so that it cannot violate the secu-
rity properties of any underlying cryptographic component. For corruption and
propagation, this means that the adversary cannot make the probability of cor-
rupted stakeholders being elected leader exceed the adversary’s stake proportion,
nor can it tamper with honest messages, which requires A to break the security
of the underlying VRF or digital signatures.

Security Requirements. The basic security properties of PoS follow that of
[7]. A PoS protocol Π that implements a robust transaction ledger should satisfy
the persistence and liveness. [20,21] demonstrate that persistence and liveness
can be derived from the following three properties if the protocol Π uses the
blockchain data structure to export the ledger.

– Common Prefix (CP) with parameters k ∈ N. The chains C1, C2 possessed by
two honest parties at the onset of the slots sl1 < sl2 are such that C¬k

1 � C2,
where C¬k

1 denotes the chain obtained by removing the last k blocks from
C1, and � denotes the prefix relation.

– Chain Quality (CQ) with parameters μ ∈ (0, 1] and k ∈ N. Consider any
portion of the length at least k of the chain possessed by an honest party at
the onset of a slot, the ratio of blocks originating from the adversary is at
most 1 − μ, where μ is the chain quality coefficient.

– Chain Growth (CG) with parameters τ ∈ (0, 1] and s ∈ N. Consider the chains
C1 and C2 possessed by two honest parties at the onset of two slots sl1, sl2

374 S. Wu et al.

with sl2 at least s slots ahead of sl1. Then it holds that len(C2) − len(C1) ≥
τ · s, where τ is the speed coefficient and len(Ci) denotes the length of the
chain Ci.

On the privacy of anonymous PoS, [13] introduces the private lottery func-
tionality FE,LE

Lottery to capture the privacy requirements of anonymous PoS in the
universal composition (UC) setting. Loosely speaking, FE,LE

Lottery can be consid-
ered as an ideal-world PoS protocol that can hide the leader’s identity and stake.
For more information of FE,LE

Lottery, we refer to [13]. We emphasize that the pri-
vacy defined by FE,LE

Lottery does not rule out the possibility of privacy leakage by
tagging attack described below.

3 Attack on Anonymous PoS and Its Limitations

In this section, we introduce frequency attack, which abstracts any attacks
(including tagging attack) that estimate the target stakeholder’s stake using
frequency analysis. Then, we analyze the accuracy of the stake estimation and
show its limitations in practice.

3.1 Frequency Attacks Against Stake Privacy

The frequency attack against stake privacy is an attack that may use various
methods to determine the number of blocks proposed by the target stakeholder
within a specific time period and then uses the frequency of proposed blocks
to estimate the stakeholder’s stake. The adversary can monitor either the phys-
ical or network layer to obtain the block frequency. A typical example of fre-
quency attacks is the tagging attack [15], which can manipulate the targeted
stakeholder’s network delays to create a different view from others, enabling the
adversary to distinguish blocks proposed by the targeted stakeholder and asso-
ciate them with their stake. More precisely, the adversary creates a transaction
txΔ for the purpose of tagging the targeted stakeholder P . By controlling the
network delay, the adversary is capable of ensuring that stakeholder P receives
txΔ at time t, while other stakeholders receive it after time t + Δ. Notice that if
a stakeholder succeeds in winning an election, then it adds all the transactions
in his current view to the new block. For any block B that is produced between
t and t + Δ, the adversary is able to check whether txΔ is in B even if it can
achieve privacy-preserving since the adversary is the owner of txΔ. As no one
has txΔ before t + Δ except P , txΔ in B indicates that B is generated by P .
By repetitively executing this attack, the adversary can determine the frequency
of blocks proposed by P during a specific period. Then, the frequency can be
exploited to uncover the relative stake of P , thereby compromising the stake
privacy of the PoS system.

Theoretically, the relative stake of P can be approximated by statistical anal-
ysis, e.g., point estimation or interval estimation of the probability of success in a
binomial distribution. Note that all the statistical methods have their limitations

Improving Privacy of Anonymous Proof-of-Stake Protocols 375

on the accuracy of the approximation due to the target probabilistic distributions
and the number of samples. We show the accuracy of interval estimation, which
is crucial to the stake privacy of anonymous PoS in practice. Interval estimation
is an effective statistical method to estimate an interval of possible values of the
unknown population parameters. For the stake estimation of PoS, which follows
the binomial distribution with a small success probability, we adopt the Jeffreys
interval rather than the standard interval in order to reduce the severity of the
chaotic behavior of the confidence interval’s coverage probability [22].

To illustrate the interval estimation for stakes, consider the following case.
Suppose that the total number of slots during the attack is C and the target
stakeholder’s stake is fixed. Let suc[C, t] denote the event that t blocks proposed
by P among C slots are observed by the adversary. Let p denote the relative
stake of P . We use X to indicate whether P wins the election in a slot, where
X = 1 if P wins the election. Otherwise, X = 0. We use Φ(·) to denote the
function which takes as inputs a stakeholder’s relative stake and outputs the
corresponding probability that he can win the election in a slot. The probability
of P winning an election is Φ(p)1. Since Φ(·) is usually public and deterministic
and p can be easily obtained given Φ(p), we focus on the estimation of Φ(p) to
simplify our illustration. So X follows the Bernoulli distribution with Pr[X =
1] = Φ(p) and t follows the binomial distribution with parameters C and Φ(p),
i.e., t ∼ B(C,Φ(p)).

To estimate the unknown Φ(p), we apply the Jeffreys interval, which is the
Bayesian confidence interval obtained using the non-informative Jeffreys prior
of the binomial distribution Φ(p). The Jeffreys prior is a Beta distribution with
parameters (1/2, 1/2). The posterior distribution is derived from suc[C, t], which
follows the Beta distribution Be(t+1/2, C−t+1/2). The 100(1−ψ)% equal-tailed
Bayesian interval is [Q(ψ/2; t+1/2, C − t+1/2), Q(1−ψ/2; t+1/2, C − t+1/2)],
where Q is the quantile function of Be(t + 1/2, C − t + 1/2).

3.2 Interval Estimation for Stakes in Practice

Following the above method, we estimate the stakes of Cardano [23] to show the
accuracy of interval estimation in practice. We choose 100 stake pools with total
relative stake p ≈ 26.732% as the target stakeholder P with Φ(p) = Pr[X = 1] ≈
1.362%. By analyzing the data of two different periods in epoch 325, which are
suc[3000, 66] (1 h) and suc[345600, 4994] (96 h), we get the Jeffreys intervals for
Φ(p), respectively. Figure 1 shows the estimation of Φ(p) using Jeffreys intervals,
where the red line and the blue line represent the probability density functions
of Φ(p) using suc[3000, 66] (1 h) and suc[345600, 4994] (96 h), respectively. When
considering confidence level 95%, the Jeffreys intervals of the red line is [0.01721,
0.02773] with interval length 0.01052. For the blue line, the Jeffreys interval is
[0.01406 0.01486] with interval length of 0.0008. So far, it follows the intuition
that a large number of blocks that knew by the adversary can improve the

1 In Ouroboros, the probability of P winning an election is defined by Φ(p) = 1− (1−
f)p, which is close to p · f .

376 S. Wu et al.

Fig. 1. Probability density function of Φ(p). (Color figure online)

estimation accuracy for p. However, we stress that the relative stake p of a stake
pool in Cardano is only about 0.001%–0.35% and the corresponding φ(0.01%)–
φ(0.35%) is (0.000513%–0.0179%). That means even interval length 0.0008 is
too large to distinguish stakeholders’ Φ(p) in Cardano. So frequency attack and
Jeffreys intervals is not accurate enough to distinguish most stakeholders’ stake
in Cardano when the attack duration is “short”, say 96 h (345600 slots).

Furthermore, more trials do not necessarily imply a more accurate estimation.
[22,24] reveal the degree of severity of the chaotic oscillation behavior of many
intervals’ coverage probability. Such chaotic oscillation behavior is more obvious
for the binomial distribution with relatively small p. For instance, for a binomial
distribution B(C, p) with p = 0.005 [22], the coverage probability of the 95%
confidence interval increases monotonically in C until C = 591 to 0.945, and
drops to 0.792 when C = 592.

The above limitations of statistical analysis show the possibility of protecting
the stakes of anonymous PoS in practice.

4 Privacy of PoS Against Frequency Attack

In this section, we introduce the notion of (T, δ, ε)-privacy to capture the concrete
stake privacy of PoS and analyze the (T, δ, ε)-privacy of Cardano.

4.1 (T, δ, ε)-Privacy

In theory, if the adversary has an infinite amount of time to acquire the frequency
of proposed blocks, they could precisely ascertain the stake of any stakeholder.
However, in practice, the attack time for the adversary to gather information
about the frequency of proposed blocks is usually limited. To conduct a more

Improving Privacy of Anonymous Proof-of-Stake Protocols 377

comprehensive evaluation of the costs and effects of frequency attacks in real-
world scenarios, we need to consider the attack time. Let T denote the number
of slots that an adversary can perform frequency attack. Hence, for a stakeholder
with a relative stake p, the expected number of blocks generated by it during T
slots is T · Φ(p). We capture the concrete stake privacy of a PoS protocol Π by
the following experiment, called ExpA

Π,δ.

– The challenger runs the protocol Π among n stakeholders.
– The adversary A chooses the target stakeholder (or stakeholders) S to launch

the frequency attack, where the relative stake of S is p. Suppose that the
frequency attack can last for T slots.

– Finally, A outputs X, which denotes the number of “tagged” and valid blocks
generated by S.

We say the adversary A wins the experiment ExpA
Π,δ if (1 − δ) · T · Φ(p) ≤ X ≤

(1 + δ) · T · Φ(p), where δ ∈ (0, 1). Let ExpA
Π,δ(1

λ) = 1 denote the event that A
wins, where λ denotes the security parameter.

Definition 1. (T, δ, ε)-privacy: A PoS protocol Π is (T, δ, ε)-privacy for a stake-
holder with relative p if for any PPT adversary A, Pr[ExpA

Π,δ(1
λ) = 1] ≤ ε, where

0 < ε < 1 and δ is called the privacy error.

Note that (T, δ, ε)-privacy captures to what extent the stake privacy of a PoS
protocol can achieve no matter which statistical tool or strategies the adversary
would use. Consider the case of Ouroboros Praos, we have X ∼ B(T, Φ(p)) and

Pr[ExpA
Π,δ(1

λ) = 1] =
�(1+δ)TΦ(p)�∑

i=�(1−δ)TΦ(p)�
Pr[X = i] ≈ 60.95%, (1)

where the target stakeholder’s relative stake p = 0.3% and T = 432000 (the
number of slots in an epoch). In fact, due to the law of large numbers, typical
PoS protocols usually cannot achieve (T, δ, ε)-privacy when T is large enough.
Specifically, when T → ∞ and Φ is deterministic, Pr[(1 − δ)TΦ(p) ≤ X ≤
(1 + δ)TΦ(p)] → 1. As shown in the previous section, when T and p are small,
the accuracy of the estimation for target stakes is heavily influenced by the lim-
itation of the underlying statistical analysis. So (T, δ, ε)-privacy depends on the
duration of frequency attacks and the actual probability of the target stakeholder
proposing a block.

4.2 (T, δ, ε)-Privacy in Practice

To measure the impact of frequency attacks on (T, δ, ε)-privacy in practice, we
make a thorough analysis of the data of Cardano. Note that the underlying PoS
protocol of Cardano is Ouroboros, which is also the core of anonymous PoS pro-
tocols [10,13]. While employing privacy-preserving techniques, the probability of
stakeholder winning an election in [10,13] does not change. Hence, the block data

378 S. Wu et al.

of Cardano can reflect (T, δ, ε)-privacy of [10,13] in practice, although Cardano
does not consider anonymity. We assume that the adversary can successfully find
all the blocks generated by the target stakeholder during the attack. That is,
X is the number of the blocks generated by the target stakeholder during the
attack.

We investigate the transactions of Cardano for two months and focus on 600
pools, denoted by Stotal, which have more than 90% stakes of the entire system.
To evaluate the error of frequency attack for stake estimation, we define the
frequency attack error as R =

∣∣∣1 − X
TΦ(p)

∣∣∣. Due to Definition 1, δ is the upper
bound of R to break (T, δ, ε)-privacy.

Fig. 2. Each blue dot represents a pool or a subset of pools where the x-coordinate
denotes its relative stake and the y-coordinate denotes the corresponding frequency
attack error during the first day of epoch 328. In the right figure, 600 pools are divided
into 50 subsets, where each blue dot represents a subset of 12 pools. (Color figure
online)

Figure 2 (left) shows the relation between each pool in Stotal and its corre-
sponding frequency attack error R in the first 24 h of epoch 328. In the horizontal
axis, all the pools in Stotal are sorted in ascending order of their relative stakes.
For instance, there are stake pools with relative stake 0.3%, which have error
100.1%, 57.8% and 1.58%, respectively. By “merging” multiple pools in different
ways, we can simulate multiple frequency attacks on different pools using the
same transaction data. More precisely, 600 pools are randomly divided into sub-
sets of equal size. In Fig. 2 (right), 600 pools are divided into 50 subsets, each
of which has 12 pools. The horizontal coordinate and the vertical coordinate
denote the total relative stake and the frequency attack error R of a subset,
respectively. As illustrated in Fig. 2, the larger the relative stake, the less the
frequency attack error is. In particular, all the subsets with relative stake about
3.5% in Fig. 2 (right) has error less than 20%, while most pools with relative
stake about 0.05% in Fig. 2 (left) has error larger than 50%.

One may consider δ = 10%, since the difference of relative stake of most
adjacent pools on the horizontal axis of Fig. 2 (left) is about 10%. So it is possible

Improving Privacy of Anonymous Proof-of-Stake Protocols 379

for pools with relative stake less than 0.3% to preserve (T, δ, ε)-privacy if T =
432000 slots, δ = 10% and ε = 60.95%.

Table 1. Proportion of pools (subsets of pools) such that R > δ.

Epoch 328 Proportion s.t. R > δ

δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4

24 h 600sets 86.5% 78.7% 66.2% 60.3%
200sets 78.5% 63.5% 43.5% 32.0%
100sets 72.0% 49.0% 32.0% 18.0%
50sets 64.0% 18.0% 12.0% 6.0%

48 h 600sets 78.5% 60.3% 46.7% 32.8%
200sets 66.0% 39.0% 18.5% 8.0%
100sets 55.0% 23.0% 9.0% 1.0%
50sets 36.0% 6.0% 4.0% 0%

72 h 600sets 74.8% 51.0% 31.8% 19.2%
200sets 57.5% 26.5% 9.5% 3.0%
100sets 35.0% 11.0% 3.0% 0%
50sets 18.0% 2.0% 0% 0%

96 h 600sets 64.2% 38.2% 19.5% 9.8%
200sets 48.5% 16.5% 4.5% 1.0%
100sets 34.0% 7.0% 0% 0%
50sets 12.0% 0% 0% 0%

Intuitively, the frequency attack error will be decreased when the adversary
can extend the duration of frequency attack. Table 1 shows the effect of extending
the duration of frequency attack for epoch 328. In Table 1, we show how the
proportion of pools (or sets of pools) with R > δ changes over time in epoch
328. “200sets (resp. 100sets, 50sets)” means that we choose 3 (resp. 6, 12) pools
as a set. Table 1 shows that the proportion of the subsets with R > 0.1 in the
first 24 h of epoch 328 is greater than 50%, while the proportion of the subsets
with R > 0.4 drops to about 0% by the first 96 h of epoch 328.

Similar phenomena occur in different epochs (shown in Table 2 in Appendix
C), where the proportion such that R > 0.1 in the first 24 h of each epoch is
greater than 83%. To sum up, comparing with larger relative stakes, say 2%–3%,
smaller relative stakes, say 0.03%–0.3%, can dramatically reduce the accuracy
of stake estimation in a short period of time, say 1 day. In addition, stakes
in Cardano has “dense” distribution, where there are many pools with similar
relative stakes. The above results implies the possibility for anonymous PoS
protocols in practice to achieve (T, δ, ε)-privacy when considering δ = 0.1–0.2.

380 S. Wu et al.

As shown above, the corresponding ε of stakeholder with relative stake 0.3% can
reach 60.95% in the first day of an epoch, which is too high for the privacy in
practice. Next, we show how to reduce ε further.

5 Anonymous Proof-of-Stake with Noise

In this section, we construct the anonymous PoS with noise (APoS-N). In par-
ticular, we propose a non-deterministic leader election function, which can be
used as a plug-in for PoS based blockchain to enhance stake privacy.

5.1 Adding Noise to Anonymous PoS

As shown in frequency attack, the adversary may determine the target stake-
holder’s stake by the frequency of “tagged” blocks, i.e., the frequency of
LE(stk, y) = 1 for the target stakeholder. In order to hide the stakeholders’
stake, we change the frequency of LE(stk, y) = 1 during a short period by
adding noise to the stake stk. The main idea of our techniques is similar to
differential privacy [17,18], which can preserve the data’s privacy and statistical
validity by adding noise with a particular distribution.

More specifically, we modify LE such that the probability of a stakeholder
winning election depends on his “noisy” stake. The noise is generated by a noise
function γ(·), which takes as input random value z and outputs a value following
a particular distribution D. The expectation of distribution D should be 0, e.g.,
the uniform distribution with expectation 0, so that the frequency of a stake-
holder becoming a leader over the long term would not be changed. That means,
the frequency of a stakeholder becoming a leader during a long period of time
is still proportional to his stake, but during a short period of time, it is hard
to estimate the probability of a stakeholder becoming a leader due to the noise.
Our modified leader election predicate, called LE∗, is described as follows.

LE∗(stk; η) =

{
1, if y < 2�α · (1 − (1 − f)

stk·(1+γ(z))
ST K)

0, otherwise

where η = y||z is generated by querying FCom
V RF .

Comparing with the definition of FCom
V RF in [13], we make slight modifications

that the randomness η returned by FCom
V RF is divided into two parts, i.e., η =

y||z, where y is the same as that of [13], and z is used for the noise function
γ(·). Formal description of our FCom

V RF is given below, where Com denotes the
commitment scheme.

Functionality FCom
V RF

Key Generation
Upon input (KeyGen,sid) from a stakeholder uid, generate a unique key

Improving Privacy of Anonymous Proof-of-Stake Protocols 381

vid and set U(vid) = uid. Return (KeyGen, sid, vid) to uid.

VRF Evaluation
Upon receiving a request (Eval, sid, vid, m) from stakeholder uid, check
whether U(vid) ?= uid. If not, ignore the request.

1. If T (vid,m) is undefined, pick random η, r from {0, 1}�V RF , where η =
y||z.

2. Set T (vid,m) = (η, Com(η; r), r).
3. Return (Evaluated, sid, T (vid,m)) to stakeholder uid.

VRF Verification
Upon receiving (Verify, sid,m, c) from some user, set b = 1 if there exists
a vid such that T (vid,m)= (η, c, r) for some η and r. Otherwise, set b =
0. Output (Verified, sid,m, c, b) to the user.

When instantiated with concrete VRF, the output of the corresponding VRF
is longer than that of [13]. Note that (1 − (1 − f)

stk·(1+γ(z))
ST K) ≈ f · (stk·(1+γ(z))

STK)
still holds since f · (stk·(1+γ(z))

STK) << 1 if the slot and f is small enough.
Following the framework of [13], we present the modified Lottery

ProtocolE,LE∗
below, where the main difference is that we use the noisy version

of leader election predicate LE∗. Each stakeholder, say U , runs the modified
Lottery ProtocolE,LE∗

to join the leader election. More details of related ideal
functionalities FCom

Init , Fcrs, and FABC
Δ are shown in Appendix D.

Lottery ProtocolE,LE∗

Suppose the underlying signature scheme consists of (SIG.keygen, SIG.sign,
SIG.vrfy), which denote the key generation algorithm, the signing algo-
rithm and the verification algorithm, respectively.
Initialzation

– Send (GetList, sid) to FCom
Init to get the list L of stakeholders with

committed stake and the corresponding signature verification key.
– Send (Setup, sid) to Fcrs to get the common reference string crs for

zero-knowledge proofs.
– If U is a stakeholder, send (Get-private-Data, sid) to FCom

Init to get
αuid, rα,uid, skuid, and send (KeyGen, sid) to FCom

V RF to get vid. Ini-
tialize V (·) = {φ}.

Lottery and Publishing

– As a stakeholder upon receiving (Lottery, sid, e):

382 S. Wu et al.

1. Ignore the request if e is not in E , which is the set of allowed entry
parameters.

2. If V (e) is undefined, send (Eval, sid, vid, e) to FCom
V RF and get

(Evaluated, sid, (η, c, r)). Compute b = LE∗(αuid, η), and set
V (e) = (b, η, c, r).

3. Return (Lottery, sid, e, b) where V (e) = (b, η, c, r).
– As a stakeholder upon receiving (Send, sid, e,m)

1. Ignore the request if V (e) = (0, · · ·) or is undefined.
2. If there exists (1, η, c, r) such that V (e) = (1, η, c, r),

(a) Generate a signature σ on (e,m) under vkuid.
(b) Generate a zero-knowledge proof πzk using crs for the following

statement.
{(αuid, rα,uid, vkuid, skuid, cα,uid, σ, η, r) :

SIG.vrfyvkuid
((e,m), σ) = 1 ∧ LE∗(αuid, η) = 1

∧vkuid = SIG.keygen(skuid) ∧ c = Com(η; r)
∧cα,uid = Com(αuid; rα,uid) ∧ (cα,uid, vkuid) ∈ L}

3. Send (Send, sid, (e,m, c, πzk)) to FΔ
ABC .

– Upon receving (Fetch-New,sid)
1. Send (Receive,sid) to FΔ

ABC and get �m.
2. For each (e,m, c, πzk) ∈ �m, do :

(a) Check that e ∈ E .
(b) Send (Verify, sid, e, c) to FCom

V RF , and get the response
(Verified, sid, e, c, b). Check that b = 1.

(c) Check the validity of πzk.
(d) If all the above hold, add (e,m, c, πzk) to �o

3. Output (Feach-New, sid, �o).

To implement VRF Evaluation of FCom
V RF , [13] proposed the anonymous VRF

(AVRF), which consists of (AVRF.gen, Update, AVRF.prov, AVRF.vrfy), in order
to hide the identity of the stakeholder. Comparing with VRF, the special prop-
erty of AVRF is that the stakeholder updates his public key without changing
the corresponding private key, and two evaluations on different messages under
the same secret key cannot be linked to a public key, while other properties of
VRF can still be preserved. More details of the construction of AVRF are shown
in Appendix B.

In our setting, AVRF with key k takes as input the public key pk and the
slot sl and outputs the randomness η and the proof πAV RF . For convenience,
let Fk(sl) denote randomness output by AVRF with k and slot sl. That is,
Fk(sl) = η. To ensure the validity of an election, it remains to prove that the
corresponding AVRF key is in the list L in a zero-knowledge manner. The overall
ZK proof πzk for APoS-N is similar to that of [13] except that we need to consider
the ZK poofs for the consistency of the noise function γ(z). More details of πzk

are shown in the full version of the paper.

Improving Privacy of Anonymous Proof-of-Stake Protocols 383

Privacy defined by FE,LE
Lottery. The only difference between APoS proposed by

[13] and our APoS-N is that we replace LE with our LE∗. Although the ZK
proofs πzk for APoS-N need to consider the noise z, πzk is a special case of the
description of πzk in [13]. That means the construction of our APoS-N including
the related ZK proof still follows the framework of [13] and the security proof
for the privacy of APoS defined in [13] can be applied to APoS-N. By Theorem
1 and Corollary 1 in [13], we have the following theorem.

Theorem 1. Lottery ProtocolE,LE∗
realizes the FE,LE∗

Lottery functionality in the
(FABC

Δ , FCom
Init , Fcrs, FCom

V RF)-hybrid world in the presence of a PPT adversary.
APoS-N with Lottery ProtocolE,LE∗

results in a private PoS protocol.

5.2 (T, δ, ε)-Privacy of APoS-N

Since the privacy defined by FE,LE
Lottery does not rule out the possibility of the pri-

vacy leakage by frequency attack, we focus on the evaluation of (T, δ, ε)-privacy
of APoS-N.

Notice that the frequency of changing γ(z) will influence the effect of hiding
stake. If γ(z) is changed too frequently, e.g., γ(z) takes as input fresh z in each
slot, the interference effects of the noise will tend to be nullified in a short time.
Because the expectation of the noise distribution is 0 and more noise samples
make the sum of noise approximate to 0 much faster. Hence, we suggest that the
same γ(z) should be used for a period of time, say an epoch. In particular, we
modify the first step of VRF Evaluation of FCom

V RF as follows.

VRF Evaluation (Eval, sid, vid,m)

1. If T (vid,m) is undefined, pick random η, r from {0, 1}�V RF , where
η = y||z and |y| = �y. If sid corresponds to the first slot of the
corresponding epoch, the related randomness η is denoted as y1||z1.
Otherwise, set η = y||z1.

That is, the same randomness z will be used for the whole epoch and refreshed
only at the beginning of each epoch. We stress that the above modification does
not change the framework of APoS-N, where only minor modification on the
concrete instantiations needs to be made. Let Π∗ denote the resulting APoS-N.
Hence, Theorem 1 still holds for Π∗.

To evaluate (T, δ, ε)-privacy of Π∗ in practice, we consider the leader election
process of a target stakeholder with stake p in an epoch, where the noise γ(z) is
fixed. Let Φ∗(p, γ(z)) denote the probability of a stakeholder with noisy relative
stake winning an election. So we have Pr[Exptag

Π∗,δ(1
λ) = 1] =

∑�(1+δ)TΦ(p)�
i=�(1−δ)TΦ(p)�

384 S. Wu et al.

Pr[X = i], where X ∼ B(T, Φ∗(p, γ(z))). Suppose γ(z) follows the uni-
form distribution over [−γmax, γmax]. We need to consider the expectation of
Pr[Exptag

Π∗,δ(1
λ) = 1], which is

∫ γmax

−γmax

Pr[Exptag
Π∗,δ(1

λ) = 1|γ(z) = x] Pr[γ(z) = x]dx.

Consider the concrete parameter p = 0.3%, γmax = 0.3, T = 432000 (an
epoch) and δ = 0.1. Recall that Pr[Exptag

Π,δ(1
λ) = 1] = 60.95% for the APoS

protocol Π (without noise) [10,13]. For APoS-N protocol Π∗, the expectation of
Pr[Exptag

Π∗,δ(1
λ) = 1] is as low as 34.01%, which is decreased by 44.2% comparing

with that of APoS. That means, the APoS-N protocol Π∗ is expected to achieve
(432000, 0.1, 34.01%)-anonymity for a stakeholder with relative stake 0.3% in an
epoch.

Long Term Benefits. Although larger noise bound γmax can lead to better
(T, δ, ε)-privacy, one may concern about the total number of proposed blocks
of stakeholders during some periods deviates from their expectations too much
due to the large noise. So the stakeholders’ benefits in APoS-N may not match
their stakes for some periods, which violates the intuition of proof of stake. It is
obvious that the long-term block benefits of the stakeholder in APoS-N is similar
to that of APoS, since the expectation of the noise distribution is 0. The problem
is how long the stakeholder should wait to get what he deserves. Intuitively, the
larger the noise the longer the stakeholder should wait. In Fig. 3, we simulate
the block generation of a stakeholder with relative stake 0.3% over 60 days (12
epochs) in APoS and APoS-N, respectively, where γmax = 0.3. The red curve
and the green curve represent the deviation of the total number of blocks from
the expectation, i.e., X

T ·Φ(p) −1, for APoS and APoS-N, respectively. As shown in
Fig. 3, the difference of the deviations between APoS and APoSN is large during

Fig. 3. Deviations from expectation in APoS and APoS-N during 12 epochs. (Color
figure online)

Improving Privacy of Anonymous Proof-of-Stake Protocols 385

the first 20 days, while it decreases to about 1% after the first 44 ∼ 47 days.
That means, the time of the stakeholder with relative stake 0.3% to match his
expectation is about 44–47 days.

Restriction on Individual’s Maximum Relative Stake. To prevent the
adversary from getting too much undeserved benefits in APoS-N for some period
of time, e.g., winning an election with probability Φ(p · (1+γmax)) for an epoch.
We restrict the maximum relative stake of each stakeholder. That is, if a stake-
holder’s relative stake is larger than the maximum value, he should split his stake
among multiple virtual parties, where each virtual party’s stake pi is less than
the maximum value. Due to the randomness of the each virtual party’s noise, it
is hard for all the virtual parties to reach Φ(pi · (1 + γmax)) simultaneously. In
fact, such strategy is consistent with the saturation mechanism [25] in Cardano.
The saturation mechanism is designed to prevent centralization by diminishing
the stake pool’s rewards if it reaches the saturation threshold, which is about
0.27%. Hence, no pool in Cardano has more than 0.4% relative stake.

We emphasize that the restriction on the maximum stake for each stakeholder
is crucial for not only the stabilization of the benefits but also the security
threshold of the adversarial stakes, which will be explained next.

Attack Against Wang et al.’s Protocol [19]. The work of [19] also proposes
private PoS protocol using differential privacy technique, where the stake is dis-
torted by adding noise. The noise in their stake distortion mechanisms follows
the “same” Laplace distribution. As mentioned in [19], the noisy stake can be
negative and a party with a negative stake is treated as having no stake. A direct
attack on this mechanism involves an adversary dividing their stakes among mul-
tiple corrupted participants so that each participant has very small stakes. When
applying their stake distortion mechanisms, some of the corrupted participants’
noisy stakes are zero, while others may become larger. However, the expected
total noisy stakes of the adversary are larger than his original stake due to the
neglect of the negative stake. This gives the adversary a higher payoff, which
violates the chain quality and even the safety of the resulting protocol and con-
tradicts Theorem 17 in [19]. In our work, noise follows the uniform distribution
and the amplitude of the noise is related to the stake. This allows for careful
control of the noisy stake, preserving the fundamental security requirements of
the underlying PoS protocol [8], such as chain quality.

5.3 Security Properties of Underlying PoS

Since the unpredictable noise changes the relation between stakes and the cor-
responding probability of proposing blocks in a short period of time, it is at the
risk of breaking the basic security properties of underlying PoS, i.e., common
prefix, chain growth, and chain quality. Recall that typical PoS protocols [7]
are proven secure under the condition that the adversarial stakeholders’ relative
stakes should be less than a threshold, say 1/2. In some slots of our APoS-N, the

386 S. Wu et al.

adversarial stakeholders’ noisy relative stakes may be larger than the threshold.
Besides, the total noisy stakes may be also larger or less than the original total
stakes STK. That means the security proof of previous works cannot be applied
in our setting. Therefore, we will focus on examining the impact of noise on the
security proof of PoS and prove the basic security properties of APoS-N.

Ensuring the safety and liveness of a PoS blockchain requires satisfying three
essential properties: chain growth, chain quality, and common prefix. Chain
growth is the requirement for the chain to grow at a certain rate, which can
be proved by calculating the rate at which honest stakeholders extend the chain.
Chain quality refers to the proportion of blocks on the chain proposed by honest
stakeholders. If the chain growth rate surpasses the adversary block generation
rate, there will eventually be blocks belonging to honest stakeholders, and the
proportion of these blocks is the lower bound of chain quality. Common prefix
captures the probability that chains in any two honest stakeholders’ views are
the same, except for the last few blocks. The proof for common prefix relies on
the following events: the honest stakeholders proposing only one block within
a certain period of time and the adversary’s inability to propose a block with
the same height within a certain period of time. The key to security analysis for
APoS-N is how the noise affects the above three properties.

We first assume that the total number of stakeholders is large and make
restrictions on the individual’s maximum stake. The assumption is reasonable
as there are thousands of stake pools in Cardano, none of which has more than
0.4% relative stake. Let α and β denote the relative honest and adversarial stakes
in the system, respectively. Then we have the following two observations:

Observation 1: The total noisy honest relative stake in any slot is almost α.
Note that the total honest relative stake is α and the noise of each stakeholder
is uniformly distributed with an expected value of 0. According to the Chernoff-
Hoeffding Bound in Appendix A, the total noisy honest stake will be very close
to α with a high probability.

Observation 2: The probability that the adversarial relative stakes reach the
maximum β(1 + γmax) decreases exponentially with the number of adversar-
ial stakeholders. The saturation mechanism prevents any single account from
acquiring too much stakes. The adversary has to split its stake among numerous
stakeholders. Otherwise, the probability of the adversary becoming a leader will
decrease. By Chernoff-Hoeffding Bound, the probability of the adversary gaining
a significant noise advantage is negligible.

The aforementioned observations imply that, if the noise can be carefully
controlled, the presence of noise in our APoS-N is not expected to significantly
change the overall block rate of honest or adversarial stakeholders, but it can
increase the variance of the number of blocks proposed in a short period of time
due to fluctuations in block proposal rates caused by the noise. However, with
carefully controlled noise, it is still possible to prove the essential chain properties

Improving Privacy of Anonymous Proof-of-Stake Protocols 387

of the APoS-N protocol by carefully modeling and analyzing the impact of noise.
On these properties, we have the following theorem, formal proof of which is
shown in the full version of our paper due to space limitations.

Theorem 2. APoS-N protocol satisfies chain growth, chain quality and common
prefix.

Acknowledgment. This work was supported by the National Key R&D Program
of China (Grant No. 2022YFB2701700, 2018YFA0704702) and Shandong Provincial
Natural Science Foundation (Grant No. ZR2020MF053). Quan Yuan is supported by
JST CREST Grant Number JPMJCR2113, Japan.

Appendix

A Hoeffding Bound

Theorem 3 (Hoeffding bound). Let {Xi}n
i=1 be independent random variables

ranging in [a, b] where a < b, X =
∑n

i=1 Xi and let μ = E[x], then for any t:

Pr[|X − μ| > t] ≤ 2e
−t2

n(b−a)2 .

B AVRF

AVRF consists of (AVRF.gen, Update, AVRF.prov, AVRF.vrfy). Suppose that G
is a group of prime order q such that q = Θ(22m). Let H(x) denote the hash
function.

– AVRF.gen(12m): Choose a generator g ∈ G, sample a random k ∈ Zq and
output(pk, k), where the public key pk = (g, gk).

– Update(pk): Let v = gk. Randomly choose r ∈ Zq. Let g′ = gr, v′ = vr. Set
pk′ = (g′, v′). Output pk′.

– AVRF.provk(pk′, x): Let pk′ = (g, v). Compute u = H(x), η = uk and π
′
,

which is the ZK proof of statement {(k) : logu(η) = logg(v)}. Set π = (u, π′).
Output(pk′, η, π).

– AVRF.vrfyk(x, η, π): Output 1 if u = H(x) and π verifies, and 0 otherwise.

388 S. Wu et al.

C Frequency Attack over 12 Epochs

We investigate the transactions of Cardano for two months and focus on 600
pools. The proportion of the subsets with R > δ in different epochs is shown in
Table 2.

Table 2. Proportion of 600 pools such that R > δ over 12 epochs.

Epoch Proportion s.t. R > δ Epoch Proportion s.t. R > δ

δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4

325 24 h 86.8% 76.7% 66.0% 58.7% 331 24 h 83.2% 69.8% 57.1% 45.1%
48 h 73.5% 53.3% 37.5% 22.3% 48 h 74.5% 52.8% 35.5% 23.5%
72 h 69.0% 46.3% 31.0% 18.3% 72 h 70.3% 43.7% 26.2% 15.2%
96 h 66.2% 39.8% 22.3% 12.8% 96 h 66.0% 34.0% 20.3% 10.7%

326 24 h 85.0% 68.0% 53.3% 44.5% 332 24 h 85.6% 69.0% 55.5% 45.8%
48 h 82.5% 66.8% 51.2% 35.8% 48 h 75.7% 55.2% 39.8% 25.7%
72 h 74.2% 50.0% 34.8% 22.0% 72 h 69.8% 44.7% 30.6% 17.7%
96 h 62.7% 35.2% 16.8% 9.5% 96 h 66.5% 42.2% 23.8% 12.5%

327 24 h 92.5% 80.5% 72.5% 62.7% 333 24 h 88.8% 73.6% 63.7% 53.0%
48 h 72.3% 50.5% 33.8% 21.3% 48 h 75.5% 55.5% 37.7% 22.8%
72 h 71.5% 46.3% 29.2% 17.8% 72 h 66.8% 41.3% 24.1% 14.8%
96 h 68.0% 41.7% 25.7% 13.3% 96 h 67.2% 38.2% 20.3% 9.2%

328 24 h 86.5% 78.7% 66.2% 60.3% 334 24 h 83.3% 68.5% 54.8% 43.8%
48 h 78.5% 60.3% 46.7% 32.8% 48 h 74.3% 51.3% 33.2% 21.5%
72 h 74.8% 51.0% 31.8% 19.2% 72 h 68.7% 42.0% 24.5% 12.8%
96 h 64.2% 38.2% 19.5% 9.8% 96 h 65.2% 35.8% 18.8% 9.8%

329 24 h 84.3% 70.2% 57.0% 46.8% 335 24 h 82.7% 67.5% 55.3% 47.2%
48 h 76.5% 56.0% 35.2% 22.8% 48 h 76.7% 58.3% 41.2% 28.5%
72 h 67.3% 39.3% 22.8% 11.2% 72 h 69.2% 44.2% 25.2% 13.2%
96 h 68.2% 38.3% 20.2% 10.0% 96 h 66.3% 36.2% 16.9% 9.3%

330 24 h 88.2% 73.3% 63.3% 52.5% 336 24 h 88.3% 79.5% 65.8% 58.3%
48 h 74.5% 53.2% 34.5% 21.5% 48 h 74.6% 55.8% 35.3% 24.2%
72 h 70.5% 43.3% 26.7% 15.3% 72 h 68.3% 43.3% 25.5% 14.5%
96 h 63.5% 37.0% 19.7% 11.0% 96 h 66.8% 36.5% 20.2% 12.4%

D Functionalities

In this section, we recall functionalities Fcrs, FCom
Init and FABC

Δ defined in [13,15].

Improving Privacy of Anonymous Proof-of-Stake Protocols 389

Functionality Fcrs

The functionality is parameterized by a distribution D.

– Sample crs from the distribution D.
– Upon receiving (Setup,sid) from a party, output(Setup,sid, crs).

Functionality FCom
Init

The functionality is parameterized by a signature scheme Sig
=(SIG.keygen, SIG.sig, SIG.vrfy) and a commitment scheme Com.
Initialization
The Functionality FCom

Init contains a list of each stakeholder unique id -
uid, their election stake Suid. For each stakeholder uid, the functionality
dose :
1. Execute Com with fresh randomness ruid to get commitment
Com(Suid,ruid);
2. Randomly pick a secret key skuid and compute public key vkuid =
KeyGen(skuid).
Information

– Upon receiving an input message (GetPrivateData,sid) from a stake-
holder uid, output (GetPrivateData, sid, Suid, rpid, skuid).

– Upon receiving (GetList, sid) from a party, output L = (Suid, ruid).

Anonymous Broadcast Functionality: FABC
Δ

All parties can register or deregister at any time. The list P consists of
registered parties {P1, P2, ..., Pn}. The functionality maintains a message
buffer M .

Send Message
Upon receiving message (SEND, sid,m) from some party Pi ∈ P, where
P = {P1, P2....Pn} denotes the current party set, do:

1. Choose n new unique message-IDs: mid1, ...,midn.
2. Initialize 2n new variables Dmid1 = DMax

mid1
, ...,Dmidn

= DMax
midn

= 1,
which are the delays and the maximum delays of the message for each
party.

3. Set M = M ||(m,midi,Dmidi
, Pi) for each party Pi ∈ P.

4. Send(SEND,m, sid,mid1, ...,midn) to the adversary.

390 S. Wu et al.

Receive Message
Upon receiving message (FETCH,sid) from Pi ∈ P:

1. For all tuples(m,mid,Dmid, Pi) ∈ M , set Dmid = Dmid − 1.
2. Let MPi

0 denote the subvector of M including all tuples of the
(m,mid,Dmid, Pi) with Dmid = 0. Delete all MPi

0 from M and send
(sid,MPi

0) to Pi

Adversarial Influence
Upon receiving message (DELAY,sid, (Tmid1 ,mid1), · · · , (Tmid�

,mid�)
from the adversary, do the following for each pair (Tmid,midi):

1. If DMax
midi

+ Tmidi
≤ Δ and mid is a message-ID registered in the cur-

rent M , set Dmidi
= Dmidi

+ Tmidi
and set DMax

midi
= DMax

midi
+ Tmidi

;
otherwise ignore this pair.

Adversarial multicast
Upon receiving (MSEND,(m1, P1), · · · , (m�, P�)) from the adversary with
(P1, · · · , P� ∈ P) :

1. Choose � new unique message-IDs: mid1, · · · ,mid�.
2. Initialize 2� new variables Dmid1 = DMax

mid1
, · · · Dmid�

= DMax
mid�

= 1.
3. Set M = M ||(m1,mid1,Dmid1 , P1)|| · · · ||(m�,mid�,Dmid�

, P�).
4. Send (MSEND,sid,m1,mid1, · · · ,m�,mid�) to the adversary.

References

1. Nakamoto, S.: Cryptocurrencies without proof of work (2008)
2. King, S., Nadal, S.: Ppcoin: peer-to-peer crypto-currency with proof-of-stake (2012)
3. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:

Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.)
FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53357-4 10

4. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending bitcoin’s
proof of work via proof of stake [extended abstract]y. SIGMETRICS Perform. Eval.
Rev. 42(3), 34–37 (2014)

5. Daian, P., Pass, R., Shi, E.: Snow white: robustly reconfigurable consensus and
applications to provably secure proof of stake. Cryptology ePrint Archive, Paper
2016/919 (2016). https://eprint.iacr.org/2016/919

6. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155–183 (2019)

7. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-662-53357-4_10
https://eprint.iacr.org/2016/919
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12

Improving Privacy of Anonymous Proof-of-Stake Protocols 391

8. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

9. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: CCS 2018,
pp. 913–930. ACM (2018)

10. Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros crypsinous: privacy-
preserving proof-of-stake. In: 2019 IEEE SP, pp. 157–174. IEEE (2019)

11. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE SP, pp. 459–474. IEEE Computer Society (2014)

12. Noether, S.: Ring signature confidential transactions for monero. Cryptology ePrint
Archive, Paper 2015/1098 (2015). https://eprint.iacr.org/2015/1098

13. Ganesh, C., Orlandi, C., Tschudi, D.: Proof-of-stake protocols for privacy-aware
blockchains. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476,
pp. 690–719. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-
2 23

14. Baldimtsi, F., Madathil, V., Scafuro, A., Zhou, L.: Anonymous lottery in the proof-
of-stake setting. In: 33rd IEEE Computer Security Foundations Symposium, pp.
318–333. IEEE (2020)

15. Kohlweiss, M., Madathil, V., Nayak, K., Scafuro, A.: On the anonymity guarantees
of anonymous proof-of-stake protocols. In: 42nd IEEE SP, pp. 1818–1833. IEEE
(2021)

16. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-
to-peer network. In: 24th USENIX Security Symposium, pp. 129–144. USENIX
Association (2015)

17. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

18. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

19. Wang, C., Pujo, D., Nayak, K., Machanavajjhala, A.: Private proof-of-stake
blockchains using differentially-private stake distortion. Cryptology ePrint Archive,
Paper 2023/787 (2023). https://eprint.iacr.org/2023/787

20. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

21. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

22. Brown, L.D., Cai, T.T., DasGupta, A.: Interval estimation for a binomial propor-
tion. Stat. Sci. 16(2), 101–133 (2001)

23. Cardano pooltool. https://pooltool.io/
24. Agresti, A.: On small-sample confidence intervals for parameters in discrete distri-

butions. Biometrics 57, 963–971 (2001)
25. Cardano official website. https://cardano.org/stake-pool-operation/

https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://eprint.iacr.org/2015/1098
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11681878_14
https://eprint.iacr.org/2023/787
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://pooltool.io/
https://cardano.org/stake-pool-operation/

Compact Stateful Deterministic Wallet
from Isogeny-Based Signature Featuring
Uniquely Rerandomizable Public Keys

Surbhi Shaw(B) and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

surbhi shaw@iitkgp.ac.in, ratna@maths.iitkgp.ac.in

Abstract. Deterministic wallets are promising cryptographic primi-
tives that are employed in cryptocurrencies to safeguard user’s fund.
In CCS’19, a generic construction of deterministic wallets was proposed
by Das et al. leveraging signature schemes with rerandomizable keys.
This is an advanced form of signatures that enables separate but consis-
tent rerandomization of secret and public keys. Das et al. instantiated
their deterministic wallet construction from rerandomizable signatures
based on BLS and ECDSA. However, these wallets are not quantum-
resistant. In this work, we offer a strategy for post-quantum migration of
secure deterministic wallets based on isogenies. Rerandomizable signa-
tures being at the center of the wallet construction, we initially propose
ways to design such signature schemes from isogenies. Employing the
signature schemes CSI-FiSh and CSI-SharK, we present two quantum-
resistant signature schemes with rerandomizable keys. We provide rigor-
ous security proof showing our constructions are secure against existential
unforgeability under chosen-message attacks with honestly rerandomized
keys. Our rerandomized signature from CSI-SharK gives the most com-
pact post-quantum secure rerandomized signature. Finally, we integrate
our rerandomized signature scheme from CSI-FiSh to design the first
isogeny-based deterministic wallet with compact key sizes. We present
a detailed security analysis showing our wallet is secure against wallet
unlinkability and wallet unforgeability.

Keywords: Deterministic wallet · Rerandomized signature ·
Blockchain protocols · Isogenies · Post-quantum cryptography

1 Introduction

Over the last decade, cryptocurrencies such as Bitcoin [20] and Ethereum [15]
have facilitated the development of novel payment systems. To accomplish a
fund transfer, from Alice to another user, Bob, Alice needs to authorize a new
transaction that leads to the transfer of funds to Bob. A transaction is a tuple
txAB = (pkA, pkB , v) which indicates the transfer of v coins from Alice with
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 392–413, 2023.
https://doi.org/10.1007/978-981-99-7563-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_18&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_18

Compact Stateful Deterministic Wallet 393

public key pkA to Bob with public key pkB . The transaction txAB is subsequently
submitted to the network of miners for verification along with a signature on
txAB under Alice’s secret key skA. As only Alice, the possessor of the secret key
skA, can compute a valid signature with respect to the public key skA, possession
of skA implies complete control over the funds entrusted to pkA. This renders
Alice’s secret key skA extremely vulnerable to attackers. Infact there are several
instances of spectacular hacks where cryptocurrencies worth billions of dollars
were stolen by means of unauthorized access to the secret key.

The natural question that follows is: Where to store these secret keys, then?
Storing it in a digital wallet such as a smartphone is not a potential solution as
it remains connected to the network and is open to hacking attempts. One viable
solution is to store the keys in two different wallets – a cold wallet and a hot wal-
let. The secret key is held in a cold wallet, which is often kept offline and may be
realized by specialized hardware [26]. On the other hand, the public key is stored
in a hot wallet which is a software that works on some devices and is always con-
nected to the network. However, this naive strategy has one significant problem.
Since the transactions posted on the blockchain are public, all the transactions
made to some particular public address can be linked to a hot wallet containing
the public key which generates that particular public address. A widely used
approach to make the transactions unlinkable is to generate as many fresh key
pairs as the number of transactions. However, this requires a large wallet storage
capacity and functions for a predetermined number of transactions.

Deterministic Wallets. In the cryptocurrency literature, a solution to address
this problem is given by a primitive called deterministic wallet [11] which is
standardized in the Bitcoin improvement proposal (BIP32) [27]. In the case of
deterministic wallets, instead of computing fresh key pairs for each transaction,
one computes a single master secret key and master public key and stores them
in the cold wallet and hot wallet, respectively. Any deterministic wallet involves
a deterministic public key derivation algorithm that generates a session public
key in the hot wallet using the master public key. Likewise, the deterministic
secret key derivation algorithm computes a session secret key in the cold wallet
employing the master secret key. Consequently, one has to hold only one key in
the hot/cold wallet to produce as many session keys as one wishes. The two main
security attributes of a deterministic wallet are – wallet unforgeability and wallet
unlinkability. Wallet unforgeability ensures that signatures used to validate new
transactions cannot be forged as long as the cold wallet is not corrupted. Wallet
unlinkability assures that no two transactions transferring money to the same
wallet can be linked even if they are publicly posted on the blockchain. The
notion of forward security in unlinkability assures that all transactions sent to
the holder of session public keys generated before the hot wallet attack cannot be
linked to the master public key. In order to achieve forward unlinkability, Das et
al. [13] introduced the primitive stateful deterministic wallet. In this primitive,
both the cold and hot wallet stores the initial state St0 generated by the master
key generation algorithm along with the master key pair (msk, mpk) and keeps
updating the state deterministically for every new session key pair.

394 S. Shaw and R. Dutta

Related Works. The widespread application of wallets in cryptocurrencies has
sparked a renewed interest in designing hot/cold wallets. In 2015, Gutoski and
Stebila [19] identified shortcomings in BIP32 deterministic wallet scheme [27]
used for Bitcoin and suggested a possible fix for it. However, they have not
taken into account the standard model of unforgeability in which the adversary
aims to forge a signature, but a much weaker model where the adversary intends
to obtain the master secret key. Later, Fan et al. [16] analyze the security of
deterministic wallets against secret session key leakage. Unfortunately, they did
not provide a formal model or a security proof and their countermeasure is ad
hoc. The notion of a stateful deterministic wallet was first formalized by defined
by Das et al. [13]. They proposed a generic construction of a stateful deterministic
wallet from signature schemes with perfectly rerandomizable keys.

A signature scheme with rerandomizable keys is an ideal cryptographic prim-
itive that allows separate but consistent rerandomization of secret key sk and
public key pk to sk′ and pk′, respectively. In addition to the four conventional
algorithms Setup, KeyGen, Sign, Verify of a signature scheme, a rerandomizable
signature scheme also includes the algorithm Randsk for rerandomization of the
secret key sk and Randpk for rerandomization of the public key pk. More con-
cretely, Randsk adds some randomness to the secret key sk to obtain randomized
secret key sk′ while Randpk computes the rerandomized public key pk′ corre-
sponding to sk′ using the same randomness, without knowing the secret key sk.
Signature with rerandomizable keys was built by Fleischhacker et al. [17] as the
key component for developing efficient unlinkable sanitizable signatures [10], to
facilitate a variety of applications, including outsourcing database and secure
routing and multicast transmission. Such rerandomized signatures also play an
important role in resolving the stealth address problem [18] in cryptocurrencies.

Das et al. [13] showed how BLS signatures [8] can be employed to develop
signature scheme that exhibits rerandomizable keys and used it to construct a
deterministic wallet. They also designed a provably secure ECDSA-based deter-
ministic wallet. These wallets provide a simple and effective means to protect the
fund of users. However, these wallets are not quantum-resistant as they derive
their security from the hardness of the Discrete Logarithm Problem (DLP) which
is easily solvable using Shor’s algorithm [22]. Moreover, the ECDSA signature
scheme used by the vast majority of prominent cryptocurrencies relies on DLP,
leaving them open to quantum threats. In view of the devastating consequences
that quantum computers have had on the security of cryptocurrencies [1], Alka-
dri et al. [2] developed the first signature scheme with rerandomizable public
keys from lattices leveraging the Fiat-Shamir based signature schemes. They
showed how the signature scheme qTESLA [3] could be used to instantiate the
wallet construction of Das et al. [13]. However, their scheme has large key and
signature sizes and is not suitable for applications in cryptocurrencies.

Contribution. The existing proposals for deterministic wallets are undesirable
for practical applications. While some schemes lack formal security proof, others
are susceptible to quantum attacks or necessitate impractically large parame-
ters to achieve security. To design a quantum-immune deterministic wallet, a

Compact Stateful Deterministic Wallet 395

plausible way proposed by cryptocurrency projects Bitcoin Post-Quantum [4]
and QRL [25] is to replace ECDSA with hash-based signature schemes. How-
ever, they are not suitable for building a wallet as these signature scheme does
not exhibit key rerandomizability property. Thus, a natural question arises “Is
it possible to construct a post-quantum secure deterministic wallet with formal
security proof in the strong model featuring small key sizes?”

We respond positively to this question. Isogeny-based cryptosystems are one
of the many promising systems that have the potential to be secure against
quantum attacks. The main emphasis of this work is to develop an isogeny-based
stateful deterministic wallet that is immune to quantum attacks. The challenge
lies in the requirement of an efficient signature scheme with rerandomizable keys.
The somewhat unsatisfactory state-of-art motivates our search for an isogeny-
based instantiation of the signature scheme with rerandomizable keys.

We consider the two isogeny-based signature schemes: Commutative Super-
singular Isogeny based Fiat-Shamir signature (CSI-FiSh) [7] and CSI-FiSh with
Sharing-friendly Keys (CSI-SharK) [5]. The signature scheme CSI-FiSh introduced
by Beullens et al. [7] gives the first practical signature scheme from isogenies with
a small signature size. The signature scheme CSI-SharK is a new variant of CSI-
FiSh developed by Atapoor et al. [5] adopts a different way of generating the
public key used in CSI-FiSh.
Our contributions in this paper are listed below:

– Firstly, we initiate the study of a signature scheme with rerandomized keys in
the isogeny realm. We propose two constructions of signature schemes with
rerandomized keys, one based on CSI-FiSh and the other on CSI-SharK which
we refer to as RCSI-FiSh and RCSI-SharK respectively. We also examine the
security of each of these schemes and prove them to be secure against exis-
tential unforgeability under chosen-message attack with honestly rerandomized
keys (UF-CMA-HRK). Each of our rerandomized signature schemes can be of
independent interest in constructing sanitizable signatures and solving the
stealth address problem in the post-quantum era.

– Secondly, we design the first construction of an isogeny-based stateful deter-
ministic wallet with compact key sizes. We skillfully integrate our rerandom-
ized signature scheme RCSI-FiSh to construct a deterministic wallet that will
offer security in the post-quantum era. Our rerandomized signature RCSI-
SharK is also a promising candidate to instantiate the wallet construction in
[13]. We prove that our scheme achieves security against wallet unlinkabil-
ity and wallet unforgeability under the Commutative Supersingular Decision
Diffie-Hellman (CSSDDH) assumption.

We theoretically compare our isogeny-based schemes RCSI-FiSh and RCSI-SharK
with existing works on the signature scheme with rerandomized keys in Table 1
in terms of signature size, key size and security. We compare our schemes with
two Diffie-Hellman based constructions REC and RBLS proposed by Das et al.
[13] as well as with the lattice-based rerandomizable signature given by Alkadri
et al. [2]. When it comes to storage capacity and signature size, the rerandomiz-
able signature schemes REC and RBLS are the most effective. However, none of

396 S. Shaw and R. Dutta

these schemes is post-quantum secure. On the other hand, both of our schemes
enjoy post-quantum security. Although the lattice-based signature scheme with
rerandomized public keys of Alkadri et al. [2] is post-quantum secure under the
Module Learning With Errors (MLWE) and Module Shortest Integer Solution
with infinity norm (MSIS∞) assumptions, it necessitated large key and signa-
ture size compared to our schemes. Moreover, the security of the lattice-based
signature scheme with rerandomized public keys has been claimed in the weak
security model where the distribution of secret key in rerandomized signature is
not indistinguishable from the original distribution of secret key. On the positive
side, both of our rerandomizable signature schemes RCSI-FiSh and RCSI-SharK
are secure in the strong security model.

Table 1. Comparative analysis of key and signature size of signature scheme with
rerandomized keys

Scheme Quantum
secure

Key Size Signature Security

|sk| |pk| |σ|
REC [13] No 1 in Zp 1 in G 2 in Zp DLP

RBLS [13] No 1 in Zp 1 in G 1 in G CDH

Lattice-based RSig [2] Yes 1 in Rk1+k2
q , 1 in {0, 1}�G 1 in Rk1

q 1 in Rk1+k2
q , 1 in T

n
κ MLWE, MSIS∞

RCSI-FiSh Yes S − 1 in ZN S − 1 in Fp 2T in ZN CSSDDH

RCSI-SharK Yes 1 in ZN S − 1 in Fp 2T in ZN CSSDDH

|sk| = size of secret key, |pk| = size of public key, CDH = Computational Diffie-Hellman Problem,
DLP = Discrete Logarithm Problem, CSSDDH = Commutative Supersingular Decision Diffie-Hellman
Problem, MSIS∞ = Module Shortest Integer Solution with infinity norm, MLWE = Module Learning
With Errors Problem. Here G = group of order p, R = Z[x]/(f(x)) is a polynomial ring with f(x)
being a monic polynomial of degree n, Rq = R/q for prime q, N = class number of Cl(O) and T, S
are integers with T < S.

2 Preliminaries

Notation. Let λ ∈ N denotes the security parameter. By ∀ i ∈ [T], we mean
for all i ∈ {1, 2, . . . , T}. We write sign(x) to denote the sign of the integer x.
We denote cardinality of a set S by #S. A function ε(·) is negligible if for every
positive integer c, there exists an integer k such that for all λ > k, |ε(λ)| < 1/λc.

2.1 Isogeny-Based Cryptography

Isogeny-based cryptography is a promising class of post-quantum cryptography
that has attracted great interest over the last decade and has undergone a fast-
paced development. It is appealing because of its rich mathematical structure and
relatively small keys. Isogenies are non-constant homomorphisms between two
elliptic curves [14,23]. The degree of an isogeny is its degree as a rational map. A
non-zero isogeny is called separable if and only if the degree of the isogeny is equal
to the cardinality of its kernel. An endomorphism of an elliptic curve E is referred
to as an isogeny from the curve E to itself. The collection of all endomorphisms

Compact Stateful Deterministic Wallet 397

of E along with the zero map forms a ring called the endomorphism ring and is
denoted by End(E). The endomorphism ring restricted to the field K is denoted
by EndK(E). The quadratic twist of a curve E : y2 = f(x) defined over the field
K is given by Etwist : dy2 = f(x) where d ∈ K has Legendre symbol value −1.

Theorem 2.11. [24] For any finite subgroup H of an elliptic curve E1, there
exists up to isomorphism, a unique elliptic curve E2 and a separable isogeny
ϕ : E1 −→ E2 such that its kernel is H and E2 := E1/H.

2.2 Class Group Action

In the Commutative Supersingular Diffie-Hellman (CSIDH) key exchange proto-
col introduced by Castryck et al. [12], the underlying field K = Fp is specified
by a prime p = 4�1�2 . . . �n − 1, where the �i’s are small primes. It makes use
of supersingular elliptic curves for which EndFp

(E) is isomorphic to an order O
in the imaginary quadratic field and EndFp

(E) is thus commutative. The ideal
class group Cl(O) acts freely and transitively on the set Ellp(O) of Fp-isomorphic
classes of supersingular curves E. The action ∗ of the ideal [a] ∈ Cl(O) on
the curve E ∈ Ellp(O) is the image curve E/E[a] under the separable isogeny
ϕa : E −→ E/E[a] with kernel E[a] =

⋂
α∈a ker(α) (See Theorem 2.11).

The isogeny-based signature CSI-FiSh introduced by Beullens et al. [7] was
designed by precomputing the ideal class group structure of CSIDH-512 param-
eter set in the form of a relation lattice of generators with low norm. The knowl-
edge of the class group structure and relation lattice enables unique representa-
tion and uniform sampling of the elements from Cl(O) which is isomorphic to
ZN where N = #Cl(O). Thus, we can write any element [a] ∈ Cl(O) as [ga] for
some a ∈ ZN where Cl(O) = 〈g〉. Since the element [a] is uniquely identified
by the exponent a ∈ ZN , henceforth, we shall write [a]E to denote [a] ∗ E and
[a + b]E to denote [a] ∗ [b] ∗ E.

Definition 2.21 (Multi-Target Group Action Inverse Problem (MT-
GAIP)). [7] Given k elliptic curves E1, . . . , Ek, with EndFp

(Ei) = O for all i = 1,
. . . , k, the MT-GAIP is to find an element a ∈ ZN such that Ei = [a]Ej for some
i, j ∈ {0, . . . , k} with i �= j.

Definition 2.22 ((Super-)Exceptional set).[6] An exceptional set modulo N
is a set RS−1 = {r0 = 0, r1 = 1, . . . , rS−1} ⊆ ZN where the pairwise differences
ri − rj of all elements ri, rj ∈ RS−1 with ri �= rj is invertible modulo N . A
superexceptional set modulo N is an exceptional set RS−1 = {r0 = 0, r1 = 1,
. . . , rS−1} where the pairwise sums ri +rj of all elements ri, rj (including ri = rj

) is also invertible modulo N .

Definition 2.23 ((r0, r1, . . . , rS−1)- Vectorization Problem with Auxil-
iary Inputs (RS−1-VPwAI)). [6] Given E ∈Ellp(O) and the pairs (ri, [ria]E)S−1

i=1

where RS−1 = {r0 = 0, r1 = 1, . . . , rS−1} is an exceptional set, the RS−1-VPwAI
problem is to find a ∈ ZN .

398 S. Shaw and R. Dutta

3 Signature Schemes

Definition 3.01 (Signature scheme). A signature scheme Sig = (Setup, Key-
Gen, Sign, Verify) is a tuple of probabilistic polynomial-time (PPT) algorithms
associated with a message space M which are detailed below:

Sig.Setup(1λ) → pp : A trusted party on input the security parameter 1λ outputs
a public parameter pp.

Sig.KeyGen(pp) → (sk, pk) : On input a public parameter pp, each user runs this
algorithm to generate its secret and public key pair (sk, pk).

Sig.Sign(pp, sk, m) → σ : By running this algorithm with a public parameter
pp, secret key sk and a message m ∈ M as input, the signer computes a
signature σ on the message m.

Sig.Verify(pp, pk, m, σ) → 1/0 : The verifier on input a public parameter pp,
public key pk, message m ∈ M and signature σ, returns 1 or 0 indicating the
validity of the signature σ.

Correctness. For all pp ← Sig.Setup(1λ), all (sk, pk) ← Sig.KeyGen(pp) and
σ ← Sig.Sign(pp, sk, m), we must have Sig.Verify(pp, pk,m, σ) = 1.

Definition 3.02. A signature scheme Sig satisfies existential unforgeability
under chosen-message attacks (UF-CMA) if the advantage AdvUF-CMA

Sig, A (λ) of any
PPT adversary A defined as

AdvUF-CMA
Sig, A (λ) = Pr[A wins in ExpUF-CMA

Sig, A (λ)]

is negligible, where the unforgeability experiment ExpUF-CMA
Sig, A (λ) is depicted in

Fig. 1.

Setup: The challenger computes pp Sig.Setup(1λ) and secret-public key pair (sk, pk)
Sig.KeyGen(pp). It forwards pp and pk to the adversary while keeps sk secret to itself. It also
sets the list SList to φ.

Query Phase: issues polynomially many adaptive signature queries to the oracle Sign(m).
Sign(m) : Upon receiving a query on message m, the challenger checks if m . If

the check succeeds, it returns , or else it computes a signature σ Sig.Sign(pp, sk, m)
on the message m under the secret key sk and sets SList SList m . It returns the
computed signature σ to .

Forgery: The adversary eventually submits a forgery (m , σ). The adversary wins the
game if 1 Sig.Verify(pp, pk, m , σ) and m SList.

Fig. 1. ExpUF-CMA
Sig, A (λ): Existential unforgeability under chosen-message attack

3.1 CSI-FiSh

In this section, we recall the CSI-FiSh signature scheme [7] that comprises of four
PPT algorithms detailed below:

CSI-FiSh.Setup(1λ) → ppsgn: A trusted party executes the following steps to
generate the public parameter ppsgn.

Compact Stateful Deterministic Wallet 399

i. Choose a large prime p = 4 �1�2 . . . �n − 1 where �i’s are small distinct odd
primes with n = 74, �1 = 3, �73 = 373 and �74 = 587.

ii. Fix a base curve E0 : y2 = x3 + x ∈ Ellp(O) over Fp and the generator g of
the class group G = Cl(O) with class number N where O = Z[

√−p].
iii. Sample a hash function H1 : {0, 1}∗ → {−S + 1, . . . , 0, . . . , S − 1}T where

S, T are positive integers with T < S.
iv. Return ppsgn = (p, g, N , E0, H1, S, T).

CSI-FiSh.KeyGen(ppsgn) → (sk, pk): On input ppsgn, a user computes its secret-
public key pair (sk, pk) as follows:

i. Sample ai ∈ ZN and compute the curves EAi
= [ai]E0 ∀ i ∈ [S − 1].

ii. Set sk = {ai}S−1
i=1 and pk = {EAi

}S−1
i=1 .

CSI-FiSh.Sign(ppsgn, sk, m) → σ: Employing ppsgn, and the secret key sk =
{ai}S−1

i=1 , a signer computes a signature σ on m ∈ {0, 1}∗ as follows:

i. Set a0 ← 0 and samples bi ∈ ZN ∀ i ∈ [T].
ii. Compute the curves EBi

= [bi]E0, the challenge vector (h1, . . . , hT) =
H1(EB1 || . . . ||EBT

||m) and the response vectors zi = (bi - sign(hi)a|hi|)
mod N ∀ i ∈ [T].

iii. Return σ = (h, z) where h = {hi}T
i=1 and z = {zi}T

i=1.

CSI-FiSh.Verify(ppsgn, pk, m, σ) → 1/0: Employing the signer’s public key pk =
{EAi

}S−1
i=1 , the algorithm executes the following steps to verify the signature σ.

i. Parse σ = (h, z) where h = {hi}T
i=1 and z = {zi}T

i=1.
ii. Define EA−i

= Etwist
Ai

∀i ∈ [S − 1].
iii. Extract the curves EAhi

from pk and compute the curves EBi
= [zi]EAhi

∀ i ∈ [T] and the challenge vector (h′
1, . . . , h

′
T) = H1(EB1 || . . . ||EBT

||m).
iv. If (h1, . . . , hT) = (h′

1, . . . , h
′
T) return 1, else return 0.

Correctness. Correctness of CSI-FiSh follows from the fact that EBi
= [bi]E0

is recovered by computing [zi]EAhi
∀ i ∈ [T] as follows: [zi]EAhi

= [bi −
sign(hi) a| hi |]EAhi

= [bi − sign(hi) a| hi |][sign(hi) a| hi |]E0 = [bi]E0.

Theorem 3.11. [7] The isogeny-based signature scheme CSI-FiSh is UF-CMA
secure under the hardness of MT-GAIP problem defined in Definition 2.21, if the
hash function H1 is modeled as a random oracle.

Remark 3.12. Recent quantum attack on CSIDH by Bonnetain et al. [9] and
Peikert et al. [21] reveals that CSIDH-512 does not attain the NIST security level
1. However, the CSIDH group operations require an expensive quantum circuit.
Therefore, it appears that CSIDH is still quantum-secure when these external
circuit overheads and its evaluation are taken into account.

400 S. Shaw and R. Dutta

3.2 CSI-SharK

The signature scheme CSI-SharK is a new variant of CSI-FiSh proposed by
Atapoor et al. [5] that has more sharing-friendly keys.

CSI-SharK.Setup(1λ) → ppsgn: A trusted party on input 1λ generate the public
parameter ppsgn.

i. Except for the involved hash function, it works same as the algorithm CSI-
FiSh.Setup. Here, the algorithm selects a hash function H′ : {0, 1}∗ →
{0, . . . , S − 1}T where S, T are positive integers with T < S.

ii. Return ppsgn = (p, g, N , E0, H′, S, T).

CSI-SharK.KeyGen(ppsgn) → (sk, pk): On input ppsgn, this algorithm computes a
secret key sk and the corresponding public key pk as follows:

i. Sample a ∈ ZN .
ii. Generate a (super)exceptional set RS−1 = {r0 = 0, r1 = 1, r2, . . . , rS−1}.
iii. Compute the curve EAi

= [ria]E0 ∀ i ∈ [S − 1].
iv. Set sk = a and pk = (RS−1, {EAi

}S−1
i=1).

CSI-SharK.Sign(ppsgn, sk, m) → σ: A signer employs public parameter ppsgn and
its secret key sk = a to compute a signature σ on m ∈ {0, 1}∗ as follows:

i. Sample bi ∈ ZN ∀ i ∈ [T].
ii. Compute the curves EBi

= [bi]E0, the challenge vector (h1, . . . , hT) =
H′(EB1 || . . . ||EBT

||m) and the response zi = (bi - rhi
· a) mod N ∀ i ∈ [T].

iii. Return σ = (h, z) where h = {hi}T
i=1 and z = {zi}T

i=1.

CSI-SharK.Verify(ppsgn, pk, m, σ) → 1/0: Employing the signer’s public key pk

= (RS−1, {EAi
}S−1

i=1), this algorithm verifies the signature σ on m as follows:

i. Parse σ = (h, z) where h = {hi}T
i=1 and z = {zi}T

i=1.
ii. Compute EBi

= [zi]EAhi
∀ i∈ [T] and (h′

1, . . . , h
′
T)= H′(EB1 || . . . ||EBT

||m).
iii. If (h1, . . . , hT) = (h′

1, . . . , h
′
T) return 1, else return 0.

Correctness. Correctness of CSI-SharK follows from the fact that EBi
= [bi]E0

is recovered by computing [zi]EAhi
∀ i ∈ [T] as follows: [zi]EAhi

= [bi − rhi
·

a]EAhi
= [bi − rhi

· a][rhi
· a]E0 = [bi]E0 = EBi

.

Theorem 3.21. [5] Under the hardness of the MT-GAIP and RS−1-VPwAI
problem defined in Definition 2.21 and 2.23, respectively and assuming H′ is
modeled as a random oracle, the CSI-SharK signature scheme is UF-CMA secure.

4 Signature Scheme with Perfectly Rerandomizable Keys

Definition 4.01 (Signature scheme with perfectly rerandomizable
keys). A signature scheme with perfectly rerandomizable keys is a tuple RSig =
(RSig.Setup, RSig.KeyGen, RSig.Sign, RSig.Verify, RSig. Randsk, RSig.Randpk) of
PPT algorithms associated with a message space M and randomness space R
that satisfy the following requirements:

Compact Stateful Deterministic Wallet 401

Here the algorithms RSig.Setup, RSig.KeyGen, RSig.Sign, RSig.Verify are like the
algorithms in the signature scheme defined in Definition 3.01.

RSig.Randsk(pp, sk, ρ) → sk′: The inputs to this probabilistic secret key reran-
domization algorithm are a public parameter pp, a secret key sk and random-
ness ρ ∈ R. It outputs a rerandomized secret key sk′.

RSig.Randpk(pp, pk, ρ) → pk′: The inputs to this probabilistic public key reran-
domization algorithm are a public parameter pp, a public key pk and ran-
domness ρ ∈ R. It outputs a rerandomized public key pk′.

Correctness. The scheme RSig is correct if the following conditions hold:

i. For all pp ← RSig.Setup(1λ), all (sk, pk) ← RSig.KeyGen(pp), all messages
m ∈ M and all signatures σ ← RSig.Sign(pp, sk, m), it must hold that
RSig.Verify(pp, pk,m, σ) = 1.

ii. For all pp ← RSig.Setup(1λ), all (sk, pk) ← RSig.KeyGen(pp), all m ∈ M, all
randomness ρ ∈ R and signatures σ ← RSig.Sign(pp, RSig.Randsk(pp, sk, ρ),
m), we must have RSig.Verify(pp, RSig.Randpk(pp, pk, ρ), m, σ) = 1.

iii. For all pp ← RSig.Setup(1λ), all key pairs (sk, pk) and a uniformly chosen
randomness ρ ∈ R, the pairs (sk′, pk′) and (sk′′, pk′′) are identically dis-
tributed, where pk′ ← RSig.Randpk(pp, pk, ρ), sk′ ← RSig.Randsk(pp, sk, ρ)
and (sk′′, pk′′) ← RSig.KeyGen(pp).

Definition 4.02. A signature scheme with perfectly rerandomizable (public)
keys RSig satisfies existential unforgeability under chosen-message attack with
honestly rerandomized keys (UF-CMA-HRK) if the advantage AdvUF-CMA-HRK

RSig, A (λ)
of any PPT adversary A defined as

AdvUF-CMA-HRK
RSig, A (λ) = Pr[A wins in ExpUF-CMA-HRK

RSig, A (λ)]

is negligible, where the unforgeability experiment ExpUF-CMA-HRK
RSig, A (λ) between a

challenger C and adversary A is depicted in Fig. 2.

Setup: The challenger computes pp RSig.Setup(1λ) and a secret-public key pair (sk, pk)
RSig.KeyGen(pp). It forwards pp and pk to the adversary while keeps sk secret to itself. It

also sets the list of randomness RList to φ.
Query Phase: The adversary issues polynomially many adaptive queries to the oracles

RSign(m, ρ) and Rand().
Rand() : In response to a query for randomness, the challenger samples a randomness

ρ , sets RList RList ρ and returns ρ to .
RSign(m, ρ) : In response to a signature query on a message m and randomness ρ,

checks if ρ RList. If the check succeeds, it returns ; otherwise, it randomizes the
secret key sk using ρ to generate a new secret key sk RSig.Randsk(pp, sk, ρ). It then
computes a signature σ RSig.Sign(pp, sk , m) on the message m under the randomized
secret key sk and sets MList MList m . It returns the computed signature σ to .

Forgery: The adversary eventually submits a forgery (m , σ , ρ). wins the game if m
MList and 1 RSig.Verify(pp, pk , m , σ) where pk RSig.Randpk(pp, pk, ρ) and ρ RList.

Fig. 2. ExpUF-CMA-HRK
RSig, A (λ): Existential unforgeability under chosen-message attack with

honestly rerandomized keys

402 S. Shaw and R. Dutta

Definition 4.03 (Signature with uniquely rerandomizable public keys).
A rerandomizable signature scheme RSig with a randomness space R is said to
have uniquely rerandomizable public keys if for all (ρ, ρ′) ∈ R, we have that
RSig.Randpk(pp, pk, ρ) = RSig.Randpk(pp, pk, ρ′) implies ρ = ρ′.

4.1 Signature Scheme with Perfectly Rerandomizable Keys
from CSI-FiSh

In this section, we explain our proposed signature scheme with perfectly reran-
domizable keys from CSI-FiSh [7] and we call it Rerandomized Commutative
Supersingular Isogeny based Fiat-Shamir signatures (RCSI-FiSh).
We set RCSI-FiSh.Setup = CSI-FiSh.Setup, RCSI-FiSh.KeyGen = CSI-FiSh.KeyGen,
RCSI-FiSh.Sign = CSI-FiSh.Sign, RCSI-FiSh.Verify = CSI-FiSh.Verify.

RCSI-FiSh.Randsk(ppsgn, sk, ρ) → sk′: This algorithm on input a public parame-

ter ppsgn, a secret key sk = a = {ai}S−1
i=1 and randomness ρ = c = {ci}S−1

i=1
$←−

Z
S−1
N outputs a rerandomized secret key sk′ = sk + ρ = (a + c) mod N =

{di}S−1
i=1 where di = ai + ci.

RCSI-FiSh.Randpk(ppsgn, pk, ρ) → pk′: This algorithm on input ppsgn, a public

key pk = {EAi
}S−1

i=1 and randomness ρ = c = {ci}S−1
i=1

$←− Z
S−1
N outputs a

rerandomized public key pk′ = {[ci]EAi
}S−1

i=1 = {EDi
}S−1

i=1 where [ci]EAi
=

[ci][ai]E0 = [ci + ai]E0 = [di]E0 = EDi
.

Correctness. Our proposed scheme is correct as it satisfies all the requirements
stated in Definition 4.01:

i. For all ppsgn = (p, g, N , E0, H1, S, T) ← RCSI-FiSh.Setup(1λ), all (sk =
{ai}S−1

i=1 , pk = {EAi
}S−1

i=1) ← RCSI-FiSh.KeyGen(ppsgn), all m ∈ M and all
σ = (h, z) ← RCSI-FiSh.Sign(ppsgn, sk, m) we have RCSI-FiSh.Verify(ppsgn,pk,
m, σ) = 1, which follows from the correctness of the CSI-FiSh signature.

ii. For all ppsgn = (p, g, N , E0, H1, S, T) ← RCSI-FiSh.Setup(1λ), all (sk =
{ai}S−1

i=1 , pk = {EAi
}S−1

i=1) ← RCSI-FiSh.KeyGen(ppsgn), all messages m ∈
M, all randomness ρ = c = {ci}S−1

i=1 ∈ Z
S−1
N and signatures σ′ = (h′, z′)

← RCSI-FiSh.Sign(ppsgn, sk′, m) it holds that RCSI-FiSh.Verify(ppsgn, pk′,
m, σ′) = 1 where sk′ = (a + c) mod N and pk′ = {[ci]EAi

}S−1
i=1 . It follows

from the fact that EB′
i

= [b′
i]E0 is recovered by computing [z′

i]EDh′
i

∀ i

∈ [T] as follows: [z′
i]EDh′

i
= [b′

i − sign(h′
i) d| h′

i |]EDh′
i

= [b′
i − sign(h′

i) d| h′
i |]

[sign(h′
i) d| h′

i |]E0 = [b′
i]E0. Here, ∀ i ∈ [T], EB′

i
= [b′

i]E0 with b′
i ∈ ZN

are the commitment curves, (h′
1, . . . , h′

T) = H′(EB′
1
|| . . . ||EB′

T
||m) is the

challenge vector and z′
i = b′

i - sign(h′
i)d|h′

i| (mod N) are the response vectors
computed during the generation of σ′ = (h′, z′) on m under sk′ = {di}S−1

i=1 .
iii. Consider a randomized secret-public key pair (sk′ = (a + c) mod N, pk′ =

{[ci]EAi
}S−1

i=1) which is a randomization of key pair (sk = a, pk =
{EAi

}S−1
i=1) ← RCSI-FiSh.KeyGen(ppsgn). We consider a freshly generated

Compact Stateful Deterministic Wallet 403

key pair (sk′′, pk′′) ← RCSI-FiSh.KeyGen(ppsgn) where sk′′ = u = {ui}S−1
i=1

$←−
Z

S−1
N and pk′′ = {EUi

}S−1
i=1 where EUi

= [ui]E0. Note that sk′ and sk′′ are
identically distributed as both of them are uniformly distributed in Z

S−1
N .

The public keys pk′ and pk′′ are identically distributed as the corresponding
secret keys sk′ and sk′′ are identically distributed.

Lemma 4.11. The proposed isogeny-based rerandomizable signature scheme
RCSI-FiSh has uniquely rerandomizable public keys as per Definition 4.03.

Proof. The proof of this lemma follows from the fact that the action of
the ideal class group Cl(O) on Ellp(O) is free and transitive. Hence, such
a group action establishes a bijection between the group Cl(O) and the set
Ellp(O) given by the map fE : [a] → [a]E for any E ∈ Ellp(O). More pre-

cisely, consider two randomness ρ = c = {ci}S−1
i=1 , ρ′ = c′ = {c′

i}S−1
i=1

$←−
Z

S−1
N and RCSI-FiSh.Randpk(ppsgn, pk, ρ) → pk′

1 = {[di]E0}S−1
i=1 and RCSI-

FiSh.Randpk(ppsgn, pk, ρ′) → pk′
2 = {[d′

i]E0}S−1
i=1 where di = ci +ai and d′

i = c′
i +

ai. Let us consider RCSI-FiSh.Randpk(ppsgn, pk, ρ) = RCSI-FiSh.Randpk(ppsgn,
pk, ρ′). This implies

[di]E0 = [d′
i]E0 ∀ i ∈ [S − 1]

⇒ [−d′
i + di]E0 = [−d′

i + d′
i]E0 ∀ i ∈ [S − 1]

⇒ [−d′
i + di]E0 = [0]E0 ∀ i ∈ [S − 1]

⇒ −d′
i + di = 0∀ i ∈ [S − 1]

⇒ di = d′
i ∀ i ∈ [S − 1]

⇒ ci + ai = c′
i + ai ∀ i ∈ [S − 1]

⇒ ρ = ρ′

This completes the proof of this lemma. �

Theorem 4.12. Our proposed signature scheme with perfectly rerandomizable
keys RCSI-FiSh is UF-CMA-HRK secure as per Definition 4.02 as the signature
scheme CSI-FiSh is UF-CMA secure as per Definition 3.02.

Proof. On the contrary, we assume that there is an efficient adversary A that
breaks the UF-CMA-HRK security of RCSI-FiSh. We will use the adversary A in
the experiment ExpUF-CMA-HRK

RCSI-FiSh, A (λ) described in Fig. 2 as a procedure to design a
forger F that breaks the UF-CMA security of CSI-FiSh. Playing the role of the
challenger in the experiment ExpUF-CMA-HRK

RCSI-FiSh, A (λ), F interacts with A.
In the experiment ExpUF-CMA

CSI-FiSh, A(λ) presented in Definition 3.02, the challenger
computes ppsgn = (p, g, N , E0, H1, S, T) ← CSI-FiSh.Setup(1λ) where p is a
512-bit prime, g is the generator and N is the class number of ideal class group
Cl(O), E0 is a base curve, H1 is a hash function and S and T are positive
integers. It then computes a secret key sk = {ai}S−1

i=1 and the corresponding
public key pk = {EAi

}S−1
i=1 , where EAi

= [ai]E0, by invoking the algorithm CSI-
FiSh.KeyGen(ppsgn) and forwards ppsgn, pk to F . The forger F is also given access
to the oracle OCSI-FiSh.Sign.

404 S. Shaw and R. Dutta

Setup: In the setup phase, the forger F sends the public parameter ppsgn

and public key pk received from its own challenger to the adversary A. It also
sets the list of randomness RList and list of message MList to φ.
Simulation of Query Phase: The adversary A issues polynomially many
adaptive queries to the oracles ORand(·) and ORSign(m, ρ).

– Simulating the oracle ORand(·) : Upon receiving a query to this oracle, the

forger F samples a randomness ρ = c = {ci}S−1
i=1

$←− Z
S−1
N , sets RList ←

RList ∪{ρ} and returns ρ to A.
– Simulating the oracle ORSign(m, ρ) : In response to a query on a message

- randomness pair (m, ρ), the forger F checks if ρ /∈ RList. If the check
succeeds it returns ⊥; otherwise, it passes m to its signing oracle. Upon
receiving a signature σ = (h = {hi}T

i=1, z = {zi}T
i=1) from its oracle,

F computes z′
i = zi − sign(hi)c|hi| (mod N) and returns the signature

σ′ = (h = {hi}T
i=1, z

′ = {z′
i}T

i=1) under randomized secret key sk′ = sk+ρ
to A. It then sets MList ← MList ∪ {m}.

Extracting the forgery: A eventually submits a forgery (m∗, σ∗, ρ∗) where
σ∗ = (h∗ = {h∗

i }T
i=1, z

∗ = {z∗
i }T

i=1) and ρ∗ = c∗ = {c∗
i }S−1

i=1 . The forger F
modifies the signature σ∗ to frame a forgery under the key pk by adding
sign(h∗

i)c
∗
|h∗

i | to z∗
i . It thus computes z̄∗

i = (z∗
i + sign(h∗

i)c
∗
|h∗

i |) mod N and
outputs (h∗ = {h∗

i }T
i=1, z̄

∗ = {z̄∗
i }T

i=1) as a forgery to its challenger.

For the analysis, we assume that the probability with which A wins in the
experiment ExpUF-CMA-HRK

RCSI-FiSh, A (λ) is non-negligible. We shall now demonstrate that
the forger F provides a perfect simulation of the oracle ORSign on message-
randomness pair (m, ρ) with ρ = c = {ci}S−1

i=1 . The signature on m under pk =
{EAi

}S−1
i=1 received by F from its own signing oracle consists of h = {hi}T

i=1 and
z = {zi}T

i=1 where (h1, . . . , hT) = H1(EB1 || . . . ||EBT
||m) with EBi

= [bi]E0

for bi ∈ ZN and zi = (bi - sign(hi)a|hi|) mod N . The value h is indepen-
dent of the secret key sk = {ai}S−1

i=1 , therefore only the z value needs to
be adjusted and is computed as follows z′

i = zi − sign(hi)c|hi| (mod N) =
bi − sign(hi)a|hi| − sign(hi)c|hi| (mod N) = bi − sign(hi)(a|hi| + c|hi|) (mod N).
Thus, σ′ = (h = {hi}T

i=1, z
′ = {z′

i}T
i=1) is a signature on m under the reran-

domized public key pk′ = {[ci]EAi
}S−1

i=1 where [ci]EAi
= [ci][ai]E0 = [ci + ai]E0

with the same randomness as σ = (h = {hi}T
i=1, z = {zi}T

i=1). This indicates
that the distribution of the signing queries is identical to that of the experiment
ExpUF-CMA-HRK

RCSI-FiSh, A (λ).
Similarly, the forgery of F is computed from the forgery of A. Let the adver-

sary A submit a valid message m∗, signature σ∗ = (h∗ = {h∗
i }T

i=1, z
∗ = {z∗

i }T
i=1)

and randomness ρ∗ = c∗ = {c∗
i }S−1

i=1 where (h∗
1, . . . , h

∗
T) = H1(EB∗

1
|| . . . ||EB∗

T

||m∗) with EB∗
i

= [b∗
i]E0 for b∗

i ∈ ZN and z∗
i = (b∗

i - sign(h∗
i)(a|h∗

i | + c∗
|h∗

i |))
mod N . The forger F computes z̄∗

i = z∗
i + sign(h∗

i)c
∗
|h∗

i | (mod N) = b∗
i −

sign(h∗
i)(a|h∗

i | + c∗
|h∗

i |) + sign(h∗
i)c

∗
|h∗

i | (mod N) = b∗
i − sign(h∗

i)a|h∗
i | (mod N)

and sets σ̄∗ = (h∗ = {h∗
i }T

i=1, z̄
∗ = {z̄∗

i }T
i=1). Then σ̄∗ is a valid signature on

m∗ under pk = {EAi
}S−1

i=1 . Moreover, F queries identical messages as A while
responding signing queries for A, and therefore whenever A wins in the experi-
ment ExpUF-CMA-HRK

RCSI-FiSh, A (λ), F wins in the experiment ExpUF-CMA
CSI-FiSh, A(λ). �

Compact Stateful Deterministic Wallet 405

4.2 Signature Scheme with Perfectly Rerandomizable Keys
from CSI-SharK

This section describes our signature scheme with perfectly rerandomizable keys
from CSI-SharK and is referred as rerandomized CSI-SharK (RCSI-SharK).
We set RCSI-SharK.Setup = CSI-SharK.Setup, RCSI-SharK.KeyGen = CSI-SharK.
KeyGen, RCSI-SharK.Sign = CSI-SharK.Sign, RCSI-SharK.Verify = CSI-
SharK.Verify.

RCSI-SharK.Randsk(ppsgn, sk, ρ) → sk′: On input a public parameter ppsgn, a

secret key sk = a and randomness ρ = c
$←− ZN , This algorithm outputs a

rerandomized secret key sk′ = sk + ρ = (a + c) mod N = d.
RCSI-SharK.Randpk(ppsgn, pk, ρ) → pk′: On input a public parameter ppsgn,

a public key pk = (RS−1, {EAi
}S−1

i=1) and randomness ρ = c
$←− ZN , this

algorithm outputs a rerandomized public key pk′ = {RS−1, [ric]EAi
}S−1

i=1

where [ric]EAi
= [ric][ria]E0 = [ri(c + a)]E0 = [rid]E0 = EDi

.

Correctness. The correctness of our scheme RCSI-SharK is similar to the cor-
rectness of our scheme RCSI-FiSh described in Sect. 4.1.

Theorem 4.21. Our proposed signature scheme with perfectly rerandomizable
keys RCSI-SharK is UF-CMA-HRK secure as per Definition 4.02 as the signature
scheme CSI-SharK is UF-CMA secure as per Definition 3.02.

Proof. Similar to the proof of Theorem 4.12. �

5 Stateful Deterministic Wallet

Definition 5.01. A stateful deterministic wallet is a tuple of algorithms SW =
(SW.Setup, SW.MGen, SW.SKDer, SW.PKDer, SW.Sign, SW.Verify) which satisfy
the following requirements:

SW.Setup(1λ) → pp: A trusted party on input the security parameter 1λ outputs
a public parameter pp.

SW.MGen(pp) → (msk,mpk, St0): This master key generation algorithm takes
as input pp and outputs a master key pair (msk, mpk) and an initial state
St0.

SW.SKDer(pp,msk, id, St) → (skid, St′): On input pp, msk, an identity id and a
state St, this secret key derivation algorithm outputs a session secret key skid
and a new state St′.
SW.PKDer(pp,mpk, id, St) → (pkid, St′): On input pp, mpk, an identity id
and a state St, this public key derivation algorithm outputs a session public
key pkid and a new state St′.

SW.Sign(pp, skid, pkid,m) → σ: This is a randomized algorithm that on input pp,
a session secret key skid, a session public key pkid for some identity id and a
message m ∈ M outputs a signature σ.

406 S. Shaw and R. Dutta

SW.Verify(pp, pkid,m, σ) → 1/0: This is a deterministic algorithm that on input
pp, a session public key pkid for some identity id, a message m ∈ M, and a
signature σ verifies the validity of σ on the message m.

Correctness. For n ∈ N, any (msk,mpk, St0) ← SW.MGen(pp) and any identi-
ties {id1, . . . , idn} ∈ {0, 1}∗, we define the sequence (skidi , Sti) and (pkidi

, Sti)
for 1 ≤ i ≤ n recursively as (skidi

, Sti) ← SW.SKDer(pp,msk, idi, Sti−1),
(pkidi

, Sti) ← SW.PKDer(pp,mpk, idi, Sti−1). A stateful deterministic wallet SW
is said to be correct if ∀ m ∈ M and i with 1 ≤ i ≤ n, we have Pr[SW.Verify(pp,
pkidi

, m, SW.Sign(pp, skidi
, pkidi

, m)) = 1] = 1.
We now describe the two security requirements for a stateful deterministic wallet
SW: Wallet Unlinkability and Wallet Unforgeability.

Definition 5.02. A stateful deterministic wallet SW satisfies against wallet
unforgeability (WAL-UNF) if the advantage AdvWAL-UNF

SW, A (λ) of any PPT adversary
A, defined as

AdvWAL-UNF
SW, A (λ) = Pr[A wins in ExpWAL-UNF

SW, A (λ)]

is negligible, where unforgeability experiment ExpWAL-UNF
SW, A (λ) between a chal-

lenger C and adversary A is depicted in Fig. 3.

Setup:

Query Phase :

Forgery:

Fig. 3. ExpWAL-UNF
SW, A (λ): Wallet Unforgeability

Definition 5.03. A stateful deterministic wallet SW satisfies wallet unlinkabil-
ity (WAL-UNL) if the advantage AdvWAL-UNL

SW, A (λ) of any PPT adversary A, defined
as

AdvWAL-UNL
SW, A (λ) = |Pr[ExpWAL-UNL

SW, A (λ) = 1] − 1
2
|

is negligible, where the unlinkability experiment ExpWAL-UNL
SW, A (λ) is depicted in

Fig. 4.

Compact Stateful Deterministic Wallet 407

Setup:

Query Phase 1:

Challenge:

Query Phase 2:

Guess :

Fig. 4. ExpWAL-UNL
SW, A (λ): Wallet Unlinkability

6 Stateful Deterministic Wallet from Isogenies

This section describes our construction of a stateful deterministic wallet SW
from isogenies using our rerandomized signature RCSI-FiSh given in Sect. 4.1.
SW.Setup(1λ) → pp : A trusted party on input 1λ outputs pp.

i. Same as the algorithm CSI-FiSh.Setup which is described in Sect. 3.1. Addi-
tionally, it samples a hash function H2 : {0, 1}∗ → Z

S−1
N × {0, 1}λ.

ii. Return pp = (ppsgn,H2) where ppsgn = (p, g, N , E0, H1, S, T).

SW.MGen(pp) → (msk,mpk, St0): On input pp, this algorithm generates a master
secret key msk, master public key mpk and an initial state St0 as follows:

i. Sample an initial state St0
$←− {0, 1}λ.

ii. Execute the RCSI-FiSh.KeyGen(ppsgn) algorithm to compute the master key
pair as follows:
– Sample ai ∈ ZN and compute the curve EAi

= [ai]E0 ∀ i ∈ [S − 1].
– Set msk = a = {ai}S−1

i=1 and mpk = {EAi
}S−1

i=1 .
iii. Return (msk,mpk, St0).

SW.SKDer(pp, msk, id, St): This algorithm takes as input pp, msk = a = {ai}S−1
i=1 ,

an identity id ∈ {0, 1}∗, and a current state St. It outputs a session secret key
skid and an updated state St′ as follows:

408 S. Shaw and R. Dutta

i. Compute (ρid, St′) = H2(St, id) where ρid ∈ Z
S−1
N and St′ ∈ {0, 1}λ.

ii. Compute the session secret key by executing RCSI-FiSh.Randsk
(ppsgn,msk, ρid) as follows:

– Let randomness ρid = cid = {cid,i}S−1
i=1

$←− Z
S−1
N .

– Compute the rerandomized secret key skid = msk + ρid = (a + cid)
mod N = {did,i}S−1

i=1 where did,i = ai + cid,i.
iii. Return skid = {did,i}S−1

i=1 = did and St′.

SW.PKDer(pp, mpk, id, St): This algorithm takes as input pp, mpk = {EAi
}S−1

i=1 ,
an identity id ∈ {0, 1}∗, and a current state St. It outputs a session public key
pkid and an updated state St′ as follows:

i. Compute (ρid, St′) = H2(St, id).
ii. Compute the session public key by executing RCSI-FiSh.Randpk

(ppsgn,mpk, ρid) algorithm as follows:

– Let randomness ρid = cid = {cid,i}S−1
i=1

$←− Z
S−1
N .

– Compute a rerandomized public key pkid = {[cid,i]EAi
}S−1

i=1 where
[cid,i]EAi

= [cid,i][ai]E0 = [cid,i + ai]E0 = [did,i]E0 = EDid,i
.

iii. Return pkid = EDid,i
and the updated state St′.

SW.Sign(pp, skid, pkid, m) → σ: The algorithm generates a signature σ on a
message m ∈ {0, 1}∗ using a session secret key skid = {did,i}S−1

i=1 = did and
session public key pkid = EDid,i

corresponding to an identity id as follows:

i. Set m̂ = (pkid,m).
ii. Compute a signature σ on m̂ by executing the algorithm RCSI-FiSh.Sign

(ppsgn, skid, m̂) as follows:
– Set did,0 ← 0 and samples bi ∈ ZN ∀ i ∈ [T].
– Compute the curves EBi

= [bi]E0 ∀ i ∈ [T], the challenge vector
(h1, . . . , hT) = H1(EB1 || . . . ||EBT

||m̂) ∈ {−S + 1, . . . , 0, . . . , S − 1}T and
the response zid,i = bi - sign(hi)did,|hi| (mod N) ∀ i ∈ [T].

– Set the signature σ = (h, zid) where h = {hi}T
i=1 and zid = {zid,i}T

i=1.
iii. Return the signature σ.

SW.Verify(pp, pkid, m, σ) → 1/0: Employing the session public key pkid =
{EDid,i

}S−1
i=1 , the algorithm verifies the signature σ = (h, zid) on m as follows:

i. Set m̂ = (pkid,m).
ii. Verify the signature σ on m̂ by running the algorithm RCSI-FiSh.Verify

(ppsgn, pkid, m̂, σ) as follows:
– Parse σ = (h = {hi}T

i=1, zid = {zid,i}T
i=1).

– Define EDid,−i
= Etwist

Did, i
∀i ∈ [S − 1].

– Extract the curves EDid,hi
from pk and computes EBi

= [zi]EDid,hi
∀ i ∈

[T] and the challenge vector (h′
1, . . . , h

′
T) = H1(EB1 || . . . ||EBT

||m̂).
– If (h1, . . . , hT) = (h′

1, . . . , h
′
T) return 1, else return 0.

Compact Stateful Deterministic Wallet 409

Correctness. The correctness of our stateful deterministic wallet SW follows
from the correctness of RCSI-FiSh.

Theorem 6.01. Let A be an algorithm that plays in the unforgeability experi-
ment ExpWAL-UNF

SW, A (λ) as described in Fig. 3. Then there exists a PPT adversary B
that plays in the experiment ExpUF-CMA-HRK

RCSI-FiSh, B (λ) shown in Fig. 2 running in roughly

the same time as A such that AdvWAL-UNF
SW, A (λ) ≤ AdvUF-CMA-HRK

RCSI−FiSh, B (λ) +
q2

H2
N where

RCSI-FiSh is the signature scheme with uniquely rerandomizable keys introduced
in Sect. 4.1, qH2 denotes the number of queries to H2 made by A and N is the
class number of Cl(O).

Proof. Let A be an adversary playing in the experiment ExpWAL-UNF
SW, A (λ) as in

Fig 3. By definition of the experiment ExpWAL-UNF
SW, A (λ), A is provided the initial

master public key mpk and the initial state St by the challenger. It is also
provided access to the oracles OPK(id), OWalSign(m, id) and the random oracle
H2. This theorem is proven via a hybrid argument that is based on two security
games. The transition between the two games is detailed below:

Game G0: This game is identical to the true unforgeability experiment
ExpWAL-UNF

SW, A (λ) as in Fig. 3. However, whenever A issues a query to the ora-
cle OPK(id) for which (id, skid, pkid), (id′, skid′ , pkid′) ∈ KList with skid = skid′ and
pkid = pkid′ , the game G0 internally sets flag ← true.

Game G1: Except for one important modification, this game is almost identical
to the preceding game. It aborts whenever flag is set to true.

For any adversary A and any i ∈ {0, 1}, let ℘A,i : N → [0, 1] denote the
function such that ∀ λ ∈ N, ℘A,i(λ) is the probability that the adversary A,
on input 1λ, outputs a forgery in game Gi. From the definition of game G0, it
follows that for all λ ∈ N, ℘A,0(λ) = Pr[ExpWAL-UNF

SW,A (λ) = 1]. Hence, we have

AdvWAL-UNF
SW,A (λ) =|Pr[ExpWAL-UNF

SW,A (λ) = 1]|
≤|℘A,0(λ) − ℘A,1(λ)| + |℘A,1(λ)|

≤
q2
H2

N
+ AdvUF-CMA-HRK

RCSI-FiSh, B

by Lemma 6.02 and Lemma 6.03 proved below. �

Lemma 6.02. We have |℘A,0(λ)−℘A,1(λ)| ≤ q2
H2
N where qH2 denotes the num-

ber of random oracle queries to H2 made by the adversary A.

Proof. A collision of session keys of the form (skid, pkid) = (skid′ , pkid′) for differ-
ent identities id and id′ would imply that RCSI-FiSh.Randpk(ppsgn,mpk, ρid) =
RCSI-FiSh.Randpk(ppsgn,mpk, ρid′). Leveraging the property of uniquely reran-
domizable public keys of RCSI-FiSh as proved in Lemma 4.11 in Sect. 4, we have
ρid = ρid′ where (ρid, ·) = H2(·, id) and (ρid′ , ·) = H2(·, id′). Since there are qH2

queries issued to H2, we have |℘A,0(λ) − ℘A,1(λ)| ≤ q2
H2
N . �

410 S. Shaw and R. Dutta

Lemma 6.03. We have |℘A,1(λ)| ≤ AdvUF-CMA-HRK
RCSI-FiSh,B (λ) where AdvUF-CMA-HRK

RCSI-FiSh, B (λ)
is the advantage of adversary B in the experiment ExpUF-CMA-HRK

RCSI−FiSh, B .

Proof. Let us assume that there exists a PPT adversary A that wins the game
G1. We will prove that A can be utilized as a procedure to design an adversary B
which can break the UF-CMA-HRK security of the isogeny-based rerandomized
signature scheme RCSI-FiSh introduced in Sect. 4. The adversary B takes on the
role of a challenger in the game G1 and simulates the random oracles queries,
public key queries and signing queries.

On receiving a public parameter ppsgn = (p, g, N,E0,H1, S, T) and public
key pk = {EAi

}S−1
i=1 from its own challenger, the adversary B simulates the game

G1 for A as follows:

Setup: The adversary B samples an initial state St0
$←− {0, 1}λ and a

hash function H2 : {0, 1}∗ → Z
S−1
N × {0, 1}λ. It uses its public parameter

ppsgn = (p, g, N,E0,H1, S, T) and public key pk = {EAi
}S−1

i=1 to set the pub-
lic parameter pp = (ppsgn,H2) and master public key mpk = pk = {EAi

}S−1
i=1 .

It forwards pp, mpk and St to the adversary A. In the entire course of the
game, B updates the state whenever it responds to a query to the oracle
OPK(id) from A. It also set lists KList, HList, RList and MsgList to φ.
Simulation of Query Phase : A makes polynomially many adaptive queries
to the oracles OPK(id) and OWalSign(m, id) and random oracle queries to H2.

– Simulating the random oracle queries to H2 : In response to a query
of the form H2(s), B outputs H2(s) if it was already set. Otherwise,
B first queries its oracle ORand(·) to generate a randomness ρ ← Z

S−1
N .

Recall that the oracle ORand internally refreshes the list of randomness
RList = RList ∪ {ρ}. B also samples ϕ

$←− {0, 1}λ, returns H2(s) = (ρ, ϕ)
and updates HList = HList ∪ {s, (ρ, ϕ)}.

– Simulating the oracle OPK(id) : In response to a query on identity id, B
simulates the hash value (ρid, St′) = H2(St, id) as above where St is the
current state, followed by computing the session public key pkid ← RCSI-
FiSh.Randpk(ppsgn, mpk, ρid). If B detects a collision among secret-public
key pair (ρid, pkid) and an existing record (id′, (ρid′ , pkid′)) saved in KList,
B terminates the simulation. Otherwise, it updates KList as KList = KList
∪ {(id, (ρid, pkid))} and returns pkid to A.

– Simulating the oracle OWalSign(m, id) : In response to a query on an arbi-
trary message m ∈ {0, 1}∗ and identity id, the adversary B extracts the
tuple (id, (ρid, pkid)) from KList. In case KList does not contain such a
tuple corresponding to id, it returns ⊥. Next, it sets m̂ = (pkid,m)
and submits (m̂, ρid) to its own signing oracle ORSign(m̂, ρid). It also
updates MsgList = MsgList∪{(id,m)}. Upon receiving a signature σ from
ORSign(m̂, ρid) on m̂, it forwards it to A. Note that the query (m̂, ρid)
on ORSign(m̂, ρid) does not return ⊥ as the random oracle H2()̇ is pro-
grammed by issuing a query to the oracle ORand(·), which ensures that
ρid ∈ RList. The simulated signatures are also correctly distributed as in

Compact Stateful Deterministic Wallet 411

the real protocol which follows immediately from the correctness of RCSI-
FiSh and we have SW.Verify(pp, pkid, m, σ) = RCSI-FiSh.Verify(ppsgn,
RCSI-FiSh.Randpk(ppsgn, mpk, ρid), m̂, σ).

Extracting the forgery: A eventually submits a forgery comprising of a
message m∗, a signature σ∗ and an identity id∗. The adversary B aborts if it
encounters any one of the following two cases:

– OWalSign has not been previously queried on m∗,
– OPK has not been previously queried on id∗.

If the check succeeds, the adversary B retrieves the key pair (ρid∗ , pkid∗) from
KList and submits (m̂∗ = (pkid∗ ,m∗), σ∗, ρid∗) as a forgery to its own chal-
lenger. If (m∗, σ∗, id∗) is a valid forgery of A, then (m̂∗ = (pkid∗ ,m∗), σ∗, ρid∗)
is indeed a valid forgery as:

– From the simulation, we have that pkid∗ ← RCSI-FiSh.Randpk(ppsgn, mpk,
ρid∗) and ρid∗ ∈ RList.

– Since SW.Verify(pp, pkid∗ ,m∗, σ∗) = 1, we have RCSI-FiSh.Verify(ppsgn,
pkid∗ , m̂∗, σ∗) = 1

– From the simulation, we observe that since (id∗,m∗) /∈ MsgList we have
m̂∗ /∈ MList.

Thus, the adversary B provides a perfect simulation of the game G1 for A.
Therefore, we obtain |℘A,1(λ)| ≤ AdvUF-CMA-HRK

RCSI−FiSh, B (λ). �

Theorem 6.04. The isogeny-based stateful deterministic wallet SW is secure
against wallet unlinkability as per Definition 5.03. In other words, for any PPT
adversary A playing in the experiment ExpWAL-UNL

SW, A (λ) as described in Fig. 4, we

have AdvWAL-UNL
SW, A (λ) ≤ qH2 (qP +2)

2λ , where qH2 denotes the number of queries to
H2 and qP denotes the number of queries to OPK by A.

Proof. The adversary A playing in the experiment ExpWAL-UNL
SW, A (λ) has access to

the oracles OPK(id), OWalSign(m, id) and OgetSt(·). As modelled in the experiment
ExpWAL-UNL

SW, A (λ) in Fig. 4, the adversary A is supposed to produce its challenge
identity id∗ before making any query to the oracle OgetSt(·) and only on iden-
tity for which the oracle OPK(·) has never been queried before. Otherwise, the
adversary A would have no advantage in the experiment ExpWAL-UNL

SW, A (λ) and the
theorem holds trivially. Recall that the session public key pk0

id∗ or pk1
id∗ submit-

ted to the adversary A by the challenger C upon receiving the challenge identity
id∗ from A is obtained from the wallet state that is hidden from A. Every time
A sends a query to the oracle OPK(id), the state of the wallet gets updated. To
win the unlinkability game, A can attempt to predict one of the wallet’s state
and issue a “problematic query” on such a state to the random oracle H2. This
allows them to obtain one of pk0

id∗ or pk1
id∗ computed by the wallet and thereby

distinguishing it from a randomly generated session public key. The challenger
C maintains a list T of all the wallet states, ranging from the start state to the
state that was determined by the last query issued to the oracle OPK(·). Let us
consider the set T of values taken by the variables St, Ŝt before the adversary
A outputs the challenger identity id∗.

412 S. Shaw and R. Dutta

We first analyze the case where the adversary A has not issued any problem-
atic query to H2. If A does not send a problematic query to H2 on any St′ ∈ T ,
the distribution of the session public keys pk0

id∗ and pk1
id∗ are identical from the

point of view of A as the states St, Ŝt used to compute pk0
id∗ , pk1

id∗ , respectively,
are uniformly distributed. We now employ the rerandomizability property of
the underlying isogeny-based signature with rerandomizable keys RCSI-FiSh to
guarantee that the distribution of both the session public key pk0

id∗ , pk1
id∗ are

identical to a freshly generated master public key m̂pk obtained by executing
the algorithm RCSI-FiSh.KeyGen. Thus, there is no way A can get advantage in
the unlinkability game in this case.

We now show that with negligible probability A issues the aforementioned
problematic query to H2. Since throughout the experiment ExpWAL-UNL

SW, A (λ), the
adversary A issues maximum qP queries to the oracle OPK(id), we have |T | ≤
qP + 2. By the definition of experiment ExpWAL-UNL

SW, A (λ), A always issue queries
to the oracle OgetSt(·) after obtaining the challenge identity id∗ from A, Thus,
from the adversary’s point of view all values in T are distributed uniformly,
until it gains the knowledge of any specific value St′ ∈ T . As a result, the
probability that for any particular query to be of the form H2(St′, id), St′ ∈ T ,
is at most qP +2

2λ . Since the adversary A issue at most qH2 many queries of the
form H2(St′, id), the probability that for any of them, St′ ∈ T , is at most
qH2 (qP +2)

2λ . �

References

1. Aggarwal, D., Brennen, G.K., Lee, T., Santha, M., Tomamichel, M.: Quan-
tum attacks on Bitcoin, and how to protect against them. arXiv preprint
arXiv:1710.10377 (2017)

2. Alkeilani Alkadri, N., et al.: Deterministic wallets in a quantum world. In: Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1017–1031 (2020)

3. Alkim, E., Barreto, P.S.L.M., Bindel, N., Krämer, J., Longa, P., Ricardini, J.E.:
The lattice-based digital signature scheme qTESLA. In: Conti, M., Zhou, J.,
Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 441–460.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57808-4 22

4. Anhao, N.: Bitcoin post-quantum (2018)
5. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: CSI-SharK: CSI-FiSh with

sharing-friendly keys. Cryptology ePrint Archive (2022)
6. Baghery, K., Cozzo, D., Pedersen, R.: An isogeny-based ID protocol using struc-

tured public keys. In: Paterson, M.B. (ed.) IMACC 2021. LNCS, vol. 13129, pp.
179–197. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92641-0 9

7. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004)

http://arxiv.org/abs/1710.10377
https://doi.org/10.1007/978-3-030-57808-4_22
https://doi.org/10.1007/978-3-030-92641-0_9
https://doi.org/10.1007/978-3-030-34578-5_9

Compact Stateful Deterministic Wallet 413

9. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

10. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable
signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
444–461. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7 26

11. Buterin, V.: Deterministic wallets, their advantages and their understated flaws.
Bitcoin Magazine (2013)

12. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

13. Das, P., Faust, S., Loss, J.: A formal treatment of deterministic wallets. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pp. 651–668 (2019)

14. De Feo, L.: Mathematics of isogeny based cryptography. arXiv preprint
arXiv:1711.04062 (2017)

15. Ethereum, W.: Ethereum. org (2020)
16. Fan, C.I., Tseng, Y.F., Su, H.P., Hsu, R.H., Kikuchi, H.: Secure hierarchical bitcoin

wallet scheme against privilege escalation attacks. In: 2018 IEEE Conference on
Dependable and Secure Computing (DSC), pp. 1–8 (2018)

17. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D.,
Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 12

18. Franco, P.: Understanding Bitcoin: Cryptography, Engineering and Economics.
John Wiley & Sons, Hoboken (2014)

19. Gutoski, G., Stebila, D.: Hierarchical deterministic bitcoin wallets that tolerate key
leakage. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 497–504.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 31

20. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009). http://www.
bitcoin.org/bitcoin.pdf

21. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 16

22. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

23. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New
York (2009). https://doi.org/10.1007/978-0-387-09494-6

24. Waterhouse, W.C.: Abelian varieties over finite fields. In: Annales scientifiques de
l’École Normale Supérieure, vol. 2, pp. 521–560 (1969)

25. Waterland, P.: Quantum resistant ledger (QRL) (2016)
26. Wiki, B.: Hardware wallet (2020)
27. Wiki, B.: BIP32 proposal (2018)

https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-642-13013-7_26
https://doi.org/10.1007/978-3-642-13013-7_26
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
http://arxiv.org/abs/1711.04062
https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1007/978-3-662-47854-7_31
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-0-387-09494-6

CTA: Confidential Transactions Protocol
with State Accumulator

Shumin Si1,2 , Puwen Wei1,2,3(B) , Xiuhan Lin1,2, and Li Liu1,2

1 School of Cyber Science and Technology, Shandong University, Qingdao, China
{shuminsi,xhlin,sdu liuli}@mail.sdu.edu.cn, pwei@sdu.edu.cn

2 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Qingdao, China

3 Quancheng Laboratory, Jinan, China

Abstract. Considering the increasingly large storage of post-quantum
RingCT-like protocols, we construct a blockchain-based confidential
transactions protocol with state accumulator (CTA), where each user
only needs to store a concise state of the blockchain. More precisely, CTA
can compress the historical data of all transactions into a short determin-
istic state, while preserving privacy and post-quantum security. The key
component of our CTA is an efficient zero-knowledge lattice-based accu-
mulator, which is based on Peikert et al.’s vector commitment scheme
proposed in TCC 2021. We have modified their construction to ensure
that the length of the underlying M-SIS parameters is kept short for the
Merkle-tree structure. At a 128-bit security level, the membership proof
size for our accumulator with 220 members is only 225 KB under the
Module-SIS and Extended-MLWE assumptions. Compared with previ-
ous lattice-based works where the time and storage complexity of each
user is linear with the number of coins, our CTA is capable of achiev-
ing logarithmic storage space and computational time. Specifically, the
concrete transaction size of spending a coin in CTA is around 236 KB,
when the size of anonymity set is 220.

Keywords: confidential transactions · lattice-based accumulator ·
zero-knowledge proofs

1 Introduction

Blockchain-based confidential transactions (CT) protocols [23] allow users to cre-
ate authenticated transactions without revealing sensitive information such as the
users’ identities and spending amounts. These protocols guarantee the authen-
ticity and consistency of transactions by maintaining a globally distributed and
synchronized ledger, i.e., the blockchain. Various research works [6,11,12,22,25]
have proposed innovative solutions in this area. In particular, lattice-based ring
signature confidential transactions (RingCT) protocols [11,22] can achieve post-
quantum anonymity in an ad-hoc group without a trusted setup.

One inherent problem with RingCT is the increasing storage requirement
for historical data, as the verification mechanism relies on the full records of
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 414–439, 2023.
https://doi.org/10.1007/978-981-99-7563-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_19&domain=pdf
http://orcid.org/0000-0002-2694-6713
http://orcid.org/0000-0003-3978-4183
https://doi.org/10.1007/978-981-99-7563-1_19

CTA: Confidential Transactions Protocol with State Accumulator 415

transactions on the blockchain. Additionally, spent accounts cannot be removed
from the history of the blockchain, as it is difficult to determine whether an
account has been spent or simply used as part of the anonymity set in a RingCT
transaction. This issue of increasing storage for historical records is a major
concern for the scalability of blockchain systems. As of March 2023, there were
over 460 gigabytes of historical data for Bitcoin. Another issue with relying on
full transaction records is that the computational complexity of lattice-based ring
signature [11,22] becomes prohibitive as the ring size approaches 220 members, as
pointed by [19]. Therefore, finding ways to prune the history blocks or generate
compact expressions of all transactions is crucial for the practical deployment of
confidential transactions protocols.

An intuitive solution to address the issue of increasing storage requirements
for historical data in RingCT is to use an accumulator, which is a powerful tool
for compressing transaction history [6]. By using accumulators, verification nodes
of the blockchain can check transactions without retrieving the entire transaction
history. This approach allows the nodes to maintain compressed states, which can
significantly alleviate the storage shortage of the blockchain system. Accumula-
tors constructed from lattice-based assumptions are preferred when considering
post-quantum security. However, the proof size of lattice-based accumulators is
much larger than their discrete logarithm (DL) based counterparts. In particular,
the proof size of lattice-based Merkle-tree accumulators is in megabytes [16,27],
which can lead to inefficient confidential transactions protocols.

1.1 Our Contributions

In this paper, we investigate the construction of a blockchain-based confiden-
tial transactions protocol with state accumulator (CTA), which compresses all
transactions into a short state. Due to the compressed state, we need to consider
a stronger security model than that of previous RingCT-like protocols. Specifi-
cally, we identify a new attack scenario called the “fake accounts” attack, where
an adversary may break the balance of transactions by creating fake accounts,
which can lead to the adversary obtaining benefits that they are not entitled to.
In this type of attack, the adversary provides a membership proof of the accu-
mulator for invalid members, exploiting the fact that the validity of accounts
can only be checked by the compressed state.

For the concrete construction, we propose an efficient blockchain-based CTA
that achieves 128-bit post-quantum security by using the Module Short Inte-
ger Solution (M-SIS) and Extended Module Learning With Errors (Extended-
MLWE) assumptions. The key component of our construction is a lattice-based
accumulator which allows short zero-knowledge proofs for large members. We use
a shallow Merkle-tree of height l and branching factor h ≥ 2, and instantiate the
underlying hash function with lattice-based vector commitment (VC) schemes
proposed by [26]. To further reduce the bandwidth, we modify the decomposition
of the hash value for the internal nodes of the tree [26], so that the norm of each
node is constant, enabling the underlying M-SIS parameters to remain short.
Additionally, the statement for the membership proof of our accumulator can

416 S. Si et al.

be expressed with concise multiplicative relations and linear relations over Rq,
which allows for short zero-knowledge proofs. Through further optimization, the
resulting membership proof size for our accumulator is only 225 KB with 220

members. We compare the communication cost of our zero-knowledge lattice-
based accumulator with other lattice-based constructions in Table 1, where N is
the number of members of the accumulator.

Table 1. Comparison of zero-knowledge lattice-based accumulators.

N security level assumption proof size

[16] 210 100-bit LWE & SIS 47.3 MB

[27] 210 128-bit LWE & SIS 9.7 MB

This work 220 128-bit Extended MLWE & MSIS 225 KB

The storage cost of the verification nodes (or miners) in our CTA proto-
col is 688 MB, significantly lower than the gigabyte-level storage required in
previous works [11,22]. Additionally, the size of a spending transaction for one
input and two output accounts with an anonymity set of size 220 is approxi-
mately 236 KB. Our spending algorithm and verification algorithm follow the
framework of Zerocash, which only relies on the authentication path from a leaf
to the root, rather than all the public keys of members as in current lattice-
based Ring-CT works [10,11,22]. This results in better asymptotic complexity
in spending/verifying time and storage space, as shown in Table 2.

Table 2. Comparison of confidential transactions protocols. The “storage” column
refers to the amount of data stored in order to validate new transactions among all
users at all times. PQ indicates whether the scheme is plausibly secure against quantum
attacks. N is the size of the anonymity set. The state of the blockchain in Quisquis
[12] is compact UTXOs set, where UTXO is the unspent transaction outputs set in
blockchain.

storage transaction size spending time verifying time PQ

Quisquis [12] UTXO O(N) O(N) O(N) �

Zerocash [6] O(log N) O(log N) O(log N) O(log N) �

MatRiCT [11] O(N) O(log N) O(N) O(N) �
MatRiCT+ [10] O(N) O(log N) O(N) O(N) �
SMILE [22] O(N) O(log N) O(N) O(N) �
This work O(log N) O(log N) O(log N) O(log N) �

1.2 Technique Overview of ZK for Lattice-Based Accumulator

The main challenge of constructing CTA is to compress the ZK proofs for lattice-
based accumulator, while making the underlying lattice-based assumptions pre-
serve short parameters. Our accumulator adopts the structure of Merkle-tree

CTA: Confidential Transactions Protocol with State Accumulator 417

with N = hl leaf nodes, where the height is l and the branching factor is h. We
use VC [26] as the underlying hash function of our lattice-based accumulator,
and its security is based on the M-SIS assumption. VC allows for concise com-
mitment to an ordered sequence of messages, with the ability to later prove the
messages at desired positions concisely. For instance, a VC which commits to
a vector (m0‖ · · · ‖mh−1) is of the form c =

∑h−1
i=0 Uimi. For the openings of

some mi, the verifier checks if the witness wi is “short” and c = Aiwi + Uimi,
where Uis and Ais are the public parameters of VC. Using VC has the advantage
of effectively compressing the information of all the sibling nodes. However, the
size of the underlying M-SIS parameters increases significantly with the number
of committed messages. Specifically, the norm of related nodes increases linearly
with the number of sibling nodes. As a result, VC is suitable for only mod-
erately large h, due to the public parameters’ quadratic dependence on h. For
larger dimensions, we consider a tree transformation of VC. Based on techniques
of [16], we construct the tree transformation with stateful updates. In particu-
lar, we transform VC with the “decomposition” function G−1 to keep the short
norm, which is crucial for iteratively applying VC in a Merkle-tree.

The ZK proof of our accumulator demonstrates the membership of a leaf
node in a zero-knowledge manner. In a nutshell, the root v0 and the target
leaf nodes vl along with the associated compressed siblings {wi}l

i=1 satisfy
a set of l verification equations. Specifically, the equations take the form of
Gvi =

∑h−1
k=0 bi+1,kAkwi+1 +

∑h−1
k=0 bi+1,kUkvi+1, where i ∈ {l − 1, l − 2, · · · , 0}

and bi = (bi,0 bi,1 · · · bi,h−1) is the unary representation for the index ji of the
internal node on the path. The linear and multiplicative relations in the verifica-
tion equation about {vi,wi, bi}l

i=1 can be proven using the LANES framework
for efficient arguments of knowledge [3,9,22]. However, a direct application of
LANES leads to a proof size that is linear with the length of the witnesses
{vi,wi, bi}l

i=1 with a large factor, since the binary vector {bi}l
i=1 in the mul-

tiplicative relation is not compatible with the method of NTT slots in [9,22],
which can reduce the dimension of the committed messages.

To overcome this problem, we take advantage of an observation in [22] that
vector bi can be uniquely decomposed into vectors oi,1, · · · ,oi,e ∈ {0, 1}loge h

such that bi = oi,1 ⊗ · · · ⊗ oi,e where ‖oi,j‖1 = 1, for all i ∈ [l], j ∈ [e]. So the
prover only needs to commit to {oi,1, · · · ,oi,e}l

i=1. As a result, the dimension of
the masked opening of each bi can be reduced to e · loge h instead of h.

Intuitively, applying the lattice-based bulletproofs [2] can further reduce the
overall proof size. However, it leads to an increase in the total size of proofs.
This is because the length of the extracted solution vector grows by a factor of
12d3, where d is the dimension of the polynomial ring for each level of Bullet-
proof folding. To optimize our scheme, we instead use the amortized protocol [3].
Although the asymptotic communication complexity of the amortized protocol
is higher than that of Bulletproofs, the concrete cost of the amortized proto-
col for garbage commitments in our protocol can be significantly reduced. This
reduction in cost further translates to a decrease in the total proof size. In addi-
tion, we find that sampling different masks for (v1‖ · · · ‖vl) and (w1‖ · · · ‖wl)

418 S. Si et al.

also helps in reducing the proof size. Overall, these optimizations allow us to
achieve efficient and secure membership verification of leaf nodes in our CTA,
while maintaining a small proof size.

2 Preliminaries

Notations. The security parameter is denoted by λ. For an odd integer q,
Zq = Z/qZ denotes the ring of integers modulo q, which is represented by the
range [− q−1

2 , q−1
2]. Cyclotomic rings are denoted by Rq = Zq/(Xd +1) of degree

d where d > 1 is a power of 2. We use bold-face lower-case letters and bold-face
capital letters to denote column vectors and matrices, respectively. (a‖b) and
[a‖b] denote the vertical concatenation and the horizon concatenation of vectors
a and b, respectively. Uniformly sampling from a set S is denoted by a ← S.

For positive integers a and b such that a ≤ b, [a, b] = {a, · · · , b}. Specially,
[n] = {0, · · · , n − 1}. For a matrix V , we denote its maximum singular value as
s1(V) = maxu �=0‖V u‖/‖u‖. Sd·m denotes a total of md coefficients from a set
S, which generates m polynomials in R = Z[X]/(Xd + 1) of degree d. We use
Uβ to denote the set of polynomials in R with infinity norm at most β ∈ Z+.

Module-SIS and Module-LWE Problems. In this section, we provide a
brief overview of the hard computational problems, which are Module-SIS (M-
SIS) [15], Module-LWE (M-LWE) [15] and Extended M-LWE [21] problems.

Definition 1 (M-SISn,m,q,βSIS
). Given a uniformly random matrix A ←

Rn×m
q , the goal is to find z ∈ Rm

q such that Az = 0 over Rq and 0 < ‖z‖ ≤ βSIS.
An algorithm A has advantage ε in solving M-SISn,m,q,βSIS

if

Pr
[
0 < ‖z‖ ≤ βSIS ∧ Az = 0|A ← Rn×m

q ;z ← A(A)
]

≥ ε.

Definition 2 (M-LWEn,m,q,β). Let s ← Un
β be a secret key. LWEq,s is defined

as the distribution obtained by outputting (a, 〈a, s〉 + e) for a ← Rn
q and e ←

Uβ. Then the goal is to distinguish between m samples from either LWEq,s or
U(Rn

q , Rq). An algorithm A has advantage ε in solving M-LWEn,m,q,β if
∣
∣Pr

[
b = 1|A ← Rm×n

q ; s ← Un
β ; e ← Um

β ; b ← A(A,As + e)
]

−Pr
[
b = 1|A ← Rm×n

q ; t ← Rm
q ; b ← A(A, t)

] ∣
∣ ≥ ε.

Definition 3 (Extended M-LWEn,m,σ). The parameters m,n > 0 and the
standard deviation σ are given. The goal is to distinguish the following two
cases: s0 = (B,Br, c,z, sign(〈z, cr〉1)) and s1 = (B,u, c,z, sign(〈z, cr〉))
where B ← R

n×(n+m)
q , a secret vector r ← {−β, β}n+m, c ← C, u ← Rn

q

1 Here, the inner product is over Z, i.e., 〈z, v〉 = 〈z′, v′〉 where vectors z′ and v′ are
polynomial coefficients of z and v, respectively.

CTA: Confidential Transactions Protocol with State Accumulator 419

and z ← D
(n+m)d
σ , where sign(a) = 1 if a ≥ 0 and 0 otherwise. Then, adversary

A has advantage ε in solving Extended M-LWEn,m,σ if
∣
∣Pr

[
b = 1|B ← Rn×(n+m)

q ; r ← {−β, β}n+m;z ← D(n+m)d
σ ; c ← C; b ← A(s0)

]

−Pr
[
b = 1|B ← Rn×(n+m)

q ;u ← Rn
q ;z ← D(n+m)d

σ ; c ← C; b ← A(s1)
] ∣
∣ ≥ ε.

In [21], Extended M-LWE is assumed to be computationally hard, so that the
new rejection Rej′ shown in Appendix A.2 is simulatable, where the signal
sign(〈z, cr〉)) about the secret r is revealed.

Commitment Scheme. We briefly recall the ABDLOP commitment scheme
in [18], which is computational hiding and computational binding based on the
hardness of the M-LWE and M-SIS problem. As in [5], the commitment schemes
Com consist of CKeygen,Com and Open. Suppose that n,m, β, q are positive
integers. An instantiation of ABDLOP with m > (n + v2) is as follows.

– CKeygen(1λ): Pick A ← Rn×v1
q , B′

1 ← R
n×(m−n)
q and B′

2 ← R
v2×(m−n−v2)
q .

Set B1 =
[
In‖B′

1

]
and B2 = [0v2×n‖ Iv2‖B′

2]. Output ck = (B1,B2,A),
where In denotes a n-dimensional square matrix in which all the principal
diagonal elements are ones and all other elements are zeros.

– Comck(m1,m2): Pick r ← {−β, · · · , β}md. Output

COMck(m1,m2; r) =
(

A
0v2×v1

)

· m1 +
(

B1

B2

)

· r +
(
0n

m2

)

,

where (m1,m2) are (v1 + v2)-dimensional vectors over Rq for (v1 + v2) ≥ 1.
– Open(C, (y, (m′

1,m
′
2), r

′)): If C is a commitment such that yC = COMck

(m′
1,m

′
2; r

′) and ‖(r′‖m′
1)‖ ≤ γcom, return 1. Otherwise, return 0.

The algorithm Open is relaxed where y ∈ Rq is called the relaxation factor.

Cryptographic Accumulators. An accumulator scheme Acc consists of the
following algorithms [16].

– Setup(λ): On input security parameter λ, output public parameters pp.
– Accpp(V): On input a set of N messages V = (m1, · · · , mN) and the public

parameters pp, output the accumulator u.
– Witnesspp(V,m, u): On input a set V , the accumulator u and a member m,

output ⊥ if m /∈ V ; otherwise output a witness w for the proof that m is
accumulated in Accpp(V).

– Verifypp(u,m,w): If w is a valid proof that u is accumulator to a sequence
(m1, · · · ,mN) such that m = mi for some i ∈ {1, . . . , N}, output 1.

An accumulator scheme is correct if Verifypp(Accpp(V),m,w) = 1 holds
where w = Witnesspp(V,m,Accpp(V)), for all pp ← Setup(λ) and all m ∈ V .

Definition 4. An accumulator scheme is secure if for all PPT adversaries A:

Pr

[
pp ← Setup(λ); (V,m′, w′) ← A(pp) :

m′ /∈ V ∧ Verifypp(Accpp(V),m′, w′) = 1

]

≤ negl(λ).

420 S. Si et al.

3 Lattice-Based ZK Proofs for Accumulators

In this section, we construct an M-SIS-based accumulator and provide an efficient
zero-knowledge proof for its membership.

3.1 Construction of Lattice-Based Accumulator

The main structure of our lattice-based accumulator follows the idea of [26],
which is a tree of height l and arity h. We modify the underlying “hash” for each
node so that the resulting scheme allows more efficient proofs than that of [26].
Suppose that V = {d0 ∈ Rkα

p̂ , · · · ,dN−1 ∈ Rkα
p̂ } is the set to be accumulated,

where N = hl. Let G = Iα ⊗ [1‖p̂‖ · · · ‖p̂k−1] denote the gadget matrix, where
p̂ = � k

√
p�, with a set S. Our Acc is described as follows.

– Setup(λ): Choose A′ ← Rα×2α
p and T ← {−1, 0, 1}2αd×(k+2)αd. For m∗ ∈ S,

compute Ai = A′T +
[
0‖(m∗ − mi)G

]
, where mi �= m∗ ∈ S for all i ∈ [h].

The definition of S ⊂ Rp follows that of [19], which is set to be all polynomials
in Rp of degree 0 such that, for any m �= m′ ∈ S, m − m′ is invertible in Rp.
Randomly choose U = [U0‖ · · · ‖Uh−1] ∈ Rα×khα

p , where each Ui ∈ Rα×kα
p .

For all i ∈ [h], set Ri,i = 0 and use GPV [14,24] trapdoor T to sample Ri,j ∈
R

(k+2)α×kα
p , where each j ∈ [h]/{i} such that Ri,j is short and AiRi,j = Uj .

Output the accumulator parameters ap = (U ,R = {Ri,j} i,j∈[h]) and the
verifier parameters vp = (U ,B), where B = A′T .

– Accap(V): Take V = {d0 ∈ Rkα
p̂ , · · · ,dN−1 ∈ Rkα

p̂ } as input. Let uj1,··· ,ji

denote the node with path (j1, · · · , ji), where i ∈ [1, l] and ji ∈ [h]. Let
dj = uj1,··· ,jl denote the leaf node with path (j1, · · · , jl) ∈ [h]l, where j ∈ [N].
All the internal nodes of the tree are generated in a bottoms-up manner. More
precisely, for i = l − 1, l − 2, . . . , 0,

• compute uj1,··· ,ji = G−1(
∑h−1

b=0 Ub ·uj1,··· ,ji,b)
2, for all (j1, · · · , ji) ∈ [h]i.

Note that the root u is defined as G−1(
∑h−1

b=0 Ub · ub). Output u.
– Witnessap(V,d,u): If d /∈ V , return ⊥. Otherwise, d = dj for some j ∈ [N]

with path (j1, · · · , jl). Output the witness w defined as:

w = ((j1, · · · , jl), (w1, · · · ,wl)) ∈ {0, 1}l × (R(k+2)α
p)l,

where wi =
∑h−1

b=0 Rji,buj1,··· ,ji,b and ‖wi‖ ≤ γ for all i ∈ [1, l].
– Verifyvp(u,d, w): If ‖wi‖ ≤ γ for all i ∈ [1, l], set vl = d and, for all

i ∈ {l − 1, · · · , 1, 0}, compute vl−1, · · · ,v1,v0 ∈ Rkα
p̂ as follows,

vi = G−1(Aji+1wi+1 + Uji+1vi+1). (1)

Then it returns 1 if v0 = u. Otherwise, 0.

2 We stress that G−1 is not a matrix, but rather a function which maps a mod-p input
to a short integer vector such that G−1[G(u)] = u mod p.

CTA: Confidential Transactions Protocol with State Accumulator 421

The main difference between our construction and that of [26] is the com-
putation of uj1,··· ,ji . In [26], uj1,··· ,ji =

∑h−1
i=0 G−1(Ub) · uj1,··· ,ji,b ∈ Rkα

dkαp̂, the
norm of which increases linearly with a factor dkα. So the M-SIS parameters
size of the underlying hash function in [26] need be increased to support the
messages with larger norms. The M-SIS parameters size of our scheme is short,
since the corresponding norm of our nodes is constant, i.e., ‖uj1,··· ,ji‖ ≤ p̂

√
kdα

for all i ∈ [1, l]. Note that our computation for uj1,··· ,ji can be transformed
into G ·uj1,··· ,ji =

∑h−1
i=0 Ub ·uj1,··· ,ji,b, which has the same form as that of [26].

Hence, the security of our underlying hash function follows the security of vector
commitments in [26].

Lemma 1 [26]. The underlying hash function of the accumulator Acc is
collision-resistant if M-SISα,2(k+1)α,p,βs

is hard, where βs = 2max ‖(Twi‖vi)‖
for any i ∈ [1, l].

Due to Theorem 1 in [16], we have

Theorem 1 Our accumulator scheme Acc is secure in sense of Definition 4,
assuming the underlying hash functions are collision-resistant.

Remark. The generation of trapdoor T requires a private-coin Setup. We can
use a multi-party protocol [7] for securely generating the public parameters to
alleviate the trust requirement.

3.2 Zero-Knowledge Proofs of Our Accumulator

In this section, we construct a zero-knowledge argument which allows a
prover P to convince a verifier V for the following statement: P knows
a secret element that is properly accumulated into the accumulator u =
v0. Specifically, the relation for the ZK system is defined as R ={

((A′,B,U ,v0 = u);vl ∈ Rkα
p̂ , w) : Gvi = Aji+1wi+1 + Uji+1vi+1, ∀i ∈ [l]

}
,

where the witness w = (j1 · · · , jl,w1, · · · ,wl). Each element ji of (j1 · · · , jl)
can be represented as unary bi, such that ji = [0‖1‖ · · · ‖h − 1] · bi, where bi =
(bi,0‖bi,1‖ · · · ‖bi,h−1) ∈ {0, 1}h and ‖bi‖1 = 1. Based on the observation in [22],
vector bi can be uniquely decomposed into vectors oi

1, · · · ,oi
e ∈ {0, 1}loge h,

which has exactly one 1 each, i.e., bi = oi
1 ⊗ · · · ⊗ oi

e. Then Eq. (1) for veri-
fying the path in our accumulator is equivalent to the l verification equations,
Gvi =

∑h−1
k=0 bi+1,kAkwi+1 +

∑h−1
k=0 bi+1,kUkvi+1, where i ∈ [l]. For ∀i ∈ [1, l],

let Hi = (
∑h−1

k=0 bi,kUk‖
∑h−1

k=0 bi,kAk) ∈ R
α×2(k+1)α
p ,

a = (vl‖wl‖vl−1‖wl−1‖ · · · ‖v1‖w1) ∈ R2l(k+1)α
p and (2)

g = (0‖ · · · ‖0‖G · v0) ∈ Rlkα
p . (3)

Thus all the above l verification equations can be transformed into an equivalent
quadratic relation (H − Ĝ)a = g over Rp, where

422 S. Si et al.

H =

⎛

⎜
⎜
⎜
⎝

Hl

Hl−1

. . .
H1

⎞

⎟
⎟
⎟
⎠

, Ĝ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 G 0
G 0

...
...

. . .
G 0

0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ Rlα×2(k+1)lα
q . (4)

By [18], the above relation can be transformed into the final verification equation
q1(H − Ĝ)a = q1g over Rq further, where q = q1p.

Next, we construct the non-interactive zero-knowledge proofs, where the
prover P proves the secrets a = (vl‖wl‖ · · · ‖v1‖w1) and each tensor product
bi of oi

1, · · · ,oi
e ∈ {0, 1}loge h satisfying the final verification equation.

The Non-interactive ZK Protocol. Our non-interactive protocol Πacc is
described in Fig. 1. The first step is to commit the a, {oi

1, · · · ,oi
e}l

i=1 and some
extra messages g′

1, g2 and t1. The underlying commitment keys are {Bi}4i=0,
where {Bi}4i=0 can be generated by H0(seed). H0 is modeled as a random oracle
and seed is a random string. We set e = 2 for an example, i.e., bi = oi

1 ⊗ oi
2 for

all i ∈ [1, l], where bi ∈ {0, 1}h, and oi
1,o

i
2 ∈ {0, 1}log h. The second step is to

compute the response. P computes the masked openings f and {f i
1,f

i
2}l

i=1 cor-
responding to the secret a and {oi

1,o
i
2}l

i=1, respectively. z is generated to mask
ra which is the randomness in the ABDLOP commitment. Then the rejection
sampling algorithms Rej′ and Rej shown in Appendix A.2, are applied to the
corresponding masked openings.

In verification phase, the well-formness of C0 is proved through the equation
D = B0(f‖fb)+B1z−xC0. The masked form of bi can be obtained by f i

1⊗f i
2 =

x2bi+xpi
1+pi

0 = (fi,0‖ · · · ‖fi,h−1) for all i ∈ [1, l], where pi
1 = oi

1⊗mi
2+mi

1⊗oi
2

and pi
0 = mi

1 ⊗ mi
2. The secret a and {bi}l

i=1 in final verification equation can
be replaced by the masked openings f and {f i

1 ⊗ f i
2}l

i=1.
We show how to generate the masked opening Ĥ of matrix H through each

Ĥi, where each Ĥi = q1
[∑h−1

k=0 fi,kUk‖
∑h−1

k=0 fi,kAk

]
= x2q1Hi + xMi + Ni.

For all i ∈ [1, l], compute Mi = q1
[∑h−1

k=0 pi
1[k]Uk‖

∑h−1
k=0 pi

1[k]Ak

]
,Ni =

q1
[∑h−1

k=0 pi
0[k]Uk‖

∑h−1
k=0 pi

0[k]Ak

]
. Set

M =

⎛

⎜
⎝

Ml

. . .
M1

⎞

⎟
⎠ ,N =

⎛

⎜
⎝

Nl

. . .
N1

⎞

⎟
⎠ , and Ĥ =

⎛

⎜
⎝

Ĥl

. . .
Ĥ1

⎞

⎟
⎠ . (5)

Thus Ĥ can be expressed as Ĥ = x2q1H+xM+N . The equation q1(H−Ĝ)a =
q1g can be transformed to (Ĥ −x2q1Ĝ)f = x3q1(H − Ĝ)a+x2g2 +xg1 +g0 =
x3q1g + x2g2 + xg1 + g0, where

g2 = q1(H − Ĝ)ma + Ma, g1 = Mma + Na and g0 = Nma. (6)

To ensure the confidentiality of the secret information a, only the masked
openings of g2 and g1 can be shown in verification. V computes the masked

CTA: Confidential Transactions Protocol with State Accumulator 423

Fig. 1. Πacc: Zero-knowledge proofs for lattice-based accumulator.

424 S. Si et al.

openings of g2 by xC2 − B3z, where C2 is the commitment to g2 and z is
the masked opening of the randomness used in the commitment. Note that
(Ĥ − x2q1Ĝ)f = x3q1g + x(xC2 − B3z) + xg1 + xB3d + g0. We observe that
the coefficient of x is transformed into g′

1, as shown in (7). Similarly, the masked
openings of g′

1 can be obtained by xC1 − B2z. Eventually, all the secret infor-
mation in the final verification equation are hidden, so the equation in Verify
is (Ĥ − x2q1Ĝ)f = x3q1g + x(xC2 − B3z) + (xC1 − B2z) + g′

0, where

g′
1 = g1 + B3d and g′

0 = B2d + g0. (7)

Then we check that the element of b is binary, where b = {oi
1‖oi

2}1i=l. Let ◦
denote component-wise product. We have fb ◦ (x − fb) = x2[b ◦ (1− b)] + x[m ◦
(1 − 2b)] − m ◦ m = x2[b ◦ (1 − b)] + xt1 + t0, where

x =
(
x‖x‖ · · · ‖x

)
, t1 = m ◦ (1 − 2b), and t0 = −m ◦ m. (8)

Since C3 is the commitment of t1, the statements that b ◦ (1 − b) = 0 and
‖oi

j‖1 = 1 for all i ∈ [1, l], j ∈ [1, 2] can be transformed into fb ◦ (x − fb) =
xC3 − B4z + t′

0 and
∑log h−1

k=0 f i
j [k] − x = ti,j , respectively, where

t′
0 = −m ◦ m + B4d, and ti,j =

log h−1∑

k=0

mi
j [k]. (9)

Theorem 2. The non-interactive protocol Πacc for lattice-based accumulator is
a zero-knowledge proof of knowledge for the relation R under the Extended-
MLWE assumption and the M-SIS assumption.

The proof is given in Appendix B.

Optimization of Protocol Πacc

Amortized Protocol over All Relations. The verification is a product relation
about the secret messages a and b. The binary proof for b is also a product
proof. Notice that the product proof will result in the garbage polynomials g′

1,
g2 ∈ Rlkα

q and t1 ∈ R2l log h
q . To reduce the size of the garbage polynomials, we

can use amortized protocol [3,20] to linearly combine all the product relations
into one product relation. Eventually, there will only be garbage polynomials of
dimension 2, which act as the coefficients of x2 and x in the verification equation.

Sampling Different Randomness to Mask. The randomness ma is sampled from
a gaussian distribution to mask both vi and wi for all i ∈ [1, l] in Step 1 (1) of
Πacc. Note that the norm of vi differs from that of wi for all i ∈ [1, l]. The secret
message vi with a smaller norm does not necessarily need a larger randomness
which can mask the wi with a larger norm. Larger randomness will lead to higher
communication costs. Hence, we sample different randomness to mask vi and
wi to reduce the size of the corresponding masked opening. We replace ma ←
D

2lα(k+1)d
φ1T1

with mv ← Dlαkd
φ1T1

and mw ← D
lα(k+2)d
φ′
1T ′

1
in Step 1 (1) of Πacc.Prove,

CTA: Confidential Transactions Protocol with State Accumulator 425

where T1 ≤ η
√

lp̂
√

kαd and T ′
1 ≤ η

√
lγ. In Step 2 of Πacc. Prove, f = xa + ma

is replaced with fv = x(vl‖ · · · ‖v1)+mv and fw = x(wl‖ · · · ‖w1)+mw. Mean-
while, Rej(f , x ·a, φ1, T1) = 1 is replaced with Rej(fv, x · (vl‖ · · · ‖v1), φ1, T1) = 1
and Rej(fw, x · (wl‖ · · · ‖w1), φ′

1, T
′
1) = 1. Thus, an honest prover does not abort

with probability at least 1/(2μ(φ1)μ(φ′
1)μ(φ2)μ(φ3)). The check ‖f‖ ≤ Bf =

2φ1T1

√
(k + 1)lαd in Πacc. Verify is replaced with ‖fv‖ ≤ Bv = φ1T1

√
2klαd

and ‖fw‖ ≤ Bw = φ′
1T

′
1

√
2(k + 2)lαd.

Instantiation. For the M-SIS and M-LWE assumption, we follow the method-
ology in [11,22] to offer 128-bit post-quantum security, where the root Hermite
factor δ is around 1.0042. First, set (q, p, d,N, β) = (≈ 264,≈ 243, 128, 220, 1)
where N = hl. To ensure the repetition rate of our protocol to be 32, i.e.,
2μ(φ1)μ(φ′

1)μ(φ2)μ(φ3) = 32, we set μ(φ1) = 3, μ(φ′
1) = 4, μ(φ2) =

√
4/3 and

μ(φ3) =
√

4/3. Using the bimodal gaussian distribution [8,22] and the algorithm
Rej′ in Appendix A.2, we can compute the standard deviations σ1 ≈ 0.675T1,
σ′
1 ≈ 0.6T ′

1, σ2 ≈ 1.32T2, and σ3 ≈ 1.32T3 such that μ(φ′
1) = exp(T

′2
1 /2σ

′2
1) and

μ(φi) = exp(T 2
i /2σ2

i) for all i ∈ [1, 3].
Using upper-bounds for norms of random subgaussian matrices in [24],

we can get s1(R) ≤ s0(
√

kαd +
√

(k + 2)αd) with overwhelming probabil-
ity, where s0 is the parameter of the Gaussian distribution. Then, we have
γ ≤ (h − 1)s1(R)‖v∗‖, where ‖v∗‖ ≤ p̂

√
αdk. We set (α, k) = (16, 4) so that

M-SISα,2(k+1)α,p,βs
is hard, where βs = 2(k + 2)

√
dγ + 2p̂

√
αdk. For clarity,

e = 2 in the description of Πacc in Fig. 1. To reduce the proof size further,
we set e = 5, i.e., bi = oi

1 ⊗ · · · ⊗ oi
5 for all i ∈ [1, l]. So the dimension

of garbage polynomials is 5 and T2 = κ
√

5ld. Then we set (n,m) = (20, 26)
such that the underlying problems, i.e., Extended-MLWEn+5,m−n−5,σ3 and M-
SISn,5l log5 h+m+2(k+1)αl,q,4η(Bv+Bw+Bb+Bz) are hard.3

Now we can evaluate the proof size of Πacc. The size of the commit-
ments (C0, · · · , C3) is (n + 5)d log q bits. For (fv,fw,fb,z), the coefficients of
fv,fw,fb,z are upper-bounded by 6σ1, 6σ′

1, 6σ2 and 6σ3 respectively, with high
probability [21]. Notice that the dimension of oi

j for all j ∈ [1, 5] and i ∈ [1, l]
is log5 h, where h is the dimension of each bi. So the size of (fv,fw,fb,z) is
5l(log5 h)d log (12σ2) + md log (12σ3) + lkαd log (12σ1) + l(k + 2)αd log (12σ′

1)
bits. Hence, the total size of πzk is (n + 5)d log q + 5l(log5 h)d log (12σ2) +
md log (12σ3) + lkαd log (12σ1) + l(k + 2)αd log (12σ′

1) bits.
We note that the main part of the total proof size is lkαd log (12σ1) + l(k +

2)αd log (12σ′
1), which is linear with l, and the size of the public parameters, i.e.,

U , is α2dkh log p bits. Due to l = logh N , smaller l implies shorter proofs but a
larger size of public parameters. We set (h, l) = (210, 2).

To sum up, the proof size of the optimized Πacc is around 225 KB, when the
number of leaves of our accumulator tree is 220. The size of the public parameters,
i.e., the length of U , is 688 MB.

3 More details are shown in the optimization of protocol Πacc in Appendix 3.2.

426 S. Si et al.

4 Confidential Transactions with State Accumulator

In this section, we construct a blockchain-based confidential transactions proto-
col with state accumulator, called CTA, based on Πacc.

4.1 Syntax

The syntax of our CTA is similar to that of RingCT-like protocols, say
MatRiCT [11], where we make slight modifications to allow the state accumula-
tor. In our CTA, the state st consists of the accumulator of all the valid accounts
and a set of serial numbers sn, which are used to prevent double-spending. We
assume that st is properly stored and maintained among all users or nodes of
the blockchain system. The CTA protocol consists of the following tuple of poly-
nomial time algorithms.

– Setup(1λ): on input the security parameter λ, return public parameters pp,
which is an implicit input to all the remaining functions.

– CreateAddr(pp): on input public parameters pp, output a address key pair
(pk, sk).

– SnGen(skold): on input a secret key skold of an input account, output a serial
number sn. The serial number is unique to the input account.

– Mint(amtnew, pknew): on input a output amount amtnew and a output public
key pknew, output a coin cn and its coin key ck. A user runs Mint to generate
a new coin.

– UpdateSt(cn, st): on input a coin cn, register a coin cn to the state st. Output
a coin cn and the updated state st.

– Spend(st,Amtnew,Pknew,Cnold,Amtold,Pkold,Skold,Ckold): Run Mint(Amtnew,
Pknew) and SnGen(Skold) to generate new output coins (Cnnew, Cknew) and
serial numbers Sn, respectively. Generate a proof π of a transaction which
is used to ensure the validity of a transaction. Output (Tx,Cknew) = ((st, π,
Cnnew,Sn),Cknew).

– IfSpend(Sn, st): on input a set Sn of serial numbers and st, if a serial number
which belongs to Sn does not appear in st, output 1. Otherwise, output 0.

– Verify(Tx): on input a transaction Tx, if the proof π is not valid and
IfSpend(Sn, st) = 0, output 0. Else, run (Cnnew, st) ← UpdateSt(Cnnew, st),
and output Cnnew and updated st.

4.2 Security Model

The security requirements of CTA are captured by Completeness, Ledger Indis-
tinguishability and Balance, the definitions of which almost follow that of
MatRiCT [11]. The main modification is Balance, where we need to consider
a new attack scenario, called fake account attack, due to the use of the state
accumulator. The adversary A’s abilities are modeled by the following oracles,
where Orc denotes the set of all oracles defined below together with the random
oracle. In addition, an adversary A cannot only induce honest parties to query
Orc, but can also corrupt some honest parties.

CTA: Confidential Transactions Protocol with State Accumulator 427

– CreateAddr(i): on the i-th query, set (pki, ski) ← CreateAddr(pp) and
sni ← SnGen(ski). Return pki and sni. Insert (pki, ski, sni) to the list T
defined by the structure of an account. The row tags in T are denoted by pk,
sk, sn, cn, ck, amt and IsCrpt, where IsCrpt is set as the “is corrupted” tag.
After inserting, IsCrpt tag is set to zero and the remaining information is left
empty. We can retrieve a row in T by T [pk] for some public key pk. Then,
T [pk].ck corresponds to the coin key associate with the public key pk.

– Mint(amt, pk): run (cn, ck) ← Mint(amt, pk) and return cn.
– ActGen(amt, pk, cn, ck, st): Add (cn, ck, amt) to the list T [pk] respectively.

Run (cn, st) ← UpdateSt (cn, st). Return pk, cn and updated st.
– Corrupt(act): For a act = (pk, cn), if T [pk] or T [cn] cannot be found, output

0; else, set T [pk].IsCrpt to 1, and output T [pk].sk, T [pk].ck and T [pk].amt.
– Spend(st,Amtnew,Pknew,Cnold,Amtold,Pkold,Skold,Ckold): Retrieve from T all

account secret keys corresponding to Cnold. Run (Tx,Cknew) ← Spend(st,
Amtnew,Pknew,Cnold, Amtold,Skold,Ckold) and B ← Verify(Tx). If the verifi-
cation fails, i.e., B = 0, return ⊥; otherwise, run (Cnnew, st) ← UpdateSt
(Cnnew, st), then output Tx and insert the output accounts information in the
list T , respectively.

Completeness requires that unspent coins generated with valid public keys
and amounts honestly, can be spent. Ledger indistinguishability requires that
the ledger reveals no secret information, e.g., the amount of minted coins, the
real payers’ and payees’ addresses, to the adversaries (other than the payers
and payees) beyond the publicly-revealed information, even if the adversary can
adaptively query oracles according to his strategy. The above requirements are
captured by an experiment, denoted as Exp-Anony, where the aim of the adver-
sary A is to distinguish between two Spend output transactions Tx0 and Tx1.

Definition 5. A CTA protocol is ledger indistinguishable if for all PPT adver-
saries A and pp ← Setup(1λ), Pr[A wins Exp-Anony] ≤ 1/2 + negl(λ).

More details of formal definitions of completeness and Exp-Anony refer to
MatRiCT [11].

Balance. This property requires that no PPT adversary can spend a set χ of
accounts under his control such that the sum of output amounts is more than the
sum of the amounts in χ. To capture this property, we describe the experiment
Exp-balance as follows. Given access to all the oracles Orc together with pp, the
adversary A outputs a set of t transactions ((Tx1,Amtnew

1,Cknew
1), · · · , (Txt,

Amtnew
t,Cknew

t)), where Txi = (sti, πi,Cnnew
i,Sni) for all i ∈ [1, t] and (Amtnew

i,
Cknew

i) are sets of output amounts and coin keys, respectively, for uncorrupted
output public keys with |Amtnew

i| = |Cknewi| ≤ |Pknewi| = |Cnnewi| for all i ∈
[1, t]. We say A wins Exp-balance if the following holds.

(1) Bi �= 0 for all i ∈ [1, t], where Bi ← Verify(Txi).

428 S. Si et al.

(2) all input public keys and coins in (Cnoldi,Pkold
i) for all i ∈ [1, t], are gener-

ated by CreateAddr and Mint, respectively.
(3) ∩t

i=1Sni = ∅.
(4) for S′ = |Amtnew

j∗
| and M = |Snj∗

|, there exists a j∗ ∈ [1, t] such that
∑S′−1

i=0 Amtnew
j∗

[i] >
∑M−1

i=0 amtold,i, where for all si ∈ Snj∗
, if si ∈ T

and T [si].IsCrpt = 1, amtin,i = T [si].amt, which corresponds to the attack
scenario Unbalanced amounts. In this case, the attacker creates a valid
transaction where the sum of input amounts being spent is not equal to the
sum of output amounts to make a profit.
Otherwise, amtin,i = 0, which corresponds to the attack scenarios Double
spending, Forgery and Fake accounts. The details of the above attack
scenarios refer to MatRiCT [11].

(5) for any i ∈ [1, t] and 0 ≤ j < |Pknewi|, set pki,j = Pknew
i[j] and if

T [pki,j].IsCrpt = 0, then Cknew
i[j] = T [pki,j].ck, Amtnew

i[j] = T [pki,j].amt

and Cnnew
i[j] = Mint (Amtnew

i[j],Cknewi[j]).

Definition 6. A CTA protocol is balanced if for all PPT adversaries A and
pp ← Setup(1λ), Pr[A wins Exp-Balance] ≤ negl(λ).

We add a new attack scenario, called “Fake accounts”, to the balance model.
Note that all users of CTA only need to store the “compressed” state st, instead
of the complete transaction records which contains the information of all valid
accounts. It is possible that the adversary may try to create a transaction by
some fake accounts which are not registered. MatRiCT [11] does not consider
such an attack assuming that all input accounts are generated by ActGen oracle,
i.e., all of them are registered in T , while ours removes this assumption.

4.3 Construction of CTA

Without loss of generality, we show the construction of CTA for the
case of one payer for clarity. In Setup, the commitment keys ck =
(H0,H1, {Gi}2i=0, {Bi}4i=0) are generated by H0(seed). CreateAddr gener-
ates a public-secret key pair. The secret key sk is a random vector over Rq

with infinity norm β, and the public key pk is a commitment to zero. Set
pk = H0 · sk ∈ Rn̂

q where sk ← {−β, · · · , β}m̂d. SnGen generates a serial num-
ber sn for a given secret key to prevent double-spending, where sn = H1 ·sk ∈ Rq.
Mint denotes that a payer mints the output coin cn, which is a commit-
ment to the output amount amtnew and the output public key pknew. Set
cn = (Cr‖Ca‖Cp) = (G0 · k‖G1 · k + amtnew‖G2 · k + pknew) ∈ R2n̂+1

q , where
k ← {−β, · · · , β}m̂d.

The details of Spend which spends the old coin and mints new coins, and
Verify which checks the validity of the transaction, are described in Fig. 2.
When spending, the following NP statement for the underlying zero-knowledge
proofs π is provided: Given the accumulator u, serial number sn, and out-
put coins {cnnew,i}S−1

i=0 , I know cnold and the corresponding account secret key
(skold, ckold, amtold) such that:

CTA: Confidential Transactions Protocol with State Accumulator 429

(s1) Every output coin cnnew,i is well-formed with a coin key rnew,i, a positive
amount amtnew,i and a public key pknew,i: it holds that cnnew,i = (Cr,i‖Ca,i‖
Cp,i) = (G0 · rnew,i‖G1 · rnew,i + amtnew,i‖G2 · rnew,i + pknew,i).

(s2) The serial number is computed correctly and never appears in the
blockchain before: it holds that sn = H1 · skold.

(s3) The spent coin belongs to some valid account: there exists a witness which
can prove that cnold has been accumulated into u, which is realized by our
zero-knowledge accumulator.

(s4) cnold is well-formed with the coin key ckold, the positive amount amtold
and the public key pkold: it holds that cnold = (G0 · ckold‖G1 · ckold +
∑S−1

i=0 amtnew,i‖G2 · ckold + H0 · skold).

We omit the details for the range proof of the output amounts, which can be
referred to the previous works [1,20].

Security Analysis. The completeness of CTA mainly follows from the com-
pleteness of the underlying ZKP.

Theorem 3. CTA is ledger indistinguishable. More specifically, for any PPT
adversary A, the probability εAnoA that A wins Exp-Anony is at most AdvLWE

A +
AdvLWE1

A + S · AdvLWE2
A +

∑4
i=1 ε(μ(φi)) + 1/2, where ε(μ(φi)) ≤ 2−100/μ(φi)

and μ(φi) for i = [1, 4] is defined in Appendix A.2, and AdvLWE
A , AdvLWE1

A and
AdvLWE2

A denote the advantage of A over solving Extend M-LWE1,m̂−1,σ4 , Extend
M-LWEn+5,m−n−5,σ3 and Extend M-LWE2n̂+1,m̂−2n̂−1,σ4 , respectively.

Theorem 4. CTA is balance, assuming the underlying zero-knowledge proof is
sound.

Lemma 2. The underlying zero-knowledge proof of CTA is computational spe-
cial sound under the M-SIS assumption.

The proofs of Theorem 3, Theorem 4, and Lemma 2 are given in Appendix C, E
and D, respecitively.

Transaction Size. We set the repetition rate of our CTA to be 64, i.e., 2
∏4

i=1

μ(φi) = 64. Thus we get μ(φ4) = 2. Similarly, using the algorithm Rej′ in
Appendix A.2, we can compute the standard deviations σ4 ≈ 0.72T4 such that
μ(φi) = exp(T 2

4 /2σ2
4). For 32-bit range, the size of range proof for the output

amounts is approximately 5.9 KB when using the method in [3]. When M = 1
and S = 2, other than πzk, the payer need to send ({zi}S−1

i=0 ,zsk,zk), the size
of which is (S + 2)m̂d log (12σ4) bits. We set the parameters (n̂, m̂) = (5, 12)
such that the underlying problems, i.e., Extended-MLWEm̂−2n̂−1,2n̂+1,σ4 and
M-SISn̂,m̂,8ηB , are hard.4 Thus the proof size of our CTA is around 236 KB in
the case of 1 input and 2 output accounts with anonymity set size 220.

4 The details are shown in the proof of Lemma 2 in Appendix D.

430 S. Si et al.

Fig. 2. Spend and Verify of CTA.

CTA: Confidential Transactions Protocol with State Accumulator 431

5 Conclusions

The proposed lattice-based protocol CTA relies on the state accumulator, which
follows from the blueprint of Zerocash. We consider a stronger security model
than that of previous RingCT-like protocols, by identifying a new attack sce-
nario, called “fake accounts” attack. If users have the complete records of trans-
actions, which is the case in Ring-CT like protocols, it is not necessary to consider
this attack. In our CTA, the validity of accounts is implied by the validity check
of the compressed state. Our technical novelty lies in the concise zero-knowledge
proofs for lattice-based accumulator, which enables optimized decomposition of
hashes in the internal nodes and concise expression of the membership statement.
Compared with state-of-the-art zero-knowledge lattice-based accumulators, the
proposed protocol achieves better performance at 128-bit post-quantum security,
i.e. the membership proof is only 225 KB with 220 members. Compared with pre-
vious lattice-based protocols with linear storage space and computational time,
CTA can achieve logarithmic storage space and computational time.

Acknowledgments. Puwen Wei was supported by National Key R&D Program of
China (Grant No. 2022YFB2701700, 2018YFA0704702) and Shandong Provincial Nat-
ural Science Foundation (Grant No. ZR2020MF053). Shumin Si was supported by
Shandong Key Research and Development Program (2020ZLYS09) and the Major Sci-
entific and Technological Innovation Project of Shandong, China (2019JZZY010133).
Xiuhan Lin was supported by the National Key Research and Development Program
of China (2020YFA0309705,2018YFA0704701); and the Major Program of Guangdong
Basic and Applied Research (2019B030302008).

A More on Preliminaries

A.1 Challenge Space

Let q = q1q2 be a product of two odd primes where q1 < q2. Suppose each
qi splits into g prime ideals of degree d/g in Rq. That is, Xd + 1 can factor
into g irreducible polynomials of degree d/g modulo q. Assuming Zq contains
a primitive 2g-th root of unity ζi ∈ Zq and qi ≡ 2g + 1 (mod 4g), we have
Xd + 1 ≡

∏
j∈Zg

(Xd/g − ζ2j+1
i) mod qi where ζ2j+1

i (j ∈ Zg) ranges over all
the g primitive 2g-th roots of unity. The ring R has a group of automorphisms
Aut(Rq) which is isomorphic to Z×

2d. Let σi ∈ Aut(Rq) be defined by σi(X) = Xi,
which is applied to the challenge set [18]. The challenge space C is defined as
C = {c ∈ Sσ

κ :
√

‖σ−1(c)c‖1 ≤ η}, where Sσ
κ = {c ∈ Rq : ‖c‖∞ ≤ κ ∧ σ(c) = c}.

We can compute ‖cr‖ ≤ η‖r‖ when c ∈ C and r ∈ Rn
q . [18] shows that the

difference of any two distinct elements of C is invertible over Rq if κ < 1
2
√

g q
1/g
1 .

The concrete parameters proposed in [18] satisfy that for d = 128, g = 4, κ =
2, η = 73, q1 > 220 and a automorphisms σ−1, |C| = 2147 and the invertibility
property of the challenge space holds.

432 S. Si et al.

A.2 Rejection Sampling

During the zero-knowledge proofs, the prover computes z = y + cr where r is
the secret vector, c ← C is a challenge polynomial, and y is a masking vector.
The distribution of the prover’s output z should be independent of the secret
randomness vector r, so that any information on the prover’s secret cannot be
obtained from z. To remove the dependency of z on r, we use the rejection sam-
pling technique by Lyubashevsky [17]. In order to reduce the standard deviation
σ, recent work [21] modifies rejection sampling algorithm to force 〈z,v〉5 ≥ 0 in
Algorithm 2, which leaks one bit of information about the secret. We need to
rely on the Extended-MLWE problem as analysed in [22] to show the advantage
of distinguishability with the revealed one bit information.

Algorithm 1 Rej(z,v, φ, T) Algorithm 2 Rej’(z,v, φ, T)
μ ← [0, 1); μ ← [0, 1);
σ = φT ;μ(φ) = e12/φ+1/(2φ2); if 〈z,v〉 ≤ 0, return 0;
if μ > (1

μ(φ))exp(
−2〈z ,v〉+‖v‖2

2σ2), σ = φT ;μ(φ) = e12/φ+1/(2φ2);

return 0; if μ > (1
μ(φ))exp(

−2〈z ,v〉+‖v‖2

2σ2),
else return 1. return 0;

else return 1.

B Proof for Theorem 2

Proof. Completeness: Completeness follows directly from the discussion in
Sect. 3.2. Following [4] [Lemma 1.5(i)], with overwhelming probability, we have
‖f‖ ≤ 2φ1T1

√
(k + 1)lαd, ‖fb‖ ≤ φ2T2

√
2ld log h and ‖z‖ ≤ φ3T3

√
2md.

Zero-Knowledge: Firstly, randomly choose the challenges x ∈ C. (Note that,
in the random oracle model, the hash function H is modeled as a random ora-
cle, which can be programmed by the simulator.) Compute (C0‖C1‖ · · · ‖C3) =
(B1‖B2‖ · · · ‖B4)·r′ by r′ ← {−β, · · · , β}md, i.e., the message committed in this
commitment is 0. This commitment is computationally indistinguishable from
the real case due to the computationally hiding property of the underlying com-
mitment schemes, which are based on the Extended-MLWEm−n−v,n,σ3 assump-
tion. Here v denotes the height of commitments (C1‖C2‖C3), i.e., it is the dimen-
sion of the committed messages of (C1‖C2‖C3). Then, generate f ← D

2lα(k+1)d
φ1T1

,
z ← Dmd

φ2T2
and also fb ← D2ld log h

φ1T1
, which are computationally indistinguish-

able from that of the real execution due to the reject sampling technique. At
last, compute D′, g′′

0 , t′′
0 and {t′

i,1, t
′
i,2}l−1

i=0 as Step 1 of Πacc.Verify. Therefore,
D′, g′′

0 , t′′
0 and {t′

i,1, t
′
i,2}l−1

i=0 are computationally indistinguishable from D, g′
0,

t′
0 and {ti,1, ti,2}l−1

i=0 of the real case. Thus we can obtain non-interactive Πacc

which is zero-knowledge through Fiat-Shamir transform [13].
5 Here, the inner product is over Z, i.e.〈z, v〉 = 〈z′, v′〉 where vectors z′, v′ are poly-

nomial coefficients of z and v respectively.

CTA: Confidential Transactions Protocol with State Accumulator 433

Soundness: The proof of soundess follows the idea of [2]. Define the matrix H,
where the rows are indexed by all possible random tapes ξ ∈ {0, 1}∗ and columns
of H are indexed by all possible values for different challenge x. Let H[ξ][x] = 1
be the entry corresponding to randomness ξ and challenge x ∈ C. Obviously, an
extractor can check values of each entry in H in time at most T .

The extractor E is constructed as follows: Run P∗ on random tape ξ ← {0, 1}∗

and challenge x until it succeeds, which means H[ξ][x] = 1. Then, run P∗ on ξ
and new challenges x′, x′′ until H[ξ][x′] = H[ξ][x′′] = 1. The expected time of
E is at most 3T and E extracts three valid transcripts with probability at least
ε − 2/|C|, where the success probability of the protocol is ε.

Considering the following two accepting protocol transcripts with x �= x′,
t =

(
(C0‖C1‖C2‖C3);x;f ;fb;z

)
, t′ =

(
(C0‖C1‖C2‖C3);x′;f ′;f ′

b;z
′). With the

following verification equation

xC0 + D′ = B1z + B0(f‖fb) (10)
x′C0 + D′ = B1z

′ + B0(f ′‖f ′
b), (11)

we have (x − x′) · C0 = B1 · (z − z′) + B0

(
(f‖fb) − (f ′‖f ′

b)
)
. So we extract

the openings (a∗, b∗, r∗
a) of C0, where a∗ = x̄−1(f − f ′), b∗ = x̄−1(fb − f ′

b),
r∗

a = x̄−1(z − z′) and x̄ := x − x′.
Subtracting x·(11) from x′·(10), we get (x − x′) · D′ = B0 · (x′z − xz′) +

B1(x′f −xf ′‖x′fb −xf ′
b). Thus, we can extract the openings (m∗

a,m∗,d∗) of D′

such that f = xa∗ +m∗
a and fb = xb∗ +m∗ hold, where m∗

a = x̄−1(xf ′ −x′f),
m∗ = x̄−1(xf ′

b − x′fb) and d∗ = x̄−1(xz′ − x′z).
Consider an arbitrary accepting transcript with different challenge x′′ �= x′ �=

x and response f ′′, f ′′
b and z′′. Define x̂ = x − x′′, a+ = x̂−1(f − f ′′), b+ =

x̂−1(fb − f ′′
b) and r+

a = x̂−1(z − z′′). We claim that a+ = a∗, b+ = b∗ and
r+

a = r∗
a. Indeed, due to the opening equations of C0, we have B0x̄x̂(a∗ −

a+‖b∗ − b+) + B1x̄x̂(r∗
a − r+

a) = 0.
Since ‖x̄x̂(a∗ − a+, b∗ − b+, r∗

a − r+
a)‖ ≤ 8η(Bf + Bb + Bz) based on the

challenge space in Appendix A.1, we have a+ = a∗, b+ = b∗ and r+
a = r∗

a

unless we find a M-SIS8η(Bf+Bb+Bz) solution for [B0‖B1]. Set b∗ = {o∗i
1 ‖o∗i

2 }1i=l

and o∗i
1 ⊗ o∗i

2 = (b∗
i,0, · · · , b∗

i,h−1) for all i ∈ [1, l]. The verification equation
of Πacc.Verify can be rewritten with f = xa∗ + m∗

a and fb = xb∗ + m∗ as
follows, (Ĥ − x2q1Ĝ)f = x3q1(H − Ĝ)a∗ − x2QuaT − xPrimT − ConsT, where
the coefficient QuaT, PrimT and ConsT are independent from x. Recall Step 1
in Πacc.Verify, the following equation holds (Ĥ − x2q1Ĝ)f = x3q1g + x(xC2 −
B3z) + (xC1 − B2z) − g′′

0 .
The coefficient of x3 in the above verification equation is q1g which is inde-

pendent from x, so we have q1(H − Ĝ)a∗ = q1g. Similarly, we compute that
fb ◦ (x − fb) = (xb∗ + m∗) ◦ [x(1 − b∗) − m∗] = x2b∗ ◦ (1 − b∗) + xP + T.
In verification, fb ◦ (x − fb) = (xC3 − B4z) − t′′

0 holds, where the coefficient
of x2 is 0. Thus we get that b∗ ◦ (1 − b∗) = 0. For all i ∈ [1, l] and j ∈ [1, 2],
∑log h

k=0 f i
j [k] can be computed as x

∑log h
k=0 o∗i

j [k] + T′. Through the verification
equation t′

i,j =
∑hi

k=0 f i
j [k] − x in Step 1 in Πacc.Verify, we obtain that the

coefficient of x is equal to
∑log h

k=0 o∗i
j [k], i.e.,

∑log h
k=0 o∗i

j [k] = 1 holds.

434 S. Si et al.

C Proof of Theorem 3

Proof. Consider the following games. εGamei
A denotes the probability that A wins

Gamei. Game0: This is identical to the game Exp-Anony.
Game1: same as Game0 except that the challenger simulates the responses

where the reject sampling is applied. In Algorithm Spend-II, it replaces f with
random samples from D

2lα(k+1)d
φ1T1

, fb with random samples from D2ld log h
φ2T2

, z with
random samples from Dmd

φ3T3
and zS−1

i=0 ,zsk,zk with random samples from Dm̂d
φ4T4

.
This game is statistically indistinguishable from the previous game Game0 due
to rejection sampling. Thus |εGame0

A − εGame1
A | ≤

∑4
i=1 ε(φi).

Game2: same as Game1 except that the challenger replaces the serial number
sn by uniformly random elements in Rq. This game is computationally indistin-
guishable from Game1 by Extended M-LWE1,m̂−1,σ4 assumption. We get that
|εGame2

A − εGame1
A | ≤ AdvLWE

A .
Game3: same as Game2 except that the challenger replaces the commit-

ment (C0‖C1‖ · · · ‖C3) by uniformly random elements in Rn+5
q . Considering

the instantiation of Πacc, the eventual dimension of the commitment is n + 5.
This game is computationally indistinguishable from Game2 by Extended M-
LWEn+5,m−n−5,σ3 assumption. Thus |εGame3

A − εGame2
A | ≤ AdvLWE1

A .
Game4: same as Game3 except that the challenger replaces each output coin

cnnew,i by uniformly random elements in R2n̂+1
q , for all i ∈ [S]. This game is com-

putationally indistinguishable from Game3 by Extended M-LWE2n̂+1,m̂−2n̂−1,σ4

assumption. Thus |εGame3
A − εGame2

A | ≤ S · AdvLWE4
A . Thus, we can get εGame0

A −
εGame4
A ≤ AdvLWE

A + AdvLWE1
A + S · AdvLWE2

A +
∑4

i=1 ε(μ(φi)).
Note that the output of Algorithm Spend in Game4 is independent of Actnew,

Actold and Amtold, and thus independent of b. Hence A has probability 1/2 of
outputting b = b′ in Game4. Finally, the probability εGame0

A that A wins Game0
is εGame0

A ≤ 1/2 + AdvLWE
A + AdvLWE1

A + S · AdvLWE2
A +

∑4
i=1 ε(μ(φi)).

D Proof for Lemma 2

Proof. With the same strategy as the soundness proof of Theorem 2, E
can get the following two accepting protocol transcripts with two distinct
challenges x1, x2, t = (st, x1,zsk, {zi}S−1

i=0 ,zk; cnnew,0, · · · , cnnew,S−1, sn), t′ =
(st, x2,z

′
sk, {z′

i}S−1
i=0 ,z′

k; cnnew,0, · · · , cnnew,S−1, sn).
For all i ∈ [S] and cnnew,i = (Cr,i‖Ca,i‖Cp,i), we get the following equations,

E′
i = G0 · zi − x1Cr,i, E

′
i = G0 · z′

i − x2Cr,i. Subtracting one from the other,
we get valid “unique” opening r∗

i = x̄−1(z′
i − zi) of Cr,i where x̄−1 = x1 − x2,

unless one can immediately compute a Module-SIS solution for G0 of length at
most 8ηB. From the verification equation, the following holds fi = x1Ca,i −
G1 · zi,f

′
i = x2Ca,i − G1 · z′

i. Subtracting one from the other, we get fi − f ′
i =

x̄Ca,i − G1(z′
i − zi) ⇒ x̄−1(fi − f ′

i) = Ca,i − G1r
∗
i .

Let a∗
i = x̄−1(fi − f ′

i). There can only be a “unique” opening (a∗
i , r

∗
i) for

Ca,i such that Ca,i = G1r
∗
i +a∗

i . As the same way, there can only be a “unique”

CTA: Confidential Transactions Protocol with State Accumulator 435

opening (p∗
i , r

∗
i) for Cp,i such that Cp,i = G2r

∗
i +p∗

i , where p∗
i = Cp,i − x̄−1G2 ·

(z′
i −zi). Thus we get the “unique” opening (a∗

i ,p
∗
i ; r

∗
i) of the output coin cnout,i

such that cnout,i = (G0 · r∗‖G1 · r∗ + a∗‖G2 · r∗ + p∗).
We can also get the following verification equations C ′

m = (G0 ·zk‖G1 ·zk +
∑S−1

i=0 fi‖G2 · zk + H0 · zsk) − Gfl, C
′
m = (G0 · z′

k‖G1 · z′
k +

∑S−1
i=0 f ′

i‖G2 ·
z′

k + H0 · z′
sk) − Gf ′

l . Due to the soundness proof of Πacc, fl and f ′
l can be

denoted by fl = x1v
∗
l + c∗

l , and f ′
l = x2v

∗
l + c∗

l . Subtracting one from the
other, let k∗ = x̄−1(z′

k − zk) and s∗ = x̄−1(z′
sk − zsk), thus we can get that

(G0 · k∗‖G1 · k∗ +
∑S−1

i=0 a∗
i ‖G2 · k∗ + H0 · s∗) = G · v∗

l .
That is, the “unique” leaf node v∗

l in Πacc are equal to the well-formed input
coin with the opening k∗, s∗ and

∑S−1
i=0 a∗

i . The opening k∗ is “unique” unless
one can immediately compute a Module-SIS solution for G0 of length at most
8ηB. Then we can infer the “uniqueness” of the opening s∗ can be guaranteed
unless one can compute a Module-SIS solution for H0 of length at most 8ηB.

Subtracting the verification equation from the other, F ′ = H1·zsk−x·sn, F ′ =
H1 ·z′

sk −x · sn. We get that sn = H1 · x̄−1(z′
sk −zsk). Thus the opening of serial

number sn is also s∗.

E Proof of Theorem 4

Proof. – Unbalanced amounts: Let Eunb denote the event that A wins the
game Exp-balance. Note that Eunb occurs when A outputs t transactions {Txj ,
Amtnew

j ,Cknew
j}t−1

j=0 which satisfy:

• there exists j∗ ∈ [t], such that
∑S−1

i=0 Amtnew
j∗

[i] > amtj
∗

old where S =
|Amtnew

j∗
| and T [sn].IsCrpt = 1.

• Verify(Txj) �= 0 for all j ∈ [t].
• all input public keys and coins in (cnoldj , pkold

j) for all j ∈ [t] are gen-
erated by CreateAddr and Mint, respectively, and all accounts in
(cnoldj , pkold

j) are generated by ActGen.
If Eunb happens with non-negligible probability, we can construct an efficient
algorithm E to break the MSIS problem. E simulates Exp-balance for A as
follows.
(1) E runs pp ← Setup(1λ), randomly picks index j∗ ∈ [t] to guess that

Eunb occurs in the j∗-th transaction.
(2) When A makes queries for Orc, E responds by maintaining a list T

which is initially empty.
∗ CreateAddr(i): on the i-th query, E runs (pki, ski) ← Create-
Addr(pp), sni ← SnGen(ski) and returns (pki, sni) to A. Insert
(pki, ski, sni) to the list T where IsCrpt tag is set to zero and the
remaining information is left empty.
∗ Mint(amt, pk): E runs (cn, ck) ← Mint(amt, pk) and returns cn.
ActGen(amt, pk, cn, ck, st): For pk, add (cn, ck, amt) to the list T [pk]
respectively and run (cn, st) ← UpdateSt(cn, st). Return (pk, cn)
and updated st.

436 S. Si et al.

∗ Corrupt(act): For a act = (pk, cn), if T [pk] or T [cn] cannot be found,
indicating failure, return 0; else, update T [pk].IsCrpt to 1, and output
T [pk].sk, T [pk].ck and T [pk].amt.
∗ Spend(st,Amtnew,Pknew,Cnold,Amtold,Pkold, Skold,Ckold): Retrieve
from T all account secret keys associated to Cnold. Run (Tx,Cknew) ←
Spend (st,Amtnew,Pknew,Cnold,Amtold,Skold, Ckold) and B ← Verify
(Tx). If the verification fails, i.e., B = 0, return ⊥; otherwise, run
(Cnnew, st) ← UpdateSt (Cnnew, st), then output Tx and insert the
output accounts information in the list T , respectively.

By the rewinding technique, E runs A until Eunb occurs twice with the dis-
tinct challenges, the same instances and witnesses, and the index j∗ is the
same. Hence, E gets two accepting transcripts of CTA protocol with distinct
challenges. Based on the soundness proof of the underlying ZKP in CTA, E
can recover an opening (ai, ri,pi) for the Cnnew

j∗
[i] such that Cnnew

j∗
[i] =

(G0‖G1‖G2) · ri + (0n̂‖ai‖pi) for all i ∈ [S] and
∑S−1

i=0 ai = amtj
∗

old. Due to
∑S−1

i=0 Amtnew
j∗

[i] ≥ amtj
∗

old, there exists at least one of the corrupted output
coins such that Amtnew

j∗
[i] �= ai. That implies that there exists r′ �= ri and

p′ such that Cnnew
j∗

[i] = (G0‖G1‖G2) · r′ + (0n̂‖Amtnew
j∗

[i]‖p′). This gives
a solution (r′ − ri) for M-SIS problem under the matrix G0, which yields a
contradiction with the M-SISn̂,m̂,q,8ηB assumption.

– Double spending: Let E2sp denote the event that A wins the game Exp-
balance. E2sp means that when A outputs t transactions {Txj}t−1

j=0, there exists
j∗ ∈ [t], such that snj∗

/∈ T , where
• Verify(Txj) �= 0 for all j ∈ [t].
• all input public keys and coins in (cnoldj , pkold

j) for all j ∈ [t] are gen-
erated by CreateAddr and Mint, respectively, and all accounts in
(cnoldj , pkold

j) are generated by ActGen.
If E2sp happens with non-negligible probability, we can construct an efficient
algorithm E to break the M-SIS assumption. The way that E simulates Exp-
balance for A is just like that of Eunb. By the rewinding technique, E runs A
with distinct challenges, the same instances x and witnesses w, and the same
index j∗.
For the j∗-th transaction output by A, E recovers an opening s of snj∗

such
that snj∗

= H1 ·s, pkold = H0 ·s and T [pkold].sn �= snj∗
. So, there exists some

s′ �= s such that T [pkold].sn = H1 ·s′ and pkold = H0 ·s′. This gives a solution
(s′ − s) for M-SIS problem under the matrix H0, which yield a contradiction
with the M-SISn̂,m̂,q,8ηB assumption.

– Forgery: Let Eforge denote the event that A wins the game Exp-balance. Eforge

occurs when A outputs t transactions {Txj}t−1
j=0, there exists j∗ ∈ [t], such

that snj∗ ∈ T and T [snj∗
].IsCrpt = 0, where

• 0 �= Verify(Txj) for all j ∈ [t].
• all input public keys and coins in (cnoldj , pkold

j) for all j ∈ [t], are
generated by CreateAddr and Mint, respectively, and all accounts in
(cnoldj , pkold

j) are generated by ActGen.

CTA: Confidential Transactions Protocol with State Accumulator 437

Let Q be the number of CreateAddr queries that A makes. E picks a ∈ [Q],
then return pka = H0s + (1‖0‖ · · · ‖0) for the a-th query from A to Cre-
ateAddr oracle, where s ∈ {−β, · · · , β}m̂d. Note that the attacker’s view
in this modified game is computationally indistinguishable from its view in
the original attack by the hiding property of commitment pka, i.e., the M-
LWEn̂,m̂−n̂,q,β assumption. E simulates the Exp-balance until Eforge occurs
twice by the rewinding technique with the distinct challenges, the same
instances x and witnesses w, and the indices j∗ and a are the same.
By the soundness of the underlying ZKP, E recovers an opening sk such that
pka = H0 · sk. This also gives a solution

(
(sk − s)‖ − (1‖0‖ · · · ‖0)

)
for M-

SIS problem under the matrix [H0‖In̂], which yield a contradiction with the
M-SISn̂,m̂+n̂,q,8ηB assumption.

– Fake accounts: Let Efake be the event that A wins the game Exp-balance.
Efake occurs when A outputs t transactions {Txj}t−1

j=0, there exists j∗ ∈ [t],
such that snj

∗
/∈ T where

• 0 �= Verify(Txj) for all j ∈ [t].
• all input public keys and coins in (cnoldj , pkold

j) for all j ∈ [t], are gener-
ated by CreateAddr and Mint, respectively.

• cnin
j∗

is not the output by the ActGen oracle.
E simulates the Exp-balanced until Efake occurs twice by the rewinding tech-
nique with distinct challenges, the same instances x and witnesses w, and the
same index j∗. Retrieving all the T [cn] to form the set V . Therefore, for the
j∗-th transaction output by A, E recovers an opening cnj∗

such that cnj∗
/∈ V

and Acc.Acc(V) = u0 ∈ st. This yields a contradiction with the security of
the accumulator schemes Acc by returning (cnj∗

,u0, V).

References

1. Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical applica-
tion to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 513–543. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1 18

2. Attema, T., Cramer, R., Kohl, L.: A compressed Σ-protocol theory for lattices.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 549–579.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1 19

3. Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice com-
mitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12171, pp. 470–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56880-1 17

4. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296(1), 625–635 (1993)

5. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

6. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: SP 2014, pp. 459–474. IEEE (2014)

https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20

438 S. Si et al.

7. Cheon, J.H., Kim, D., Lee, K.: MHz2k: MPC from HE over Z2k with new packing,
simpler reshare, and better ZKP. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021.
LNCS, vol. 12826, pp. 426–456. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84245-1 15

8. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

9. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new
techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64834-3 9

10. Esgin, M.F., Steinfeld, R., Zhao, R.K.: Matrict+: more efficient post-quantum pri-
vate blockchain payments. In: SP 2022, pp. 1281–1298. IEEE (2022)

11. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: efficient,
scalable and post-quantum blockchain confidential transactions protocol. In: CCS
2019, pp. 567–584. ACM (2019)

12. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: a new design for anony-
mous cryptocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019.
LNCS, vol. 11921, pp. 649–678. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34578-5 23

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206. Association for Com-
puting Machinery, New York (2008)

15. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-014-
9938-4

16. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

17. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

18. Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Lattice-based zero-knowledge
proofs and applications: shorter, simpler, and more general. In: Dodis, Y., Shrimp-
ton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 71–101. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-15979-4 3

19. Lyubashevsky, V., Nguyen, N.K., Plancon, M., Seiler, G.: Shorter lattice-based
group signatures via “almost free” encryption and other optimizations. In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 218–
248. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 8

20. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Practical lattice-based zero-knowledge
proofs for integer relations. In: CCS 2020, pp. 1051–1070. ACM (2020)

21. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge
proofs via one-time commitments. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol.

https://doi.org/10.1007/978-3-030-84245-1_15
https://doi.org/10.1007/978-3-030-84245-1_15
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/978-3-030-92068-5_8

CTA: Confidential Transactions Protocol with State Accumulator 439

12710, pp. 215–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75245-3 9

22. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: SMILE: set membership from ideal lat-
tices with applications to ring signatures and confidential transactions. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 611–640. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84245-1 21

23. Maxwell, G.: Confidential transactions (2015). https://people.xiph.org/$∼greg/
confidential values$.txt

24. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

25. Noether, S.: Ring signature confidential transactions for monero. IACR Cryptology
ePrint Archive 2015:1098 (2015)

26. Peikert, C., Pepin, Z., Sharp, C.: Vector and functional commitments from lat-
tices. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 480–511.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2 16

27. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-84245-1_21
https://people.xiph.org/$~greg/confidential_values$.txt
https://people.xiph.org/$~greg/confidential_values$.txt
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-030-90456-2_16
https://doi.org/10.1007/978-3-030-26948-7_6

MPC and Secret Sharing

A Plug-n-Play Framework for Scaling
Private Set Intersection to Billion-Sized

Sets

Saikrishna Badrinarayanan1, Ranjit Kumaresan2, Mihai Christodorescu3,
Vinjith Nagaraja2, Karan Patel2, Srinivasan Raghuraman2,4(B), Peter Rindal2,

Wei Sun5, and Minghua Xu2

1 LinkedIn, Sunnyvale, USA
2 Visa Research, Foster City, USA

srini131293@gmail.com
3 Google, Mountain View, USA

4 MIT, Cambridge, USA
5 The University of Texas at Austin, Austin, USA

Abstract. Motivated by the recent advances in practical secure com-
putation, we design and implement a framework for scaling solutions for
the problem of private set intersection (PSI) into the realm of big data.
A protocol for PSI enables two parties each holding a set of elements to
jointly compute the intersection of these sets without revealing the ele-
ments that are not in the intersection. Following a long line of research,
recent protocols for PSI only have ≈5× computation and communication
overhead over an insecure set intersection. However, this performance is
typically demonstrated for set sizes in the order of ten million. In this
work, we aim to scale these protocols to efficiently handle set sizes of one
billion elements or more.

We achieve this via a careful application of a binning approach that
enables parallelizing any arbitrary PSI protocol. Building on this idea,
we designed and implemented a framework which takes a pair of PSI exe-
cutables (i.e., for each of the two parties) that typically works for million-
sized sets, and then scales it to billion-sized sets (and beyond). For exam-
ple, our framework can perform a join of billion-sized sets in 83 min
compared to 2000 min of Pinkas et al. (ACM TPS 2018), an improve-
ment of 25×. Furthermore, we present an end-to-end Spark application
where two enterprises, each possessing private databases, can perform a
restricted class of database join operations (specifically, join operations
with only an on clause which is a conjunction of equality checks involv-
ing attributes from both parties, followed by a where clause which can
be split into conjunctive clauses where each conjunction is a function of
a single table) without revealing any data that is not part of the output.

Keywords: Spark · Private Set Intersection · Plug-n-Play Framework

This work was done while all authors were at Visa Research.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 443–467, 2023.
https://doi.org/10.1007/978-981-99-7563-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_20&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_20

444 S. Badrinarayanan et al.

1 Introduction

Private set intersection (PSI) enables two parties, each holding a private
set of elements to compute the intersection of the two sets while revealing
nothing more than the intersection itself. PSI is an extremely well-motivated
problem and has found applications in a variety of settings. For instance, PSI
has been used to measure the effectiveness of online advertising [33], private
contact discovery [11,19,53], privacy-preserving location sharing [42], privacy-
preserving ride sharing [26], remote diagnostics [9] and botnet detection [41].
In the last few years, PSI has become truly practical with extremely fast imple-
mentations [13,17,19–21,23,28,29,34–36,43,45–49,51,55,56]. In terms of perfor-
mance, the most computationally efficient PSI protocol [35] can privately com-
pute the intersection of two million size sets in about 4 s. On the other hand,
and for settings where only low bandwidth communication is available, one can
employ the communication-optimal PSI protocol [4] whose communication is
only marginally more than an insecure set intersection protocol. Several recent
works, most notably [10,45,46] have studied the balance between computation
and communication, and even optimize for monetary cost of running PSI proto-
cols in the cloud.

While significant progress has been made in advancing the efficiency of PSI
protocols, almost all documented research in this area has so far focused on
settings with set sizes of at most 224 ≈ 16 million.1 One notable exception is
the work of [58] who demonstrate the feasibility of PSI over billion sized sets
albeit in the non-standard server-aided model where a mutually trusted third
party server aids in the computation. Another notable exception is the recent
work of [50,51] whose implementation on 2 servers each with <16 GB memory
takes 34.2 h to compute the intersection of two billion-element sets. Clearly, this
leaves a lot of room for improvement. This is the gap we aspire to fill in this
paper.

(Issues in) Scaling Existing PSI Protocols. Broadly speaking, memory
consumption is a big problem when implementing cryptographic schemes that
operate on large amounts of data. In fact, many if not all implemented PSI pro-
tocols (e.g., those based on garbled circuits, or bloom filters, or cuckoo hashing)
quickly exceed the main memory, thereby requiring more engineering effort. Even
computing the plaintext intersection for billions of elements becomes a nontrivial
problem. That said, many of the PSI protocols somewhat benefit from thread-
level parallelism (e.g., for preprocessing OTs, generating garbled circuits) and
hardware support (e.g., AES-NI). Some of the steps that do not parallelize well
are those dealing with data structures (such as cuckoo hashing or bloom filters),
however these may be preprocessed since only one party’s input is required.

Concretely, we discuss the implementation of the OT-based PSI protocol
of [51] running on billion-sized sets containing 128-bit elements. The work of [51]
1 This does not necessarily apply to the setting of unbalanced PSI where the set sizes

can be orders of magnitude apart [3,7,11,27,48]. For instance, [14] do unbalanced
PSI with 228 elements on one side and say 1024 elements on the other side.

A Plug-n-Play Framework for Scaling PSI to Billion-Sized Sets 445

makes use of solid state drives in their PSI execution on billion-sized sets. As
documented in [51], the total execution time is 34.2 h.2 In comparison, the (inse-
cure) naive hashing protocol for set intersection required 74 mins, of which 19min
(26%) are for hashing and transferring data and 55min (74%) are for computing
the plaintext intersection.

1.1 Our Contributions

We study the possibility of parallelizing PSI protocols by distributing a party’s
workload into multiple worker nodes running within its premises. Towards this,
we propose a simple technique that can parallelize any PSI protocol in a blackbox
way. Finally, we build a framework to test out the feasibility of our technique
in scaling PSI via Spark in a practical use case involving private database join
operations. Comparing to the work of [51], our protocols for the same setting of
billion-sized sets containing 128-bit elements, we require a total execution time
of 83min in total, a 25× improvement compared to [51]. We explain these in
more detail below.

Techniques to Parallelize PSI. We describe a few approaches at a high level
and analyze their security and generality.

Self-reduction. A natural approach is to reduce an instance of PSI on large
sets to multiple instances of PSI on smaller sets. Some care needs to be taken
to ensure that privacy is still preserved. Specifically, note that PSI protocols
are not guaranteed to hide the size of the input sets. For instance, if the sets
are partitioned based on lexicographic ordering of the elements, then this would
likely result in partitions being of unequal size, and thus either party could learn
how the elements of the other party’s set are distributed. We avoid such issues
by proposing a natural random self-reduction which we refer to as our binning
technique (see Sect. 3 for a formal description). Loosely speaking, our binning
technique proceeds by asking each party to (1) locally randomize its input set
(by applying a random oracle), (2) locally partition the randomized set, say
lexicographically, into smaller sets, (3) locally pad each of these smaller sets
with dummy elements so that they are all of the same size, (4) feed each small
set into an independent PSI instance with the other party, and (5) finally use
each PSI instance’s output to recover the intersection in the original input set.

Important Note. Partitioning elements into bins is a standard technique that
appears several times and in several forms in the PSI literature. For instance,
in [48] such a binning strategy is used to enable a reduction from PSI to private
set membership by partitioning n elements into m bins for m ≈ n. Among other
similar works, the protocols of [35,49] enjoy high efficiency by employing cuckoo
hashing which partitions n elements into m ≈ 1.2n bins. A similar partitioning
2 For a further breakdown of this number, [51] note that 30.0 h (88%) are for sim-

ple hashing (cuckoo hashing runs in parallel and requires 16.3 h), 3 h (9%) are for
computing the OTs, and 1.2 h (4%) are for computing the plaintext intersection.

446 S. Badrinarayanan et al.

approach is also used in the case of unbalanced sets of sizes n0 and n1 with
n0 � n1 and even there (cf. [51]) the set of size n0 is partitioned into ≈2.4n1

bins.
Where our approach differs from prior work is that we perform a self-

reduction (i.e., PSI to itself) with a choice of parameters that differs from prior
works mentioned above. In particular, for large n, we will be partitioning a set
of size n into m bins for n � m (e.g., n = 109 and m = 64).3 While our PSI self-
reduction is very simple and straightforward, to the best of our knowledge, we are
not aware of any prior work documenting or implementing the self-reduction for
the parameters that we employ in this paper. In particular, while the binning
technique that we described above appears (nearly) verbatim in Section 3.1.1
of [51], the corresponding analysis in Section 3.1.2 of [51] focuses on m = n
resulting in n instances of PSI each of size lnn

ln lnn (1 + o(1)) (see Table 3 in [51]
for exact numbers).4 On the other hand, we provide a hybrid approach where
we employ the binning technique (referred to as simple hashing in Section 3.1.1
of [51]) to set up input sets (for independent PSI instances) which are large
enough to enable application of a fast PSI protocol [35] (for independent PSI
instances) that employs cuckoo hashing. To see how this affects performance,
note that in Section 6.2.4 of [51], which details the performance of their best
PSI protocol on billion element sets, the authors note that the cuckoo hashing
step requires 16.3 h. In contrast, applying our binning technique with our choice
of parameters, i.e., m = 64 for n = 109, even serially would likely result in
significant improvements since the best known PSI protocols on instances of size
n/m ≈ 224 use cuckoo hashing and still complete in under 2min [35].

Big Data Frameworks. Another approach to parallelize a PSI protocol Π is
to implement it in a big data framework like Spark which will distribute the
work among many nodes. The downside is the lack of generality, in that each
protocol must be rewritten in Scala to scale it. For instance, there exist efficient
PSI protocols based on a variety of techniques and assumptions. Choice of what
protocol to implement may also depend on the setting (e.g., client-server), set
sizes (balanced or unbalanced), network bandwidth, or whether the PSI output
needs to be kept secret-shared in order to pipeline it into other MPC protocols.
Also, recent PSI protocols rely on data structures such as cuckoo hashing whose
efficient scaling may be nontrivial [61] and may depend on the underlying big
data framework.

In this paper, we show how our binning technique allows us to leverage a
big data framework like Spark in a protocol agnostic way. The high level idea
is to express (PSI) protocols in terms of its round functions aka next message
functions.5 These round functions are to be executed by a designated party at

3 Using m ≈ n in our self-reduction would incur an unacceptable overhead due to
padding. Please see Sect. 3.1 on how to choose the optimum value of m.

4 In that Section, they also analyze the choice of m for PSI with unbalanced sets.
5 This is a standard technique to capture protocols in cryptography, for example while

designing zero-knowledge compilers that transform a semi-honest secure protocol
into a maliciously secure protocol.

A Plug-n-Play Framework for Scaling PSI to Billion-Sized Sets 447

a particular round to determine the next message that needs to be sent by that
party. More concretely, a round function takes as input the current state of the
protocol, and the inputs and randomness of the designated party, and outputs
the next message that the designated party sends to the other party.6 Expressing
PSI protocols in this way, allows a protocol agnostic7 way of orchestrating on
each Spark cluster. Please see Section 5 for specific implementation of KKRT
protocol [35]. Furthermore, such an orchestration does not require reconfiguring
the clusters or modifying the internals of Spark (c.f. unlike [65]).

Private Database Joins. Building on our techniques to parallelize PSI pro-
tocols, we describe how to implement an end-to-end private database join appli-
cation. We consider a setting where two enterprises wish to perform a data
exchange. That is, each of these two parties have databases storing sensitive
information, and they wish to enrich their data based on information from the
database tables of the other party. More concretely, the operation they wish to
perform can be expressed succinctly as a join operation (inner, outer, left, or
right) which specifies the attributes that need to be matched, and additional
attributes that need to be fetched on the matched rows. A necessary privacy
requirement in this setting is that either enterprise wishes to not reveal any
information other than what is revealed by the output of the join operation.

Since enterprises often have (access to) dedicated clusters supporting their
big data frameworks, an import design goal is to leverage these frameworks to (1)
increase the efficiency of the join operation, and also to (2) integrate with existing
data pipelines for pre- or post-processing. In this work, we focus specifically
on Spark. We picked Spark because it is open-source and widely adopted big
data analytics engine for large-scale data processing. Additionally, it comes with
higher-level libraries and extensions which makes it an ideal choice for various
use cases beyond PSI. We assume that the two enterprises each employ a Spark
cluster consisting of multiple nodes co-ordinated by an orchestrator (that may be
on either side). Note that each Spark cluster has complete access to that party’s
input dataset only. Communication between the clusters that is required for
private database join will be facilitated via dedicated edge servers. More details
about our system architecture can be found in Sect. 4.2. Functionally, an analyst
may connect to the orchestrator and use, for instance, a JupyterLab interface to
issue private database join instructions to initiate and run our protocol on the
specified datasets.

Plug-n-Play Framework. By itself, Spark does not provide any privacy guar-
antees for computations that cross data boundaries. In Sect. 4, we describe a
natural transformation of the private database join problem into a PSI problem.
(The transformation itself can be carried out locally, and additionally admits

6 Most PSI protocols have very few rounds (exceptions include circuit PSI protocols
that rely on the GMW compiler).

7 We support any PSI protocol irrespective of the underlying cryptographic assump-
tions or algorithmic techniques.

448 S. Badrinarayanan et al.

parallelization via Spark.) Then, to solve the resultant PSI problem, we imple-
ment a generic framework that can apply our binning technique on top of any
existing PSI implementation. Our framework is generic in that one could plug
in any C/C++ PSI implementation (say from [54]) to our framework. Using
the Java Native Interface (JNI) [60] technology, our framework integrates the
native implementation with the rest of our Spark pipeline. We refer to Sect. 4.3
for additional details.

1.2 Related Work

Private Set Intersection. Several protocols have been proposed to realize PSI
such as the efficient but insecure naive hashing solution, public key cryptography
based protocols [4,11,17,22,23,31,39,55], those based on oblivious transfer [10,
20,35,45,46,49] and other circuit-based solutions [7,30,47,48]. Another popular
model for PSI is to introduce a semi-trusted third party that aids in efficiently
computing the intersection [1,2,58]. We refer to [50] for a more detailed overview
on the various approaches taken to solve PSI. In addition, other variants of
PSI have also been extensively studied such as multi-party PSI [29,36], PSI
cardinality [12,33], PSI sum [32,33], threshold PSI [6,24] to name a few. Apart
from PSI, there is also a line of work on performing other set operations such as
union privately [8,16,34,37].

Privacy-Preserving Frameworks. A set of privacy-preserving frameworks
makes use of hardware enclaves. Opaque [65] is an oblivious distributed data
analytics platform which utilized Intel SGX hardware enclaves to provide strong
security guarantees. OCQ [15] further decreases communication and computa-
tion costs of Opaque via an oblivious planner. Unlike these methods, Spark-
PSI does not depend on hardware. Other recent works include CryptDB [52]
and Seabed [44] which provide protocols for the secure execution of analytical
queries over encrypted big data. Senate [57] describes a framework for enabling
privacy preserving database queries in a multiparty setting. For more related
work, we refer the reader to the full version of this work [5].

2 Preliminaries

2.1 Private Set Intersection

In the problem of private set intersection (PSI), two parties (sometimes referred
to as “sender” and “receiver”) each hold a set of items and wish to learn noth-
ing more than the intersection of these sets. In this paper, we present generic
techniques to securely parallelize any PSI protocol, with security against semi-
honest (aka honest-but-curious) adversaries. For our experiments, we apply our
parallelization technique on the KKRT PSI protocol [35]. The KKRT protocol
is an OT-based PSI (like [43,49,51]) and relies heavily on modern OT extension
protocols [25,59,62]. We chose KKRT because it is currently the fastest PSI
protocol against semihonest adversaries.

A Plug-n-Play Framework for Scaling PSI to Billion-Sized Sets 449

2.2 Apache Spark

Apache Spark is an open-source, fast, and distributed computing framework used
for large-scale data workloads. It utilizes in-memory caching and optimizes query
execution for any size of data. It is faster and more flexible than other systems
such as Google’s MapReduce [18], as it runs in memory, which makes processing
much faster than disk [64], and allows for complex processing schemes, instead
of MapReduce’s linear model. On top of Spark, there are libraries for running
distributed computations ranging from SQL queries, to machine-learning algo-
rithms, to graph analytics, and to data streaming.

A Spark application consists of a driver program that translates user-provided
data processing pipelines into individual tasks and distributes these tasks to
worker nodes. The basic abstractions available in Spark are built on a distributed
data structure called resilient distributed dataset (RDD) [63] and these abstrac-
tion offer distributed data processing operators such as map, filter, reduce, broad-
cast, etc. Higher-level abstractions expose popular APIs such as SQL, streaming,
and graph processing.

Implementing state-of-art PSI protocols on top of Spark holds the promise
of using the demonstrated capabilities of Spark and similar data platforms to
achieve significant performance gains. Unfortunately Spark lacks any multi-
tenant concepts, running all applications and scheduling all tasks in one security
domain. This is incompatible with the basic settings of PSI protocols which
involve two or more untrusted parties, which require multiple security domains
with strong isolation between them. We address this problem by assigning each
party to one Spark cluster, thus achieving isolation by physically separating each
party’s computation, and then introducing an orchestrator component that coor-
dinates multiple independent Spark clusters in different data centers to jointly
perform the PSI tasks. Section 4 describes our multi-cluster architecture and
motivates our design.

A second security challenge in Apache Spark is the default data-partitioning
scheme, which can reveal information about a party’s dataset. For example, if
data partitioning relies on the first byte in each record to distribute data records
to nodes, an adversary can learn how many records start with 0x00, how many
with 0x01, and so on. This leaks information about the data distribution in a
dataset and undermines the security guarantees offered by a PSI protocol. We
address this problem by introducing a secure binning approach (described in
Sect. 3) that makes such leaks statistically inconsequential while still allowing
each Spark cluster to partition data and distribute tasks as is locally optimal.

Finally, adding an orchestrator outside of the Spark clusters and treating
individual Spark clusters’ schedulers as black boxes, which are convenient for
operational purposes, can lead to sub-optimal execution plans. In particular,
the local optimization of schedules at each cluster may contradict with desired
performance from collaborative computing across multiple clusters with differ-
ent data sizes and hardware configurations. We take advantage of Spark’s lazy
evaluation capability, which can be used to delay the execution of a task until

450 S. Badrinarayanan et al.

a certain action is triggered. Section 4.3 presents how we effectively use lazy
evaluation to loosely and efficiently coordinate across clusters.

2.3 Threat Model

We consider a semi-honest adversary and detail its capabilities with respect to
the PSI protocol we wish to deploy on Spark, to the Spark framework, and to
our overall Spark-PSI system.

Threat Model of the PSI Protocol. In standard cryptography terminology,
we assume that the PSI protocol is secure against semi-honest (aka honest-but-
curious) adversaries. That is, we expect the participants to faithfully follow the
instructions of the protocol but allow the parties to learn as much as they can
from the protocol messages. We believe that this assumption fits many use cases,
where parties are likely already under certain agreements to participate honestly.
We further assume that all cryptographic primitives are secure. Finally, we note
that the PSI protocol does reveal the sizes of the sets to both parties, as well
as the final outputs in the clear (see [4] for size-hiding PSI, and [40,48] for
protecting the outputs).

Threat Model of the Spark Framework. We assume that every Spark
cluster’s built-in security features are enabled and that the Spark implementation
is free of vulnerabilities. These features include data-at-rest encryption, access
management, quota management, queue management, etc. We further assume
that these features guarantee a locally secure computing environment at each
local cluster, such that an attacker cannot gain access to a Spark cluster unless
authorized.

Threat Model of Spark-PSI. We assume that only authorized users can
issue commands to the orchestrator and we further assume that the orchestrator
is operated by one of the two parties. We note that it could be operated by some
(semi-honest) third party without impacting security.

The adversary can observe the network communication between different
parties during execution of the protocol. It may also control some of the parties
to observe data present in the storage and memory of their clusters, as well as
the order of memory accesses.

Our semi-honest adversary model implies that we expect participants to sup-
ply correct inputs to the PSI protocol. While in practice input validity is impor-
tant, it is outside the scope of this work as we believe it can be tackled as a
future, separate layer on top of Spark-PSI.

3 Parallelizing PSI via Binning

We describe an efficient technique to scale any PSI protocol Π. For simplicity, we
assume that both parties have equal sized sets, say of size n. Each set contains

A Plug-n-Play Framework for Scaling PSI to Billion-Sized Sets 451

elements of length κ bits (typically and wlog κ = 128). Then, for a given param-
eter m, we show how to solve PSI on instances of size n, via m invocations of
Π on set sizes ≈ n/m with minimal overhead. Our parallelization technique will
be statistically secure. To aid in the analysis, we use σ to denote the statistical
security parameter (typically, set to 80).

Our idea is to first let each party to locally partition their set into m > 1
subsets. That is, the parties first locally sample a random hash function h :
{0, 1}∗ → {1, . . . , m}. Each party P transforms its set S = {s1, . . . , sn} into
subsets T1, . . . , Tm such that for all s ∈ S it holds that s ∈ Th(s). Modeling h as
a random function ensures that the elements {h(s) | s ∈ S} are all distributed
uniformly. This directly implies that E[size of Ti] = n/m.

However, observe that the number of elements in any given bin Ti does in
fact leak information about the distribution of the input set. For example, say
there are no items in Ti, then this implies that the set S does not contain any
element s that s.t. h(s) = i. To maintain the security guarantees of PSI, it is
critical that this information is not leaked.

Now given that the parties have locally partitioned their sets into T1, . . . , Tm,
next they pad each Tj with uniformly random dummy elements to ensure that
the size of each padded set equals (1 + δ0)n/m for some parameter δ0. Since
S ⊂ {0, 1}κ, there are 2κ possible elements and the probability of a dummy item
being in the intersection is negligible. Alternatively, if κ is large enough, we can
ensure that no dummy item is in the intersection by asking each party to pad its
j-th bin with dummy items s′ sampled from non-overlapping subsets of {0, 1}κ

such that h(s′) = j′ �= j. Then, the two parties engage in m parallel instances
of Π, where in the i-th instance πi, parties input their respective i-th padded
tokenized set. Once all m instances of Π deliver output, parties then by simply
combining these m individual outputs to obtain the final output.

In summary, our binning technique proceeds by asking each party to (1)
locally tokenize the sets, (2) locally map the set elements into m bins, (3) locally
pad each bin with dummy elements to ensure that each bin contains exactly
(1 + δ0)n/m elements, (4) execute m instances of a PSI protocol with the other
party, (5) finally combine the outputs of the individual PSI protocols to get the
final output.

3.1 Analysis

We compute the value of the parameter δ0 that ensures that the binning
step does not fail except with negligible probability. This turns out to be
δ0

def=
√

3m/n · (σ ln 2 + lnm) (detailed analysis in the full version [5]). More
concretely, suppose set size n = 109 and statistical parameter σ = 80, then
choosing parameter m = 64, we see that the max bin size of any of the 64 bins
is at most n′ ≈ 15.68× 106 (with δ0 = 0.0034) with probability (1− 2−80). Note
that existing PSI protocols [10,35,46] can already efficiently handle set sizes of
n′. Therefore, in principle, we can use 64 instances of PSI protocol of say [35] to
implement a PSI protocol that operates on 1 billion sized sets.

452 S. Badrinarayanan et al.

We prove the security of this scheme in the so-called simulation paradigm in
the full version of this work [5].

3.2 Applying Our Binning Technique

We emphasize that our technique works for any PSI protocol (no matter what
assumption it is based on) for all settings including cases where the sets are
unbalanced. Furthermore, the PSI instances operating on different bins could in
principle use different PSI protocols or implementations (which can be useful if
the underlying infrastructure is heterogeneous).

By design our technique is highly conducive for an efficient Spark implemen-
tation (or in any other big data framework). Also, large input sets may already be
distributed across several nodes in a Spark cluster. We provide a quick overview
of how our protocol would operate in such a setting. At the beginning of the
protocol the hash function h is sampled and distributed to the nodes in both
clusters. Within each cluster, each node uses h as a mapping function to define
the new partitions T1, . . . , Tm which are each assigned to some worker node in
the same cluster. The main phase of the protocol proceeds as described by run-
ning m parallel instances8 of the PSI protocol across the two clusters which
outputs the intersection sets I1, . . . , Im such that the final output is defined as
I ′ = ∪iIi. In the next sections, we describe our system Spark-PSI that applies
our binning technique in a real-world application.

4 Scalable Private Database Joins

In this section, we describe how to perform SQL styled join queries with the use
of our parallel PSI protocol implemented via Spark. In Sect. 4.1, we describe the
problem of private database joins across different data domains, and outline a
solution which leverages our binning technique for parallelizing PSI. Then, in
Sect. 4.2, we describe the architecture of our system Spark-PSI that solves the
database join problem. Finally, in Sect. 4.3, we describe the various techniques
we employ to efficiently implement our binning technique in Spark.

4.1 Database Joins Across Data Domains

In the problem of private database joins, we have two distinct parties A, B, who
wish to perform a join operation on their private data. To model the problem,
we denote Domain A as the data domain of party A, and likewise Domain B
for party B. We assume that one of the parties hosts an orchestrator which
is essentially a server that exposes metadata such as schemas of the data sets
that are available for the join operation. (For more details, see Sect. 4.2). This
way parties discover the available types of queries and can submit them via the

8 If we have k worker nodes on each side, then we can run k instances of Π in parallel,
and repeat this m/k times to complete the PSI portion of the execution.

A Plug-n-Play Framework for Scaling PSI to Billion-Sized Sets 453

orchestrator API. When a query is submitted, the orchestrator will validate the
correctness of the query and forward to request to the other party for approval.
While many types of query languages could be supported, we have chosen to
implement a subset of SQL.

More precisely we support any query which can be divided into the following.
A select clause which specifies one more columns among the two tables. A join on
clause which compares one or more columns for equality between the two sets. A
where clause which can be split into conjunctive clauses where each conjunction
is a function of a single table. For example, we support the following query:

SELECT DomainB.table0.col4, DomainA.table0.col3
FROM DomainA.table0
JOIN DomainB.table0
ON DomainA.table0.col1 = DomainB.table0.col2
AND DomainA.table0.col2 = DomainB.table0.col6
WHERE DomainA.table0.col3 > 23.

In this example a column from both parties is being selected where they are
being joined on the equality of the join keys

DomainA.table0.col1 = DomainB.table0.col2
DomainA.table0.col2 = DomainB.table0.col6

along with the added constraint

DomainA.table0.col3 > 23.

Our framework transforms this query by first filtering the local data sets
based on the WHERE clause. We require that each of the where clauses be a
function of a single table. For example, we do not support a where clause such
as

WHERE DomainA.table0.col0 > DomainB.table0.col7

because this predicate compares across the two data sets.9
Once the local where clauses have filtered the input tables, the par-

ties tokenize the join key columns. The join key columns refer to the
columns which appear in the JOIN ON clause. In the example above these are
DomainA.table0.col1, DomainA.table0.col2 from the first party (Domain
A) and DomainB.table0.col2, DomainB.table0.col6 from the second party
(Domain B). For each row of the respective data sets, the parties generate a

9 Restricting clauses this way enables us to reduce the above problem to the PSI
problem. We note that the restriction above can be lifted if we use more sophisticated
PSI protocols that can keep the PSI output in secret shared form without revealing
it. We leave this for future work.

454 S. Badrinarayanan et al.

set of tokens by hashing together their join keys. For example, Domain A can
generate their set A as

A = {H(DomainA.table0.col1[i], DomainA.table0.col2[i]) | i ∈ {1, . . . , n}}

Let B denote the analogous set of tokens for Domain B. We note that rows with
the same join keys will have the same token and that the A,B sets will contain
only a single copy of that token. Later we will need to map elements of A,B
back to the rows which they correspond to. For this task we will logically add an
additional column to each input table which we label as token and stores that
row’s token value. That is, for the example above we have

DomainA.table0.token = H(DomainA.table0.col1[i], DomainA.table0.col2[i])

Now the parties can execute a PSI protocols on their respective A,B sets
as inputs. The protocol outputs the intersection I = A ∩ B to both parties. As
described in the previous section, this phase is parallelized with the use of our
binning technique.

In the final phase the parties use the intersection I to construct the output
table. Here we will assume that only Domain A should obtain the output table
but note that this general procedure can provide output to both. Both parties
take subsets of their tables such that only rows which have a token value in I
remain. This can efficiently be implemented using the token column that was
appended to the input tables. From this subset, Domain B sends their columns
which appear in the select clause along with the token value. Let this table be
denoted as table∗. Domain A then joins their table with table∗ to construct
the final output table.

In summary, the private database join operation can be performed via the
following three phases. The first phase, referred to as tokenization, translates a
possibly complex join query into a set intersection problem. In the second phase
our parallel PSI protocol runs and outputs the intersection to both parties. The
final phase is referred to as reverse-lookup which instructs the parties to use the
intersection to construct the final join output which may contain significantly
more information than the intersection alone, e.g. additional attributes being
selected. In the next section, we will see the design of an architecture that enables
us to efficiently execute these several phases in a setting where parties have Spark
clusters.

4.2 System Architecture

Figure 1 describes the overall architecture of our system where we connect two
distinct parties (or data domains) each having a Spark cluster. To solve the
private database join problem, we need to co-ordinate the two Spark clusters to
implement the various phases described in the previous section.

A Plug-n-Play Framework for Scaling PSI to Billion-Sized Sets 455

Fig. 1. Spark-PSI Framework. 1© Clients need authentication first so that they can talk
to the orchestrator 2© Clients have two modes to start a job: a JSON style request or
a SQL style query. 3© The orchestrator parses the query for tokenization of related
columns. 4© Execute Spark PSI pipelines 5© Intermediate bytes are exchanged through
Kafka brokers deployed on edge servers.

This co-ordination is carried out by an orchestrator that exposes an interface
(such as UI application/portal/Jupyter Lab) to specify the database join oper-
ation and to receive the results. Our orchestrator interfaces with each party’s
Spark cluster via Apache Livy [38].

In more detail, the orchestrator is responsible for storing various metadata
such as the schemas of the data sets. We assume that these schemas are made
available to the orchestrator by the parties in an initialization phase. Following
this, either party can authenticate itself to the orchestrator and submit a SQL
styled query. The orchestrator is then responsible for parsing the query and
compiling Spark jobs for two clusters for different phases of the private database
join operation, including the PSI protocols. The orchestrator then initiates the
protocol by sending both clusters the relevant parameters for different phases of
the protocol, e.g. data sets identifiers, join columns, network configuration, etc.
Once the database join protocol completes, the orchestrator will record audit
logs and potentially facilitate access to the output of the join.

The Apache Livy [38] interface helps internally to manage Spark session and
submission of Spark code for PSI computation. Communication between the two
clusters for various phases of the join protocol (e.g., for the PSI subprotocols) is
facilitated via dedicated edge servers which work as Kafka brokers to establish
a secure data transmission channel. While we have chosen Apache Kafka for
implementing the communication pipeline, our architecture allows the parties to
plug their own communication channel of choice to read/write data back and
forth. Additionally, our architecture doesn’t change any internals of Spark that
makes easier to adopt and deploy at scale.

Security Implications. We discuss some security considerations and highlight
some security implications that are a consequence of our architecture described

456 S. Badrinarayanan et al.

above. While the theoretical security of the database join protocol is guaranteed
by employing a secure PSI protocol, we now discuss other security features pro-
vided by our architecture. More concretely, we highlight that in addition to the
built-in security features of Spark cluster, our design ensures cluster isolation
and session isolation which we describe next.

The orchestrator provides a protected virtual computing environment for
each database join job thereby guaranteeing session isolation. While standard
TLS is used to protect the communication between different Spark clusters, the
orchestrator provides additional communication protection such as session spe-
cific encryption and authentication keys, randomizing and anonymizing the end-
points, managing allow and deny lists, and monitoring/preventing DOS/DDOS
attack to the environments. The orchestrator also provides an additional layer of
user authentication and authorization. All of the computing resources, including
tasks, cached data, communication channels, and metadata are protected within
this session. No foreign user or job may peek or alter the internal state of the
session. Each parties’ Spark session is isolated from each other and only reports
execution state back to orchestrator.

On the other hand, cluster isolation aims at protecting computing resources
from each parties from misuse or abuse in the database join jobs. To accomplish
this, the orchestrator is the only node in the environment that controls and is
visible to the end-to-end processing flows. It is also the only party that has the
metadata for Spark clusters involved in the session. Recall that a separate secure
communication channel is employed via Livy and Kafka that limits the parties
from accessing each other’s Spark cluster. This keeps the orchestrator out of the
data flow pipeline thereby preventing the party operating the orchestrator from
gaining advantages over other parties involved. It also ensures that each Spark
cluster is self-autonomous and requires little or no changes to participate in a
database join protocol with other parties. The orchestrator also takes care of job
failures or uneven computing speed to ensure out-of-the-box reusability of Spark
clusters that typically already exist in enterprise organizations.

Finally, we remark that the low level APIs calling cryptographic libraries
and exchanging data between C++ instances and Spark dataframes, lie in each
party’s data cluster and thus do not introduce any information leakage. The
high level APIs package the secure Spark execution pipeline as a service, and are
responsible for mapping independent jobs to each executor and collecting the
results from them. See Sect. 4.3 for more details.

Taken together, our architecture essentially provides the theoretical security
that is guaranteed by the underlying PSI subprotocol. More concretely, when
one party is compromised by the adversary, the other party’s data remains com-
pletely private except whatever is revealed by the output of the computation.

4.3 SPARK-PSI Implementation

We provide details on how we leverage Spark to implement the binning technique.
Our underlying PSI protocol is the KKRT protocol implemented in C++.

A Plug-n-Play Framework for Scaling PSI to Billion-Sized Sets 457

Fig. 2. KKRT Implementation Workflow. 1© [DomainA.setup1] Domain A in its setup
phase generates encrypted data and transmits them to Domain B. 2© [DomainB.setup1]
Domain B performs its setup phase with data received from Domain A and in turn gen-
erates encrypted data and transmits them to Domain A. 3© [DomainA.setup2] Domain
A finalizes setup phase. 4© [DomainA.psi1] and 5© [DomainB.psi1] Domains A and B
execute the online PSI phase, which proceeds over multiple rounds. 6© [DomainA.psi2]
Domain A enters the Finalize PSI phase and computes the intersection with Domain
B as row indices. 7© Domain A retrieves matching records by doing a reverse lookup
into its dataset using the computed indices.

KKRT Workflow. Figure 2 shows the detailed data flows in our Spark-PSI
framework instantiated with the KKRT protocol. All of the phases shown in
Fig. 2 are invoked by the orchestrator sequentially. The orchestrator starts the
native KKRT execution by submitting metadata information about the datasets
to both parties. Based on the request, both parties start executing their Spark
code which creates new dataframes by loading the required data set using the
supported JDBC driver. This dataframe is then hashed into the tokens of fixed
length by both parties. This token dataframe is then mapped to m number
of bins (in Spark terminology partitions) using the custom partitioner by both
parties, which is basically distributing tokens evenly on both side. Then the final
intersection is obtained by taking the union of each bin intersection. Note that
tokenization and binning are generic functionalities in our framework and can
be used by any other PSI algorithm. This way Spark achieves parallel execution
of multiple bins on both sides.

The native KKRT protocol is executed via a generic JNI interface that con-
nects to the Spark code. Specifically, the JNI interface is in terms of round func-
tions, and therefore is agnostic about internal protocol implementation. Note
that there is a one-time setup phase for KKRT (this setup is required only once
for a pair of parties). This is described in Steps 1©, 2©, 3© in Fig. 2. Later, the
online PSI phase that actually computes the intersection between the bins is
shown in Steps 4©, 5©, 6©, and 7©. The parties use edge servers to mirror data
whenever there is a write operation on any of the Kafka brokers. Note that the
main PSI phase consists of sending the encrypted data sets and can be a per-
formance bottleneck as Kafka is optimized for small size messages. To overcome
this issue, we are chunking encrypted data sets into smaller partitions on both
sides so that we can utilize Kafka’s capability efficiently. We also keep the inter-

458 S. Badrinarayanan et al.

mediate data retention period very short on Kafka broker to overcome storage
and security concerns.

The above strategy also has the benefit of enabling streaming of the under-
lying PSI protocol messages. Note that the native KKRT implementation is
designed to send and receive data as soon as it is generated. As such, our Spark
implementation continually forwards the protocol messages to and from Kafka
the moment they become available. This effectively results in additional par-
allelization due to the Spark worker not needing to block for slow network
I/O. Note that we also explicitly cache token dataframe and instance address
dataframe which are used in multiple phases to avoid any re-computation. This
way we take advantage of Spark’s lazy evaluation that optimizes execution plan
based on DAG and RDD persistence.

Reusable Components for Parallelizing Other PSI Protocols. Our code
is packaged as a Spark-Scala library which includes an end-to-end example imple-
mentation of native KKRT protocol. This library itself has many useful reusable
components such as JDBC connectors to work with multiple data sources, meth-
ods for tokenization and binning approach, general C++ interface to link other
native PSI algorithms and a generic JNI interface between Scala and C++ inter-
face. All these functions are implemented in base class of the library, which may
be reused for other native PSI implementations. Additionally, our library decou-
ples networking methods from actual PSI computation which adds flexibility to
the framework to support other networking channels if required.

Any PSI implementation can be plugged into Spark-PSI by exposing a
C/C++ API that can be invoked by the framework. The API is structured
around the concept of setup rounds and online rounds and does not make
assumptions about the cryptographic protocol executed in these rounds. The
following functions are part of the API:

– get-setup-round-count() -> count – retrieves the total number of setup
rounds required by this PSI implementation;

– setup(id, in-data) -> out-data – invokes round id on the appropriate
party with data received from the other party in the previous round of the
setup and returns the data to be sent;

– get-online-round-count() -> count – retrieves the total number of online
rounds required by this PSI implementation;

– psi-round(id, in-data) -> out-data – invokes the online round id on
the appropriate party with data received from the other party in the previous
round of the PSI protocol and returns the data to be sent.

The data passed to an invocation of psi-round is the data from a single bin, and
Spark-PSI orchestrates the parallel invocations of this API over all of the bins.
For example, KKRT has three setup rounds (which we label for clarity in the rest
of the paper as DomainA.setup1, DomainB.setup1, and DomainA.setup2) and
three online rounds (labeled DomainA.psi1, DomainB.psi1, and DomainA.psi2).
When running KKRT with 256 bins (as done in one of the experiments
detailed in Sect. 5), the setup rounds DomainA.setup1, DomainB.setup1, and

A Plug-n-Play Framework for Scaling PSI to Billion-Sized Sets 459

DomainA.setup2 each invoke setup once with the appropriate round id, and
the online rounds DomainA.psi1, DomainB.psi1, and DomainA.psi2 each invoke
psi-round with the appropriate round id 256 times.

5 Experimental Evaluation

In this section, we describe the performance of our Spark-PSI implementation,
and provide detailed benchmarks for various steps. Then, we provide our end-
to-end performance numbers and study the impact of number of bins on the
running time. The highlight of this section is our running time of 82.88min for
sets of size 1 billion. We obtain this when we use m = 2048 bins.10

5.1 System Setup

Our experiments are evaluated on a setup similar to the one described in Fig. 1.
Each party runs an independent standalone six-node Spark (v2.4.5) cluster with
1 server for driver and 5 servers for workers. Additionally we have an indepen-
dent Kafka (v2.12-2.5.0) VM on each side for inter-cluster communication. The
orchestrator server, which triggers the PSI computation, is on Domain A. All
servers have 8 vCPUs (2.6GHz), 64 GB RAM and run Ubuntu 18.04.4 LTS.

5.2 Microbenchmarking

We first benchmark the performance of the various steps in the binning pipeline
and the KKRT implementation workflow (cf. Fig. 2). For these experiments, we
assume that each party uses a dataset of size 100M as input.

Table 1 describes the total time required for the individual phases of our
protocol when the number of bins equals 2048. For example, DomainA.tokenize
(resp. DomainB.tokenize) denotes the time taken for tokenizing A’s input (resp.
B’s input) and mapping these tokens into different bins and padding each bin
to be of the same size. Note that the tokenization step is done in parallel.
DomainA.psi1 denotes the time taken for executing Step 4© for all the bins. In
this step, Domain A generates and transfers approximately 60n bytes for dataset
size n (i.e., 100M) to Domain B. Likewise, DomainB.psi1 denotes the time taken
for executing Step 5© for all the bins. In this step, Domain B generates and trans-
fers approximately 22n bytes back to Domain A. Finally, DomainA.psi2 denotes
the time taken for executing Steps 6© and 7©, where the intersection is deter-
mined for all the bins. Note that we have excluded benchmarking Steps 1©, 2©, 3©
in Fig. 2 as these correspond to the setup functions which have a constant cost,
and more importantly these functions need to be executed only once between a
pair of parties (and can be reused for subsequent PSI executions).

10 This corresponds to δ0 = 0.019 for a bin size of ≈500K (cf. Sect. 3.1).

460 S. Badrinarayanan et al.

Table 1. Microbenchmark of Spark-PSI when using KKRT PSI and 2048 bins.

Spark-PSI step Time (s) by dataset size
10M 50M 100M

DomainA.tokenize 47.21 91.20 124.68

DomainB.tokenize 45.90 92.89 121.64

DomainA.psi1 8.40 20.64 31.55

DomainB.psi1 40.83 121.73 247.30

DomainA.psi2 14.92 47.49 88.05

Table 2. Network latency for a dataset of size 100M.

KKRT PSI round Time (s) by number of bins
256 2048

DomainA.psi1.write 36.44 13.36
DomainB.psi1.read 178.76 98.77
DomainB.psi1.write 15.24 8.12
DomainA.psi2.read 25.61 21.35

Communication vs. Number of Bins. Table 2 describes the impact of bin
size on the time taken for reading and writing data via Kafka (i.e., inter-cluster
communication). (Note that the numbers in Table 1 include the time taken for
reading and writing data.)

Here, DomainA.psi1 produces intermediate data of size 9.1GB which is sent to
Doman B, while DomainB.psi1 produces 3.03GB intermediate data that is sent
to A. As evident from the benchmarks in Table 2, more bins improve networking
performance as the message chunks become smaller. In more detail, when we
go with 256 bins, individual messages of size 35.55MB are sent over Kafka for
DomainA.psi1. With 2048 bins, the corresponding individual message size is
only 4.44MB.

5.3 End-to-End Performance

Table 3. Total execution time for different joins over datasets of size 100M. Fastest
times in each column are highlighted.

Number
of bins

Time (m)

Insecure
single-cluster
Spark join

Insecure
cross-cluster
Spark join

Spark-PSI

256 3.76 7.60 11.41

4096 5.62 4.90 8.71
8192 10.83 10.26 9.79

A Plug-n-Play Framework for Scaling PSI to Billion-Sized Sets 461

Shuffle Overhead of Our Protocol. In Table 3, we compare the performance
of our protocol with the performance of insecure joins on datasets of size 100M.
To evaluate and compare with the performance of insecure joins, we consider
two variants. In the first variant, which we call single-cluster Spark join, we
employ a single cluster with six nodes (one server for driver and five servers
for workers) to perform the join on two datasets each of size 100M. Here, we
assume that both datasets reside on the same cluster. The join computation
then proceeds by partitioning the data into multiple bins and then computing
the intersection directly using a single Spark join call. In the second variant,
which we call cross-cluster Spark join, we employ two clusters each with six
nodes, and each containing only one 100M tokenized dataset. Now, to perform
the join, each cluster partitions its dataset into multiple bins. Then one of the
clusters sends the partitioned dataset to the other cluster, which then aggregates
the received data into one dataset, and then computed the final join using a single
Spark join call.

In the case of insecure join on a single cluster, we observe that increasing the
number of bins leads to an increase in the number of data shuffling operations
(shuffle read/write), which ends up slowing down the execution. When we split
the insecure join across two clusters, we incur the overhead of network commu-
nication across clusters and the additional shuffling on the destination cluster,
but gain a parallelism because we have twice the compute resources.

When we switch to Spark-PSI, we maintain the overhead of cross-cluster
communication and incur additional overhead of the PSI computation, but we
avoid the extra data shuffling (as we employ broadcast join). We believe the effect
of the broadcast join appears most significant when we have smaller per-bin data
(as is the case with 8,192 bins) making Spark-PSI faster than the insecure cross-
cluster join in some cases. Our secure system introduces an overhead of up to
77% in the worst case on top of the insecure cross-cluster join.

Table 4. Total execution time for PSI with various dataset sizes and bin sizes. Fastest
times in each column are highlighted.

Number of bins Time (m) by dataset size
1M 10M 100M 1B

1 1.07 12.04 – –
16 0.75 2 – –
64 0.78 1.66 15.27 154.10
256 0.99 1.47 11.41 116.89
1024 1.03 1.63 8.57 86.54
2048 1.11 1.86 8.12 82.88
4096 1.4 1.94 8.71 90.46
8192 2.45 3.07 9.79 94.74

462 S. Badrinarayanan et al.

1 16 64 256 1024 2048 4096 8192

100

101

102

Number of bins

T
im

e
(m

)

1M
10M

100M
1B

Fig. 3. Different input sizes achieve optimal execution time for different number of
bins.

Choosing the Optimal Bin Size. In Table 4 we report the running time of
the PSI as a function of the number of bins and dataset size, and plot the same
in Fig. 3. The highlight of this table is our running time of 82.88min for dataset
size 1B, roughly a 25× speedup over the prior work of Pinkas et al. [51]. As
evident from the table, we obtain this running time when we set the number
of bins m = 2048. Also as evident from the table and from the corresponding
plot in Fig. 3, the performance of our protocol on datasets of a given size first
begins to improve as we increase the number of bins, and then hits an inflection
point after which the performance degrades. The initial improvement is a result
of parallelization. Higher number of bins results in smaller bin size on Spark
and this is ideal especially for larger datasets, but the strategy of increasing
the number of bins doesn’t continue to work as the task scheduling overhead in
Spark (and the padding overhead of the binning technique itself) slows down the
execution. Also, we believe that better performance is possible if we use more
executor cores (i.e., a larger cluster) as this is likely to allow better parallelization.

Disclaimer

Case studies, comparisons, statistics, research and recommendations are pro-
vided “AS IS” and intended for informational purposes only and should not be
relied upon for operational, marketing, legal, technical, tax, financial or other
advice. Visa Inc. neither makes any warranty or representation as to the com-
pleteness or accuracy of the information within this document, nor assumes any
liability or responsibility that may result from reliance on such information. The
Information contained herein is not intended as investment or legal advice, and
readers are encouraged to seek the advice of a competent professional where such
advice is required.

A Plug-n-Play Framework for Scaling PSI to Billion-Sized Sets 463

These materials and best practice recommendations are provided for infor-
mational purposes only and should not be relied upon for marketing, legal, reg-
ulatory or other advice. Recommended marketing materials should be indepen-
dently evaluated in light of your specific business needs and any applicable laws
and regulations. Visa is not responsible for your use of the marketing materials,
best practice recommendations, or other information, including errors of any
kind, contained in this document.

References

1. Abadi, A., Terzis, S., Dong, C.: O-PSI: delegated private set intersection on out-
sourced datasets. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol.
455, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18467-
8_1

2. Abadi, A., Terzis, S., Dong, C.: VD-PSI: verifiable delegated private set intersection
on outsourced private datasets. In: Grossklags, J., Preneel, B. (eds.) FC 2016.
LNCS, vol. 9603, pp. 149–168. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54970-4_9

3. Kiss, A., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for
unequal set sizes with mobile applications. In: Proceedings on Privacy Enhancing
Technologies, no. 4, pp. 177–197 (2017)

4. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-hiding private
set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8_10

5. Badrinarayanan, S., et al.: A plug-n-play framework for scaling private set inter-
section to billion-sized sets. Cryptology ePrint Archive, Paper 2022/294 (2022)

6. Badrinarayanan, S., Miao, P., Rindal, P.: Multi-party threshold private set inter-
section with sublinear communication. IACR Cryptology ePrint Archive 2020, 600
(2020). https://eprint.iacr.org/2020/600

7. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4_5

8. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. Int. J.
Inf. Sec. 15(5), 493–518 (2016). https://doi.org/10.1007/s10207-015-0301-1

9. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: CCS (2007)

10. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1_2

11. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, 30 October–03 November 2017, pp. 1243–
1255. ACM (2017). https://doi.org/10.1145/3133956.3134061

https://doi.org/10.1007/978-3-319-18467-8_1
https://doi.org/10.1007/978-3-319-18467-8_1
https://doi.org/10.1007/978-3-662-54970-4_9
https://doi.org/10.1007/978-3-662-54970-4_9
https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/978-3-642-19379-8_10
https://eprint.iacr.org/2020/600
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/s10207-015-0301-1
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1145/3133956.3134061

464 S. Badrinarayanan et al.

12. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.)
CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35404-5_17

13. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8_13

14. Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile private
contact discovery at scale. In: USENIX Annual Technical Conference, pp. 1447–
1464 (2019)

15. Dave, A., Leung, C., Popa, R.A., Gonzalez, J.E., Stoica, I.: Oblivious coopeti-
tive analytics using hardware enclaves. In: Proceedings of the Fifteenth European
Conference on Computer Systems, pp. 1–17 (2020)

16. Davidson, A., Cid, C.: An efficient toolkit for computing private set operations.
In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 261–278.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3_15

17. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear
complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_13

18. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Sixth Symposium on Operating System Design and Implementation, OSDI
2004, San Francisco, CA, pp. 137–150 (2004)

19. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private contact
discovery. Proc. Priv. Enhancing Technol. 2018(4), 159–178 (2018). https://doi.
org/10.1515/popets-2018-0037

20. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an effi-
cient and scalable protocol. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, pp. 789–800 (2013)

21. Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with linear communi-
cation from general assumptions. In: Cavallaro, L., Kinder, J., Domingo-Ferrer, J.
(eds.) Proceedings of the 18th ACM Workshop on Privacy in the Electronic Soci-
ety, WPES@CCS 2019, London, UK, 11 November 2019, pp. 14–25. ACM (2019).
https://doi.org/10.1145/3338498.3358645

22. Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with
simulation-based security. J. Cryptol. 29(1), 115–155 (2016). https://doi.org/10.
1007/s00145-014-9190-0

23. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3_1

24. Ghosh, S., Simkin, M.: The communication complexity of threshold private set
intersection. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 3–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7_1

25. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: CCS, pp. 535–548 (2013)

26. Hallgren, P.A., Orlandi, C., Sabelfeld, A.: PrivatePool: privacy-preserving rideshar-
ing. In: CSF (2017)

27. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: CCS, pp. 1223–1237 (2018)

https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-319-59870-3_15
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1515/popets-2018-0037
https://doi.org/10.1515/popets-2018-0037
https://doi.org/10.1145/3338498.3358645
https://doi.org/10.1007/s00145-014-9190-0
https://doi.org/10.1007/s00145-014-9190-0
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7_1

A Plug-n-Play Framework for Scaling PSI to Billion-Sized Sets 465

28. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
312–331. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7_19

29. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54365-8_8

30. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: 20th USENIX Security Symposium, San Francisco, CA,
USA, 8–12 August 2011, Proceedings. USENIX Association (2011). http://static.
usenix.org/events/sec11/tech/full_papers/Huang.pdf

31. Huberman, B.A., Franklin, M.K., Hogg, T.: Enhancing privacy and trust in elec-
tronic communities. In: Feldman, S.I., Wellman, M.P. (eds.) Proceedings of the
First ACM Conference on Electronic Commerce (EC-99), Denver, CO, USA, 3–5
November 1999, pp. 78–86. ACM (1999). https://doi.org/10.1145/336992.337012

32. Ion, M., et al.: On deploying secure computing commercially: private intersection-
sum protocols and their business applications. IACR Cryptology ePrint Archive
2019, 723 (2019). https://eprint.iacr.org/2019/723

33. Ion, M., et al.: Private intersection-sum protocol with applications to attributing
aggregate ad conversions (2017). ia.cr/2017/735

34. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218_15

35. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 818–
829 (2016)

36. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: CCS (2017)

37. Kolesnikov, V., Rosulek, M., Trieu, N., Wang, X.: Scalable private set union from
symmetric-key techniques. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019.
LNCS, vol. 11922, pp. 636–666. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34621-8_23

38. Livy, A.: Apache Livy (2017). https://livy.apache.org/
39. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in

the absence of a continuously available third party. In: Proceedings of the 1986
IEEE Symposium on Security and Privacy, Oakland, California, USA, 7–9 April
1986, pp. 134–137. IEEE Computer Society (1986). https://doi.org/10.1109/SP.
1986.10022

40. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party
computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035,
pp. 464–482. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-
0_25

41. Nagaraja, S., Mittal, P., Hong, C.Y., Caesar, M., Borisov, N.: BotGrep: finding
P2P bots with structured graph analysis. In: USENIX Security Symposium (2010)

42. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location
privacy via private proximity testing. In: Proceedings of the Network and Dis-
tributed System Security Symposium, NDSS 2011, San Diego, California, USA,
6th February–9th February 2011. The Internet Society (2011). https://www.ndss-
symposium.org/ndss2011/privacy-private-proximity-testing-paper

https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-662-54365-8_8
http://static.usenix.org/events/sec11/tech/full_papers/Huang.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Huang.pdf
https://doi.org/10.1145/336992.337012
https://eprint.iacr.org/2019/723
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-030-34621-8_23
https://doi.org/10.1007/978-3-030-34621-8_23
https://livy.apache.org/
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-98113-0_25
https://www.ndss-symposium.org/ndss2011/privacy-private-proximity-testing-paper
https://www.ndss-symposium.org/ndss2011/privacy-private-proximity-testing-paper

466 S. Badrinarayanan et al.

43. Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with
application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4_22

44. Papadimitriou, A., et al.: Big data analytics over encrypted datasets with seabed.
In: 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2016), pp. 587–602 (2016)

45. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8_13

46. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2_25

47. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: USENIX (2015)

48. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78372-7_5

49. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX (2014)

50. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. IACR Cryptology ePrint Archive 2016, 930 (2016). http://eprint.
iacr.org/2016/930

51. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur. 21(2), 7:1–7:35 (2018). https://doi.org/
10.1145/3154794

52. Popa, R.A., Redfield, C.M., Zeldovich, N., Balakrishnan, H.: CryptDB: protecting
confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, pp. 85–100 (2011)

53. Resende, A.C.D., Aranha, D.F.: Unbalanced approximate private set intersection.
IACR Cryptology ePrint Archive 2017, 677 (2017). http://eprint.iacr.org/2017/
677

54. Rindal, P.: libPSI: an efficient, portable, and easy to use Private Set Intersection
Library. https://github.com/osu-crypto/libPSI

55. Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-
7_9

56. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-
tion. In: CCS (2017)

57. Poddar, R., Kalra, S., Yanai, A., Deng, R., Popa, R.A., Hellerstein, J.M.: Senate:
a maliciously-secure MPC platform for collaborative analytics. IACR Cryptology
ePrint Archive 2020, 1350 (2020)

58. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: Financial Cryptography and Data Security, pp.
195–215 (2014)

https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
http://eprint.iacr.org/2016/930
http://eprint.iacr.org/2016/930
https://doi.org/10.1145/3154794
https://doi.org/10.1145/3154794
http://eprint.iacr.org/2017/677
http://eprint.iacr.org/2017/677
https://github.com/osu-crypto/libPSI
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-319-56620-7_9

A Plug-n-Play Framework for Scaling PSI to Billion-Sized Sets 467

59. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_4

60. Wikipedia: Java native interface - Wikipedia (2020). https://en.wikipedia.org/
wiki/Java_Native_Interface

61. Sun, Y., Hua, Y., Jiang, S., Li, Q., Cao, S., Zuo, P.: SmartCuckoo: a fast and
cost-efficient hashing index scheme for cloud storage systems. In: USENIX Annual
Technical Conference, pp. 553–565 (2017)

62. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

63. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing. In: Presented as Part of the 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 2012), pp. 15–28 (2012)

64. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, HotCloud 2010, USA, p. 10. USENIX Association
(2010)

65. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.:
Opaque: an oblivious and encrypted distributed analytics platform. In: 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
2017), pp. 283–298 (2017)

https://doi.org/10.1007/978-3-642-40084-1_4
https://en.wikipedia.org/wiki/Java_Native_Interface
https://en.wikipedia.org/wiki/Java_Native_Interface
https://doi.org/10.1007/978-3-540-45146-4_9

Lower Bounds on the Share Size
of Leakage Resilient Cheating Detectable

Secret Sharing

Sabyasachi Dutta1(B), Shaoquan Jiang2, and Reihaneh Safavi-Naini1

1 Department of Computer Science, University of Calgary, Calgary, Canada
{sabyasachi.dutta,rei}@ucalgary.ca

2 School of Computer Science, University of Windsor, Windsor, Canada
jiangshq@uwindsor.ca

Abstract. Cheating detectable secret sharing schemes (CDSS) detects
changes in the secret that is caused by an adversary who modifies shares
of an unauthorized subset of participants. We consider leakage resilient
cheating detectable secret sharing schemes (LRCDSS) where protection
is against an adversary who, in addition to the shares of an unautho-
rized set, has access to the leakages from all other shares. We give lower
bounds on the share size of these schemes when the scheme provides ε-
indistinguishability security, and the adversary’s modification of shares
can be detected with probability at least 1−δ. We discuss our bounds in
relation to other known results, relate CDSS with non-malleable secret
sharing, and suggest directions for future work.

Keywords: secret sharing · leakage resilience · cheating detection ·
information theoretic security

1 Introduction

Secret sharing (SS) was independently proposed by Blakely [9] and Shamir [40],
and forms a fundamental building block of important cryptographic systems
including threshold cryptography [17,39] and multiparty computation [7,23],
and their applications to securing distributed and decentralized systems [22,38].

A secret sharing scheme consists of two algorithms: a share generation algo-
rithm Share that generates shares of a secret for n users U = {1, 2, . . . , n}, and a
Rec algorithm that takes the shares of a qualified subset of parties and reconstruct
the original secret. The most widely used and studied secret sharing scheme is
(k, n)-threshold secret sharing [9,40] where any subset of at least k parties is a
qualified subset and can reconstruct the secret.

A secret sharing scheme in its basic form provides perfect correctness that
guarantees the secret can always be correctly recovered by the shares of a quali-
fied subset of participants, and perfect (information theoretic) privacy that guar-
antees no information will be leaked to the adversary who has access to the
shares of a (maximal) unauthorized subset of participants. Perfect correctness
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 468–493, 2023.
https://doi.org/10.1007/978-981-99-7563-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_21&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_21

Lower Bounds on LRCDSS 469

and perfect privacy have been relaxed to β-correctness and ε-privacy, respec-
tively, allowing reconstruction and privacy properties to fail with probabilities β
and ε, respectively.

Security against Active Adversaries. We consider a setting where shares
are generated and distributed by a trusted dealer, and an active adversary con-
trols an unauthorized subset of parties. The adversary’s goal is to change the
reconstructed secret by modifying the shares of the parties that they control. In
this paper we consider the problem of cheater detection which requires recon-
struction algorithm to detect any tampering with the reconstructed secret.

Cheater detection was first introduced by Tompa and Woll [42], and later studied
in [4,13,37,42]. Cheater detection is a basic security requirement against active
attackers, and is important in practice as it prevents a wrong secret being used
in the system. Schemes that provide cheater detection, a.k.a cheater detectable
secret sharing (CDSS) have been proposed in [4,37,42]. Lower bounds on the
share size of CDSS are derived in [13,37], where optimal constructions that
satisfy the bounds with equality are presented.

Non-malleable Secret Sharing. Recently a weaker security notion against active
adversaries, called non-malleability, has been proposed that uses a randomized
coding scheme called Non-malleable Codes (NMC) [2,3,14,19,21,31,32] to
ensure tampering with the coded secret does not lead to the decoding of a
“related” secret. This security notion was later used to define Non-malleable
Secret Sharing (NMSS) that has been widely studied [1,5,10,20,24,25,28,29,41].

In NMSS the adversary has access to a class of tampering functions T that
can modify possibly all shares. Non-malleability protection requires that the
reconstruction algorithm, when applied to the tampered shares, output a mes-
sage (secret) that is either the same as the original secret or is “unrelated” to
the secret (see Definition 11, and Definition 6).

A widely studied class of tampering functions is the class of component-wise
independent tampering (Tind) where a tampering function g is defined by a vector
of component tampering functions g = (g1, · · · , gn). Here gi, i = 1 · · · n is the
tampering function that is applied to the share Si, and is chosen independent of
the share values (i.e. before shares are generated). Stronger classes of tampering
functions Tjoint allow joint tampering with subsets of shares [10,11,24,25].

Security against both independent and joint tampering attacks were first
considered for single round tampering, and later extended to multiple round
tampering in information theoretic setting [1,5], and in computational setting
[10,20].

Leakage-Resilient Secret Sharing (LRSS). Leakage-resilient cryptography
[12,18,35] models adversaries that have access to the implementation of cryp-
tographic systems and can obtain partial leakages of the secret state. We refer
to the survey in [27] and references therein for more details on leakage-resilient
cryptography.

Leakage resilience in secret sharing was first implicitly considered in [16] for
a (2, 2) secret sharing. The surprising result of [26] showed that leaking a sin-
gle physical bit from all shares in a Shamir SS over a binary (extension) field

470 S. Dutta et al.

can break the privacy property of the secret sharing where privacy is defined in
terms of distinguishability of two secrets. Formal definition of leakage resilience
for (k, n) threshold secret sharing schemes was first considered in [24] in the
context of non-malleable secret sharing, and in [8,33,34] in the context of lin-
ear secret sharing schemes that are used in leakage resilient secure multiparty
computation. Leakage adversaries that can use leakage functions in the class
of leakage functions L, has been defined for static and adaptive adversaries in
[1,41] and [29], respectively.

Local Leakage Model. In the local leakage model of secret sharing [1,24,41] the
attacker defines a vector of leakage functions f = (f1, f2, . . . , fn) independent of
the secret and share values (before the secret is chosen, and the Share function
is called). Each function fj , j ∈ [n] has an � bit output that gives �-bit leakage
fj(sharej) to the adversary. We refer to this class of leakage functions as Local.

The model in [1,41] allows a subset of component functions {fj}j∈F that
correspond to an unauthorized set of parties, F , be identity functions and leak
the whole shares. The remaining fj ’s have �-bit outputs. We refer to this class
of leakage functions as Local+. In this paper, we focus on Local+ model; see
Definition 3 for more details.

Leakage resilience of an SS against a class of leakage function L is formalized
using the notion of indistinguishability that requires for any two secrets, the
adversary’s views of the system remain statistically close, where the view consists
of public values of the system and the leakages of shares according to a function
in L.

Lower Bounds on the Share Size of CDSS. There are a number of lower
bounds on the share sizes of cheater detectable secret sharing schemes. The best
(tightest) lower bounds are due to Ogata et al. [37] who considered two models
for tampering attacks - the OKS model where a secret is uniformly chosen from
the secret set, and CDV model where the secret can have any distribution. The
bounds are obtained by lower bounding the success probability of the adversary
in a particular attack, and results in the following bounds,

|Si| ≥ |S| − 1
δ

+ 1, in the OKS model and,

|Si| ≥ |S| − 1
δ2

+ 1, in the CDV model.

In these bounds, Si and S are the share space and the secret space, respectively,
and 1−δ is the detection probability of cheating (or tampering) where probabil-
ity in the CDV model is over the random coins of the Share function only, while
in OKS model it is over the randomness of the Share function and uniform secret
from secret space. Both bounds are tight and can be achieved with equality.
Both bounds assume perfect correctness, and perfect privacy for the secret.

1.1 Contributions

We consider a (k, n)-threshold leakage resilient CDSS with security in the Local+

model. The class of leakage functions in this model, denoted by L, consists of

Lower Bounds on LRCDSS 471

vector functions f where each vector consists of component functions that each
leak either � bits from the share, or leak the whole share, and the number of
the latter type is at most k − 1, where k is the reconstruction threshold. A
(k, n, ε, δ)-LRCDSS with security against an against an adversary who has access
to leakages of a function f ∈ L, guarantees (i) ε indistinguishability security for
the secret, and (ii) detection with probability at least 1 − δ, of an incorrectly
reconstructed secret, resulting from tampering of the shares that are controlled
by the adversary.

Our main results are stated as follows.

Theorem 1 [Informal].
In a (k, n, ε, δ)-LRCDSS, to ensure detection probability of tampering is at most
δ, the share size must be at least, |Su| ≥ 2� · |S|(1−ε)−1

δ . Otherwise there is an
adversary that uses � bits of leakage of a single share to modify that share, and
remains undetected with probability at least δ.

Theorem 2 [Informal]. For a (k, n, ε, δ)-LRCDSS the share size must be at

least |Su| ≥ 2� · 1− 1
|S|

(δ+ε)2 .

Otherwise there is an adversary that uses the shares of a maximal unauthorized
set A, and � bit leakage output of a specially constructed function f applied to
the share Si where A∪{Si} is a minimal qualified set, and has success probability
at least δ.

The theorems as stated above, are for threshold access structure and give
bounds on the share size of LRCDSS when L is the family of all functions in
the Local+ model. Our attacks to obtain the bounds only use a weak leakage
function in L. This is further detailed as follows.

(i) For Theorem 1: The adversary obtains � bit leakage that is the output of
the application of a leakage function f to a share Si which belongs to a minimal
qualified set. Adversary can only tamper with Si, and in particular replaces it
with S′

i. The function f is known to the adversary, and satisfies a property P1
(See Sect. 4), that can be satisfied by many functions.

(ii) For Theorem 2: The adversary learns shares of a maximal unauthorized
set A, and receives � bit leakage output of a function f applied on a share Si,
where A∪{Si} is a (minimal) qualified set. The function f must satisfy the same
property as (i) above. The adversary uses their information to tamper with a
share Sj ∈ A.

Note that in (i) the adversary only needs to have the leaked information of
a single share that belongs to a minimal qualified set, and be able to tamper
with the same share. In (ii) the adversary uses the information of the shares of a
maximal unauthorized set A together with � bit leakage from the a share Si where
A∪{Si} is a (minimal) authorized set used by the reconstruction algorithm, and
tampers with one of the shares in A. The adversary in both cases is permissible
for all access structures and all leakage classes that include a leakage function
with a component function fi with � bit leakage, which is a very basic leakage
function.

472 S. Dutta et al.

Technical Overview. In Theorem 1 the adversary uses only the � bit leakage
of a single share to devise a strategy to flip that share. The attack does not
use all the information of an unauthorized set, and is available to the adversary
in practice in a wide range of scenarios. For example in the case of a file that
is broken into shares and each shares is stored on a different server, an adver-
sary who obtains partial information about only one share (possibly through
a side-channel) and is able to modify the share, can undetectably modify that
reconstructed file.

Our main observation towards proving Theorem 1 is that the ε-privacy in
Local+ leakage model guarantees that k − 1 full shares (say, S2, . . . , Sk) with
leakage v1 = f1(S1) of share S1, give almost no information about the secret
S. This means that all elements of the secret space S are possible secrets. In
other words, a randomly chosen pre-image S′

1 ∈ f−1
1 (v1) w.r.t. f1, together with

the k − 1 shares, will reconstruct a random secret. Thus the cheating attacker
can revise S1 to a randomly chosen pre-image of v1. This is a valid/admissible
cheating strategy for the attacker. With this cheating strategy, the adversary
can succeed with probability of roughly (|S| − 1)/|f−1

1 (v1)|.
Bounding the success probability of the adversary in terms of the amount of

leakage �, and the privacy parameter ε however needs a number of steps that are
given in the proof of the Theorem 1.

Theorem 2 lower bounds the success probability of an (inefficient) adversary
that uses the information of shares of a maximal unauthorized set A and the
leakage of an additional share that completes A to a qualified set, and replaces
one of the a shares in A with a fraudulent one. For this, we first observe that
the number of possible S′

1 in the share space of S1, that together with the k − 2
other shares in A and a specific share SK reconstruct a valid secret, is at most
δ|S1| (otherwise, taking a random s′

1 will allow to obtain the cheating probability
better than δ, where the attacker controls the first k − 1 shares and the honest
user has the share SK). We note that the expected size of the preimage set of
f1(S1) for a randomly selected �-bit leakage function f1 is 2−�|S1|, and so for a
fixed leakage value f1(S1), the number of possible preimages S′

1, is δ2−�|S1|.
The adversary can then use a guessing attack from the smaller space and

replaces S1 with a randomly chosen value from the set of δ2−�|S1| possible S′
1.

The success probability of this attack is lower bounded by 1/(δ2−�|S1|). Since
this is upper bounded by δ, we obtain a relation between 1/(δ2−�|S1|) and δ and
hence a lower bound for δ. The computation details and establishing the relation
with ε (privacy parameter) and δ (maximum cheating probability) is given in
the proof of Theorem 2.

The bound shows the share size grows inversely to the quadratic value of the
sum of the leakage resilience and cheating detection parameters.

Discussion and Comparison. For � = 0 (no leakage from the uncorrupted
shares) and ε = 0 (the secret is perfectly hidden), the bound in Theorem 1 is
the same as the lower bound for the OKS model in [37] (see Page 3). Theorem
2 however for � = 0 and ε = 0 gives a bound 1−1/|S|

δ2 in the OKS model. This
bound is also applicable to the share size in the CDV model because of the

Lower Bounds on LRCDSS 473

relation between the models (CDV can be seen as the worst case while OKS is
average case), but it is weaker than the CDV bound |S|−1

δ2 + 1 in [37].
We note that CDV bound applies to systems with for perfect privacy while

our derived bound applies to ε-privacy. The bound in Theorem 2 shows that
the share size of an (k, n, ε, δ)-LRCDSS where the leakage function f ∈ L, is
lower bounded by 2�−1

(ε+δ)2 for |S| ≥ 2 and for large enough secret space it is

approximately 2�

(ε+δ)2 .

Relation to Non-malleable Secret Sharing (NMSS). In [19] it was noted
that error detection implies non-malleability if for any tampering function, the
probability that the tampered codeword is invalid is the same for all messages.

In Sect. 6 we show that cheating detection property can be formulated as non-
malleability against a special class of tampering functions. Proposition 1 shows
that if a (k, n)-threshold secret sharing with perfect correctness and perfect
privacy is a (k, n, σ)-NMSScd, it is also a (k, n, σ)-CDSS, in CDV model. This
result can be extended to the case that the adversary also has access to leakages
of f ∈ L.

Combining this result with Theorems 1 and 2, we obtain lower bounds on the
share size of non-malleable secret sharing when the tampering class consists of
the set of joint tampering of the shares of an unauthorized set, and the tampering
function is selected after obtaining leakages from all the shares according to a
leakage function f ∈ L (see Sect. 6).

In Sect. 6 we compare this bound with the only other known bound on the
share size of LRNMSS due to Brian et al. [10]. We show that the two bounds
although both applicable to LRNMSS but are not directly comparable because
(i) they are for two different classes of tampering functions that do not have
inclusion relationship (i.e. one class is not contained in the other), and (ii)
although both are lower bounds on the share size, they are stated in terms of
different sets of parameters of secret sharing schemes. More details is in Sect. 6.

1.2 Related Works

Lower bounds on the share size of CDSS are given in [13,37]. Theorem 1 and
Theorem 2 are inspired by the approach in [37] that provide tight lower bounds
for OKS and CDV models.

Bounds on the share size of LRSS are given in [36] for Local and Local+

leakage models, and are implied using compiler constructions for LRSS [41].
Srinivasan and Vasudevan [41] also considered strong local leakage where the
leakage of the uncorrupted shares (not in the unauthorized set of shares seen by
the adversary) is allowed to depend on the shares of the unauthorized set. This
allows the adversary to choose the vector of leakage functions after learning
the shares of an unauthorized set. Kumar, Meka and Sahai [29] proposed a
general adaptive leakage model for �-bit leakage that is described as a multi-
round communication protocol, and gave a secure construction for the model.

Share tampering with the goal of providing non-malleability is considered in
[1,5,25,29,41]. Share efficiency in these works is measured in terms of rate of

474 S. Dutta et al.

the scheme which is defined as the ratio of the secret length to the maximum
size of a share. Our bounds give concrete bounds on the share size of NM secret
sharing and leakage resilient secret sharing.

Leakage resilience of non-malleable SS was studied by Kumar, Meka and
Sahai [29] and Lin et al. [30]. Kumar et al. [29] defined and constructed LR
NMSS that allows an adversary to have adaptive leakage from shares to choose
the tampering functions. Lin et al. considered affine leakage functions and gave
constructions for LR-NMSS for that class. Brian et al. [10] while considering the
question of constructing continuously non-malleable secret sharing also proved
an important result. They showed that every one-time statistically non-malleable
secret sharing against joint tampering is also a leakage-resilient non-malleable
(with some loss in the security parameter) where the adversary first leaks jointly
from the shares and then tampers with them.

Organization. Section 2 gives background models and definitions. Section 3, 4
and 5 give some preliminary results needed for proving the lower bounds and
lower bounds on share size of LRCDSS in two cases: with and without considering
the share information of an unauthorized set, respectively. Section 6 relates CDSS
and non-malleable secret sharing and discusses the implication of the bounds.
Section 7 is the conclusion.

2 Model and Definitions

We use capital letters such as X to denote random variables and lower case
letters such as x to show the realizations of X. For a vector v and index set T ,
we use vT to denote the sub vector of v with components vi for every i ∈ T.

Statistical Distance. Let X and Y denote two random variables that are
defined over a set S. The statistical distance between the two variables is defined
as Δ(X,Y) =

∑
s∈S |Pr[X = s] − Pr[Y = s]|. Sometimes it is also denoted by

Δ(PX , PY), or even Δ(P,Q) if only distributions P,Q are specified.
We say X and Y are ε-close if Δ(X,Y) ≤ ε and is denoted by X ≈ε Y . It is

well-known that if X ≈ε1 Y and Y ≈ε2 Z then X ≈ε1+ε2 Z.

2.1 Secret Sharing

In a secret sharing system a secret is distributed among a user set U such that
authorized subsets of users can reconstruct the secret, and the secret is statisti-
cally hidden from an unauthorised set. Let Γ be a subset of the power set, 2U ,
that specifies the subsets of users that form an authorized set; i.e. the set of their
shares can recover the secret. A subset F ⊂ U which is not in Γ , i.e. F /∈ Γ , is
called an unauthorized set and the set of shares (Su)u∈F will be independent of
secret S. We only consider monotone access structures: if A1 ∈ Γ and A1 ⊆ A2,
then A2 ∈ Γ . Moreover, the collection of unauthorized sets is denoted by F .
Note that, in our model Γ ∩F = ∅ and Γ ∪F = 2U . A formal definition of secret
sharing [6] is as follows.

Lower Bounds on LRCDSS 475

Definition 1 ((Γ,U, β, ε) Secret Sharing Scheme). Let U be a set of n users
labeled by [n] = {1, 2, . . . , n}. Let (Γ,F) denote an access structure on these n
users with F = 2U\Γ . A secret sharing scheme Π for an access structure (Γ,F)
consists of a pair of algorithms (Share,Rec). Share is a randomized algorithm that
gets as input a secret S (from a domain of secrets S with at least two elements), Γ
and the number of parties n, and generates n shares (S1, . . . , Sn) ←− Share(S).
Rec is a deterministic algorithm that gets as input the shares of a subset B
of parties and outputs a string. The requirements for defining a secret sharing
scheme are as follows:

– β-Correctness: If {Su}u ← Share(S) for some secret S ∈ S, then for any
B ∈ Γ , we always have Pr[Rec({Su}u∈B) = S] ≥ 1 − β.

– ε-privacy: Let {Su}u = Share(S). For F ∈ F , let SF = {Su}u∈F . Then,
for any s′, s′′ ∈ S, the statistical distance between the conditional random
variables SF |S satisfies Δ(PSF |S(·|s′), PSF |S(·|s′′)) ≤ ε

In this paper, we consider β = 0, that is perfect correctness, and statistical
privacy, that is ε �= 0. In a (k, n)-threshold secret sharing any subset of at least
k shares reconstructs the secret, and any set of k − 1 or less shares does not
reveal any information about the secret. Furthermore, Γ consists of the set of all
subsets of U of size at least k. In the above definition of secret sharing scheme
the adversary is passive and follows the protocol.

2.2 Cheater Detection

Cheater detection in threshold secret sharing, was first proposed in [42], and
considers security against an active adversary that does not follow the protocol.
A cheating adversary is defined for a maximal unauthorised set C. and works
as follows. For a secret s ∈ S that is shared by an honest dealer using the
algorithm Share(s), the adversary takes the shares of C and replaces them with
an arbitrary set of share values. The adversary succeeds if the reconstruction
algorithm applied to a minimal authorized set T , where C ⊂ T , outputs a secret
s′ �= s, without being detected. That is, Rec({Su}u∈T\C , {S′

u}u∈C) �∈ {S,⊥}.
There are two commonly used types of cheating detection, OKS where the

secret is chosen from a uniform distribution on secret space, and CDV where
the property holds for any secret that is known to the adversary. We consider
OKS model and a cheating detectable scheme is defined as follows (adapted from
[37]).

Definition 2 (Cheating Detectable Secret Sharing [37]). Let SS =
(Share,Rec) be a (k, n)-threshold secret sharing scheme. The scheme SS is said to
be (k, n, δ)-cheating detectable secret sharing (or (k, n, δ)-CDSS for short) in the
OKS model if besides correctness and perfect privacy of a general secret sharing,
it additionally satisfies the following.

– cheating detection: for s uniformly random over S, for every F ⊂ {1, . . . , n}
of size |F | = k−1 and for any i /∈ F , the reconstruction Rec(s̃hF , shi) ∈ {s,⊥}
holds, except with probability δ, where the modified shares s̃hF only depend on
the shares in F i.e. shF .

476 S. Dutta et al.

Note 1. In the cheating detection property of the above definition, the secret
is uniformly random and unknown to adversary. If the secret s is known to
adversary, then the corresponding model is as (k, n, δ)-CDSS in the CDV model.

2.3 Leakage Resilient Secret Sharing

We consider the local leakage model proposed by Srinivasan et al. [41] (and
concurrently by Aggarwal et al. [1]) which has been used in numerous follow-up
works [10,30,33,36].

Definition 3 (Local leakage family [41]). Let S1 × · · ×Sn be the domain of
shares for some secret sharing scheme realizing a (k, n)-threshold access struc-
ture. The family Hk,� parameterized by threshold k and the number of leaked bits
� per share, consists of leakage functions fH = (f1, . . . , fn) where H ⊂ [n] such
that

– |H| = k − 1
– fi is identity function for all i ∈ H and fj : Sj −→ {0, 1}� for all j /∈ H.

More precisely, the function fH when given input (sh1, . . . , shn), outputs
• shi for all i ∈ H and
• �-bit leakages fj(shj) for all j ∈ {1, . . . , n}\H.

We now introduce the leakage-resilient secret sharing (adapted from [24,41]).

Definition 4 (Local+ Leakage-Resilient Secret Sharing Scheme). A
(k, n)-threshold secret sharing scheme for secret space S and share and recon-
struction algorithms (Share,Rec) is ε-leakage resilient against a (local) leakage
family Hk,� if it satisfies correctness and privacy as defined below.

– (Perfect Correctness) for every s ∈ S and every Q ⊂ {1, . . . , n} of size |Q| =
k, it holds that for {shi}i∈[n] ← Share(s) that Pr[Rec({shi}i∈Q) = s] = 1.

– (ε-Privacy against Leakage) For all function fH ∈ Hk,� and for any two secrets
m0,m1 ∈ S, we have Δ (fH(Share(m0)), fH(Share(m1))) ≤ ε.

2.4 Leakage Resilient Cheating Detectable Secret Sharing

In this section, we define leakage resilient cheating detectable secret sharing
(LRCDSS). Essentially, it is leakage resilient secret sharing against leakage family
Hk,� (i.e., in the Local+ model) with cheating detection capability. Since this is
the main definition in this paper, we present it in details.

Definition 5 (Leakage Resilient Cheating Detectable Secret Sharing).
A (k, n)-threshold secret sharing scheme SS = (Share,Rec) is said to be

(k, n, �, ε, δ)-leakage resilient and cheating detectable (or (k, n, �, ε, δ)-LRCDSS)
in the OKS model if the following three conditions are satisfied.

Lower Bounds on LRCDSS 477

– Correctness: for every s ∈ S and every minimal authorized set Q ⊂ {1, . . . , n}
of size |Q| = k, it holds that for sh ← Share(s) that Pr[Rec(shQ) = s] = 1.

– ε-Privacy against Local+ Leakage: For all function fH ∈ Hk,� for some H ⊂
[n] with |H| = k − 1 and for any two secrets m0,m1 ∈ S the statistical
distance: Δ (fH(Share(m0)), fH(Share(m1))) ≤ ε.

– OKS cheating detection: Let s ∈ S be uniformly random over S and sh =
Share(s). The adversary is given access to fH(sh), and modifies shH to s̃hH .
The scheme is cheating detectable if for any i /∈ H, the reconstruction
Rec(s̃hH , shi) ∈ {s,⊥} except with probability δ.

Note 2. We can also define (k, n, ε, δ)-LRCDSS in the CDV model, with the
only difference in the definition of cheating detection.

– CDV cheating detection: Same as OKS cheating detection except that the
secret s ∈ S is chosen using any distribution.

Note 3. Definition 5 generalizes the Definition 2 in two ways. Firstly, it general-
izes perfect privacy to ε-privacy; secondly, both privacy and cheating detection
hold against an adversary who chooses a leakage family Hk,� (instead leakage of
k − 1 shares) and after seeing the output of the leakage function, chooses their
tampering function.

3 Preliminaries

In this section we introduce two basic lemmas which will be used in proving our
lower bounds. The following lemma by Csiszár [15] gives the relation between
probability distance and mutual information.

Lemma 1 (Lemma 1 of [15]). Let X,Y be random variables over X, Y respec-
tively. Let D = Δ(PXY ;PXPY). Then

1
2 ln 2

D2 ≤ I(X;Y) ≤ D log
|X|
D

, (1)

where the second inequality holds under condition |X| ≥ 4.

From this result, we prove a lemma that will be used in analyzing the privacy
or leakage resilience. The proof is deferred to Appendix B.

Lemma 2. Let S, Y be two variables over S and Y respectively with |S| ≥ 4. If
for any s′, s′′ ∈ S,

Δ(PY |S(·|s′), PY |S(·|s′′)) ≤ ε, (2)

then Δ(PSY , PSPY) ≤ ε and I(S;Y) ≤ ε log |S|
ε .

In a ε-secret sharing scheme, let S denote the secret and Y denote the vector of
shares corresponding to an unauthorized set. From the above lemma, we know
that I(S;Y) < ε log |S|

ε and Δ(PSY ;PSPY) < ε. This provides the ε-privacy
with an information theoretical interpretation: unauthorized shares have little
information about the secret and they are almost statistically independent.

478 S. Dutta et al.

4 A Lower Bound Using Leakage and Tampering
of a Single Share

In this section we derive a lower bound on the share size for (k, n, ε, δ)-LRCDSS
in the OKS model. Our strategy is to prove a lower bound on the cheating prob-
ability which involves the share size and can hence be used to get a lower bound
on share size. Our lower bound on cheating probability of a leakage resilient
secret sharing scheme is obtained by considering a rather weak attacker who
does not use the leakage from all shares and instead uses the leakage from a
single share. We show that this minimal amount of information suffices for an
adversary to launch an attack that has a non-trivial cheating probability and
hence obtain a lower bound on δ.

In the following we show a share tampering strategy for an adversary that
has the leakage only from a single share of a minimal qualified set, where the
leakage function of this share satisfies a certain property. The adversary has the
ability to arbitrarily modify this share.

Let {S1, · · · , Sk} be the share set of a minimal qualified set, and let f1(S1) be
an �-bit leakage function on S1, where f1 is known by the attacker, and satisfies

Property P1: Preimage set f−1
1 (f1(S1)) has a size of about 2−�|S1| for all S1 ∈

S1.
This property can be be easily satisfied using functions that partition the

domain S1 into 2� parts of (almost) equal size, and map all elements of one part
to a single �-bit value. We can fix f1 as any function satisfying this property (so
the attacker does not need to adaptively choose this).

Technical Observation. By ε-privacy of LRCDSS , (f1(S1), S2, · · · , Sk) does not
significantly reduce the uncertainty of S (see Lemma 2 for interpreting). That
is to say, S is almost independent of this vector i.e. given this leakage vector,
almost every element of S remains a candidate for the secret S and with almost
the same probability. To get hold of the idea, we can assume every element in S
is a candidate. Since (S1, · · · , Sk) determines S, it follows that for each possible
candidate secret S′, there must exist an S′

1 such that Rec(S′
1, S2, · · · , Sk) = S′

with f1(S′
1) = f1(S1) (otherwise, S′ is not possible to be a candidate, given

f1(S1), S2, · · · , Sk).
Since, for every S′, there exists S′

1 such that Rec(S′
1, S2, · · · , Sk) = S′, there

are at least |S| − 1 choices of S′
1 such that Rec(S′

1, S2, · · · , Sk)) is different from
the original S.

Attack Strategy. For a function f1 that is known to the attacker and satisfies
property P1. Assume (S1, · · · , Sk) will be used in the reconstruction algorithm,
where only S1 is known to attacker. The attacker then computes f1(S1) and
replaces S1 by S′

1 which is chosen randomly from the preimage set f−1
1 (f1(S1)).

Attacker succeeds if Rec(S′
1, S2, · · · , Sk) differs from the original secret S.

The above technical observation reveals that the cheating probability δ is at
least |S|−1

|f−1
1 (f1(S1))| which can be approximated by |S|−1

2−�|S1| , as the size of f−1
1 (f1(S1))

is roughly 2−�|S1|.

Lower Bounds on LRCDSS 479

In the following we state our results for threshold LRCDSS scheme. We
emphasize that our result can be generalized to a general access structure
LRCDSS setting, by using shares of a minimal authorised set instead of k shares.

Theorem 1. Let SS = (Share,Rec) be (k, n, ε, δ)-LRCDSS in the OKS model.
Then, δ ≥ |S|(1−ε)−1

�|Su|2−��−1
, where Su is the space of the uth share. Therefore, the

share size |Su| ≥ 2� · |S|(1−ε)−1
δ .

Proof. Deferred to Appendix B

Remark 1. When there is no leakage (i.e., � = 0) and the privacy is perfect (i.e.,
ε = 0), the lower bound in the above theorem is degenerated to δ ≥ |S|−1

|Su|−1 . This
is exactly the bound on δ in [37] for (k, n, δ)-CDSS in the OKS model.

5 A Lower Bound Using Shares of an Unauthorized Set
and Leakage of a Single Share

In the previous section, we obtained a lower bound on the cheating probability
from a weaker adversary who only uses one share and chooses the modified share
from the preimage of this share’s leakage value. The attacker did not consider
the leakages from the uncorrupted shares when tampering his own share. This is
a very special case of the cheating adversary in Definition 5. In this section, we
derive a lower bound on δ using the leakage from uncorrupted shares. As before,
let us consider the minimal number of qualified shares S1, · · · , Sk of secret S.
We start with two important observations and then outline the intuition behind
our proof strategy.

Observation 1. The number of s′
1 in S1 such that Rec(s′

1, S2, · · · , Sk) �=⊥ is at
most about δ|S1|, where δ denotes the maximum cheating probability. Otherwise,
an attacker, who corrupts S1, can break the cheating threshold δ by simply
sampling s′

1 ← S1 as his modified share. Then, S′ def
:= Rec(s′

1, S2, · · · , Sk) is not
⊥ with probability significantly larger than δ. On the other hand, it is unlikely
that S′ = S (as S′ is random and can be any value in S). Thus, attacker’s success
probability is larger than δ, which is a contradiction to the definition of δ.

Observation 2. We consider a random leakage function f1 of S1 in the following
manner – randomly partition S1 into 2� subsets and define the f1 value of every
element in set i to be i. Since each s′

1 is assigned to set i with probability 2−�,
set i (i.e., f−1

1 (i)) on average has a size 2−�|S1|. If we only look at the elements
of s′

1 in set i so that Rec(s′
1, S2, · · · , Sk) �=⊥, then this restricted set has a size

at most about 2−�δ|S1| (by Observation 1).

Idea to Lower Bound δ. Lower bounding on δ is actually just to present an
attack achieving the desired success probability. Assume {S1, · · · , Sk} is the
shares of a minimal qualified set. Attacker corrupts S2, · · · , Sk and obtains the

480 S. Dutta et al.

leakage f1(S1) of an uncorrupted share S1. Then, he computes f−1
1 (f1(S1))

def
=

{v1, · · · , vN} from the leakage f1(S1) (Note: N is a random variable, depend-
ing on corrupted shares and f1). Then, the attacker randomly samples vu from
{v1, · · · , vN} (hoping that vu = S1) and then try to find xu in S2 so that
Rec(vu, xu, S3, · · · , Sk) �=⊥. If there are more than one such xu’s, choose one
randomly. Attacker then outputs xu as his modified share for S2. He will succeed
if Rec(vu, xu, S3, · · · , Sk) �= Rec(vu, S2, S3, · · · , Sk) and vu = S1. In the proof,
we show that if vu = S1, then the attacker will succeed with high probability.
Notice that vu = S1 occurs with probability 1/N ≈ 1

2−�δ|S1| (by Observation
2). Since the cheating probability is upper bounded by δ, it follows that δ has a
lower bound about 1/N ≈ 1

2−�δ|S1| and so δ has a lower bound about
√

1
2−�|S1| .

In the following theorem, we make the above intuitive analysis rigorous.

Theorem 2. Let SS = (Share,Rec) be (k, n, ε, δ)-LRCDSS in the OKS model.

Then, δ ≥
√

1−1/|S|
2−�|Su| − ε and hence the share size |Su| ≥ 2� · 1− 1

|S|
(δ+ε)2 . For |S| ≥ 2,

we note that the lower bound on the share size is at least 2�−1 · 1
(δ+ε)2 .

Proof. Deferred to Appendix B.

Remark 2. When there is no leakage (i.e., � = 0) and the privacy is perfect (i.e.,

ε = 0), the lower bound in Theorem 2 implies that |Su| ≥ 1− 1
|S|

δ2 ≥ 1
2δ2 . That

is, the share size increases as a quadratic in the parameter 1/δ. This result has
resemblance with the bound |Su| ≥ |S|−1

δ2 + 1 for the cheating detectable (but
no leakage from uncorrupted shares) secret sharing in [37] in the CDV model
(where S can be known to attacker). Note our bound is for a weaker adversary
(i.e., OKS model where S is uniformly random and unknown to attacker).

6 Cheater Detectability and Non-Malleability in Secret
Sharing

Non-malleable secret sharing schemes (NMSS) were introduced by Goyal and
Kumar [24] to protect the secret against tampering by requiring that the attacker
cannot tamper with the shares of the secret such that a related but different
secret can be reconstructed. The reconstructed secret (if any) must be “unre-
lated” to the original one. They defined non-malleability using a simulation-
based approach that requires the statistical distance between two random vari-
ables where one is the output of a real world tampering experiment, and the
second one is the output of an ideal world simulator that samples from a fixed
distribution, be a small value σ. The quantity σ is referred to as the “simulation
error”.

We first recall the definition of non-malleable secret sharing by Goyal and
Kumar [24,25], that follows the approach of Dziembowski et al. [19] in defining
non-malleable codes. (Definition of NM codes is recalled in the Appendix.)

Lower Bounds on LRCDSS 481

Definition 6 (Non-malleable threshold Secret Sharing [24]). Let
(Share,Rec) be a secret sharing scheme realizing a (k, n)-threshold access struc-
ture for secret space S. Let T be some family of tampering functions. For each
g ∈ T , secret s ∈ S and authorized set T containing k indices, define the tam-
pering experiment

Tamperg,Ts =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

share ←− Share(s)
s̃hare ←− g(share)
s̃ ←− Rec(s̃hareT)
output : s̃

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

with associated random variable

Tamperg,Ts , which is a random variable over the randomness of the sharing
function Share. The secret sharing scheme (Share,Rec) is σ-non-malleable with
respect to the function class T , if for every g ∈ T and every authorized set T
of k shares, there exists a distribution Dg,T over S ∪ {same∗,⊥} such that for
every secret s ∈ S, the following holds :

Tamperg,Ts ≈σ

{
s̃ ←− Dg,T

output: s if s̃ = same∗ and s̃ otherwise.

}

In the above, “≈σ” means that the statistical distance between the two distri-
butions is at most σ. The distribution Dg,T should be efficiently samplable given
oracle access to g(·).

Defining Cheating Detection Using Simulation-Based Approach.
Cheating detectability and non-malleability both consider active unbounded
adversaries. To relate the two security notions, we first provide a simulation
based approach to capture cheating detection. Cheating detectability is defined
for a class of functions where the adversary has access to the shares of a maximal
unauthorized set, and jointly tampers with the shares, keeping the rest of the
shares unaltered. The cheating detection property can be formulated as non-
malleability of the secret sharing for the following tampering function family.

Definition 7 (Joint Tampering function family). We consider (k, n)-
threshold access secret sharing. For any maximal unauthorized set H ⊂ [n]
(i.e. |H| = k − 1), define a joint tampering function gH as a function that takes
a vector of n shares and outputs a vector of n shares, gH : S1 × · · · × Sn −→
S1 × · · · × Sn, which is determined by H and a joint tampering function g[H]

defined on shares of the index set H, g[H] : ×j∈HSj −→ ×j∈HSj that takes k−1
shares corresponding to the indices in H, and outputs a vector of k − 1 shares
for the same indices. Given input (sh1, · · · , shn), the output of function gH is
given by,

– sh′
i = shi for all i ∈ [n]\H, and

– sh′
i = g[H]((shj)j∈H)[i], for i ∈ H

where g[H]((shj)j∈H)[i] is the component of g[H] output for index i ∈ H.
That is, for any maximal unauthorized set H, a joint tampering function acts

on all the shares, keeping the shares in [n]\H unaltered and jointly modifies the
shares with indexes in H using an arbitrary function g[H].

482 S. Dutta et al.

For a maximal unauthorized set H, define T cdss
H to be the set of all joint tam-

pering functions as defined in Definition 7, and let T cdss denote the union of
T cdss

H for all H. That is, T cdss = ∪HT cdss
H . Thus a function in T cdss is indexed

by a maximal unauthorized set H.
Cheating detectability for secret sharing is captured by requiring the recon-

structed secret to be either the original secret, or ⊥. In terms of non-malleable
secret sharing at Definition 6, this is modeled by requiring the distribution DgH ,T

be on the set {same∗,⊥}. where T is any minimal authorized set that contains
H (i.e. H ⊂ T).

Definition 8. Let (Share,Rec) be a (k, n)-threshold secret sharing scheme for
secret space S. (Share,Rec) is called (k, n, σ)-NMSScd against tampering family
T cdss, if

• for any H with |H| = k − 1, for any k-sized set T containing H, and any
tampering function gH ∈ T cdss, there is a distribution DgH ,T on {same∗,⊥}
such that

TampergH ,T
s ≈σ

{
s̃ ←− DgH ,T

output: s if s̃ = same∗ and ⊥ otherwise.

}

Here, the tampering experiment Tamper
gH ,T
s is defined as

TampergH ,T
s =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

share ←− Share(s)
s̃hare ←− gH(share)
s̃ ←− Rec(˜sharesT)
output : s̃

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Also, DgH ,T is efficiently samplable given oracle access to gH(·).
We note that (k, n, σ)-NMSScd property is defined for the same adversary of
Sect. 2.2 but uses a different way of quantifying security. The proposition below
relates insecurity measure and simulation error of Definition 2 and Definition 8
respectively.

Proposition 1. Let SS = (Share,Rec) be a (k, n)-threshold secret sharing on
a secret space S with perfect correctness and perfect privacy. Then, if SS is
(k, n, σ)-NMSScd, according to Definition 8, then it is (k, n, σ)-CDSS, according
to Definition 2 in the CDV model.

Proof. Deferred to Appendix B.

Leakage and Tampering. In Definition 3, we have defined the leakage function
family Hk,� for a (k, n)-threshold secret sharing: for a maximal unauthorized set
H, fH ∈ Hk,� has the form fH = (f1, . . . , fn), a vector of functions such that fi is
the leakage function acting on share Si. More precisely, for any i ∈ H, fi(Si) = Si

and for j /∈ H, fj(Sj) is a � bit string which is the leakage of the share Sj .
Let LeakfH denote the leakage vector that is the output of the function fH ,

that is LeakfH = ((f1(S1), f2(S2), . . . , fn(Sn))).
The set of such leakage vectors is denoted by Lk,� = ∪fH∈Hk,�

LeakfH

Lower Bounds on LRCDSS 483

Definition 9 (Joint tampering with leakage). Consider a (k, n)-threshold
secret sharing with secret space S and share spaces S1, . . . ,Sn.

For a maximal unauthorized set H ⊂ [n] (i.e. |H| = k−1), let Lk,� be defined
as above.

For any fH ∈ Hk,� (see Definition 3), define a joint tampering function gfHH
that takes a vector of shares generated by an honest dealer and a leakage vector
that is the output of fH ∈ Hk,� on the share vector, and outputs a vector of
shares,

gfHH : S1 × · · · × Sn × Lk,� −→ S1 × · · · × Sn

which is determined by a function

gfH[H] : ×j∈HSj × Lk,� −→ ×j∈HSj

that is defined on the shares with indices in H and leakage Lk,�, with the output
being a vector of shares with indices in H. Precisely, given shares (sh1, · · · , shn)
and leakage τ = fH(sh1, . . . , shn),

gfHH (sh1, . . . , shn, τ) = (sh′
1, . . . , sh

′
n),

where

– sh′
i = shi for all i ∈ [n]\H, and

– sh′
i = g[H]((shj)j∈H , τ)[i], for i ∈ H

where g[H]((shj)j∈H , τ)[i] is the component of g[H] output for i ∈ H.

For a maximal unauthorized set H and a leakage function fH ∈ Hk,�, let
T leak,cdss

H,fH
denote the set of all joint leakage and tampering functions (see Def-

inition 9), and let T leak,cdss denote the union of all such sets for all H and
fH .

The tampering experiment for a LRNMSS is informally defined as follows.
For an secret s, tampering function gfHH and minimal authorized set T where
H ⊂ T , (i) use Share(s) to generate a vector of shares (sh1, . . . , shn) for s, (ii)
apply gfHH on the share vector to obtain the vector (sh′

1, . . . , sh
′
n), and (iii) apply

Rec using the shares of T .
A secret sharing is leakage resilient cheating detectable SS, if the output of

Rec is either the original secret s or a special symbol ⊥.

Definition 10. Let (Share,Rec) be a (k, n, �, ε)-LR threshold secret sharing
scheme for secret space S with respect to Definition 4. (Share,Rec) is called
(k, n, �, ε, σ)-NMSSLRCD against tampering family T leak,cdss if for any maximal
unauthorized set H, for any function gfHH ∈ T leak,cdss and any minimal autho-
rized set T with |T | = k containing H, there exists a distribution Dg

fH
H ,T over

{same∗,⊥} such that for any secret s ∈ S,

Tamper
g
fH
H ,T

s ≈σ

{
s̃ ←− DgfH ,T

output: s if s̃ = same∗ and ⊥ otherwise.

}

484 S. Dutta et al.

In the above, the random variable Tamper
g
fH
H ,T

s is defined by the tampering
experiment that is described below, over the randomness of the sharing function
Share,

Tamper
g
fH
H ,T

s =

⎧
⎪⎪⎨

⎪⎪⎩

(sh1, . . . , shn) ←− Share(s)
(sh′

1, . . . , sh
′
n) ← gfHH (sh1, . . . , shn, τ) : τ = fH(sh1, . . . , shn)

s̃ ←− Rec({sh′}T)
output : s̃

⎫
⎪⎪⎬

⎪⎪⎭

We require Dg
fH
H ,T should be efficiently samplable given oracle access to gfHH (·).

In Definition 10 the secret has arbitrary distribution. Using argument similar to
Proposition 1 we can show that a (k, n, �, ε, δ)-NMSSLRCD is a LRCDSS in the
CDV model with cheating probability at most δ. This results in the following
corollary.

Corollary 1. If SS = (Share,Rec) is (k, n, �, ε, δ)-NMSSLRCD according to Def-
inition 10, then SS is also a (k, n, �, ε, δ)-LRCDSS according to Definition 5 in
the CDV model.

The corollary shows that a (k, n, �, ε, δ)-NMSSLRCD, is a (k, n, �, ε, δ)-LRCDSS,
and so the share size of any such NMSSLRCD must also satisfy the lower bound in
Theorem 2. To our knowledge, this is the lower bound on share size of LRNMSS
where tampering functions is a joint tampering. Brian et al. [10] obtained a lower
bound on the share size of non-malleable secret sharing with respect to indepen-
dent tampering (Corollary 4 of [10]). The lower bound (in bits) is (log 1

δ −1)(1−k/n)
̂k

which relates the share size to the total number of shares n, the number of shares
k̂ (that is the minimal number of shares required to uniquely recover all shares,)
and the non-malleability simulation error δ. Our bound relates the share size to
the secret size, leakage parameter �, privacy parameter ε and non-malleability
simulation error δ. The two bounds are not directly comparable: Brian et al.’s
bound is obtained assuming Local model of leakage and for independent tam-
pering functions whereas our bound is for Local+ model of leakage and some
restricted model of joint tampering.

7 Conclusion

We derived bounds on the share size of leakage resilient secret sharing with secu-
rity against tampering adversary. We used the security notion of detectability
of tampering which is a natural notion and widely used in coding theory, in
particular error detecting codes. We discussed the relationship of this notion to
non-malleability of secret sharing schemes under a particular class of tampering,
and showed our results also applied to leakage resilient NMSS.

Acknowledgements. This work is in part supported by Natural Sciences and Engi-
neering Research Council of Canada Discovery Grant program, and MITACS Acceler-
ate Fellowship, Canada wide Ref. No. IT25625, FR66861.

Lower Bounds on LRCDSS 485

A Non-malleable Codes

Definition of non-malleable code introduced by Dziembowski et al. [19] is given
below. We refer to the original paper [19] for more background on non-malleable
codes.

Definition 11 (Non-malleable Code [19]). Let (Enc,Dec) be a coding
scheme where Enc is a randomized function and Dec is deterministic and F
be some family of tampering functions. For each f ∈ F and message s ∈ S,
define the tampering experiment

Tamperf
s =

{
c ← Enc(s); c̃ ← f(c), s̃ ← Dec(c̃)

output : s̃

}

which is a random variable over the randomness of the encoding function Enc.
The coding scheme (Enc,Dec) is said to be non-malleable with respect to F if
for every f ∈ F there exists a distribution Df over S ∪ {same∗,⊥} such that for
every message s ∈ S the following holds:

Tamperf
s ≈δ

{
s̃ ← Df

output: s if s̃ = same∗ and s̃ otherwise.

}

and Df is efficiently samplable given oracle access to f(·). In the above indistin-
guishability “≈” can refer to statistical or computational indistinguishability. In
case of statistical indistinguishability,the scheme is said to have exact-security δ,
if the statistical distance above is at most δ.

B Proofs

Proof of Lemma 2. We assume that PS(s) �= 0 (otherwise, it can be removed
from S). Notice that

Δ(PSY , PY PS) =
∑

y,s

|PSY (s, y) − PY (y)PS(s)|

=
∑

s

PS(s)
∑

y

|PY |S(y|s) − PY (y)|

≤
∑

s

PS(s)
∑

y

∑

s′
PS(s′)|PY |S(y|s) − PY |S(y|s′)|

=
∑

s

PS(s)
∑

s′
PS(s′)

∑

y

|PY |S(y|s) − PY |S(y|s′)|

≤
∑

s

PS(s)
∑

s′
PS(s′)ε = ε.

Also, by Lemma 1, we now have that I(S;Y) ≤ ε log |S|
ε . �

486 S. Dutta et al.

Proof of Theorem 1
For simplicity, let u = 1 and we consider |S1|. We only need to lower bound δ.
Without loss of generality, let us assume an attacker corrupts the share of user
1. It needs to specify a leakage function with �-bit output from the share and
requests a secret sharing from dealer. The dealer then samples S ← S, computes
{Si}i ←− Share(S), and provides the leakage information on the first share to
the attacker. In the following, A denotes a minimal qualified set participating in
the reconstruction protocol containing k users such that user 1 ∈ A.

Let S1 be the space of S1 and let f1 : S1 → {0, 1}� be an arbitrary but
fixed mapping with |f−1

1 (z)| = �|S1|2−�� or �|S1|2−�� for any z ∈ {0, 1}�, where
f−1
1 (z) is the set of preimage s1 with f1(s1) = z. Let Y = {Su}u∈A−{1} and
X = S1. Then, attacker samples X ′ ← f−1

1 (f1(X)) − {X}. That is, X ′ is a
random preimage of f1(X) other than X. Attacker then outputs X ′ as user 1′s
modified share (i.e., the substitute of the original share X). Define the recovered
secret from (Y,X ′) as S′ = Rec(Y,X ′). The success probability of this attack is
Pr(S′ �∈ {S,⊥}). We now focus on bounding the probability. Before we proceed,
we present an important observation.

Claim 1. PXY S(x, y, s) > 0 if and only if there is some randomness R so that
Share(s;R) has the share x for user 1 and shares y for A − {1} (which implies
Rec(x, y) = s by perfect correctness).

Assuming Claim 1, we first claim that the attack success probability is1

Pr(S′ �∈ {S,⊥}) =
∑

(x′,x,y,s):Rec(x′,y) �∈{s,⊥}
x′∈f−1

1 (f1(x))

PXY S(x, y, s)
|f−1
1 (f1(x))| − 1

. (3)

To see this, notice that PXY S(x, y, s) > 0 if and only if Rec(x, y) = s by Claim
1. Further, X ′ = x′ is uniformly random over f−1

1 (f1(x))−{x}. Hence, each event
Rec(x′, y) /∈ {s,⊥} implies a successful attack.

For ease of our analysis, we introduce the notation Z = f1(X) into PXY S of
Eq. (3). Notice PXY ZS(x, y, z, s) = 0 (in case f1(x) �= z) and PXY ZS(x, y, z, s) =
PXY S(x, y, s) (in case f1(x) = z). Therefore, we have

Pr(S′ �∈ {S,⊥}) =
∑

(x′,x,y,z,s):Rec(x′,y) �∈{s,⊥}
x′∈f−1

1 (z)

PXY ZS(x, y, z, s)
|f−1
1 (z)| − 1

. (4)

1 if f−1(f(x)) = {x} only, then x′ w.r.t. this x does not exist and so the equation is
still well-defined.

Lower Bounds on LRCDSS 487

Let Lx′ be the set of (y, s) such that Rec(x′, y) �= s,⊥. Hence, Eq. (4) can be
written as

Pr(S′ �∈ {S,⊥}) =
∑

(x′,x,y,z,s):(y,s)∈Lx′
x′∈f−1

1 (z)

1
|f−1
1 (z)| − 1

PXY ZS(x, y, z, s),

=
∑

(x,y,z,s)

1
|f−1
1 (z)| − 1

∑

x′:(y,s)∈Lx′
x′∈f−1

1 (z)

PXY ZS(x, y, z, s). (5)

Given y, z, let s1, · · · , sN be the all possible secrets such that PY ZSX

(y, z, sj , xj) > 0 for some xj ∈ f−1
1 (z). By Claim 1, Rec(y, xj) = sj for each j.

Thus, (y, si) ∈ Lxj
for i �= j (as Rec(xj , y) = sj �= si).

Define Ny,z = {s1, · · · , sN} and so Ny,z\{sj} ⊆ Lxj
. Let us denote the ran-

dom variable Ny,z = |Ny,z|.
Continue Eq. (5), counting over j for x′ = xj in Eq. (5) we get

Pr(S′ �∈ {S,⊥}) ≥
∑

(x,y,z,i)

1
|f−1
1 (z)| − 1

∑

xj :(y,si)∈Lxj

xj∈f−1
1 (z)

PXY ZS(x, y, z, si)

≥
∑

x,y,z,i

PXY ZS(x, y, z, si)
|f−1
1 (z)| − 1

(Ny,z − 1) (6)

=
∑

x,y,z,s

PXY ZS(x, y, z, s)
|f−1
1 (z)| − 1

(Ny,z − 1) (7)

=
∑

y,z

1
|f−1
1 (z)| − 1

(Ny,z − 1)PY Z(y, z), (8)

where Eq. (7) is by the definition of s1, · · · , sN (that implies PXY ZS(x, y, z, s) =
0 for s �∈ Ny,z) and Eq. (8) is obtained by summing over s, x on PXY ZS to get
the marginal distribution PY Z .

According to the definition of f1, the restriction that either |f−1
1 (z)| = �|S1| ·

2−�� or �|S1| · 2−�� gives,

Pr(S′ �∈ {S,⊥}) ≥
∑

y,z

1
�|S1| · 2−�� − 1

(Ny,z − 1)PY Z(y, z). (9)

Dividing both sides of the Equation of Claim 2 (see below) by �|S1|2−�� − 1
and add to Eq. (9), we know that Pr(S′ �∈ {S,⊥}) is lower bounded by

|S| − 1
�|S1|2−�� − 1

∑

y,z

PY Z(y, z) − |S|
�|S1|2−�� − 1

ε (10)

=
|S| − 1

�|S1|2−�� − 1
− |S|

�|S1|2−�� − 1
ε. (11)

Reformatting Eq. (11), we conclude our theorem. �

488 S. Dutta et al.

Claim 2.
∑

y,z(|S| − Ny,z)PY Z(y, z) ≤ ε|S|.

Proof. From the ε-privacy of LRCDSS (with secret S, unauthorized shares Y
and leakage Z) and Lemma 2 (where Y Z here is variable Y in that lemma),

∑

s,yz

|PSY Z(s, y, z) − PS(s)PY Z(y, z)| ≤ ε. (12)

Recall that Ny,z is the set of s with PXY ZS(x, y, z, s) > 0 for some x ∈ f−1
1 (z).

Note that PXY ZS(x, y, z, s) > 0 implies z = f1(x) (and hence x ∈ f−1
1 (z)). Thus,

Ny,z is actually the set of s with PXY ZS(x, y, z, s) > 0 for some x ∈ S1. This
also implies that PY ZS(y, z, s) = 0 for each s ∈ S\Ny,z. Denote S\Ny,z by N̄y,z.
Therefore, looking the partial sum in Eq. (12) with s ∈ N̄y,z, we have

∑

(y,z,s): s∈N̄y,z

|0 − PY Z(y, z)PS(s)| ≤ ε. (13)

Since PS(s) = 1/|S| and |N̄y,z| = |S| − |Ny,z|, we have
ε|S| ≥

∑
(y,z,s):s∈N̄y,z

PY Z(y, z) =
∑

y,z(|S|−Ny,z)PY Z(y, z). This completes the
proof of Claim 2. ��

Proof of Theorem 2. For simplicity, let u = 1 and we consider |S1|. It suffices

to derive a lower bound δ ≥
√

1−1/|S|
2−�|S1| − ε for δ. Assume there are k users with

shares S1, · · · , Sk. Attacker does as follows: it corrupts S2, · · · , Sk and obtains
leakage Z = f1(V).

Let X = S2, V = S1 and f1(·) : S1 → {0, 1}� is a purely random function
chosen by attacker (i.e., for each w ∈ S1, f1(w) is purely random in {0, 1}�). Let
Y = (S3, · · · , Sk). So attacker has k − 1 shares X,Y and leakages Z = f1(S1).
He will try to modify X to X ′ using Y,Z while preserving Y unchanged.

Let {v1, · · · , vN} = f−1
1 (Z), where N is a random variable (depending on

Z and randomness of f1). Attacker than samples vu ← {v1, · · · , vN} (hope
that vu = S1). Then, he tries to find xu ∈ S2 such that Rec(Y, xu, vu) �∈ {⊥
,Rec(Y,X, vu)}; defines xu =⊥ if such xu does not exist. Finally, the attacker
outputs X ′ = xu as the modified share of X and keeps Y unchanged. This com-
pletes the description of the attack. By our description, he succeeds if vu = V
and xu �=⊥ .

We now analyze the success probability of the attacker. This equals P (vu =
V) − P (vu = V ∧ xu =⊥) ≥ E(1/N) − P (Bad), where Bad is the event that
there does not exist x′, x such that Rec(Y, x′, V) and Rec(Y, x, V) are distinct
and not ⊥.

By Cauchy-Schwarz inequality, E(1/N)E(N) = [
∑

i PN (i)/i]×[
∑

i PN (i)i] ≥
(
∑

i

√
PN (i)/i ×

√
PN (i)i)2 = 1. So E(1/N) ≥ 1/E(N).

We note that in Claim 4 shown below, λXY |S1| is the number of v so that
Rec(X,Y, v) �=⊥. Further, since f1(·) is a purely random function (independent of
randomness in secret sharing), each of such v belongs to f−1

1 (Z) with probability
exactly 2−�. Hence, E(N) = 2−� · E(λXY |S1|) ≤ 2−�|S1|(δ + ε/2)/(1 − 1/|S|).

Lower Bounds on LRCDSS 489

From E(1/N) ≥ 1/E(N) and Claim 3 (see below), the success probability is
lower bounded by 1−1/|S|

2−�|S1|(δ+ε)
− ε

2(1−1/|S|) . Since the attacker success probability

is upper bounded by δ, we have δ ≥ 1−1/|S|
2−�|S1|(δ+ε)

− ε
2(1−1/|S|) . Since |S| ≥ 2,

reformatting the inequality we conclude the result. �

Claim 3. P (Bad) ≤ ε
2(1−1/|S|) .

Proof. Denote Ω be the set of (v, y) so that there does not exist x, x′ such that
Rec(x, y, v),Rec(x′, y, v) are distinct and not ⊥. So P (Bad) = PV Y (Ω). Note
that if Bad event happens to Y = y, V = v with PV Y (v, y) > 0, then (y, v) can
compute the secret S, because there is only one s that can be recovered from
(v, y) (together with some x); otherwise, Bad will not occur to v, y. Therefore,

Δ(PV Y S , PV Y PS) =
∑

v,y,s

PV Y (v, y) · |PS|V Y (s|v, y) − PS(s)| (14)

≥2
∑

(y,v)∈Ω

PV Y (v, y) · (1 − 1/|S|) (15)

=2P (Bad) · (1 − 1/|S|), (16)

where the inequality uses the standard fact Δ(PX , PY) ≥ 2(PX(A) − PY (A))
for any subset A of the domain of X,Y and also uses the fact: if (v, y) ∈ Ω,
then either PV Y (v, y) = 0 or (v, y) determines S = s for some s which
means PS|V Y (s|v, y) = 1. As Δ(PV Y S , PV Y PS) ≤ ε, it follows that P (Bad) ≤

ε
2(1−1/|S|) . This completes the proof of Claim 3. ��

Claim 4. Let λx,y be the fraction of v in S1 satisfying Rec(x, y, v) �=⊥. Then,
E(λXY) ≤ δ+ε/2

1−1/|S| , where the expectation is with respect to PXY .

Proof. To prove the claim, we construct a simple attacker against cheating resis-
tance. Assume the challenger generates (S1, · · · , Sk). Recall that X = S2, Y =
(S3, · · · , Sk), V = S1). Let V = S1. Attacker corrupts Y and V and takes
V ′ ← V. He outputs (Y, V ′) during the reconstruction stage. The attack is
successful if and only if Rec(X,Y, V ′) �∈ {Rec(X,Y, V),⊥}. Let V(x, y, v) be the
set of v′ so that Rec(x, y, v′) = Rec(x, y, v). Then, the attack success probability
is (i..e, the reconstructed secret is neither ⊥ nor S)

∑

x,y,v

PXY V (x, y, v)(λxy − |V(x, y, v)|/|V|) (17)

=E(λXY) −
∑

x,y,v

PXY V (x, y, v)|V(x, y, v)|/|V|. (18)

490 S. Dutta et al.

Notice that for fixed s, V(x, y, v) is invariant over v satisfying Rec(x, y, v) = s.
So we can denote V(x, y, v) by Vs(x, y). Thus,

Eq.(18) =E(λXY) −
∑

x,y,s

PX,Y (x, y)PV |XY (Vs(x, y)|x, y) · |Vs(x, y)|/|V|

=E(λXY) −
∑

x,y,s

PX,Y (x, y)PS|XY (s|x, y) · |Vs(x, y)|/|V|

(Vs(x, y) and s are in one-one correspondence, given x, y)

∗≥E(λXY) −
∑

x,y,s

PX,Y (x, y)PS(s) · |Vs(x, y)|/|V| − D(PXY S , PXY PS) · 1

≥E(λXY) −
∑

x,y,s

PX,Y (x, y)PS(s) · |Vs(x, y)|/|V| − ε

=E(λXY) −
∑

x,y

PX,Y (x, y)λx,y · 1/|S| − ε

(observe that
∑

s

|Vs(x, y)|/|V| = λx,y)

=E(λXY)(1 − 1/|S|) − ε

where (*) uses facts that |Vs(x, y)|/|V| ≤ 1 and that EPZ
(F (Z)) ≥

EQZ
(F (Z)) − D(PZ , QZ) · maxz F (z) for distributions PZ and QZ of variable

Z and non-negative function F (z). Further, since the attack success probability
(hence Eq. (18)) is upper bounded by δ, E(λXY) ≤ δ+ε

1−1/|S| . This proves Claim
4. ��

Proof of Proposition 1. Since SS has perfect correctness and perfect privacy,
to prove SS is (k, n, δ)-CDSS, it remains to show the cheating probability is
upper bounded by δ. Let SH be the unauthorized set of shares chosen by the
adversary A and gH be a joint tampering function (that modifies shares in
H ⊂ T , where |T | = k) used in Definition 2 in the CDV model (for some s ∈ S). In
the CDV model, let the output of Tamper

gH ,T
s be S′ and the output of simulation

corresponding to DgH ,T be S′′. Then, Pr(S′ �∈ {s,⊥}|S = s) will be the cheating
probability in Definition 2 as the tampering process in Tamper

gH ,T
s is identical

to that in Definition 2. Since SS is (k, n, σ)-NMSScd, then by definition of DgH ,T ,
Pr(S′′ �∈ {s,⊥}|S = s) = 0. Therefore,
σ ≥ Δ(PS′|S=s, PS′′|S=s) =

∑
v |PS′|S(v|s) − PS′′|S(v|s)|

= Pr(S′ �∈ {s,⊥}|S = s) + |PS′|S(⊥ |s) − PS′′|S(⊥ |s)| + |PS′|S(s|s) − PS′′|S(s|s)|
≥ Pr(S′ �∈ {s,⊥}|S = s).
As the inequality holds for any s, it follows that maxs P (S′ �∈ {s,⊥}|S = s) ≤ σ.
That is, SS is CDSS with a cheating probability at most σ. We also note that
the above result is valid for OKS model also. It suffices to show that if SS is
CDSS in the CDV model with cheating probability at most δ, then it is CDSS
in the OKS model with cheating probability at most δ. This is immediate as
CDSS has a cheating probability Pr(S′ �∈ {S,⊥}) =

∑
s PS(s)P (S′ �∈ {s,⊥}|S =

s) ≤ maxs P (S′ �∈ {s,⊥}|S = s), which is the CDSS cheating probability in the
CDV model. This completes our proof. �

Lower Bounds on LRCDSS 491

References

1. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret sharing
schemes for general access structures. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11693, pp. 510–539. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26951-7 18

2. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In STOC 2014, pp. 774–783 (2014)

3. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
398–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 17

4. Araki, T.: Efficient (k,n) threshold secret sharing schemes secure against cheating
from n–1 cheaters. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007.
LNCS, vol. 4586, pp. 133–142. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73458-1 11

5. Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 593–622.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 20

6. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC
2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20901-7 2

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC 1988, pp. 1–10,
ACM New York (1988)

8. Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage resilience
of linear secret sharing schemes. J. Cryptol. 34(2), 1–65 (2021). https://doi.org/
10.1007/s00145-021-09375-2

9. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS, vol. 1979, pp. 313–317
(1997)

10. Brian, G., Faonio, A., Obremski, M., Simkin, M., Venturi, D.: Non-malleable secret
sharing against bounded joint-tampering attacks in the plain model. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 127–155. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 5

11. Brian, G., Faonio, A., Venturi, D.: Continuously non-malleable secret sharing: joint
tampering, plain model and capacity. In: Nissim, K., Waters, B. (eds.) TCC 2021.
LNCS, vol. 13043, pp. 333–364. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90453-1 12

12. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 33

13. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of shares and probability of
cheating in threshold schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 118–125. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
48285-7 10

14. Chattopadhyay, E., Goyal, V., Li. X.: Non-malleable extractors and codes, with
their many tampered extensions. In: Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing, pp. 285–298 (2016)

https://doi.org/10.1007/978-3-030-26951-7_18
https://doi.org/10.1007/978-3-030-26951-7_18
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-540-73458-1_11
https://doi.org/10.1007/978-3-540-73458-1_11
https://doi.org/10.1007/978-3-030-17653-2_20
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/s00145-021-09375-2
https://doi.org/10.1007/s00145-021-09375-2
https://doi.org/10.1007/978-3-030-56877-1_5
https://doi.org/10.1007/978-3-030-90453-1_12
https://doi.org/10.1007/978-3-030-90453-1_12
https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/3-540-48285-7_10
https://doi.org/10.1007/3-540-48285-7_10

492 S. Dutta et al.

15. Csiszár, I.: Almost independence of random variables and capacity of a secrecy
channel. Probl. Inf. Transm. 32(1), 40–47 (1996)

16. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 9

17. Desmedt, Y.: Threshold cryptosystems. In: Seberry, J., Zheng, Y. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 1–14. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57220-1 47

18. Dodis, Y., Sahai, A., Smith, A.: On perfect and adaptive security in exposure-
resilient cryptography. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 301–324. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 19

19. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM (JACM)
65(4), 1–32 (2018)

20. Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting:
adaptive tampering, noisy-leakage resilience, and improved rate. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 448–479. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 16

21. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

22. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi,
A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 9

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of, STOC 1987, pp. 218–229, ACM. New York (1987)

24. Goyal, V., Kumar, A.: Non-malleable secret sharing. In Proceedings of STOC 2018,
pp. 685–698, ACM. New York (2018)

25. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 501–
530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 17

26. Guruswami, V., Wootters, M.: Repairing reed-solomon codes. IEEE Trans. on
Information Theory 63(9), 5684–5698 (2017)

27. Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. In Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali, pp. 727–794 (2019)

28. Kanukurthi, B., Obbattu, S.L.B., Sekar, S., Tomy, J.: Locally reconstructable non-
malleable secret sharing. In: ITC 2021. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik (2021)

29. Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing against colluding
parties. In: FOCS, vol. 2019, pp. 636–660 (2019)

30. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Leakage-
resilient secret sharing in non-compartmentalized models. In: ITC 2020. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2020)

31. Lin, F., Safavi-Naini, R., Cheraghchi, M., Wang, H.: Non-malleable codes against
active physical layer adversary. In: ISIT 2019, pp. 2753–2757, IEEE (2019)

32. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

https://doi.org/10.1007/978-3-642-15317-4_9
https://doi.org/10.1007/3-540-57220-1_47
https://doi.org/10.1007/3-540-57220-1_47
https://doi.org/10.1007/3-540-44987-6_19
https://doi.org/10.1007/3-540-44987-6_19
https://doi.org/10.1007/978-3-030-26951-7_16
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/978-3-642-32009-5_30

Lower Bounds on LRCDSS 493

33. Maji, H.K., Nguyen, H.H., Paskin-Cherniavsky, A., Suad, T., Wang, M.: Leakage-
resilience of the Shamir secret-sharing scheme against physical-bit leakages. In:
Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp.
344–374. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6 12

34. Maji, H.K., Paskin-Cherniavsky, A., Suad, T., Wang, M.: Constructing locally
leakage-resilient linear secret-sharing schemes. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12827, pp. 779–808. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84252-9 26

35. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 16

36. Nielsen, J.B., Simkin, M.: Lower bounds for leakage-resilient secret sharing. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 556–577.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 20

37. Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum secret sharing scheme secure
against cheating. SIAM J. Dis. Math. 20(1), 79–95 (2006)

38. Raman, R.K., Varshney, L.R.: Distributed storage meets secret sharing on the
blockchain. In: 2018 Information Theory and Applications Workshop (ITA), pp.
1–6. IEEE (2018)

39. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In STOC 1994 (1994)

40. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
41. Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications.

In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp.
480–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 17

42. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptology 1(2),
133–138 (1988)

https://doi.org/10.1007/978-3-030-77886-6_12
https://doi.org/10.1007/978-3-030-84252-9_26
https://doi.org/10.1007/978-3-030-84252-9_26
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-030-45721-1_20
https://doi.org/10.1007/978-3-030-26951-7_17

Schemes II

Lattice-Based Key-Value Commitment
Scheme with Key-Binding and Key-Hiding

Properties

Hideaki Miyaji1(B) and Atsuko Miyaji2

1 Department of Information Science and Engineering, Ritsumeikan University,
Kusatsu, Japan

h-miyaji@fc.ritsumei.ac.jp
2 Graduate School of Engineering, Osaka University, Suita, Japan

miyaji@comm.eng.osaka-u.ac.jp

Abstract. Blockchain plays an important role in distributed file sys-
tems, such as cryptocurrency. One of the important building blocks of
blockchain is the key-value commitment scheme, which constructs a com-
mitment value from two inputs: a key and a value. In an ordinal commit-
ment scheme, a single user creates a commitment value from an input
value, whereas, in a key-value commitment scheme, multiple users create
a commitment value from their own key and value. Both commitment
schemes need to satisfy both binding and hiding properties. The con-
cept of a key-value commitment scheme was first proposed by Agrawal
et al. in 2020 using the strong RSA assumption. They also proved its
key-binding property of their key-value commitment scheme. However,
the key-hiding property was not yet proved. The key-hiding property was
then proposed by Campaneli et al. in 2022. In this paper, we propose two
lattice-based key-value commitment schemes, Insert-KVCm/2,n,q,β , and
KVCm,n,q,β . Furthermore, we prove the key-binding and key-hiding of
both lattice-based Insert-KVCm/2,n,q,β and KVCm,n,q,β for the first time.
We prove the key-binding of both Insert-KVCm/2,n,q,β and KVCm,n,q,β

based on the short integer solutions (SIS∞
n,m,q,β) problem. Furthermore,

we prove key-hiding of both Insert-KVCm/2,n,q,β and KVCm,n,q,β based
on the Decisional-SIS∞

n,m,q,β form problem, which we first introduced in
this paper. We also discuss the difficulty of the Decisional-SIS∞

n,m,q,β form
problem.

Keywords: lattice-based key-value commitment scheme ·
key-binding · key-hiding · blockchain

1 Introduction

With the rapid development of cryptocurrency in recent years, blockchain has
become a widely researched field. Blockchain is mainly used in cryptocurrency,
especially in Ethereum [2] and Bitcoin [1], which have a significant amount of
users. Consequently, many studies have been conducted to make blockchain more

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 497–515, 2023.
https://doi.org/10.1007/978-981-99-7563-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_22&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_22

498 H. Miyaji and A. Miyaji

convenient. The commitment scheme is used to make the blockchain more con-
venient. For example, a commitment scheme is used to share the data between
two blockchains (cross-chain communication) [17], and a key-value commitment
scheme is proposed to compress and verify the data in a blockchain.

1.1 Commitment Scheme and Key-Value Commitment Scheme

The commitment scheme was proposed by Blum in 1982 [6], and the key-value
commitment scheme was formally proposed in 2020 by Agrawal et al. [3]. A
commitment scheme plays a crucial role in cryptography and involves two parties:
a sender and a receiver. It comprises two main phases: the commitment phase,
where the sender transforms a message into a commitment string and sends
it to the receiver, and the decommitment phase, where the sender reveals the
original message and its key by providing a decommitment string. This enables
the receiver to verify the integrity of the commitment and confirm whether it
corresponds to the revealed message. The security of a commitment scheme
is established based on two properties: hiding and binding [8,11]. The hiding
property ensures that the receiver gains no partial information about the message
from the commitment string prior to the decommitment phase. Conversely, the
binding property guarantees that the sender cannot produce more than two
valid decommitment strings for a given commitment string, thereby preventing
the sender from changing or modifying the original message without detection.

The key-value commitment scheme inherits the same characteristics as the
commitment scheme. Key-hiding and key-binding must be satisfied to prevent
malicious user acts. Furthermore, the key-value commitment scheme has one
commitment value per n users. In other words, it creates one commitment value
from “key” and “value” inputs. In general commitment schemes [6,10,12,15],
there is one commitment value per user; however, in the key-value commitment
scheme, one commitment value is created for the users who construct the com-
mitment value. Each user creates his/her own commitment value C. Other users
can insert their own commitment value C′ into C to realize a single commitment
value for all users. Because one commitment value is constructed only from many
users, it is possible to reduce the space. Consequently, the key-value commit-
ment scheme is more highly applicable to blockchain than general commitment
schemes.

Apart from the key-value commitment scheme, additional protocols applica-
ble to blockchain include the vector commitment scheme and the accumulator.
Catalano et al. constructed the vector commitment scheme in 2013 [7], and the
accumulator was constructed by Benaloh et al. in 1993 [5]. Both comprise a sin-
gle output value (the vector commitment value and accumulator value), regard-
less of the number of users. However, the vector commitment scheme requires
all user input values to be collected to form a single commitment value. In
other words, the vector commitment requires a trusted setup that collects all
input values. The commitment value in the vector commitment scheme is con-
structed by Enc(m1, . . . , mn) from some encryption function Enc and input
values (m1, . . . , mn). In an accumulator, although it is possible to create one’s

Lattice-Based Key-Value Commitment Scheme 499

accumulator value (output value), users who create the same accumulator value
can see each other’s input values. Consequently, most of the existing vector
commitment schemes and accumulators require a trusted setup, which is often
undesirable [16].

1.2 Construction Without a Trusted Setup Based on Lattice
Assumption with Key-Binding and Key-Hiding Properties

Because the key-value commitment scheme can be constructed without a trusted
setup, it can be applied to other protocols, such as blockchain. Agrawal con-
structed a key-value commitment scheme based on RSA with satisfying key-
binding [3]. However, this scheme is designed to send the user’s input key-value
(k, v) in the commitment phase to construct a vector commitment or accumu-
lator from their key-value commitment scheme. In other words, this method
requires a trusted setup considering users can view each other’s (k, v), and hence,
does not overcome the problems of vector commitment and accumulator.

Additionally, Agrawal’s key-value commitment scheme only proposes a key-
binding and does not show that it satisfies key-hiding; by demonstrating key-
hiding in the key-value commitment scheme, it can be concluded that the verifier
cannot act as malicious in the commitment phase. In a blockchain, the user
who verifies the value is not necessarily honest. As a result, the verifier in the
blockchain must demonstrate their inability to engage in malicious activities.
Consequently, to apply the key-value commitment scheme to the blockchain,
key-hiding must be shown.

Furthermore, the emergence of quantum computing poses a threat to
blockchain protocols and other cryptography, considering they rely on crypto-
graphic algorithms that are not post-quantum. Allende et al. constructed the
method of blockchain based on post-quantum cryptography [4]. Consequently, it
is extremely important to propose a scheme using post-quantum cryptography.
The key-value commitment scheme constructed by Agrawal et al. is based on
RSA and is not constructed using a post-quantum cryptography. Consequently,
it is essential to construct a key-value commitment scheme using post-quantum
cryptography to apply blockchain based on post-quantum cryptography.

1.3 Contribution

In this paper, we propose two lattice-based Key-Value Commitment schemes,
Insert-KVCm/2,n,q,β and KVCm,n,q,β . Insert-KVCm/2,n,q,β and KVCm,n,q,β satisfy
the following:

– In the commitment phase, the user can create their commitment value C
without a trusted setup.

– Both Insert-KVCm/2,n,q,β and KVCm,n,q,β satisfy both key-hiding and key-
binding.

– Both key-binding properties are proven under SIS∞
n,m,q,β problem. Conversely,

both key-hiding properties are proven under the newly proposed Decisional-
SIS∞

n,m,q,β form problem.

500 H. Miyaji and A. Miyaji

Insert-KVCm/2,n,q,β comprises four functions: Keygen, Insert, ProofUpdate, and
Ver. By adding one more function of Update, KVCm,n,q,β comprising five func-
tions: Keygen, Insert, Update, ProofUpdate, and Ver. By excluding the Update
function, Insert-KVCm/2,n,q,β can be constructed more simply than KVCm,n,q,β ;
therefore, the computational complexity (multiplication and addition cost) of
Insert-KVCm/2,n,q,β reduces to half of KVCm,n,q,β . KVCm,n,q,β provides Update
while sacrificing the computational complexity.

To demonstrate the key-hiding of the proposed Insert-KVCm/2,n,q,β and
KVCm,n,q,β , we newly define the Decisional-SIS∞

n,m,q,β form problem. We also
discuss the difficulty of the Decisional-SIS∞

n,m,q,β problem. To guarantee the dif-
ficulty of the Decisional-SIS∞

n,m,q,β form problem, we newly proposed the One-
Way-SIS∞

n,m,q,β problem, which is a one-way version of the SIS∞
n,m,q,β problem.

Then, we prove that the Decisional-SIS∞
n,m,q,β form problem is secure when

the One-Way-SIS∞
n,m,q,β problem is secure, and guarantees the difficulty of the

Decisional-SIS∞
n,m,q,β form problem.

We prove both Insert-KVCm/2,n,q,β and KVCm,n,q,β of key-binding based on
SIS∞

n,m,q,β problem, and Insert-KVCm/2,n,q,β and KVCm,n,q,β of key-hiding based
on Decisional-SIS∞

n,m,q,β form problem.

1.4 Paper Organization

The remainder of this paper is organized as follows. Section 2 summarizes the
notations and security assumptions used in this paper. Our contribution is pre-
sented from Sect. 3. Section 3 presents the novel definition of our proposal and
discusses the difficulty associated with this new definition. Section 4 describes our
Insert-KVCm/2,n,q,β and its key-binding and key-hiding. Section 5 describes our
KVCm,n,q,β and its key-binding and its key-hiding. Section 6 compares our two
proposed key-value commitment schemes, Insert-KVCm/2,n,q,β and KVCm,n,q,β .
We conclude our paper in Sect. 7.

2 Preliminary

In this section, we present the notation used in this paper and describes the
definitions.

– λ: security parameter
– N : a positive number
– q: a prime number
– Zq:a set {0, . . . , q − 1}
– [a||b]: concatenation of a and b
– ε(n): negligible function in n
– poly(n): polynomial function in n
– pp: public parameter

Lattice-Based Key-Value Commitment Scheme 501

– ||f ||∞(= max|fi|
i

): �∞-norm of f = ΣifiX
i

– ||f ||2 =
(
Σi|fi|2

)1/2: �2-norm of f = ΣifiX
i

– C: proposed key-value commitment value
– H : Z� → Z

m
β/2: Hash function

– M: message map
– C: commitment map
– verifier: a person who verifies the commitment value

Definition 1 (Shortest Independent Vectors Problem (SIV Pγ) [9]).
Given a full-rank basis B of an n-dimensional lattice B, the problem of find-
ing a set of n linearly independent vectors S ⊂ L(B) such that ||S||2 <=
γ(n) · λn(L(B)), where λn(L(B)) is the n-th vector with the �2-norm of the
lattice L(B) consisting of B.

Definition 2 (Short Integer Solutions (SIS∞
n,m,q,β) problem [9]). Given a

uniform random matrix A ∈ Z
n×m
q , the problem is to find a nonzero vector

x ∈ Z
m such that A · x = 0 (mod q) and ||x||∞ ≤ β.

If m,β = poly(n) and q > β · Õ(
√

n), then SIS∞
n,m,q,β is at least as hard as

SIVPγ such that γ = β · Õ(
√

mn) [9]. Next, we define a key-value commitment
scheme [3].

Definition 3 (Key-value commitment scheme [3]). A key-value commit-
ment allows one to commit to a key-value map and later open the commitment
with respect to any specific key. It is possible to update the map M by either
adding new key-value pairs or updating the value corresponding to an existing
key. A key-value map M ⊆ K×V is a collection of key-value pairs (k, v) ∈ K×V.
Let KM ⊆ K denote the set of keys for which values have been stored in the map
M. We define a key-value map KVCm,n,q,β as a non-interactive primitive that
can be formally described via the following algorithms:

– Keygen(1λ) → (pp,C): On input the security parameter λ, the key generation
algorithm outputs certain public parameters pp (which implicitly define the
key space K and value space V) and the initial commitment C to the empty
key-value map. All other algorithms have access to the public parameters.

– Insert(C, (k, v)) → (C,Λk, upd): On inputting a commitment string C and a
key-value pair (k, v) ∈ K × V, the insertion algorithm outputs a new commit-
ment string C, a proof Λk (that v is the value corresponding to k), and update
information upd.

– Update(C, (k, δ)) → (C, upd): On inputting a commitment string C, a key
k ∈ K and an update value δ, the update algorithm outputs an updated string
C and update information upd. Note that this algorithm does not need the
value corresponding to the key k.

502 H. Miyaji and A. Miyaji

– ProofUpdate(k,Λk, upd) → Λk: On inputting a key k ∈ K, a proof Λk for some
value corresponding to the key k and update information upd, the proof update
algorithm outputs an updated proof Λk.

– Ver(C, (k, v),Λk) → 1/0: On inputting a commitment string C, a key-value
pair (k, v) ∈ K × V and a proof Λk, the verification algorithm either outputs
1 (denoting accept) or 0 (denoting reject).

In KVCm,n,q,β , we require correctness. For all honestly generated public
parameters Keygen(1λ) → pp, if C is a commitment to a key-value map M,
obtained by running a sequence of calls to Insert and Update, then Λk is a proof
corresponding to key k for any k ∈ KM, generated during the call to Insert and
updated by appropriate calls to ProofUpdate, then Ver(C, (k, v),Λk) outputs 1
with probability 1 if (k, v) ∈ M. Next, we define key-binding, which is the secu-
rity requirement of our KVCm,n,q,β . We define a game to prove key-binding in
Definition 4, and define the key-binding in Definition 5, a security feature of the
proposed KVCm,n,q,β .

Definition 4 (Key-binding game [3]). For a key-value commitment
KVCm,n,q,β and an adversary A, we define a random variable Gbind

KVCm,n,q,β ,λ,A
through a game between a challenger CH and A as follows.

– Gbind
KVCm,n,q,β ,λ,A:

1. CH samples Keygen → (pp,C) and sends them to A. CH also maintains its
own state that comprises a key-value map M ⊆ K×V initialized to the empty
map and the initial commitment value C.

2. A issues queries of one of the following forms:
– (Insert, (k, v)): CH checks if M contains a tuple of the form (k, ·). If yes,

CH responds with ⊥. Else, CH updates M to M ∪ {(k, v)} and executes
Insert(C, (k, v)) to obtain a new commitment C.

– (Update, (k, δ)): CH checks if M contains a tuple of the form (k, v). If yes,
CH responds with ⊥. Else, CH updates M to M ∪ {(k, v + δ)}\{(k, v)}
and executes Update(C, (k, δ)) to obtain a new commitment C.

3. A sends a final output to CH of the following forms:
– A key k such that M contains a tuple of the form (k, ·), a pair of values

(v, v′) where v
= v′, and a pair of proofs (Λk, Λ′
k).

4. CH performs the following checks corresponding to A′s output:
– If Ver(C, (k, v),Λk) = Ver(C, (k, v′),Λ′

k) = 1, then CH outputs ⊥. Else, CH
outputs 1.

Definition 5 (Key-binding property [3]). A key-value commitment
KVCm,n,q,β is key-binding if for every PPT adversary A, the following proba-
bility is negligible in λ:

AdvbindKVCm,n,q,β ,A(λ) = Pr
[
Gbind
KVCm,n,q,β ,λ,A → 0

]
< ε(λ)

Lattice-Based Key-Value Commitment Scheme 503

3 New Security Assumption and Its Difficulty Proof

In this section, we define our new terminologies and discuss their difficulty.

3.1 New Definitions as Defined in This Paper

Because this paper proves the key-hiding property of the proposed key-value
commitment schemes, we define the key-hiding property. To prove key-hiding,
we also define the decision version of SIS∞

n,m,q,β problem.

Definition 6 (Key-hiding game). For a key-value commitment KVCm,n,q,β

and an adversary A, we define a random variable Ghid
KVCm,n,q,β ,λ,A by conducting

a game between a challenger CH and A as follows:

– Ghid
KVCm,n,q,β ,λ,A:

1. CH samples Keygen → (pp,C) and sends them to A. CH also maintains its
own state that comprises a key-value map M ⊆ K × V and its commitment
map C. They first output the initial commitment value C ∈ C.

2. CH sends (pp, C) to A.
3. A collects y1 ∈ U and y2 ∈ C.
4. A chooses either y1 or y2 and set as yb.
5. A computes C ′ = C + yb.
6. A sends C ′ to CH.
7. CH performs the following checks corresponding to A′s output:

– If yb = y1: If they can distinguish C ′ as a uniform random, they output
⊥. Else, CH outputs 1.

– If yb = y2: If they can distinguish C ′ as in the commitment value, then
they output outputs ⊥. Else, CH outputs 1.

From the key-hiding game, a new definition of key-hiding property is pro-
vided.

Definition 7 (Key-hiding property). A key-value commitment KVCm,n,q,β

is key-hiding if for every PPT adversary A, the following probability is negligible
in λ:

AdvhidKVCm,n,q,β ,A(λ) = Pr
[
Ghid
KVCm,n,q,β ,λ,A → 0

]
< ε(λ)

Next, we newly define Decisional-SIS∞
n,m,q,β form problem to prove key-hiding

property.

Definition 8 (Decisional-SIS∞
n,m,q,β form problem). Let A denote the prob-

abilistic polynomial time adversary. Given a uniform random matrix A ∈ Z
n×m
q ,

the Decisional-SIS∞
n,m,q,β form problem asserts such that for every x ∈ Z

m
β , it

satisfies

| Pr
A,C=A·x∧||x||∞≤β

[A(A,C) = 1] − Pr
A,C∈U

[A(A,C) = 1] |< ε(n).

504 H. Miyaji and A. Miyaji

We then discuss the difficulty of the Decisional-SIS∞
n,m,q,β form problem. To

guarantee the difficulty of Decisional-SIS∞
n,m,q,β form problem, we newly intro-

duce the One-Way-SIS∞
n,m,q,β problem.

Definition 9 (One-Way-SIS∞
n,m,q,β problem). Let A be a PPT adversary.

Given a uniform random matrix A ∈ Zq, and y ∈ Z
n, the One-Way-SIS∞

n,m,q,β

problem asserts that for every x ∈ Z
m, A · x = y (mod q) and ||x||∞ ≤ β, it

satisfies

Pr[A(A, y) = x s.t. A · x = y (mod q) ∧ ||x||∞ ≤ β] < ε(λ)

The SIS∞
n,m,q,β problem is similar to collision resistance, and the One-Way-

SIS∞
n,m,q,β problem is similar to preimage resistance [13]. As demonstrated in [13],

when collision resistance is satisfied, preimage resistance is also satisfied. If the
SIS∞

n,m,q,β problem is secure, the One-Way-SIS∞
n,m,q,β problem is also secure from

the relation between collision resistance and preimage resistance. Therefore,
we can guarantee the difficulty of the One-Way-SIS∞

n,m,q,β problem under the
SIS∞

n,m,q,β problem.
Next, we discuss the difficulty of the Decisional-SIS∞

n,m,q,β form problem. We
follow the method of Miyaji et al. proposed in 2021 [14]. Miyaji et al. proposed
the reduction from (M, δ)-bSVP assumption to Decisional-(M, δ)-bSVP assump-
tion in 2021 [14]. Note that (M, δ)-bSVP assumption is a binary SVP problem
and Decisional-(M, δ)-bSVP assumption is a decision version of (M, δ)-bSVP
assumption. To guarantee the difficulty of the Decisional-SIS∞

n,m,q,β form prob-
lem, we prove that the Decisional-SIS∞

n,m,q,β form problem is secure when the
One-Way-SIS∞

n,m,q,β problem is secure. In other words, to guarantee the diffi-
culty of Decisional-SIS∞

n,m,q,β form problem, we prove Decisional-SIS∞
n,m,q,β form

problem is as secure as the One-Way-SIS∞
n,m,q,β problem, as demonstrated in

Theorem 1.

Theorem 1. Let y : Zm
β → Z

n
q be a function and q be the integer, we define

SIS∞
n,m,q,β distribution by choosing x ∈ Z

m
β and outputting y = A · x. Suppose

there exists a PPT adversary A that can distinguish the input y sampled from
the distribution of SIS∞

n,m,q,β distribution or sampled from a uniform distribution
U with polynomial time. Then, we prove that another PPT adversary B can
break the One-Way-SIS∞

n,m,q,β problem with maximum βm approaches within the
polynomial time.

Proof: We assume there exists an adversary A that can break Decisional-
SIS∞

n,m,q,β form problem. First, B gains (A, y) from One-Way-SIS∞
n,m,q,β problem

oracle where A ∈ Z
n×m
q and y ∈ Z

n. Let x denote as x = [x1, . . . , xn], and let A
denote as Eq. (1) where cij ∈ Zq.

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c11 · · · c1j · · · c1n

...
. . .

...
ci1 cij cin

...
. . .

...
cm1 · · · cmj · · · cmn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1)

Lattice-Based Key-Value Commitment Scheme 505

Then y = Ax ∈ Z
n can be written as

y =

⎛

⎜
⎝

c11 · x1 + c12 · x2+ · · · +c1n · xn

...
cm1 · x1 + cm2 · x2+ · · · +cmn · xn

⎞

⎟
⎠ .

We randomly select k ∈ Zβ and li1 ∈ Zq (i = 1, . . . , n), and compute a pair

A′ =

⎛

⎜
⎝A −

⎛

⎜
⎝

l11 0 · · · 0
...

...
. . .

...
lm1 0 · · · 0

⎞

⎟
⎠ , y −

⎛

⎜
⎝

l11 · k
...

lm1 · k

⎞

⎟
⎠

⎞

⎟
⎠ , (2)

where A′ = A −

⎛

⎜
⎝

l11 0 · · · 0
...

...
. . .

...
lm1 0 · · · 0

⎞

⎟
⎠ and y′ = y −

⎛

⎜
⎝

l11 · k
...

lm1 · k

⎞

⎟
⎠. The value obtained in

Eq. (2) as A′ = (A′, y′). Now, B sends A′ = (A′, y′) to A. If k = x1, then y′ can
be written as Eq. (3)

y′ =

⎛

⎜
⎝

(c11 − l11) · x1+ · · · +c1n · xn

...
(cm1 − lm1) · x1+ · · · +cmn · xn

⎞

⎟
⎠ . (3)

Because Eq. (3) can be expressed in the form y′ = A′x, A can confirm that Eq. (3)
is contained in the SIS∞

n,m,q,β distribution. Then, A can distinguish that A′ is
in the SIS∞

n,m,q,β distribution. In contrast, if k
= x1, then y′ cannot expressed
as the SIS∞

n,m,q,β distribution. Then, A can distinguish that A′ is in the uniform
distribution. A sends this result to B to gain the following result.

– If A′ distinguish as SIS∞
n,m,q,β distribution: x1 = k

– Else: x1
= k.

By proceeding with a similar approach for the remaining [x2, . . . , xm], B can
obtain the value of x where y = A · x. Now, we analyze the number of iterations
B to be performed until obtaining x. B can gain the value of x1 within a maximum
of β attempts. Consequently, to obtain all the values of x, a total of βm iterations
are required, which is a polynomial number.
From the contraposition of Theorem 1, we can show Decisional-SIS∞

n,m,q,β form
problem is as secure as One-Way-SIS∞

n,m,q,β problem.

4 Proposed Insert-KVC Based on SIS

In this section, we propose our SIS-based Insert-KVCm/2,n,q,β . In Insert-
KVCm/2,n,q,β , the user can only insert key-value pairs (ki, vi) into the commit-
ment C, and cannot update the value corresponding to the user’s key (No Update

506 H. Miyaji and A. Miyaji

function). Conversely, by not including the Update function, the construction
becomes simpler.

In this section, we first propose the concrete design of Insert-KVCm/2,n,q,β

in Sect. 4.1. Subsequently, we explain the feature of Insert-KVCm/2,n,q,β . We
prove its key-binding of Insert-KVCm/2,n,q,β in Sect. 4.2 and key-hiding of
Insert-KVCm/2,n,q,β in Sect. 4.3.

Construction 1 (Construction method of Insert-KVCm/2,n,q,β). In Insert-
KVCm/2,n,q,β, the proposal comprises four functions: Keygen, Insert, ProofUpdate
and Ver. We now explain the construction method of the proposed
Insert-KVCm/2,n,q,β. First, the public parameters pp and the initial commitment
value C are created using Keygen. Each user inserts their own key-value using the
Insert function and (pp,C). Note that each user cannot change their value after
they execute Insert. The user’s key-value is encrypted using the Insert function
and stored in the commitment value C. Following the insertion of their com-
mitment value into C, users create a proof Λ to verify their commitment value
using ProofUpdate. Considering the commitment value C is updated every time
by inserting a new commitment value from each user, each user needs to update
their Λ using ProofUpdate every time C is updated. Finally, when each user
wants to open their key-value, they send their key-value and Λ to the verifier,
who performs verification on the key-value and Λ to ensure their validity.

4.1 Concrete Explanation of Proposed Insert-KVCm/2,n,q,β

Here, we describe the concrete function of our proposed Insert-KVCm/2,n,q,β . We
first show the concrete function of Insert-KVCm/2,n,q,β then analyze the com-
pleteness and efficiency of Insert-KVCm/2,n,q,β .

– Insert-KVCm/2,n,q,β

• Keygen(1λ) → (pp,CM): Sample the description q,m, n, β, which sat-
isfies m,β = poly(n) and q > β · Õ(

√
n). Sample the uniform ran-

dom matrix A ∈ Z
n×m
q for public parameter pp. Set V = Z

m and
K = Z

m. Let E as the identity matrix, choose u ∈ V. Output
(pp,C) = ((q,m, n, β, u), (E · u,A · u)).

• Insert(C, (ki, vi)) → (C,Λki , upd): Parse C as (C1,C2), and parse Λki

as (Λki,1 , Λki,2). Let ki ∈ Z
�, vi ∈ Z

m/2
β/2 , and let zi = H(ki), which

satisfies zi ∈ Z
m/2
β/2 , where H is a hash function H : Z� → Z

m/2
β/2 . User

computes xi = (zi||vi)v, and the commitment value and its proof Λki

Lattice-Based Key-Value Commitment Scheme 507

are inserted as

Λ′
ki

= (C1,C2)
C′ = (C1 + A · xi,C2 + A · xi)

upd = (zi, vi)
Λki,1 ← Λ′

ki,1

Λki,2 ← Λ′
ki,2

C1 ← C′
1

C2 ← C′
2

Output (C,Λki , upd).
• ProofUpdate(ki,Λki , upd) → Λ′

ki
: Parse upd as (upd1, upd2). Let z =

H(upd1), and computes x = (z||upd2). Set

Λki,1 = Λki
+ A · x

Λki,2 = Λki
+ A · x

Λki,1 ← Λ′
ki,1

Λki,2 ← Λ′
ki,2

Output Λki
.

• Ver(C, (ki, vi),Λki) → 1/ ⊥: Parse C as (C1,C2) and Λki
as

(Λki,1 , Λki,2). Let z = H(ki), which computes xi = (z||vi). The user
who wants to open the commitment value sends (ki, vi) to the verifier,
who checks the following.

* vi ∈ V and ki ∈ K,
* Λki,1 + A · xi = C1,
* Λki,2 + A · xi = C2,
* Λki,2 − Λki,1 = u · (A − E)

If the above equation satisfies, the verifier outputs 1. Else, they output
⊥.

The correctness of Insert-KVCm/2,n,q,β can be determined immediately by fol-
lowing the construction method in Construction 1. In the commitment phase,
the user sends its commitment value C and upd. In the decommitment phase,
user sends their own decommitment value ((ki, vi), Λki

). Note that in the com-
mitment phase, the user’s key ki is sent in the form of hashed zi in upd. Con-
sequently, each user’s key ki is not disclosed until the decommitment phase.
In our Insert-KVCm/2,n,q,β , the Update function cannot be executed. Conse-
quently, the construction of Insert-KVCm/2,n,q,β can be simpler compared to that
of KVCm,n,q,β .

508 H. Miyaji and A. Miyaji

Analyze Insert-KVCm/2,n,q,β: From Construction 1, multiplication and addition
cost in each function satisfy the following.

– Insert: one hash computation, multiplication cost: 2mn, addition cost: 4n,
– ProofUpdate: one hash computation, multiplication cost: 2mn, addition cost:

4n,
– Ver: one hash computation, multiplication cost: 2mn, addition or subtraction

cost: 3n.

We assume that there is only one user, and each function is executed once.
Furthermore, the size of the key-value commitment is constant.

4.2 Key-Binding of Proposed Insert-KVCm/2,n,q,β

In this subsection, we prove the key-biding property of KVCm,n,q,β .

Theorem 2. Suppose there exists a PPT adversary A that can break the key-
binding of Insert-KVCm/2,n,q,β. Subsequently, we prove that another PPT adver-
sary B can break the SIS∞

n,m,q,β problem.

Proof: We assume that there exists an adversary A that can break the key-
binding property of KVCm,n,q,β . In other words, A performs the adversary in Def-
inition 4. For some k, create a value x, x′(x
= x′) and a proof value Λk, Λ′

k(Λk =
Λ′

k) for the verifier to output Ver(C, (k, v),Λk) = Ver(C, (k, v′),Λ′
k) = 1.

Another adversary B gains pp = A ∈ Z
n×m
q from SIS∞

n,m,q,β oracle. Subse-
quently, B sends pp to challenger CH of the key-binding game in Definition 4.
Challenger CH sends (pp,C) to A. A chooses ki ∈ K and computes zi = H(ki)
which satisfies zi ∈ Z

m
β/2. A also chooses vi ∈ Z

m
β/2 and computes xi = (zi||vi).

Furthermore, it issues ki queries to CH whether M contains a tuple of (ki, ·).
If yes, CH responds with ⊥; else, CH updates M to M ∪ {(ki, vi)} and exe-
cutes Insert(C, (ki, vi)) → C′ to obtain a new commitment C′. Subsequently, A
gains new C′. A can break the key-binding property to construct a pair of val-
ues ((ki, vi), (ki, v

′
i)) and a pair of proofs (Λki

, Λ′
ki

), where vi
= v′
i ∧ Λki

= Λ′
ki

,
which CH outputs Ver(C′, (ki, vi),Λki) = Ver(C′, (ki, v′

i),Λ
′
ki
) = 1. Then, A com-

putes zi = H(ki), xi = (zi||vi), and x′
i = (zi||v′

i). Parse Λki
as (Λki,1 , Λki,2), A

sends a tuple of the form ((xi, Λki
), ((x′

i, Λ
′
ki

)) to CH and B. From the assump-
tion that the key-binding property can be broken, B can derive the following
equation with considering the Λki,1 = Λ′

ki,1
.

Λki,1 + A · xi = Λ′
ki,1

+ A · x′
i

A · (xi − x′
i) = 0

From the condition xi
= x′
i, it can be observed that xi − x′

i
= 0. Additionally,
considering the condition ∀xi ∈ Z

m
β/2, it satisfies ||xi − x′

i|| ≤ β. In other words,
the pair (xi, x

′
i) serves as a solution to the SIS∞

n,m,q,β oracle. Consequently, B
sends (xi, x

′
i) to SIS∞

n,m,q,β oracle and break SIS∞
n,m,q,β problems.

By using the contraposition of Theorem 2, the key-binding property of
KVCm,n,q,β satisfies based on the difficulty of SIS∞

n,m,q,β problem.

Lattice-Based Key-Value Commitment Scheme 509

4.3 Key-Hiding of Insert-KVCm/2,n,q,β

In this subsection, we prove the key-hiding of Insert-KVCm/2,n,q,β .

Theorem 3. Suppose there exists a PPT adversary A that can break the key-
hiding of Insert-KVCm/2,n,q,β. Subsequently, we prove that another PPT adver-
sary B can break the Decisional-SIS∞

n,m,q,β form problem.

Proof: We assume that there exists an adversary A that can break the key-
hiding property of Insert-KVCm/2,n,q,β . In other words, A performs the adversary
in Definition 6. First, Decisional-SIS∞

n,m,q,β oracle gain y1 ∈ U and y2 = A · xi.
Subsequently, it chooses one of them and selects it as yb. Decisional-SIS∞

n,m,q,β

oracle sends (yb, pp) to B.
B gains pp and sends it to challenger CH of the key-hiding game in Defini-

tion 6. B sends yb to A. A gains (pp,C) from a challenger CH. Because C is com-
mitment value, C can be expressed in the form A · (x1+ · · · xn) where xi = (zi||vi)
where zi ∈ Z

m/2
β/2 and vi ∈ Z

m/2
β/2 . Subsequently, it computes C′ = C + yb. A

assumes to break the key-hiding of Insert-KVCm/2,n,q,β so it can distinguish C′

constructed from key-value commitment, if C is constructed from key-value com-
mitment. C can be divided into two cases.

– If yb = y2 = A · xi:
C′ = A · (x1 + · · · + xi + xn)

Considering C′ can be expressed as A · x, which is in the form of a key-
value commitment scheme, A can consequently distinguish C′ as a key-value
commitment map.

– Else: it cannot express C′ as a form of key-value commitment scheme. Con-
sequently, A can distinguish C′ as a uniform distribution.

A sends either result to B, and based on the received result, B can identify the
value of yb as follows.

– If C′ is distinguished as key-value commitment map: yb is constructed from
yb = y2 = A · xi.

– If C′ is distinguish as a uniform distribution: yb is constructed from uniform
distribution.

Finally, B sends the solution to Decisional-SIS∞
n,m,q,β oracle and break Decisional-

SIS∞
n,m,q,β form problem.

By using the contraposition of Theorem 3, the key-hiding property of KVCm,n,q,β

satisfies based on the difficulty of Decisional-SIS∞
n,m,q,β form problem.

5 Proposed Key-Value Commitment Based on SIS

In this section, we propose our SIS-based KVCm,n,q,β . In KVCm,n,q,β , the Update
function allows each user to update the committed value vi. Consequently,
KVCm,n,q,β is more applicable to applications such as blockchain.

510 H. Miyaji and A. Miyaji

First, we propose the concrete design of KVCm,n,q,β in Sect. 5.1. Then, we
explain the feature of KVCm,n,q,β by proving its key-binding of KVCm,n,q,β in
Sect. 5.2 and key-hiding of KVCm,n,q,β in Sect. 5.3.

Construction 2 (Construction method of KVCm,n,q,β). In KVCm,n,q,β, the
proposal comprises of five functions: Keygen, Insert, Update, ProofUpdate, and
Ver. We now explain the construction method of the proposed KVCm,n,q,β. First,
the public parameters pp and the initial commitment value C are created using
Keygen. Each user inserts their own key-value using the Insert function and
(pp,C). At this point, the user’s key-value is encrypted using the Insert func-
tion and stored in the commitment value C. Following the insertion of their
commitment value into C, users create a proof Λ to verify their commitment
value using ProofUpdate. Because the commitment value C is updated every time
by inserting a new commitment value from each user, each user needs to update
their Λ using ProofUpdate whenever C is updated. Finally, when each user wants
to open their key-value, they send their key-value and Λ to the verifier, who per-
forms verification on the key-value and Λ to ensure their validity.

5.1 Concrete Explanation of Proposed KVCm,n,q,β

This subsection describes the concrete function of our proposed KVCm,n,q,β . We
first show the concrete function of KVCm,n,q,β , then analyze the completeness
and efficiency of KVCm,n,q,β .

– KVCm,n,q,β

• Keygen(1λ) → (pp,C): Sample the description q,m, n, β, which sat-
isfies m,β = poly(n) and q > β · Õ(

√
n). Sample the uniform ran-

dom matrix A ∈ Z
n×m
q for public parameter pp. Set V = Z

m
β/2 and

K = Z
�. Let E as the identity matrix, and choose u ∈ V. Output

(pp,C) = ((q,m, n, β, u), (E · u,A · u)).
• Insert(C, (ki, vi)) → (C,Λki , upd): Parse C as (C1,C2), and parse Λki

as
(Λki,1 , Λki,2). Let ki ∈ Z

m, vi ∈ Z
m
β/2, and compute zi = H(ki) which

satisfies zi ∈ Z
m
β/2, where H is a hash function H : Z� → Z

m
β/2. The

commitment value and its proof Λki
are inserted as

Λ′
ki

= (C1,C2)
C′ = (C1 + A · (zi + vi),C2 + A · (zi + vi))

upd = (zi, vi)
Λki,1 ← Λ′

ki,1

Λki,2 ← Λ′
ki,2

C1 ← C′
1

C2 ← C′
2

Lattice-Based Key-Value Commitment Scheme 511

Output (C,Λki , upd).
• Update(C, (ki, δ)) → (C, upd)): Parse C as (C1,C2), and parse upd as

(upd1, upd2). The updated value of the commitment, when vi updates
to v′

i = vi + δ, is

C′
1 = C1 + A · δ

C′
2 = C2 + A · δ

C1 ← C′
1

C2 ← C′
2

upd = (zi, δ)

Output (C, upd).
• ProofUpdate(ki,Λki , upd) → Λki : Parse upd as (upd1, upd2), and Λki

as (Λki,1 , Λki,2). Let z = H(upd1).
* If z < upd1: Set

Λ′
ki

= (Λki,1 + A · (upd1 + upd2), Λki,2 + A · (upd1 + upd2))
Λki

← Λ′
ki

Output Λki
.

* If z > upd1: Set

Λ′
ki

= (Λki,1 + A · upd2, Λki,2 + A · upd2)
Λki

← Λ′
ki

Output Λki
.

* Elif z = upd1: Output Λki
.

• Ver(C, (ki, vi),Λki) → 1/ ⊥: Parse C as (C1,C2), and parse Λki
as

(Λki,1 , Λki,2), and let z as z = H(ki). The user who wants to open
the commitment value sends (ki, vi) to the verifier, which checks the
following.

* vi ∈ V and ki ∈ K,
* Λki,1 + A · (z + vi) = C1,
* Λki,2 + A · (z + vi) = C2,
* Λki,2 − Λki,1 = u · (A − E)

If the aforementioned equation satisfies, the verifier outputs 1. Else,
they output ⊥.

The correctness of KVCm,n,q,β can be determined immediately by following the
construction method in Construction 2. In the commitment phase, the user sends
its commitment value C and upd. In the decommitment phase, user sends their

512 H. Miyaji and A. Miyaji

own value ((ki, vi), Λki
). In upd, Note that in the commitment phase, the user’s

key ki is sent in the form of hashed zi. Consequently, each user’s key ki is not
disclosed until the decommitment phase.

Analyze KVCm,n,q,β: From Construction 2, multiplication and addition cost in
each function satisfy the following.

– Insert: one hash computation, multiplication cost: 4mn, addition cost: 6n,
– Update : zero hash computation, multiplication cost: 2mn, addition cost: 2n,
– ProofUpdate: one hash computation, at most multiplication cost: 6mn, addi-

tion cost: 6n,
– Ver: one hash computation, multiplication cost: 4mn, addition or subtraction

cost: 7n.

We assume that there is only one user, and each of the five functions is executed
once. Furthermore, the size of the key-value commitment is constant.

5.2 Key-Binding of Proposed KVCm,n,q,β

In this subsection, we prove the key-biding property of KVCm,n,q,β .

Theorem 4. Suppose there exists a PPT adversary A that can break the key-
binding of KVCm,n,q,β. We then prove that another PPT adversary B can break
the SIS∞

n,m,q,β problem.

Proof: We assume that there exists an adversary A that can break the key-
binding property of KVCm,n,q,β . In other words, A performs the adversary in Def-
inition 4. For some k, create a value v, v′(v
= v′) and a proof value Λk, Λ′

k(Λk =
Λ′

k) such that the verifier can output Ver(C, (k, v),Λk) = Ver(C, (k, v′),Λ′
k) = 1.

Another adversary B first gains pp = A ∈ Z
n×m
q from SIS∞

n,m,q,β oracle. Sub-
sequently, B sends pp to challenger CH of key-binding game in Definition 4.
Challenger CH sends (pp,C) to A. A chooses ki ∈ K and computes zi = H(ki)
which satisfies zi ∈ Z

m
β/2. A chooses vi ∈ Z

m
β/2. It issues ki queries to CH whether

M contains a tuple of (ki, ·). If yes, CH responds with ⊥. Else, CH updates M to
M ∪ {(ki, vi)} and executes Insert(C, (ki, vi)) → C′ to obtain a new commitment
C′. Then, A gains new C′. A can break the key-binding property so it can con-
struct a pair of values ((ki, vi), (ki, v

′
i)) and a pair of proofs (Λki

, Λ′
ki

) where vi
=
v′

i ∧ Λki
= Λ′

ki
which CH outputs Ver(C′, (ki, vi),Λki) = Ver(C′, (ki, v′

i),Λ
′
ki
) = 1.

Parse Λki
as (Λki,1 , Λki,2), A sends a tuple of the form ((ki, vi, Λki

), ((ki, v
′
i, Λ

′
ki

))
to CH and B. From the assumption that the key-binding property can be bro-
ken, B can derive the following equation with considering the Λki,1 = Λ′

ki,1
and

computing zi = H(ki).

Λki,1 + A · (zi + vi) = Λ′
ki,1

+ A · (zi + v′
i)

A · (zi + vi) = A · (zi + v′
i)

A · (vi − v′
i) = 0

Lattice-Based Key-Value Commitment Scheme 513

From the condition vi
= v′
i, it can be observed that vi − v′

i
= 0. Additionally,
considering the condition ∀vi ∈ Z

m
β/2, it satisfies ||vi − v′

i|| ≤ β. In other words,
the pair (vi, v

′
i) serves as a solution to the SIS∞

n,m,q,β oracle. Consequently, B
sends (vi, v

′
i) to SIS∞

n,m,q,β oracle and break SIS∞
n,m,q,β problems.

By using the contraposition of Theorem 4, the key-binding property of
KVCm,n,q,β is satisfied based on the difficulty of SIS∞

n,m,q,β problem.

5.3 Key-Hiding of KVCm,n,q,β

In this subsection, we prove its key-hiding of KVCm,n,q,β .

Theorem 5. Suppose there exists a PPT adversary A that can break the key-
hiding of KVCm,n,q,β. We then prove that another PPT adversary B can break
the Decisional-SIS∞

n,m,q,β form problem.

Proof: We assume that there exists an adversary A that can break the key-
hiding property of KVCm,n,q,β . In other words, A performs the adversary in
Definition 6. First, Decisional-SIS∞

n,m,q,β oracle gain y1 ∈ U and y2 = A · xi.
Then, it chooses one of them as yb. Decisional-SIS∞

n,2m,q,β oracle sends (yb, pp)
to B.

B gains pp and sends it to challenger CH of key-hiding game in Definition 6.
B sends yb to A. A gains (pp,C) from a challenger CH. Since C is commitment
value, C can be expressed in the form A · (x1 + · · · xn) where xi = zi +vi. Then, it
computes C′ = C+ yb. A assume to break the key-hiding of KVCm,n,q,β , thus, it
can distinguish C′ is constructed from key-value commitment if C is constructed
from key-value commitment. C can be divided into two cases.

– If yb = y2 = A · xi:
C′ = A · (x1 + · · · xn + xi)

Because C′ can be expressed as A · x, which is in the form of a key-value
commitment scheme, A can consequently distinguish C′ as a key-value com-
mitment map.

– Else: it cannot express C′ as the form of key-value commitment scheme. Con-
sequently, A can distinguish C′ as a uniform distribution.

A sends either result to B and based on the received result, B can identify the
value of yb as follows,

– If C′ is distinguish as a key-value commitment map: yb is constructed from
yb = y2 = A · xi.

– If C′ is distinguish as a uniform distribution: yb is constructed from uniform
distribution.

Finally, B sends the solution to Decisional-SIS∞
n,m,q,β oracle and break Decisional-

SIS∞
n,m,q,β form problem.

By using the contraposition of Theorem 5, the key-hiding property of KVCm,n,q,β

satisfies based on difficulty of Decisional-SIS∞
n,m,q,β form problem.

514 H. Miyaji and A. Miyaji

6 Comparison

In this section, we compare our two key-value commitment schemes in Table 1. In
Insert-KVCm/2,n,q,β , Update function is not included, making the construction of
Insert-KVCm/2,n,q,β much simpler than KVCm,n,q,β . In the Insert-KVCm/2,n,q,β

construction, the total multiplication and addition cost can be reduced by
1/2 compared to the KVCm,n,q,β construction from Table 1. Consequently, if
you use a key-value commitment scheme that does not need to update values,
Insert-KVCm/2,n,q,β is more suitable.

Conversely, KVCm,n,q,β includes a Update function that can update the value
after creating the commitment value. Therefore, if you use a key-value commit-
ment scheme to apply to certain applications such as blockchain, KVCm,n,q,β is
more suitable.

Table 1. Comparison of Insert-KVCm/2,n,q,β and KVCm,n,q,β

Scheme key-binding key-hiding total
multiplication
cost

total
addition
cost

Insert-KVCm/2,n,q,β SIS∞
n,m,q,β problem Decisional-SIS∞

n,m,q,β

form problem
6mn 11n

KVCm,n,q,β SIS∞
n,m,q,β problem Decisional-SIS∞

n,m,q,β

form problem
16mn 21n

7 Conclusion

In this paper, we propose two key-value commitment schemes, Insert-
KVCm/2,n,q,β and KVCm,n,q,β by achieving the following.

– Prove the Decisional-SIS∞
n,m,q,β form problem is secure based on the hardness

of One-Way-SIS∞
n,m,q,β problem.

– Propose the construction of Insert-KVCm/2,n,q,β based on lattice assumption.
– Prove the key-binding of Insert-KVCm/2,n,q,β based on the SIS∞

n,m,q,β prob-
lem, and prove the key-hiding of Insert-KVCm/2,n,q,β based on the Decisional-
SIS∞

n,m,q,β form problem.
– Analyze the multiplication and addition cost of Insert-KVCm/2,n,q,β .
– Propose the construction of KVCm,n,q,β based on lattice assumption.
– Prove the key-binding of KVCm,n,q,β based on the SIS∞

n,m,q,β problem, and
prove the key-hiding of KVCm,n,q,β based on the Decisional-SIS∞

n,m,q,β form
problem.

– Analyze the multiplication and addition cost of KVCm,n,q,β .

Acknowledgment. This work is partially supported by JSPS KAKENHI Grant Num-
ber JP21H03443 and SECOM Science and Technology Foundation.

Lattice-Based Key-Value Commitment Scheme 515

References

1. Bitcoin. https://bitcoin.org/
2. Ethereum. https://www.ethereum.org/
3. Agrawal, S., Raghuraman, S.: KVaC: key-value commitments for blockchains and

beyond. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp.
839–869. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_28

4. Allende, M., et al.: Quantum-resistance in blockchain networks. CoRR,
abs/2106.06640 (2021)

5. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24

6. Blum, M.: Coin flipping by telephone - a protocol for solving impossible problems.
In: COMPCON 1982, Digest of Papers, Twenty-Fourth IEEE Computer Society
International Conference, San Francisco, California, USA, 22–25 February 1982,
pp. 133–137. IEEE Computer Society (1982)

7. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7_5

8. Damgård, I.: Commitment schemes and zero-knowledge protocols. In: Damgård,
I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 63–86. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48969-X_3

9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
17–20 May 2008, pp. 197–206. ACM (2008)

10. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

11. Haitner, I., Nguyen, M., Ong, S.J., Reingold, O., Vadhan, S.P.: Statistically hiding
commitments and statistical zero-knowledge arguments from any one-way function.
SIAM J. Comput. 39(3), 1153–1218 (2009)

12. Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from
collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
201–215. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_16

13. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press,
Boca Raton (2014)

14. Miyaji, H., Wang, Y., Kawachi, A., Miyaji, A.: A commitment scheme with output
locality-3 fit for IoT device. Secur. Commun. Netw. 2949513, 1–10 (2021)

15. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

16. Yuen, T.H., Esgin, M.F., Liu, J.K., Au, M.H., Ding, Z.: DualRing : generic con-
struction of ring signatures with efficient instantiations. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 251–281. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84242-0_10

17. Zamyatin, A., Al-Bassam, M., Zindros, D., Kokoris-Kogias, E., Moreno-Sanchez,
P., Kiayias, A., Knottenbelt, W.J.: SoK: communication across distributed ledgers.
In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12675, pp. 3–36. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-662-64331-0_1

https://bitcoin.org/
https://www.ethereum.org/
https://doi.org/10.1007/978-3-030-64840-4_28
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/3-540-48969-X_3
https://doi.org/10.1007/3-540-68697-5_16
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-030-84242-0_10
https://doi.org/10.1007/978-3-662-64331-0_1

A Practical Forward-Secure DualRing

Nan Li1, Yingjiu Li2, Atsuko Miyaji3, Yangguang Tian4(B),
and Tsz Hon Yuen5

1 School of Computing and Information Technology, University of Wollongong,
Wollongong, Australia

2 Computer and Information Science, University of Oregon, Eugene, USA
3 Graduate School of Engineering, Osaka University, Suita, Japan

4 Department of Computer Science, University of Surrey, Guildford, UK
yangguang.tian@surrey.ac.uk

5 Department of Computer Science, University of Hong Kong, Pok Fu Lam,

Hong Kong

Abstract. Ring signature allows a signer to generate a signature on
behalf of a set of public keys, while a verifier can verify the signature
without identifying who the actual signer is. In Crypto 2021, Yuen et al.
proposed a new type of ring signature scheme called DualRing. However,
it lacks forward security. The security of DualRing cannot be guaranteed
if the signer’s secret key is compromised. To address this problem, we
introduce forward-secure DualRing, in which a signer can periodically
update their secret key using a “split-and-combine” method. A practical
instantiation of our scheme enjoys a logarithmic complexity in signature
size and key size. Implementation and evaluation further validate the
practicality of our proposed scheme.

Keywords: DualRing · Forward Security · Practical Scheme

1 Introduction

Ring signatures [31] allow a signer to sign messages on behalf of a set of public
keys, and a verifier cannot identify who the real signer is. Since ring signa-
tures provide anonymity, they are widely used in the privacy-preserving scenar-
ios such as whistleblowing, e-voting, and privacy-preserving cryptocurrencies.
The classic ring signature scheme [31] requires a signer first to compute n-1
pseudo-signatures for a set of n public keys PK. Then, the signer generates a
real signature on a challenge value c using his signing key. The n signatures
together with the challenge value c form a ring signature under PK.

The state-of-the-art ring signature scheme is called DualRing [33] proposed
in Crypto 2021. The construction of DualRing takes a different approach, which
achieves a significant saving in terms of signature size. Specifically, a signer first
chooses n-1 pseudo-challenge values. Next, the signer derives a real challenge
value c from the n-1 pseudo-challenge values and a set of n public keys PK. The
last step is the signer generating a signature on the challenge value c using his
signing key. The resulting DualRing consists of a single signature and n challenge
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 516–537, 2023.
https://doi.org/10.1007/978-981-99-7563-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_23&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_23

A Practical Forward-Secure DualRing 517

values compared to the classical ring signature that consists of a single challenge
value and n signatures. The n challenge values in DualRing can be further com-
pressed to a O(log n)-size argument of knowledge in the discrete logarithm (DL)
setting. However, DualRing lacks forward security. Forward secrecy [14] means
that the unforgeability of the message-signature pair generated in the past is
still guaranteed after the current secret key is leaked (e.g., due to side-channel
attacks).

1.1 Motivations

Forward-secure ring signature is important for privacy-preserving applications.
In the case of whistleblowing, an employee Alice intends to leak a secret as a
whistleblower on behalf of all public keys in her company while she is still in the
company, and she does not want to be identified before leaving the company.
If Alice uses a ring signature to reveal the secret, the unforgeability of the ring
signature assumes that no adversary can obtain any secret key from the mem-
bers of the ring. However, due to the nature of dynamic ring formation in ring
signatures, it is difficult for such assumption to hold over time. In our example,
Alice may not know each and every user in the company, and she may not have
any control to ensure that all users in her company would keep their secret keys
secure over a certain period of time. Therefore, it is beneficial to design a cryp-
tographic solution, such that the unforgeability of a ring signature is guaranteed
if and only if the secret keys of the members of the ring are not compromised at
the time of signing.

Forward-secure ring signatures (FS-RS) can be used in the case of remote
(or internet) voting. The internet voting systems like Helios [5], Remotegrity
[35], and VOTOR [22] allow anyone to set up an election, invite voters to cast a
secret ballot, compute a tally, and provide a verifiable tally for the election. Our
forward-secure ring signature scheme is suitable for internet voting for two rea-
sons: 1) On the usability side, the voters register their credentials once to a voting
authority. The registered credentials can be re-used in different elections without
being identified. 2) On the security side, the voters submit their votes in an elec-
tion and (privately) updates their credentials for future elections. The forward
security of our ring signature scheme ensures that no user’s updated credentials
can be misused by adversary for tracing or revealing the vote submissions of the
user, even if the user is under coercion to reveal their updated credentials.

1.2 Overview of Our Construction

In this work, we introduce forward-secure DualRing and extend it to forward-
secure linkable DualRing. The proposed construction is built from DualRing [33]
and a key update technique [11,20]. First, we review a Type-T signature (three-
move type such as Schnorr signature [32]), which is used in building our scheme.
We focus on the DL-based Type-T signature in this work. The signing process
of the Type-T signature includes three functions: 1) a commit function, which
outputs a commitment R = gr̂, where r̂ denotes randomness; 2) a hash function,
which outputs a challenge ĉ = H(R||pk||m), where pk = gsk denotes a public

518 N. Li et al.

key, sk denotes a secret key, and m denotes the signing message. 3) a response
function, which outputs a response z = r̂ − ĉ · sk. The resulting signature is
σ = (ĉ, z). For verification, one can check ĉ

?=H(R′||pk||m), where R′ = gz · pkĉ.
Second, we show a key update technique, which was used in building the

forward-secure schemes [11,20]. We assume that a secret key at epoch (i.e., a
fixed time period) t includes the following elements,

skt = (c, d, et+1, · · · , eT) = (gr, hsk · F (t)r, hr
t+1, · · · , hr

T)

where T denotes the upper bound of time periods, r denotes randomness (due to
security reasons), F (t) represents a public function for time t, and hr

t+1, · · · , hr
T

is used for key updates. The key update process at epoch t′ is shown as follows.

skt′ = (c′, d′, et+2, · · · , eT) = (gr+r′
, hsk · F (t′)r+r′

, hr+r′
t+2 , · · · , hr+r′

T)

where t′ denotes a new time period (note that t is a prefix of t′), r′ denotes a
new randomness. For each key update, it requires a new randomness r′ to ensure
forward security.

The challenge of designing forward-secure Type-T signature (and forward-
secure DualRing) is to replace the static secret key sk by a time-dependent secret
key skt for signing, while the public key pk is fixed. However, the secret key skt

is not suitable to be used directly in generating the response z in forward-secure
DualRing because skt consists of group elements that cannot work with the
response function on finite field Fq (q is prime number). We propose a novel
technique to apply skt in generating forward-secure DualRing signatures. The
key idea is that we use group elements (c, d) as the signing keys, and we use the
randomness r̂ involved in the commit function to link the signing keys (c, d). We
call it “split-and-combine” method. Specifically, we first split the randomness r̂
used in the commit function into two shares (r̂1, r̂2), where r̂ = r̂1 + r̂2. Then,
we use signing keys (c, d) to “sign” two randomness shares (r̂1, r̂2) respectively,
and output two response values. The resulting signature includes a challenge ĉ
(i.e., the hash function’s output) and two response values. The verification of the
signature is performed by computing a commitment R′ from the two response
values, and checking ĉ

?=H(R′||pk||m). Note that the two randomness shares can
be combined in the generation of R′. To conclude, this split-and-combine method
allows a signer to use the split randomness shares to link group elements (c, d).
The linked group elements are used in generating the response values for forward-
secure DualRing signatures. In the process of signature verification, the split
randomness shares can be combined as a verifier computes a commitment R′

from the response values.

1.3 Related Work

Ring Signatures. Ring signatures [31] allow a signer to sign messages over
a chosen set of public keys (including his/her own) without revealing who the
real signer is. Since ring signatures provide anonymity (i.e., signer-ambiguity),

A Practical Forward-Secure DualRing 519

they can be used in constructing various privacy-preserving protocols, including
whistleblowing, electric voting, and privacy-preserving cryptocurrencies (e.g.,
Monero and Zcash).

Abe et al. [4] introduced a generic framework that allows a signer to choose
different types of public keys to form a ring (i.e., public-key set). Specifically, a
signer can choose both RSA-keys and Discrete logarithm (DL)-keys to generate
ring signatures. The ring signature scheme is efficient if it is used only with a
single type of public keys.

Dodis et al. [19] introduced an accumulator-based ring signature scheme. The
resulting signature size is constant, which is independent of the size of the ring.
Specifically, the proposed scheme allows the signer to “compress” n public keys
into a single value, and rely on a witness showing that the signer’s public key is in
the public-key set. However, their scheme requires a trusted setup for generating
system parameters.

Groth and Kohlweiss [21] proposed efficient ring signatures based on one-
out-of-many proofs. The one-out-of-many approach requires a zero-knowledge
proof to prove the knowledge of the secret key with respect to one of the public
keys in the ring. The proof size of this scheme is O(log n), and it is setup-free.
The follow-up works are various. For example, Bootle et al. [13] presented an
accountable ring signature scheme, which extends Groth and Kohlweiss’s scheme
to support accountability. Libert et al. [24] introduced a tightly secure ring signa-
ture scheme. Their scheme is derived from Groth and Kohlweiss’s ring signature
scheme and DDH-based Elgamal encryptions. Recently, Lai et al. [23] intro-
duced Omniring (i.e., Ring Confidential Transactions or RingCT) for RingCT,
and Yuen et al. [34] proposed a new ring signature scheme for RingCT3.0. Both
signature schemes require no trusted setup, and the proof size is O(log n).

Forward Security. Forward security states that the compromise of entities
at the present time will not affect the security of cryptographic primitives in
the past. It is regarded as a basic security guarantee for many cryptographic
primitives, including encryptions, signatures and key exchanges. Here, we focus
on forward-secure signatures. If an attacker compromises a signer (e.g., via side-
channel attacks), she cannot forge a signature from the signer at an earlier time.
Specifically, when the attacker compromises a signer’s signing key for the current
time period, the signing keys from earlier time periods cannot be recovered. In
this case, a one-way key update process is needed.

Bellare and Miner [8] formalized the security for forward-secure signatures.
They also proposed a scheme with a squaring-based key update. So, its forward
security is based on the hardness of factoring (N = pq, where p, q are two primes).
Later, forward-secure ring signature (FS-RS) schemes have been proposed in
the literature [15,26,27]. However, they have certain limitations. For example,
the squaring-based key update in [26] is not suitable for the standard RSA/DL-
based forward-secure schemes. The scheme in [27] involves composite-order group
operations, thus it is less practical. The forward-secure linkable ring signature
proposed in [15] is constructed from hypothetical multilinear maps. However, it
remains unclear how to instantiate such multilinear maps. We also notice that
the forward-secure ring signature scheme proposed in [26] is setup-free, and those

520 N. Li et al.

in [15,27] require a trusted setup. Our proposed scheme can operate without any
trusted setup by leveraging an indifferentiable hash-to-curve algorithm [16], as
suggested in [20].

2 Preliminaries

In this section, we present the complexity assumptions and the building blocks
for constructing our proposed protocol.

2.1 Complexity Assumptions

Bilinear Maps. We define a group generation as (q,G,H,GT , ê) ←
GroupGen(1λ), where q is a prime number, g, h are two group generators, G, H
and GT are cyclic groups of order q. The asymmetric bilinear map ê : G×H → GT

has the following properties: 1) Bilinearity: for g, h ∈ G and a, b ∈ Zq, we have
ê(ga, hb) = ê(g, h)ab. 2) Non-degeneracy: ∃g ∈ G such that ê(g, h) has order q in
GT .
We introduce a variant of wBDHI assumption, which is used in the unforgeability
analysis.

Definition 1. Given group generators g ∈ G, h ∈ H, and a, b ∈ Zq, we define
the advantage of the adversary A in solving the wBDHI problem as

AdvwBDHI
A (λ) = Pr[A(g, h, ga, gb, ha, hb, hb2 , · · · , hb�

) = ê(g, h)a·b�+1 ∈ GT]

The wBDHI assumption is secure if AdvwBDHI
A (λ) is negligible in λ.

The wBDHI assumption holds for Type-3 pairings (i.e., G �= H), which is shown
in [20]. The difference between this variant and the existing wBHDI assumption
[20] is small. If we give gb2 , · · · , gb�

(as well as the above underline part in
group H) to A, it is equal to the wBDHI assumption described in [20]. We omit
the security analysis of this variant since the reduction is straightforward. The
decisional version of the wBDHI problem requires A to distinguish ê(g, h)a·b�+1

from a random value in GT . For simplicity, we use wBDHI to represent the
variant used in this work.

2.2 DualRing

The DL-based DualRing signature scheme consists of the following algorithms
[33].

– Setup(1λ): It takes a security parameter λ as input, outputs public parameters
PP, which are the implicit input for all the following algorithms. It also defines
a hash function H : {0, 1}∗ → Zq.

– KeyGen(PP): It takes the public parameters PP as input, output a key pair
(ski, pki), where pki = gski .

A Practical Forward-Secure DualRing 521

– Sign(PP, ski,m,PK): It takes a signer’s secret key ski, a message m, and a set
of public keys PK = (pk1, · · · , pkn), outputs a signature σ = (z, c1, · · · , cn).
Specifically, the signer pki performs the following operations.
1. Choose r ∈ Zq, {cj}n−1

j=1 ∈ Zq, and compute a commitment R = gr ·
∏n−1

j=1 pk
cj

j , where j �= i.
2. Compute a challenge ci = H(R||PK||m) − ∑n−1

j=1 cj .
3. Compute a response z = r − ski · ci.

– Verify(PP,PK,m, σ): It outputs 1 if H(R′||PK||m) =
∑n

i=1 ci, where R′ =
gz · ∏n

i=1 pk
ci
i .

We present the high-level idea of DL-based DualRing as follows. First, a
signer adds the decoy public keys {pkj}n−1

j=1 and the corresponding challenge
values {cj}n−1

j=1 to the commitment R. Second, after computing a hash value
H(R||PK||m), the signer can compute a challenge ci from H(R||PK||m) and the
challenge values {cj}n−1

j=1 . Third, the signer computes a response z according to
Type-T signature scheme. To verify, the commitment R is reconstructed from all
public keys and all challenge values. The sum of the challenge values is equal to
the hash value H(R||PK||m). For security, DualRing needs to achieve unforgeabil-
ity and anonymity. Specifically, unforgeability means that the adversary cannot
produce a valid signature without accessing the secret key, even if s/he can adap-
tively corrupt other honest participants and obtain their secret keys. Anonymity
requires that the adversary cannot pinpoint the actual signer given a valid signa-
ture and a group of public keys, even if s/he is given all randomness to generate
the secret keys. The formal definition is given in [33].

DualRing relies on the sum of argument of knowledge to achieve logarithmic
complexity in signature size. The sum argument relation is given below:

{(g ∈ G
n, P ∈ G, c ∈ Zq;a ∈ Z

n
q) : P = ga

∧

c =
∑

a}
In this sum argument, a prover convinces a verifier that s/he has the knowl-

edge of a vector of scalars a, such that P = ga and c =
∑

a. For some ai ∈ Zq,
given gi, P ∈ G and c ∈ Zq: P =

∏n
i=1 gai

i

∧

c =
∑n

i=1 ai. Second, since Type-T
signature contains pkci

i , we can rewrite the sum argument for the relation:

R · (gz)−1 =
n

∏

i=1

pkci
i

∧

H(R||PK||m) =
n

∑

i=1

ci.

Eventually, a logarithmic size DL-based DualRing can be constructed from
Type-T signature and the non-interactive sum argument (NISA). The result-
ing signature is (c, z, R, π), where π ← NISA.Proof({param,PK, u, P, c},a),
param = (PP, u), u ∈ G, c =

∑n
i=1 ci, P = R · (gz)−1, a = (c1, · · · , cn). In

particular, π has log(n) complexity. The detailed algorithms are referred to [33]
(Sect. 6).

522 N. Li et al.

2.3 Forward Security

In this sub-section, we show non-interactive forward security. Non-interactive
means that the key holder updates their keys locally, without interacting with
any third parties. First, we show the forward security technique based on the
hierarchical identity-based encryption scheme (HIBE) in [11]. Second, we show
the forward security technique with logarithmic complexity O(log(T)2) using
the binary tree-based approach in [17,20], where T denotes the upper-bound of
time periods (or epochs). We mainly focus on how to generate and update keys
because they determine the forward security. We assume a secret key skt is of
the following form:

skt = (gr, hsk · (h0

∏

hti
i)r, hr

i+1, · · · , hr
T)

where r is randomness, t = t1||t2|| · · · ||ti denotes the current time, (g, h0, h1, · · · ,
hT) denotes the public parameters, and (h0

∏

hti
i)r = (h0 ·ht1

1 ·ht2
2 · · · hti

i)r. Note
that these public parameters can be generated using an indifferentiable hash-
to-curve algorithm [16], thus avoiding any trusted setup. To derive a new key
skt′ at the next time t′ = t||ti+1 from skt, the secret key holder performs the
following operation on the underlined element above

hsk · (h0

∏

h
ti+1
i+1)r+r′

= hsk · (h0

∏

hti
i)r · h

r·ti+1
i+1 · (h0

∏

h
ti+1
i+1)r′

where r′ is a new randomness, and the underline part is the second element of
secret key skt. For the first and other elements of the new secret key skt′ , the
key holder can easily update them by multiplying gr′

, hr′
i+2, · · · , hr′

T , respectively.
So, the new secret key is skt′ = (gr+r′

, hsk · (h0

∏

h
ti+1
i+1)r+r′

, hr+r′
i+2 , · · · , hr+r′

T).
The above approach shows that each key update requires new randomness to

unlink the original and the new secret keys, and the complexity is linear to the
number of epochs: O(T). Now, we use a tree-based approach [17,20] to compress
the secret keys down to O(log(T)2). First, we assume the secret key skt for the
current time t is of the following form:

skt = s̃kt, s̃kt+1, · · · , s̃kT .

where each sub-key ˜skt is generated using independent randomness. Second, we
explain the tree-based approach in Fig. 1.

Specifically, a tree of depth � − 1 consists of 2� − 1 nodes, which corresponds
to time periods in [1, 2� − 1]. We use {1, 2}-string to represent time period,
where 1 denotes taking the left branch and 2 denotes taking the right branch.
For instance, for � = 4, the string (ε, 1, 11, · · · , 222) corresponds to time period
(1, 2, 3, · · · , 15), where ε denotes the root node or the first time period. Suppose
the current time is t = 121 (a leaf node in color blue in Fig. 1), the tree traver-
sal method states that the key holder will use the sub-key s̃k121 to represent
time 121, and locally store the secret keys of the “right siblings” (or siblings
on the right) of the nodes on the path from the root to 121 for subsequent

A Practical Forward-Secure DualRing 523

Fig. 1. Tree Traversal Method.

key updates. As a result, the key holder stores a set of sub-keys at epoch 121:
skt = (s̃k121, s̃k122, s̃k21, s̃k2). In particular, the sub-keys are organized as a
stack of node keys, with the sub-key s̃k121 on top. The sub-keys at epoch 121
are described below

s̃k121 = (gr121 , hsk · (h0 · h1
1 · h2

2 · h1
3)

r121 ,⊥)
s̃k122 = (gr122 , hsk · (h0 · h1

1 · h2
2 · h2

3)
r122 ,⊥)

s̃k21 = (gr21 , hsk · (h0 · h2
1 · h1

2 · h0
3)

r21 , hr21
3)

s̃k2 = (gr2 , hsk · (h0 · h2
1 · h0

2 · h0
3)

r2 , hr2
2 , hr2

3)

where r121, r122, r21, r2 are independent randomness, and (g, h0, h1, h2, h3) are
public parameters.

Third, we show the key update from skt to skt+1. The sub-keys s̃k121, s̃k122
cannot be updated further once they are used because their third elements are
empty values ⊥. But, we can derive a new sub-key s̃k211 from the sub-key s̃k21
(which is stored locally) using the following equation.

s̃k211 = (gr21 · gr211 , hsk · (h0 · h2
1 · h1

2 · h0
3)

r21 · hr21·1
3 · (h0 · h2

1 · h1
2 · h1

3)
r211 ,⊥)

= (gr21+r211 , hsk · (h0 · h2
1 · h1

2 · h1
3)

r21+r211 ,⊥)

where r211 is a new randomness used in this key update. We can derive all the
following sub-keys shown in the tree using the same method described above.
Specifically, sk212 is derived from sk21, and sk22, sk221, sk222 are derived from
sk2.

Next, we show the complexity of key updates, which includes storage cost and
computational cost. The storage cost is O(log(T)2), meaning that each key skt

contains O(log(T)) sub-keys and each sub-key ˜skt consists of O(log(T)) group
elements. Since all tree nodes are used to represent time periods, the amortized
key update requires O(1) exponentiations.

524 N. Li et al.

3 Definition and Models

In this section, we present the definition and the security models of forward-
secure ring signature scheme.

3.1 Definition

A forward-secure ring signature (FS-RS) scheme consists of the following algo-
rithms.

– Setup(1λ): It takes a security parameter λ as input, outputs public parameters
PP that include the maximum number of epoch T .

– KeyGen(PP): It takes public parameters PP as input, outputs an initial key
pair (pki, sk(i,0)) for any user. We use pki to represent this user.

– KeyUp(PP, sk(i,t), t
′): It takes a user pki’s key sk(i,t) and an epoch t′ as input,

outputs an updated key sk(i,t′), where t ≤ t′.
– Sign(PP, sk(i,t),m,PK, t): It takes a user pki’s key sk(i,t), a message m, a

set of public keys PK = (pk1, · · · , pkn), and an epoch t as input, outputs a
signature σ.

– Verify(PP,PK,m, σ, t): It takes a message-signature pair (m,σ), a public key
set PK, and an epoch t as input, outputs 1 to indicate that the signature is
valid and 0 otherwise.

Correctness. The FS-RS is correct if for all security parameters λ, all public
parameters PP ← Setup(1λ), for all keys (pki, sk(i,0)) ← KeyGen(PP), for all
t ≤ t′, sk(i,t′) ← KeyUp(PP, sk(i,t), t

′), for all m and PK = (pk1, · · · , pkn),
σ ← Sign(PP, sk(i,t),m,PK, t), we have 1 = Verify(PP,PK,m, σ, t).

3.2 Security Models

Forward-Secure Unforgeability. Informally, an attacker cannot forge a
message-signature pair, even if the attacker can adaptively corrupt some honest
participants and obtain their epoch-based secret keys. The formal security game
between a probabilistic polynomial-time (PPT) adversary A and a simulator S
is defined as follows.

– S sets up the game by creating n users with the corresponding key pairs
{(pki, sk(i,0))} ← KeyGen(PP), where PP ← Setup(1λ), and {sk(i,0)} denotes
user i’s initial secret key. For each user pki, S can update the epoch-based
secret keys to {sk(i,t)}T

t=1. Eventually, S returns all public keys to A, and S
maintains a set Q to record the corrupted users.

– During the game, A can make the following queries to S.
• Key Update. If A issues a key update query with respect to a user pki at

epoch t, then S updates the key sk(i,t) to sk(i,t+1) and increases t, where
t ≤ T .

A Practical Forward-Secure DualRing 525

• Signing. If A issues a signing query on a message m and a public key
set PK = {pki, · · · } at epoch t, then S computes a signature σ using the
secret key sk(i,t) and returns it to A.

• Break In. If A issues a break-in query at epoch t̄ with respect to a user
pki, then S returns the corresponding secret key sk(i,t̄) to A. This query
can be issued once for each user, and after this query, A can make no
further key update or signing queries to that user. In addition, we allow
A to issue different break-in queries with respect to different users.

• Corrupt. If A issues a corrupt query on a user pki, then S returns the
user’s initial secret key sk(i,0) to A, and updates the set Q by including
the corrupted public key pki.

– At some point, A outputs a forgery (PK∗, t∗,m∗, σ∗). A wins the game if the
following conditions hold.
1. The message-signature pair (m∗, σ∗) is a valid under PK∗ at t∗.
2. For any user pk∗ ∈ PK∗, but pk∗ /∈ Q.
3. The forgery (PK∗, t∗,m∗, ·) was not previously queried to the signing ora-

cle.
4. If the break in oracle has been queried at epoch t̄ with respect to any user

in PK∗, the break in epoch must satisfy t̄ > t∗.
We define the advantage of A in the above game as

AdvA(λ) = |Pr[A wins]|.
Definition 2. A forward-secure ring-signature scheme is unforgeable if for any
PPT A, AdvA(λ) is a negligible function in λ.

Anonymity Against Full Key Exposure. Informally, an attacker cannot
identify a specific signer given a valid signature and a set of public keys, even if
the attacker can access all randomnesses that were used in generating each user’s
secret key. Note that we consider an anonymity model in [10] that the attacker
can access all randomnesses that were used in generating each user’s secret key
(i.e., full key exposure). The formal anonymity game between a PPT adversary
A and a simulator S is defined as follows.

– S sets up the game using the same method described in the above unforge-
ability game except the following differences. First, S generates a user’s key
pair as (pki, ski) ← KeyGen(PP;wi), where wi denotes the randomness used
in generating user’s secret key. Second, S returns all users’ public keys to A,
and tosses a random coin b which is used later in the game.

– A can make signing queries to S during the training phase. In the end, A
outputs two indices i0, i1 /∈ Q, where Q denotes the set of queries to the
corrupt oracle.

– During the challenge phase, A can issue a signing query on a message m∗

under a public key set PK∗ = {pki0
, pki1

, · · · } at epoch t∗, then S returns
a signature σ ← Sign(PP, sk(ib,t∗),m

∗,PK∗, t∗) and all witness {wi} to A.
Finally, A outputs b′ as its guess for b. If b′ = b, then S outputs 1; Otherwise,
S outputs 0. We define the advantage of A in the above game as

AdvA(λ) = |Pr[S → 1] − 1/2|.

526 N. Li et al.

Definition 3. A forward-secure ring-signature scheme is anonymous if for any
PPT A, AdvA(λ) is a negligible function in λ.

Remark. We consider two types of randomnesses for (forward-secure) Type-
T ring signatures. One is the randomnesses {wi} that are used in generat-
ing/updating users’ secret keys, and another is the randomnesses Rands that
are used in generating ring signatures. Our anonymity is held even if attackers
can access all {wi} (note that S can record all {wi} for key update queries) and
corrupt all users in a ring during the challenge phase. However, if attackers get
access to the randomness Rands associated with a ring signature, this ring sig-
nature’s anonymity is lost. Our anonymity model disallows attackers to access
any Rands in the entire game.

4 Our Construction

We denote an epoch-based function as F (t) = h0

∏

hti
i , where t =

t1||t2|| · · · ||ti = {1, 2}i. Let H : {0, 1}∗ → Zq be a collision-resistant hash func-
tion. Below, we show a construction with linear complexity. We can easily convert
it to a practical scheme with logarithmic complexity using the sum argument
and the tree-based approach described in Sect. 2.2 and Sect. 2.3, respectively.
The logarithmic complexity here means that the signature size and the signing
key size are logarithmic in both the number of public keys involved in a ring and
the maximum number of epochs.

– Setup(1λ): Let ê : G × H → GT be a bilinear pairing. The common system
parameters include PP = (g, h, T, {hi}�), where g ∈ G, h, {hi}� ∈ H, and
T = 2� − 1 denotes the upper bound of epochs. The first epoch is ε = 0, and
the last epoch is t1|| · · · ||t�−1.

– KeyGen(PP): A user chooses a secret key ski and computes hski . It computes
an initial key as sk(i,ε) = (gr0 , hski · hr0

0 , hr0
1 , · · · hr0

�), where r0 ∈ Zq. It also
sets its public key as pki = gski . We denote the second element of sk(i,ε) as
sk(i,ε,2).

– KeyUp(PP, sk(i,t), t
′): Given a key sk(i,t) = (gr, hski · F (t)r, hr

i+1, · · · , hr
�),

where t = t1|| · · · ||ti, the user creates a new key sk(i,t′) = (gr · gz, sk(i,t,2) ·
h

r·ti+1
i+1 · (h0 · ∏

ht′
i+1)

z, hr
i+2 · hz

i+2, · · · , hr
� · hz

�), where z ∈ Zq, and epoch
t′ = t1|| · · · ||ti||ti+1.

– Sign(PP, sk(i,t),m,PK, t): Given a signing key sk(i,t), a message m, and a set
of public keys PK = (pk1, · · · , pkn), a signer performs the following opera-
tions.
1. Choose challenge values {cj}n−1

j=1 ∈ Zq, and compute a commitment value
R = ê(

∏n−1
j=1 pk

cj

j , h)/ê(g, F (t))r̂, where r̂ = r̂1 + r̂2, and r̂1, r̂2 ∈ Zq.
2. Compute a challenge value ci = H(R||m||PK) − ∑n−1

j=1 cj .
3. Output a ring signature σ = (σ1, σ2, c1, · · · , cn), where σ1 = [hski ·

F (t)r]ci · F (t)r̂1 and σ2 = gr̂2/gr·ci .

A Practical Forward-Secure DualRing 527

– Verify(PP,PK,m, σ, t): Anyone can verify H(R′||m||PK) ?=
∑n

i=1 ci, where R′ is
computed as follows.

A = ê(g, σ1) = ê(g, hski)ci · ê(g, F (t)r)ci · ê(g, F (t))r̂1

B = ê(σ2, F (t)) = ê(gr̂2 , F (t))/ê(grci , F (t))
AB = ê(g, hski)ci · ê(gr̂, F (t)),� r̂ = r̂1 + r̂2

R′ = C/AB = ê(
n−1
∏

j=1

pk
cj

j , h)/ê(g, F (t))r̂, where C = ê(
n

∏

i=1

pkci
i , h)

Correctness. We associate a user pki’s signing key at epoch t = t1|| · · · ||ti of
the form

sk(i,t) = (c, d, ei+1, · · · , e�) = (gr, hski · (h0 ·
∏

hti
i)r, hr

i+1, · · · , hr
�) (1)

where r is an independent uniformly distributed exponent. We say that a signing
key sk(i,t) is well-formed if it satisfies the equation (1). Now, we show the honestly
generated and updated secret keys are well-formed. For simplicity, we assume a
key update from epoch t = t1|| · · · ||ti to t′ = t1|| · · · ||ti||ti+1, where t′ contains t
as a prefix (e.g., t = 12 and t′ = 121 or t′ = 122). Note that the epoch cannot
contain bit 0 due to technical reasons such as h0

i = 1.
First, the initial key sk(i,ε) for ε = 1 is trivially well-formed. Then, we show

that the key sk(i,t′) is also well-formed after a key update from t to t′. Specifically,
we show two cases of key update. The first case is of the form

sk(i,t′) = (c, d · e
ti+1
i+1 , ei+2, · · · , e�) = (gr, hski · (h0 ·

∏

h
ti+1
i+1)r, hr

i+2, · · · , hr
�)

which satisfies Eq. (1) with an independent randomness r. The second case is of
the form

sk(i,t′) = (c · gz, d · e
ti+1
i+1 · (h0 ·

∏

ht′
i+1)

z, ei+2 · hz
i+2, · · · , e� · hz

�)

= (gr+z, hski · (h0 ·
∏

hti
i)r · h

r·ti+1
i+1 · (h0 ·

∏

ht′
i+1)

z, hr+z
i+2 , · · · , hr+z

�)

= (gr+z, hski · (h0 ·
∏

ht′
i+1)

r+z, hr+z
i+2 , · · · , hr+z

�).

The above form also satisfies equation (1) with randomness r + z, which is
an independent exponent due to the uniform choice of z. The last step to
obtain sk(i,t′) is crucial to forward security, the signer deletes sk(i,t) and the
re-randomization exponent z used in the second case of key update. The veri-
fication of signatures for epoch t′ = t1|| · · · ||ti+1 is straightforward. The signer
generates a signature using F (t′), while the verifier computes F (t′) and uses it
in computing B of the Verify algorithm.

528 N. Li et al.

Forward Deniability and Claimability. Consider an internet voting system
that includes a voter (or sender) and a voting authority (or receiver), and assume
they authenticate each other successfully. It is required that (i) the authority
know that the voter has the right to vote and (ii) the voter know that his/her
vote is counted after voting. Forward deniability is important here because it
prevents either party from walking away with a non-deniable proof of the actual
vote (i.e., authenticated message) [18]. Specifically, the authority should not
prove to a third party how the voter voted, and the voter should not prove that
s/he authenticated a message at a later stage to prevent coercion and vote-selling.

Forward deniability is not equal to the original notion of deniability. The
deniability prevents a receiver from proving to a third party that s/he received
an authenticated message from a sender, while forward deniability prevents the
sender from generating any non-deniable proofs. Forward deniability is compa-
rable to the notion of forward security. In forward security, if a party’s key is
compromised, the security of past sessions remains secure. Forward deniability
states that if a party is compromised at some time t, s/he cannot revoke the
deniability from sessions happened before time t.

To ensure forward security of ring signatures, a signer should erase any inter-
nal randomness used in updating his/her signing keys, apart from his/her signing
keys. Similarly, forward-deniable ring signatures require the signer to erase any
internal randomness used in generating signatures. One may argue that such
randomness erasure (from local memory) is a strong assumption to make. If the
signer keeps the randomness, s/he may claim authorship of generated signatures
(i.e., claimability [30]). So, the erasure of internal randomness used in generat-
ing ring signatures is critical for achieving forward deniability and claimability.
This work focuses on forward-secure unforgeability and anonymity against full
key exposure. Forward deniability may be considered as a desired feature if one
applies our proposed scheme to deniable authentication protocols and deniable
authenticated key exchanges (or Signal protocols [1,3]).

4.1 Security Analysis

Theorem 1. The FS-DR signature scheme Σ is unforgeable if the wBDHI
assumption holds in the underlying asymmetric groups.

Theorem 2. The FS-DR signature scheme Σ is anonymous in the random ora-
cle model.

Please refer to Appendix for the detailed proofs.

5 Extension

Extending our construction, we now introduce a forward-secure linkable Dual-
Ring. The linkability means that anyone can link multiple signatures generated
by a same signer. Based on the technique used in [28], we adapt the proposed
FS-DR as follows

A Practical Forward-Secure DualRing 529

– The setup is almost same as FS-DR, except that the algorithm additionally
generates a one-time signature scheme Σots = (OKGen,OSig,OVer).

– The key generation proceeds as follows. A user generates a key pair
(osk, opk) ← OKGen(1λ), computes a linkability tag Ri = H(opk). The user’s
secret key is of the form sk(i,t) = (gr, hski+Ri · hr

0, h
r
1, · · · hr

�), where r ∈ Zq.
The user’s public key is pki = gski+Ri . The key update remains the same as
FS-DR.

– For signing, a signer with a signing key sk(i,t), a message m, and a set of
public keys PK = (pk1, · · · , pkn), performs the following operations.
1. Generate a new set of public keys using its linkability tag Ri, such that

pk′
i = pki/gRi = gski , and pk′

j = pkj/gRi = gskj−Ri .
2. Choose challenge values {cj}n−1

j=1 ∈ Zq, and compute a commitment value
R = ê(

∏n−1
j=1 pk

′cj

j , h)/ê(g, F (t))r̂, where r̂ = r̂1 + r̂2, and r̂1, r̂2 ∈ Zq.
3. Compute a challenge value ci = H(R||m||PK′) − ∑n−1

j=1 cj , where PK′ =
(pk′

1, · · · , pk′
n).

4. Generate a ring signature σ = (σ1, σ2, c1, · · · , cn), where σ1 = [hski ·
F (t)r]ci · F (t)r̂1 and σ2 = gr̂2/gr·ci . Note that hski · F (t)r = hski+Ri ·F (t)r

hRi
.

5. Generate a one-time signature s ← OSig(osk;m,σ,PK).
6. Output (PK,m, σ, opk, s).

– For verification, anyone first computes PK′ = (pk′
1, · · · , pk′

n) from the public-
key set PK = (pk1, · · · , pkn) and gRi , where Ri = H(opk). Next, the user runs
the Verify algorithm described in FS-DR under public key set PK′. Last, the
user verifies the signature 1 ← OVer(opk;m,σ,PK).

– The link process takes two message-signature pairs (PK1,m1, σ1, opk1, s1),
(PK2,m2, σ2, opk2, s2) as input, output either linked or unlinked. Specifically,
the algorithm first verify (m1, σ1) under PK1 and (m2, σ2) under PK2, respec-
tively. Then, the algorithm outputs linked if opk1 = opk2. Otherwise, it out-
puts unlinked.

Correctness and Security. The correctness of linkable FS-DR is held if: 1)
the FS-DR and the one-time signature Σots are correct. 2) two legally signed
signatures are linked if they share a same signer. The security of linkable FS-DR
should include the following aspects.

– Forward-secure Unforgeability. The forward-secure unforgeability for linkable
FS-DR remains the same as in Sect. 3.2.

– Forward-secure Anonymity. Informally, an attacker cannot identify a specific
signer given a valid signature and a set of public keys at epoch t∗, even if
the attacker can corrupt all users’ secret keys after t∗. The formal definition
is adopted from Boyen and Haines [15]. We claim that, the linkable FS-DR
is forward-secure anonymous in the random oracle model if the decisional
wBDHI is held in the asymmetric pairing group. The security proof is similar
to Theorem 5 described in [15], except that the hard problem is replaced by
the decisional wBDHI problem.

530 N. Li et al.

– Linkability and Non-slanderability. Linkability means that the link process
always outputs “linked” for two signatures generated by a same signer. The
non-slanderability states that a signer cannot frame other honest signers for
generating a signature linked with another signature not signed by the signer.
The formal definitions are adopted from Liu et al. [25]. We claim that, the
linkable FS-DR is linkable and non-slanderable in the random oracle model if
the FS-DR scheme and the one-time signature scheme Σots are unforgeable.
This assumption is valid because if a linkable ring signature scheme is linkable
and non-slanderable, it is also unforgeable [7]. The security proofs are similar
to Theorem 4 and 5 described in [28].

6 Implementation and Evaluation

In this section, we focus on the implementation and evaluation. Specifically, we
compare the proposed scheme with two closely related research work [15,27]
in terms of execution time and storage cost. First, we remove the linkability
described in [15] for a fair comparison. We stress that the extension to a linkable
FS-DualRing is not our major contribution. Second, we remove the implemen-
tation of the forward-secure key update described in [15]. They use multilinear
maps [12] to update key pairs for different time periods or epochs. But, multi-
linear maps are not available in practice due to various attacks [15]. Therefore,
they suggest using (symmetric) bilinear maps to give a forward-secure scheme
that supports a key update for two epochs.

10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

(a) Number of users

R
un

ti
m
e
(m

s)

10 20 30 40 50 60 70 80 90 100

2.0

4.0

6.0

8.0

·10−2

(b) Number of users

R
un

ti
m
e
(m

s)

10 20 30 40 50 60 70 80 90 100

0.0

2.0

4.0

6.0

·10−2

(c) Number of users

R
un

ti
m
e
(m

s)

Fig. 2. Execution time of KeyGen, Sign, Verify algorithms. Red (with solid square) is
for our scheme, Blue (with solid dot) is for [15]. (Color figure online)

We implement our proposed scheme using Charm framework [6] and evaluate
its performance on a PC with Intel Core i9. We use MNT224 curve [29] for
pairing, which is the commonly-used asymmetric pairing in PBC library, and it
has around 100-bit security level. Our source code is available at Github [2].

First, we provide a performance comparison between our scheme and [15].
The execution time of KeyGen, Sign, and Verify algorithms are shown in Fig. 2.
The execution time of our scheme is relatively slow compared to [15]. This is
because their pairing relies on the symmetric SS512 curve, which is short (thus
fast). But, the security level of SS512 is incomparable to MNT224 (note that

A Practical Forward-Secure DualRing 531

our scheme is insecure in the symmetric pairing setting). We stress that our
scheme’s execution time is acceptable. The signing and verifying processes take
approximately 0.07ms to handle a group of 100 public keys.

Second, we compare the storage costs of our scheme with those proposed
in [27] and [15] in Table 1. We evaluate the sizes of signing keys, public keys,
and signatures. One can see that the public/signing key sizes between [27] and
our proposed scheme are close because both rely on the same forward-secure
technique described in Sect. 2.3. However, our scheme’s signature size is much
smaller compared to [27]. Specifically, our scheme’s signature is (c, σ1, σ2, R, π),
and its size is Zq + G + H + GT + log(n)(Zq + G) (we use ∗ to represent those
single elements in Table 1), where the size of π is log(n)(Zq +G). The signature
size in [27] is linear to the number of public keys because their construction
is based on the classic ring signature scheme [31]. The signature size in [15] is
also larger than our proposed scheme because their ring signature is linear to
the number of public keys. Besides, the public key in [15] is not a single group
element as in [27] and in our proposed scheme. Our proposed scheme is the most
practical forward-secure (linkable) ring signature in a sense that the signature
and the signing key sizes are logarithmic in the number of public keys and the
maximum number of time periods.

Table 1. Storage comparison with two existing works. n denotes the number of public
keys involved in a signature. T denotes the upper bound for time periods. Subgroup
means subgroup decision problem. (k1, b)-GMDP means generalized multilinear decod-
ing problem, where k1 is a combinatorial constant, and b (we assume b = 1 here)
is an initial public key level. (k1, b)-(GMDDH) means that generalized sub-exponent
multilinear decisional Diffie-Hellman problem.

|pk| |sk| |σ| Assumption

[27]: G (2 + (log(T)2)G (2n + 3)G CDH/Subgroup

[15]: k1G k1Zq + 2k1G Zq + GT + nZq (k1, b)-GMDP/GMDDH

Ours: G G + log(T)2(1 + H) ∗ + log(n)(Zq + G) wBDHI

7 Conclusion

In this work, we proposed a forward-secure DualRing scheme and extended it
to a forward-secure linkable DualRing scheme. We relied on a non-interactive
key update mechanism described in the hierarchical identity-based encryption
(HIBE) [17,20] to ensure forward security. We proposed a novel “split-and-
combine” method in building our practical schemes. This method is suitable for
the Type-T based (or random oracle based) signature schemes such as DualRing
[33].

532 N. Li et al.

Acknowledgements. This work is supported by the EU’s research and innovation
program: 952697 (ASSURED) and 101095634 (ENTRUST). These projects are funded
by the UK government Horizon Europe guarantee and administered by UKRI. Yang-
guang Tian is partially supported by the National Natural Science Foundation of China
under Grant No. 61872264. Yingjiu Li is supported in part by the Ripple University
Blockchain Research Initiative.

A Proof of Theorem 1

Proof. We define a sequence of games Gi, i = 0, · · · , 2 and let AdvΣ
i denote the

advantage of the adversary in game Gi. Assume that A issues at most q signing
queries in each game.

– G0: This is original unforgeability game.
– G1: This game is identical to game G0 except the following difference: S

randomly chooses a challenge epoch t∗ and a challenge user pki regards a
forgery from A. S will output a random bit if A’s forgery does not occur at
epoch t∗ and user pki. In this game, S honestly generates all initial signing
keys during setup. In particular, S sets the break in epoch as t̄ = t∗ + 1. If A
issues a break-in query at epoch t̄′ with respect to user pki, such that t̄′ ≥ t̄,
then S returns sk(i,t̄′) to A. Since at most T epochs and n users exist in the
system, we have

AdvΣ
0 = T · n · AdvΣ

1

– G2: This game is identical to game G1 except that S outputs a random bit if
a Forge event happens where A’s forgery is valid at epoch t∗ under a public
key set PK∗ (that includes pki) while the corresponding signing key sk(i,t∗)
is not corrupted. Then we have

∣

∣AdvΣ
1 − AdvΣ

2

∣

∣ ≤ Pr[Forge].

Let S be a challenger, who is given (g, h, ga, gb, ha, hb, · · · , hb�

, ê), aiming to
compute ê(g, h)ab�+1

. S sets up the game for A by creating n users and T
epochs. We assume that each epoch t = t1||t2|| · · · ||t� is a {1, 2}-string of
length �. S pads zeros if an epoch’s length is less than �. S randomly selects
a challenge user and sets its public key as pki = gb. S honestly generates key
pairs for n-1 users. To complete the setup, S computes the system parameters
as h = hb� ·H̄γ , h1 = H̄γ1/hb�

, · · · , h� = H̄γ�/hb, and h0 = H̄δ ·hb�·t∗
1 · · ··hb·t∗

� ,
where t∗ = t∗1||t∗2|| · · · ||t∗� , and γ, γ1, · · · γ�, δ, z̄ ∈ Zq, H̄ = hz̄ ∈ H. Note that
the value hb�+1 · H̄b·γ associated with user pki’s signing key is unknown to S.
During the game, S can honestly answer A’s corrupt queries with respect
to all users except the challenge user pki. If A queries corrupt oracle on
pki, S aborts. Next, we show S can simulate a signing key at epoch t =
t1|| · · · ||tk|| · · · ||t�, where k ∈ [1, �]. Note that tk �= t∗k means that t is not
prefix of t∗, and k is the smallest index at epoch t.

A Practical Forward-Secure DualRing 533

Specifically, S first chooses z ∈ Zq, and sets r = bk

tk−t∗
k

+ z. Then, S computes
a signing key with the following form

(gr, hb · (h0 · ht1
1 · · · htk

k)r, hr
k+1, · · · , hr

�) (2)

This is a well-formed key for epoch t = t1|| · · · ||tk. We show that S can
compute the underline term in (2).

(h0 · ht1
1 · · · htk

k)r = [H̄δ · hb�·t∗
1 · · · · hb·t∗

� · (H̄γ1/hb�

)t1 · · · (H̄γk/hb�−k+1
)tk]r

= [H̄δ+Σk
i=1ti·γi ·

k−1
∏

i=1

h
t∗
i −ti

�−i+1 · h
t∗
k−tk

�−k+1 ·
�

∏

i=k+1

h
t∗
i

�−i+1]
r

= Z · h
r(t∗

k−tk)
�−k+1

where Z is shown as follows

Z = [H̄δ+Σk
i=1ti·γi ·

k−1
∏

i=1

h
t∗
i −ti

�−i+1 ·
�

∏

i=k+1

h
t∗
i

�−i+1]
r

S can compute all the terms in Z and the underline term in Z is equal to
1 because ti = t∗i for all i < k. The remaining term in (h0 · ht1

1 · · · htk

k)r is
h

r(t∗
k−tk)

�−k+1 . Since we set r = bk

tk−t∗
k

+ z, we rewrite it as follows

h
r·(t∗

k−tk)
�−k+1 = h

z(t∗
k−tk)

�−k+1 · h
(t∗

k−tk)
bk

tk−t∗
k

�−k+1 =
h

z(t∗
k−tk)

�−k+1

hb�+1

Hence, the second element in (2) is equal to

hb · (h0 · ht1
1 · · · htk

k)r = hb�+1 · H̄b·γ · Z · h
z(t∗

k−tk)
�−k+1

hb�+1 = H̄b·γ · Z · h
z(t∗

k−tk)
�−k+1

To this end, S can simulate the second element in (2) because the unknown
value hb�+1

is cancelled out. Besides, the first element gr in (2), and other
elements (hr

k+1, · · · , hr
�) can be easily computed by S since they do not involve

hb�+1
. This completes the simulation of signing key at epoch t �= t∗. S can

simulate signing queries on different messages using the simulated signing
keys at epoch t �= t∗.
Another case is that S can simulate message-signature pairs at epoch t∗. If A
issues a signing query on a message m for a public key set PK = {pk1 · · · , pkn}
(note that if pki /∈ PK, S aborts) at epoch t∗, S performs the following
operations to simulate a valid signature.

• Choose ci, {cj}n−1
j=1 , r̂1, r̂2 ∈ Zq and h∗ ∈ H, compute σ1 = h∗ ·

F (t∗)r̂1 , σ2 = gr̂2 , where F (t∗) = h0 · h
t∗
1
1 · · · ht∗

�

� .

• Set ci = H(R||m||PK) − ∑n−1
j=1 cj , where R =

ê(pk
ci
i ·∏n−1

j=1 pk
cj
j ,h)

ê(g,h∗·F (t∗)r̂)
and r̂ =

r̂1 + r̂2.

534 N. Li et al.

• Return (m,σ) to A, where σ = (c1, · · · , cn, σ1, σ2).
The simulator S can simulate the case (PK∗, t∗,m, σ) using the same method
described above. Specifically, S sets ci = H(R||m||PK∗) − ∑n−1

j=1 cj (i.e.,
replaces PK with PK∗).
For key update, S keeps track of the current epoch t without returning any-
thing to A. For break in query, S needs to simulate a signing key sk(i,t̄) with
respect to user pki, such that t∗ < t̄. S can simulate sk(i,t̄) using the same
method described in the case of t �= t∗, and return it to A.
At some point, if A outputs a forgery on a message m∗ for a public key set
PK∗ and t∗ in the form of (m∗, c∗

1, · · · , c∗
n, σ∗

1 , σ
∗
2), such that

σ∗
1 = [hb�+1 · H̄b·γ · H̄r∗(δ+

∑|t∗|
i=1 γi·t∗

i)]c
∗
i · (H̄δ+

∑|t∗|
i=1 γi·t∗

i)̂r∗
1

σ∗
2 = g

̂r∗
2 /gr∗·c∗

i

where c∗
i = H(R∗||m∗||PK∗) − ∑n−1

j=1 c∗
j , R

∗ = ê(
∏n−1

j=1 pk
c∗

j

j , h) ·
ê(g, (H̄δ+

∑|t∗|
i=1 γi·t∗

i)̂r∗), and ̂r∗ = ̂r∗
1 + ̂r∗

2 (note that r∗, ̂r∗
1 ,

̂r∗
2 are chosen by

A), then S checks the following conditions.
• The public key set PK∗ includes the challenge user pki.
• The message-signature pair (m∗, c∗

1, · · · , c∗
n, σ∗

1 , σ
∗
2) was not previously

generated by S.
• The signature (σ∗

1 , σ
∗
2) is valid on message m∗ and public key set PK∗

according to the Verify process.
If all the above conditions hold, S regards it as a valid forgery. The next step
is that S rewinds the game according to the forking lemma [9], and obtains
another valid forgery (σ′

1, σ
′
2) with a different c∗′

i = H(R∗||m∗||PK∗)−∑n−1
j=1 c∗

j

(note that the different value c∗′
happens with probability 1/n). Eventually,

S computes the following equations

E = (σ1/σ′
1)

1/(c∗
i −c∗′

i) = hb�+1 · H̄b·γ · H̄r∗(δ+
∑|t∗|

i=1 γi·t∗
i)

F = (σ′
2/σ2)1/(c∗′

i −c∗
i) = gr∗

D =
ê(ga, E)

ê(ga, H̄b·γ)ê(F, ha·(δ+∑|t∗|
i=1 γi·t∗

i))

= [
ê(ga, hb�+1

)ê(ga, H̄b·γ)ê(ga, H̄r∗(δ+
∑|t∗|

i=1 γi·t∗
i))

ê(ga, hb·r̄·γ)ê(gr∗ , ha·(δ+∑|t∗|
i=1 γi·t∗

i))
]

= ê(g, h)ab�+1

It is easy to see that D is the solution to the wBDHI problem. Therefore, we
have

|Pr[Forge]| ≤ AdvwBDHI
A (λ).

By combining the above results together, we have

AdvΣ
A(λ) ≤ T · n · AdvwBDHI

A (λ).

A Practical Forward-Secure DualRing 535

B Proof of Theorem 2

Proof. The simulation is performed between an adversary A and a simulator S.
The goal of simulator S is to break anonymity. In this simulation, S simulates
H as a random oracle.

S setups the game for A by creating n users with the corresponding key pairs
{(pki, ski) ← KeyGen(PP;wi)}, where PP ← Setup(1λ). S gives {pki}n to A. S
also chooses a random bit b.

During the training phase, if A issues a signing query on a message m, a
set of public keys PK with the signer index j at epoch t, then S generates
σ ← Sign(PP, sk(j,t),m,PK, t) and returns it to A.

During the challenge phase, if A issues a signing query on a message m∗, a
set of public keys PK∗, two indices (i0, i1) and an epoch t∗, then S simulates
the signature σ∗ = (σ∗

1 , σ
∗
2 , c

∗
1, · · · , c∗

n) using the same method described in the
above game G2 (i.e., the case of t = t∗). Eventually, S returns σ∗ and {wi}n to
A. Recall that in the simulation of signature σ∗, S picks c∗

1, · · · , cn at random
in Zq, and sets ci = H(R∗||m∗||PK∗)−∑n−1

j=1 cj in the random oracle. The distri-
bution of message-signature pair (m∗, σ∗) is correct. Note that the commutative
operation

∑n
i=1 ci is also uniformly distributed in Zq, and S aborts if the hash

value H(R∗||m∗||PK∗) is already set by the random oracle H.
Finally, S outputs whatever A outputs. Since b is not used in the simulation of

message-signature pair in the challenge phase (i.e., S simulates a valid signature
without using the signing key sk(ib,t∗)), A wins only with probability 1/2.

References

1. Double Ratchet Algorithm. https://www.signal.org/docs/specifications/doublera
tchet

2. Our Source Code. https://github.com/SMC-SMU/Forward-secure-DualRing
3. X3DH Key Agreement Protocol. https://signal.org/docs/specifications/x3dh
4. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.

In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

5. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium,
17, pp. 335–348 (2008)

6. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems.
J. Cryptogr. Eng. 3(2), 111–128 (2013)

7. Au, M.H., Susilo, W., Yiu, S.-M.: Event-oriented k -times revocable-iff-linked group
signatures. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058,
pp. 223–234. Springer, Heidelberg (2006). https://doi.org/10.1007/11780656 19

8. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

9. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: CCS, pp. 390–399 (2006)

https://www.signal.org/docs/specifications/doubleratchet
https://www.signal.org/docs/specifications/doubleratchet
https://github.com/SMC-SMU/Forward-secure-DualRing
https://signal.org/docs/specifications/x3dh
https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/11780656_19
https://doi.org/10.1007/3-540-48405-1_28

536 N. Li et al.

10. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 4

11. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

12. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temp. Math. 324(1), 71–90 (2003)

13. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 13

14. Boyd, C., Gellert, K.: A modern view on forward security. Comput. J. 64(4), 639–
652 (2021)

15. Boyen, X., Haines, T.: Forward-secure linkable ring signatures. In: Susilo, W.,
Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 245–264. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93638-3 15

16. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7 13

17. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

18. Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. In:
CCS, pp. 112–121 (2005)

19. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad
Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 36

20. Drijvers, M., Gorbunov, S., Neven, G., Wee, H.: Pixel: multi-signatures for con-
sensus. In: USENIX, pp. 2093–2110 (2020)

21. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

22. Haines, T., Boyen, X.: Votor: conceptually simple remote voting against tiny
tyrants. In: Proceedings of the Australasian Computer Science Week Multicon-
ference, pp. 1–13 (2016)

23. Lai, R.W., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.:
Omniring: scaling private payments without trusted setup. In: ACM CCS, pp.
31–48 (2019)

24. Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security
from the DDH assumption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS
2018. LNCS, vol. 11099, pp. 288–308. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98989-1 15

25. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with uncondi-
tional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2013)

26. Liu, J.K., Wong, D.S.: Solutions to key exposure problem in ring signature. Int. J.
Netw. Secur. 6(2), 170–180 (2008)

https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-93638-3_15
https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-319-98989-1_15

A Practical Forward-Secure DualRing 537

27. Liu, J.K., Yuen, T.H., Zhou, J.: Forward secure ring signature without random
oracles. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol.
7043, pp. 1–14. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
25243-3 1

28. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring sig-
nature. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS
2019. LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21568-2 6

29. Miyaji, A., Nakabayashi, M., Takano, S.: Characterization of elliptic curve traces
under FR-reduction. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 90–108.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45247-8 8

30. Park, S., Sealfon, A.: It wasn’t me! In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 159–190. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 6

31. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

32. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

33. Yuen, T.H., Esgin, M.F., Liu, J.K., Au, M.H., Ding, Z.: DualRing : generic con-
struction of ring signatures with efficient instantiations. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 251–281. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84242-0 10

34. Yuen, T.H., et al.: RingCT 3.0 for blockchain confidential transaction: shorter size
and stronger security. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 464–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4 25

35. Zagórski, F., Carback, R.T., Chaum, D., Clark, J., Essex, A., Vora, P.L.:
Remotegrity: design and use of an end-to-end verifiable remote voting system.
In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 441–457. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38980-1 28

https://doi.org/10.1007/978-3-642-25243-3_1
https://doi.org/10.1007/978-3-642-25243-3_1
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/3-540-45247-8_8
https://doi.org/10.1007/978-3-030-26954-8_6
https://doi.org/10.1007/978-3-030-26954-8_6
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-3-030-84242-0_10
https://doi.org/10.1007/978-3-030-51280-4_25
https://doi.org/10.1007/978-3-030-51280-4_25
https://doi.org/10.1007/978-3-642-38980-1_28
https://doi.org/10.1007/978-3-642-38980-1_28

Dually Computable Cryptographic
Accumulators and Their Application

to Attribute Based Encryption

Anaïs Barthoulot1,2(B), Olivier Blazy3, and Sébastien Canard4

1 Orange Innovation, Caen, France
anais.barthoulot@gmail.com

2 Université de Limoges, XLim, Limoges, France
3 École Polytechnique, Palaiseau, France

olivier.blazy@polytechnique.edu
4 Télécom Paris, Palaiseau, France

sebastien.canard@telecom-paris.fr

Abstract. In 1993, Benaloh and De Mare introduced cryptographic accumulator,
a primitive that allows the representation of a set of values by a short object (the
accumulator) and offers the possibility to prove that some input values are in the
accumulator. For this purpose, so-called asymmetric accumulators require the cre-
ation of an additional cryptographic object, called a witness. Through the years,
several instantiations of accumulators were proposed either based on number the-
oretic assumptions, hash functions, bilinear pairings or more recently lattices. In
this work, we present the first instantiation of an asymmetric cryptographic accu-
mulator that allows private computation of the accumulator but public witness
creation. This is obtained thanks to our unique combination of the pairing based
accumulator of Nguyen with dual pairing vector spaces. We moreover introduce
the new concept of dually computable cryptographic accumulators, in which we
offer two ways to compute the representation of a set: either privately (using a
dedicated secret key) or publicly (using only the scheme’s public key), while
there is a unique witness creation for both cases. All our constructions of accu-
mulators have constant size accumulated value and witness, and satisfy the accu-
mulator security property of collision resistance, meaning that it is not possible
to forge a witness for an element that is not in the accumulated set. As a second
contribution, we show how our new concept of dually computable cryptographic
accumulator can be used to build a Ciphertext Policy Attribute Based Encryp-
tion (CP-ABE). Our resulting scheme permits policies expressed as disjunctions
of conjunctions (without “NO” gates), and is adaptively secure in the standard
model. This is the first CP-ABE scheme having both constant-size user secret
keys and ciphertexts (i.e. independent of the number of attributes in the scheme,
or the policy size). For the first time, we provide a way to use cryptographic
accumulators for both key management and encryption process.

Keywords: Cryptographic accumulators · Attribute based encryption ·
Pairing · Dual pairing vector spaces

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 538–562, 2023.
https://doi.org/10.1007/978-981-99-7563-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_24&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_24

Dually Computable Cryptographic Accumulators and Their Application 539

1 Introduction

Cryptographic Accumulator. Cryptographic accumulators were introduced in 1993
by Benaloh and De Mare [7] as a compact way to represent a set of elements, while
permitting to prove the membership for each element in the set. Since their introduc-
tion, lots of new functionalities and properties were introduced and we refer interested
readers to the work of Derler et al. [15] for more details on cryptographic accumula-
tors. In this work, we focus on asymmetric accumulators, which are composed of four
algorithms: Gen, the generation algorithm that outputs a public key and a master secret
key; Eval, the evaluation algorithm that from a set of elements outputs the compact
representation of this set (which is called the “accumulator”); WitCreate, the witness
creation algorithm that creates a witness that an element is the set; Verify, the verifica-
tion algorithm that outputs 1 if the given witness proves that the element is indeed in the
accumulated set. If the algorithm Eval (resp. WitCreate) takes as input the master secret
key we say that the evaluation (resp. witness generation) is done privately, otherwise it
is done publicly. The main purpose of cryptographic accumulators is to produce accu-
mulators and witnesses that have constant size. Regarding security, there are several
properties but in this work we will consider the notion of collision resistance meaning
that given the accumulator public key it is hard for an adversary to find a set X and a
value y /∈ X and build a witness wity such that Verify(pkacc, accX ,wity) = 1, where
accX = Eval((skacc), pkacc,X).

Improving Accumulator’s State of the Art. Regarding the literature, one surprising
thing is that there is no accumulator with private evaluation and public witness gener-
ation: either both evaluation and witness creation are either public [29] or private [20],
or witness generation is private while evaluation is public [30]. As soon as the accumu-
lator has been secretly computed and publish, it could be relevant for some use cases to
consider the case where anyone can prove that one element is in the chosen set. In the
sequel, we show how this property can be used to construct encryption schemes from a
cryptographic accumulator. Therefore, we propose the first instantiation of such accu-
mulator, based on asymmetric pairings in prime order group and using dual pairing vec-
tor spaces. We also introduce the notion of dually computable accumulator, which per-
mits both a private (Eval) and a public (PublicEval) accumulator generation, such that
both accumulators are distinguishable. From a unique witness generation algorithm,
we add two associated verifications (Verify and PublicVerify respectively) to verify set
membership. Using our previous accumulator instantiation, we derive the first dually
computable accumulator scheme. We then show how such new concept can be used to
provide an efficient Attribute Based Encryption (ABE) scheme.

Attribute Based Encryption. ABE, introduced by Sahai and Waters in 2005 [35], is an
encryption scheme in which secret keys and ciphertexts are associated to some subset
of attributes, and decryption is possible if there exists a relation between the secret
key’s attributes and the ciphertext’s attributes. In more details, in a Ciphertext Policy
ABE (CP-ABE) the ciphertext is associated to an access policy while the secret key
is associated to a set of attributes. Decryption becomes possible if the set of attributes
satisfies the policy. There exist several ways to define an access policy in the literature:
through threshold structure [35], tree-based structure [22], boolean formulas [28], linear
secret sharing schemes [40], circuits [10], Regarding security, ABE schemes must

540 A. Barthoulot et al.

satisfy indistinguishability, meaning that an adversary who is given an encryption of
one of two messages he previously chose, cannot tell which message was encrypted.
The main aim of research in ABE is to build efficient schemes in terms of both time
and space complexities, while supporting complex access policies. Unfortunately, most
existing schemes propose ciphertexts with a size linear in the number of attributes in
the scheme [22,25,26], while some other constructions succeed in proposing constant
size ciphertext, but at the cost of quadratic-size user private key [4].

ABE from Dually Computable Accumulators. In this paper, we propose a way to
obtain an ABE scheme for which both the ciphertext and the user secret key are con-
stant, while obtaining very good time complexities. For that, our idea is to use crypto-
graphic accumulators. Curiously, while the purpose of the latter is to make constant the
size of cryptographic objects, few attempts have been done to use them for encryption
schemes. Indeed, [2,19] propose broadcast encryption schemes that use (RSA based)
cryptographic accumulator, and more recently, Wang and Chow [38] present an iden-
tity based broadcast encryption scheme that uses a degenarated notion of accumulators.
However, [2,19] are using accumulators only to manage users’ secret key while [38]
is using their notion of accumulator for encryption only, whereas in our scheme, accu-
mulators are used for both secret keys and ciphertexts. Plus, (identity based) broadcast
encryption is one particular case of ABE, which makes our scheme more general.

To reach such objective of compactness, our idea is to employ our notion of dually
computable accumulators in the following manner: the secret key, computed by the
authority, corresponds to a privately computed accumulator of the users’ attributes set,
while the encryption corresponds to a one-time-pad with a mask derived from a publicly
computed accumulator of the access policy. Decryption is then possible if the decryptor
can demonstrate that the intersection of their accumulator and the one associated with
the ciphertext is not empty, utilizing membership witnesses for both the privately com-
puted and the publicly computed accumulators. However, while it is relatively straight-
forward to use accumulators to represent sets of attributes, understanding how they can
serve as a concise representation of access policies is more complex. In this study, we
introduce a way to represent monotone boolean formulas that is compatible with the
use of accumulators, and then show how to employ dually computable accumulators to
obtain a compact, efficient and secure ABE.

Our Contributions. As a summary, our work gives the three following contributions:

– a new accumulator scheme, based on [31]’s work. It is the first accumulator in the lit-
erature that has private evaluation while having public witness creation. This scheme
is based on asymmetric pairings in prime order groups and dual pairing vector spaces
(DPVS) of dimension 2, and satisfies collision resistance under the q-Strong Bilinear
Diffie-Hellman assumption. This is the first construction of cryptographic accumu-
lators that uses DPVS. See Sect. 3;

– a new functionality of dually computable cryptographic accumulators, together with
an instantiation of a such accumulator, based on our first accumulator instantiation.
Details are given in Sect. 4;

– a new bounded CP-ABE scheme, with both constant size for ciphertexts and user
secret keys where access policies are monotone NC1 circuits. Our scheme moreover
gives very good time complexities, and is proven adaptively secure in the standard
model, under the standard SXDH assumption. See Sect. 5.

Dually Computable Cryptographic Accumulators and Their Application 541

2 Preliminaries

This section introduces the notations, the building blocks and the security assump-
tions used throughout this paper. Let “PPT” denote “probabilistic polynomial-time”.
For every finite set S, x ← S denotes a uniformly random element x from the set S.
Vectors are written with bold face lower case letters and matrices with bold face upper
case letters.

2.1 Cryptographic Accumulators

In the following we present a simplified definition of accumulator, presenting only prop-
erties used in this work, for simplicity of reading. Refer to [15] for a complete definition
of cryptographic accumulators.

Definition 1. Static accumulator [7,15,17]. A static cryptographic accumulator
scheme is a tuple of efficient algorithms defined as follows:

– Gen(1κ, b): this algorithm takes as input a security parameter κ and a bound b ∈
N ∪ {∞} such that if b �= ∞ then the number of elements that can be accumulated
is bounded by b. It returns a key pair (skacc, pkacc), where skacc = ∅ if no trapdoor
exists and pkacc contains the parameter b.

– Eval((skacc,)pkacc,X): this algorithm takes as input the accumulator (secret key
skacc and) public key pkacc and a set X to be accumulated. It returns an accumulator
accX together with some auxiliary information aux.

– WitCreate((skacc,)pkacc,X , accX , aux, x): this algorithm takes as input the accu-
mulator (secret key skacc and) public key pkacc, an accumulator accX , the associated
set X , auxiliary information aux, and an element x. It outputs a membership witness
witXx if x ∈ X , otherwise it outputs a reject symbol ⊥.

– Verify(pkacc, accX ,witXx , x): this algorithm takes as input the accumulator public
key pkacc, an accumulator accX , a witness witXx and an element x. If witXx is correct
it returns 1, otherwise it returns 0.

Definition 2. If in the above definition x can be replaced by a set S, we say that the
accumulator supports subset queries. If any element in X can be present more than
once, and witnesses can be made to prove that the element is present a given number of
times in X , we say that the accumulator supports multisets setting.

Note 1. Sometimes witXx is simply written witx.

Definition 3. Correctness of accumulators. A static accumulator is said to be correct
if for all security parameters κ, all integer b ∈ N ∪ {∞}, all set of values X , and all
element x such that x ∈ X :

Pr

⎡
⎣
skacc, pkacc ← Gen(1κ, b), accX , aux ← Eval((skacc,)pkacc,X),

witXx ← WitCreate((skacc,)pkacc,X , accX , aux, x) :
Verify(pkacc, accX ,witx, x) = 1

⎤
⎦ = 1

Regarding security, we will only consider the following definition in this work.

542 A. Barthoulot et al.

Definition 4. Collision resistance. A static accumulator scheme is collision resistant,
if for all PPT adversaries A there is a negligible function ε(.) such that:

Pr
[
skacc, pkacc ← Gen(1κ, b), O ← {OE , OW

}
, (X ,witx, x) ← AO(pkacc) :

Verify(pkacc, accX ,witx, x) = 1 ∧ x /∈ X
]

≤ ε(κ),

where accX ← Eval((skacc,)pkacc,X) and A has oracle access to O, where OE and
OW that represent the oracles for the algorithms Eval and WitCreate. An adversary is
allowed to query it an arbitrary number of times.

2.2 Other Preliminaries

Definition 5. Asymmetric bilinear pairing groups [13]. Asymmetric bilinear groups
Γ = (p, G1, G2, GT , g1, g2, e) are tuple of prime p, cyclic (multiplicative) groups
G1, G2, GT (where G1 �= G2) of order p, g1 �= 1 ∈ G1, g2 �= 1 ∈ G2, and a
polynomial-time computable non-degenerate bilinear pairing e : G1 × G2 → GT , i.e.
e(gs

1, g
t
2) = e(g1, g2)st and e(g1, g2) �= 1.

Note 2. For any group element g ∈ G, and any vector v of size l ∈ N, we denote by gv

the vector (gv1 , · · · , gvl). Let u,v be two vectors of length l. Then by gu ·v , we denote
the element gα, where α = u · v = u1 · v1 + u2 · v2 + · · · + ul · vl. Then we define
e(gv1 , gu2) :=

∏l
i=1 e(gvi

1 , gui
2) = e(g1, g2)v ·u .

Definition 6. Dual pairing vector spaces (DPVS). [13] For a prime p and a fixed (con-
stant) dimension n, we choose two random bases B = (b1, · · · , bn) and B

∗ = (b∗
1, · · · ,

b∗
n) of Z

n
p , subject to the constraint that they are dual orthonormal, meaning that

bi · b∗
j = 0 (mod p) whenever i �= j, and bi · b∗

i = ψ (mod p) for all i, where ψ
is a uniformly random element of Zp. Here the elements of B, B∗ are vectors and · cor-
responds to the scalar product. We denote such algorithm as Dual(Zn

p). For generators

g1 ∈ G1 and g2 ∈ G2, we note that e(gbi
1 , g

b∗
j

2) = 1 whenever i �= j.

Note 3. In our constructions we will use the notation (D, D∗) to also denote dual
orthonormal bases, as in our ABE security proof, we will handle more than one pair
of dual orthonormal bases at a time, and we think that a different notation will avoid
confusion. The notation (F, F∗) will also be used in the proof for dual orthonormal
bases.

Definition 7. Characteristic Polynomial. [18,20]. A set X = {x1, · · · , xn} with ele-
ments xi ∈ Zp can be represented by a polynomial. The polynomial ChX [z] =∏n

i=1(xi + Z) from Zp[Z], where Z is a formal variable, is called the characteris-
tic polynomial of X . In what follows, we will denote this polynomial simply by ChX
and its evaluation at a point y as ChX (y).

Definition 8. Elementary symmetric polynomial. The elementary symmetric polyno-
mial on n ∈ N variables {Xi} of degree k ≤ n is the polynomial σk(X1, · · · ,Xn) =∑
1≤i1 �≤···�≤ik≤n

Xi1 · · · Xik
. Notice that σ1(X1, · · · ,XN) =

∑n
i=1 Xi and σn =

∏n
i=1 Xi.

Dually Computable Cryptographic Accumulators and Their Application 543

Note 4. Let X = {X1, · · · ,Xn}. Notice that ChX [Z], which is equals to
∏n

i=1

(Xi + Z) by definition, is also equals to Zn + σ1(X1, · · · ,Xn)Zn−1 +
σ2(X1, · · · ,Xn)Zn−2 + · · · + σn(X1, · · · ,Xn).

Definition 9. Decisional Diffie-Hellman assumption in G1 (DDH1). [13] Given an
asymmetric bilinear pairing group Γ = (p, G1, G2, GT , g1, g2, e), we define the fol-
lowing distribution: a, b, c ← Zp, D = (Γ, g1, g2, g

a
1 , gb

2). We assume that for any PPT
algorithmA, AdvDDH1

A (λ) =
∣∣Pr [A(D, gab

1)
] − Pr

[A(D, gab+c
1)

]∣∣ is negligible in the
security parameter λ.

The dual of above assumption is Decisional Diffie-Hellman assumption in G2

(denoted as DDH2), which is identical to DDH1 with the roles of G1 and G2 reversed.

Definition 10. Symmetric External Diffie-Hellman (SXDH). [13] The SXDH assump-
tion holds if DDH problems are intractable in both G1 and G2.

Definition 11. q-strong Bilinear Diffie-Hellman (q-SBDH). [9] Let Γ = (p, G1, G2,
GT , g1, g2, e) be a bilinear group. In Γ , the q-SBDH problem is stated as follows: given

as input a (2q+2)-tuple of elements (g1, gα
1 , g

(α2)
1 , · · · , g

(αq)
1 , g2, g

α
2 , g

(α2)
2 , · · · , g

(αq)
2)

∈ G
q+1
1 × G

q+1
2 , output a pair (γ, e(g1, g2)1/(α+γ)) ∈ Zp × GT for a freely chosen

value γ ∈ Zp\ {−α}. The q-SBDH assumption states that for any PPT adversary A ,
there exists negligible function ε(.) such that

Pr
[
A(Γ, gα

1 , g
(α2)
1 , · · · , g

(αq)
1 , gα

2 , g
(α2)
2 , · · · , g

(αq)
2) = (γ, e(g1, g2)1/(α+γ))

]
≤ ε

where the probability is over the random choice of generator g1 ∈ G1 and g2 ∈ G2,
the random choice of α ∈ Z

∗
p, and the random bits consumed by A.

Note 5. The above definition is a slightly modified version of the original assumption
of [9]. Following the work of [36], our version can be reduced to the original one.

Definition 12. Decisional subspace assumption in G1 (DS1). [13] Given an asymmet-
ric bilinear group generator G(.), define the following distribution

Γ = (p, G1, G2, GT , g1, g2, e) ← G(1κ), (B, B∗) ← Dual(Zn
p), τ1, τ2, μ1, μ2 ← Zp,

u1 = g
μ1.b∗

1+μ2.b∗
k+1

2 , · · · ,uk = g
μ1.b∗

k+μ2b
∗
2k

2 ,v1 = gτ1.b1
1 , · · · ,vk = gτ1.bk

1 ,

w1 = g
τ1.b1+τ2bk+1
1 , · · · ,wk = gτ1.bk+μ2b2k

1 ,

Δ = (Γ, g
b∗
1

2 , · · · , g
b∗

k
2 , g

b∗
2k+1

2 , · · · , g
b∗

n
2 , gb1

1 , · · · , gbn
1 ,u1, · · · ,uk, μ2),

where k, n are fixed positive integers that satisfy 2k ≤ n. We assume that for any PPT
algorithm A, the following is negligible in 1κ.

AdvDS1
A (κ) = |Pr [A(Δ,v1, · · · ,vk) = 1] − Pr [A(Δ,w1, · · · ,wk) = 1]|

Lemma 1. If the decisional Diffie Hellman assumption (DDH) in G1 holds, then the
decisional subspace assumption in G1 (DS1) also holds.

For the proof, refer to [13]. The decisional subspace assumption in G2 is defined
as identical to DS1 with the roles of G1 and G2 reversed. DS2 holds if DDH in G2

holds. The proof is done as for G1. Thus, DS1 and DS2 hold if SXDH hold.

544 A. Barthoulot et al.

3 A New Accumulator Scheme

We here present a new cryptographic accumulator scheme based on a unique combi-
nation of Nguyen’s accumulator [31] and dual pairing vector spaces. We also briefly
compare our scheme to the literature, concluding that this is the first cryptographic
accumulator permitting a private evaluation and a public witness generation.

Intuition. In a bilinear environment, Nguyen’s accumulator for a set X is the element

accX = g
∏

x∈X (x+s)

1 where s is the secret key. A witness for an element x ∈ X
is then the object witx = g

∏
x∈X\{x}(x+s)

2 . Verification is done by checking that
e(accX , g2) = e(gx

1 · gs
1,witx). If only g1, g2 and gs

1 are published, evaluation and
witness generation are private. If the public key contains g1, gs

1, · · · , gsq

1 , g2, gs
2, · · · ,

gsq

2 , then both evaluation and witness generation are public, using characteristic poly-
nomials (see Definition 7).

One basic idea to obtain a secret evaluation and a public witness generation is to
keep secret the elements in G1 for the evaluation and to publicly use the elements in G2

for the witness creation. But this does not work as we need to have gs
1 for verification.

Our idea is hence to go in a Dual Pairing Vector Space (DPVS) setting, as introduced
above, in dimension n = 2. By playing with the bases d1,d

∗
1,d2 and d∗

2, we can keep
secret some elements and publish some others as follows:

– gd1
1 , gd1s

1 , · · · gd1sq

1 are not publicly given since used for private evaluation;

– g
d∗
2

2 , g
d∗
2s

2 , · · · gd∗
2sq

2 are publicly used for witness creation; and

– g
d∗
1

2 , gd2
1 , gd2s

1 are publicly used for verification.

Thanks to that and the transformation from
∏

x∈X (x+ s) to
∑q

i=0 ais
i, using the char-

acteristic polynomial given in Definition 7, the above public elements are easily com-
putable from the knowledge of the successive powers of s in groups G1 or G2, as it is
done in Nguyen’s. We obtain our scheme below. To be exhaustive, the resulting com-
parison between our scheme and Nguyen’s is given in Table 1.

Table 1. Comparison between Nguyen’s accumulator and ours.

Operation Nguyen [31] Ours

Evaluation accX = g
∏

x∈X (x+s)

1 accX = g
d1

∏
x∈X (x+s)

1

Witness witx = g
∏

x∈X\{x}(x+s)

2 witx = g
d∗
2

∏
x∈X\{x}(x+s)

2

Verification e(accX , g2) = e(gx
1 · gs

1,witx) e(accX , g
d∗
1

2) = e(gd2x
1 · gd2s

1 ,witx)

Regarding efficiency, notice that our scheme is slightly less efficient than Nguyen’s
scheme [31]. Indeed in the latter accumulators and witnesses are respectively composed
of one element of G1 and G2 while in our scheme they are respectively composed of
two elements of G1 and G2 . Regarding the number of pairing in verification, Nguyen’s
requires one pairing while our scheme requires two pairing.

Dually Computable Cryptographic Accumulators and Their Application 545

Construction. Following the above intuition, our full scheme is presented in Fig. 1.
In a nutshell, our construction is a static, bounded, and supports multisets and subsets
queries.

Fig. 1. Our first accumulator scheme, with private evaluation and public witness generation.

Security. In short, the correctness comes from both (i) the one of Nguyen scheme
(indeed, the same pairing equation is used), and (ii) the properties of DPVS (bi ·b∗

j = 0
(mod p) whenever i �= j, and bi · b∗

i = ψ (mod p) for all i). More formally, we prove
the following theorem.

Theorem 1. Our accumulator scheme is correct.

Proof. Let X , I be two sets such that I ⊂ X . Let {ai, bi, ci}q
i=0 be respectively the

coefficients of polynomials ChX [Z] =
∏

x∈X (x + Z), ChX\I [Z] =
∏

x∈X\I(x + Z)
and ChI [Z] =

∏
x∈I [Z](x + Z). Let accX ← Eval(skacc,X) and mwitI ←

WitCreate(pkacc, accX ,X , I). We have that

e(g
d2

∑q
i=0 cisi

1 ,mwitI) = e(g
d2

∑q
i=0 cisi

1 , g
d∗
2

∑q
i=0 bisi

2) = e(g1, g2)ψ
∑q

i=0 cisi·∑q
i=0 bisi

.

As I ⊂ X , then
∑q

i=0 cis
i · ∑q

i=0 bis
i =

∑q
i=0 ais

i. Thus,

e(gd2
∑q

i=1 cis
i

1 ,mwitI) = e(g1, g2)ψ
∑q

i=0 ais
i

= e(accX , g
d∗
1

2).

��
Theorem 2. Our scheme satisfies collision resistance under q-SBDH assumption.

Proof. We prove the contrapositive. Let C be the q-SBDH challenger, B an adversary
against collision resistance of the accumulator, that wins with non-negligible advantage.
We build, in Fig. 2, A an adversary against the q-SBDH assumption, using B.

546 A. Barthoulot et al.

Fig. 2. Construction of q-SBDH adversary from collision resistance adversary.

Let us see that the solution output by A is correct. As x /∈ X , there exist polynomial
Q[Z] and integer r such that ChX [Z] = Q[Z](x + Z) + r. As witx is a membership

witness, we have that e(gd2(x+α)
1 ,witx) = e(accX , g

d∗
1

2).

Therefore, we have that e(gd2(x+α)
1 ,witx) = e(g1, g2)ψ(α+x)Q(α)+ψr and

(e(g1, (witd2
x)1/ψr · (g−Q(α)

2)1/r))(α+x)

= e(g1, g2)
(α+x)Q(α)

r +1 · (g1, g2)
−(α+x)Q(α)

r

= e(g1, g2)

Notice that A knows d2, ψ and r and can compute g
−Q(α)
2 from the challenge tuple.

Thus, x, e(g1, (witd2
x)1/ψr · (g−Q(α)

2)1/r) is a solution to the q-SBDH problem.

As A breaks the assumption when B breaks the collision resistance of the accumu-
lator, we have that A’s advantage is equal to B’s advantage, meaning that A breaks the
q-SBDH assumption with non-negligible advantage. ��

Comparison. Our accumulator is the first to propose a private evaluation while having
a public witness generation. Indeed, we compare in Table 2 for the four families of
accumulators instantiations how evaluation and witness creation are done. The only
exception could be a construction given by Zhang et al. in [41]. More precisely, the
studied primitive is called an Expressive Set Accumulator and is presented with private
evaluation and some kind of public witness creation: their scheme does not have a
WitCreate algorithm but a Query that takes as input some sets along with a set operation
query, and returns the result of the query along with a proof of correctness. However, as
stated in their work, in their construction the evaluation can actually be done only with
the public key.

Having both private evaluation and public witness creation helps us build an encryp-
tion scheme where the accumulator is used as a secret key computed by an author-

Dually Computable Cryptographic Accumulators and Their Application 547

Table 2. Comparison of evaluation and witness creation according to the type of accumulator
instantiation.

Type Evaluation Witness Generation

Hash based Public Public

Public Public

Lattices Public Private

Number Theoretic Public Publica

Pairing based Public Public

Private Private

Ours Private Public
aSecret key can be given for witness generation in
order to improve efficiency. Creation is still possible
without it.

ity, from which user can derive some information (the witness) for decryption. More-
over, accumulators can satisfy a lot of additional properties: universal, dynamic, asyn-
chronous, . . . and verify a lot of security properties: undeniability, indistinguishability,
. . . (see e.g., [15]). The above construction focuses on static accumulators that satisfy
collision resistance, and in this work, we do not consider those additional features and
security properties. We leave as an open problem the modifications to satisfy other
properties of accumulators. The only exception is when accumulators are used in the
context of authenticated set operations [20,29,34]. See the full version of this work [6]
for more details on sets operations. Regarding pairing-based accumulators, we refer the
interested reader to several works such as [1,5,11,14,15,20] among others.

In the next section, we present our main new functionality, namely dually com-
putable accumulator, and show how to transform the above construction into a new one
that satisfies it.

4 Dually Computable Cryptographic Accumulators

In this section, we introduce a new kind of cryptographic accumulator that we call
dually computable accumulator. In such case, there are two separate evaluation algo-
rithms that give two different outputs: the first one (Eval) uses the accumulator secret
key while the second one (PublicEval) uses solely the public key. Using the unique
unmodified witness generation algorithm, we also define two different verification algo-
rithms, one for each type of accumulator. Following the work done in the previous
section, we focus on accumulator schemes that have private evaluation and public wit-
ness generation. We start by formally defining dually computable accumulators, then
we present an instantiation.

4.1 Definitions

Definition 13. Dually computable accumulator. Starting from a static accumulator
Acc = (Gen,Eval,WitCreate,Verify), we say that Acc is dually computable if it also
provides two algorithms PublicEval, PublicVerify such that:

548 A. Barthoulot et al.

– PublicEval(pkacc,X): it takes as input the accumulator public key pkacc and a set
X . It outputs an accumulator accpX of X and auxiliary information auxp.

– PublicVerify(pkacc, accpX ,witpx, x): it takes as input the accumulator public key
pkacc, a publicly computed accumulator accpX of X , an element x, a witness witpx

for x, computed from WitCreate(pkacc,X , accpX , auxp, x). It outputs 1 if witpx is
a membership witness and x ∈ X , 0 otherwise.

A dually computable accumulator must satisfy four properties: correctness, colli-
sion resistance, distinguishability and correctness of duality.

Definition 14. Correctness of dually computable accumulator. A dually computable
accumulator is said to be correct if for all security parameters κ, all integer b ∈ N ∪
{∞}, all set of values X and all element x such that x ∈ X

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

skacc, pkacc ← Gen(1κ, b),
accX , aux ← Eval(skacc, pkacc,X),

accpX , auxp ← PublicEval(pkacc,X),
witx ← WitCreate(pkacc,X , accX , aux, x)

witpx ← WitCreate(pkacc,X , accpX , auxp, x) :
Verify(pkacc, accX ,witx, x) = 1

∧PublicVerify(pkacc, accpX ,witpx, x) = 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 1

Definition 15. Collision resistance. A dually computable accumulator is collision
resistant, if for all PPT adversaries A there is a negligible function ε(.) such that:

Pr

⎡
⎣
(skacc, pkacc) ← Gen(1κ, b), (witx, x) ← AOE

(pkacc) :
(Verify(pkacc, accX ,witx, x) = 1 ∧ x /∈ X)

∨(PublicVerify(pkacc, accpX ,witx, x) = 1 ∧ x /∈ X)

⎤
⎦ ≤ ε(κ),

where accX ← Eval(skacc, pkacc,X), accpX ← PublicEval(pkacc,X) andA has oracle
access to OE that represents the oracle for the algorithm Eval. An adversary is allowed
to query it an arbitrary number of times and can run PublicEval,WitCreate as the two
algorithms only use the accumulator public key, that is known by the adversary.

Definition 16. Distinguishability. A dually computable accumulator satisfies distin-
guishability, if for any security parameter κ and integer b ∈ N ∪ {∞}, any keys
(skacc, pkacc) generated by Gen(1κ, b), and any set X , accX ← Eval(skacc, pkacc,X)
and accpX ← PublicEval(pkacc,X) are distinguishable.

The last property states that a witness computed for a privately (resp. publicly)
computed accumulator as input of the WitCreate algorithm must pass the PublicVerify
(resp. Verify) algorithm, with publicly (resp. privately) computed accumulator for the
same set as the privately (resp. publicly) computed accumulator.

Definition 17. Correctness of duality. A dually computable accumulator is said to sat-
isfy correctness of duality if for all security parameters κ, all integer b ∈ N ∪ {∞}, all
set of values X and all value x such that x ∈ X

Dually Computable Cryptographic Accumulators and Their Application 549

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

skacc, pkacc ← Gen(1κ, b),
accX , aux ← Eval(skacc, pkacc,X),

accpX , auxp ← PublicEval(pkacc,X),
witx ← WitCreate(pkacc,X , accX , aux, x)

witpx ← WitCreate(pkacc,X , accpX , auxp, x) :
(PublicVerify(pkacc, accpX ,witx, x) = 1)

∧(Verify(pkacc, accX ,witpx, x) = 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 1

4.2 Our First Dually Computable Cryptographic Accumulator

We now present our instantiation of a dually computable cryptographic accumulator.
We also present some variants in the next section (for our construction of an ABE), and
in our the extended version of this work [6]. We consider that the version we propose
in this section is the simplest and more efficient one, but the others, as we will see, can
be used for different other contexts.

Intuition. Using our previous accumulator instantiation (see Sect. 3), we can obtain

a dually computable accumulator scheme by adding g
d∗
1

2 , g
d∗
1s

2 , · · · , g
d∗
1sq

2 to the pub-
lic key. Then, the public evaluation corresponds to the generation of accpX =
g
d∗
1

∏
x∈X (x+s)

2 . With the description of Eval as in the previous scheme, we directly
obtain what we need. Moreover, the two accumulators are easily distinguishable as the
secretly computed one is two elements in G1 while the publicly generated one is two
elements in G2.
From those two accumulators, and the witness as generated in our first accumulator

scheme (i.e., witx = g
d∗
2

∏
x∈X\{x}(x+s)

2), we are able to provide two very close ver-
ification equations. In fact, we remark that we obtain a sort of symmetry between

the two accumulators, as e(accX , g
d∗
1

2) = e(gd1
1 , accpX), which two are equals to

e(gd2x
1 · gd2s

1 ,witx), which is computable from the knowledge of the witness1.

Construction. In Fig. 3, we present the full description of our first dually computable
scheme, from the above intuition, and using again the characteristic polynomial result
(see Definition 7).

Security. We can now focus on the security of our construction, by providing the fol-
lowing full theorem.

Theorem 3. Our scheme is correct, collision resistant under q-SBDH assumption, and
satisfies both distinguishability and correctness of duality.

Proof. Correctness and collision resistance (for privately and publicly computed accu-
mulators) can be done as for our cryptographic accumulator in Sect. 3. Indeed, the
algorithms Eval,WitCreate and Verify are not changed compare to what we provided
in Fig. 1. For the publicly computed part, the proof still holds. The only modification

1 We could have also chosen to define PublicEval such that it returns g
d∗
2aisi

2 , and PublicVerify
such that the left part of the equation is e(gd2

1 , accp).

550 A. Barthoulot et al.

Fig. 3. Our first dually computable accumulator scheme.

is that e(accX , g
d∗
1

2) and e(accX , g
d∗
1

2) are replaced by e(gd1
1 , accX) and e(gd1

1 , accX)
respectively.

Additionally, our accumulator satisfies distinguishability as a privately computed
accumulator is composed of an element in G1 while a publicly computed accumulator
is an element in G2. In fact, in a bilinear environment, we know that there are efficient
algorithms for computing group operations, evaluating the bilinear map, deciding mem-
bership of the groups, deciding equality of group elements and sampling generators of
the groups (see e.g., [23]). Correctness of duality is satisfied as we have one unique
witness and, as explained above, we have a symmetry between the two accumulators:

e(accX , g
d∗
1

2)︸ ︷︷ ︸
from Eval

= e(gd2
∑q

i=0 cis
i

1 ,witI)︸ ︷︷ ︸
from WitCreate

= e(gd1
1 , accpX)︸ ︷︷ ︸

from PublicEval

.

Thus, the proof for accX is exactly the same than in Theorem 1. For accpX the proof
can proceed as in Theorem 1 by replacing accX and Verify by accpX and PublicVerify.

Dually Computable Cryptographic Accumulators and Their Application 551

5 Application of Dually Computable Accumulator: Attribute
Based Encryption

In this section, our purpose is to show how we can transform our new notion of dually
computable cryptographic accumulator to design Attribute Based Encryption (ABE).
More precisely, first showing that due to security reasons, it cannot directly be used to
obtain an ABE, and then show how to transform it into a dually computable accumulator
that can be used to obtain the first Ciphertext Policy ABE (CP-ABE) for monotone NC1

circuits with both constant size for ciphertexts and secret keys. We start by formally
presenting the notion of ABE, then we explain briefly the intuitions of our construction.
Finally we present our scheme and compare it to existing ones.

5.1 Security Definitions for ABE

We start by formally introducing attribute based encryption scheme and the related
security notions. In this work we will focus on bounded attribute based encryption
schemes, meaning that during the setup phase a bound in the number of attributes
allowed in the scheme is given and keys and ciphertexts can be created for an arbi-
trarily number of attributes at the condition that this number is lower than the bound.

Definition 18. Bounded (ciphertext policy) attribute based encryption. [21,35] A
ciphertext policy attribute based encryption scheme consists of four algorithms:

– Setup(1κ, q) → (pk,msk): the setup algorithm takes as input a security parameter
κ and an integer q which represent the bound of the number of attributes, and outputs
a master public key pk and a master secret key msk.

– KeyGen(pk,msk, Υ) → skΥ : the key generation algorithm takes as input the master
public key pk, the master secret keymsk, and a key attribute Υ and outputs a private
key skΥ .

– Encrypt(pk,Π,m ∈ M) → ct: the encryption algorithm takes as input a master
public key pk, an access policy Π , and a message m and outputs a ciphertext ctΠ .

– Decrypt(pk, skΥ , Υ, ctΠ ,Π) → m or ⊥: the decryption algorithm takes as input the
master public key pk, a private key skΥ along with the associated set of attributes Υ ,
a ciphertext ctΠ and its associated access policy Π . It outputs the message m if Υ
satisfies Π or reject symbol ⊥ otherwise.

Definition 19. Correctness of ABE. A CP-ABE scheme is correct if for all security
parameter κ ∈ N, all integer q that represents the bound in the number of attributes, all
attributes set Υ and all access policy Π such that Υ satisfies Π and for all messagesm,

Pr

⎡
⎢⎢⎣

(pk,msk) ← Setup(1κ, q)
skΥ ← KeyGen(pk,msk, Υ)
ctΠ ← Encrypt(pk,Π,m)

Decrypt(pk, skΥ , Υ, ctΠ ,Π) = m

⎤
⎥⎥⎦ = 1

where the probability is taken over the coins of Setup,KeyGen, and Encrypt.

552 A. Barthoulot et al.

Definition 20. Adaptive indistinguishability security. (Ada-IND) A (CP-)ABE scheme
is said to satisfy adaptive indistinguishability security if for all PPT adversary A,
there exists a negligible function ε(.) such that AdvAda−IND

A (1κ) ≤ ε(κ) where
AdvAda−IND

A (1κ) is the advantage of A to win the security game presented in Fig. 4,

and is defined as AdvAda−IND
A (1κ) =

∣∣∣Pr
[
b

′
= b

]
− 1

2

∣∣∣. Let C be the challenger.

Fig. 4. Adaptive indistinguishability security game.

5.2 ABE from Dualy Computable Accumulator: Intuition

Basic Idea. As said previously, having both private evaluation and public witness cre-
ation permits us to transform a cryptographic accumulator into an encryption scheme.
More precisely, in our CP-ABE, the user secret key is a privately computed accumu-

lator accX = g
d1

∏
x∈X (x+s)

1 , where X is a representation of the user’s attributes. In
parallel, the ciphertext is a one-time-pad between the message m and a mask H that is
computed using a publicly computable accumulator accpY , where Y is a representation
of the access policy. However, with the dually computable accumulator of the previous
section as given in Fig. 3, this construction is not efficient and secure. Due to lack of
space, we here give only a summary of all the changes we have to make on the accu-
mulator scheme, and we detail them in our extended work [6]. Before going into those
details, we first explain how we can define X and Y . In the sequel let Q = 2q − 1,
where q ∈ N is the bound on the number of attributes in the ABE.

Representation of Boolean Formulas and Attributes with Cryptographic Accu-
mulators. In our ABE, access policies are expressed as disjunctions of conjunctions
(DNF), without “NO” gates. Hence, a policy could be noted Π = π1 ∨ π2 ∨ · · · ∨ πl,
where l ∈ N, and πi is a conjunction of attributes. Let Yi be the set of attributes present
in clause πi, for i = 1, · · · , l. Our idea is to define Y as the set {H(Yi)}l

i=1, where H
is a hash function that takes as input a set of elements and returns an element in Zp,
for a prime p. During the encryption process, we create the accumulator accpY using
PublicEval (see below).

Dually Computable Cryptographic Accumulators and Their Application 553

For a set Υ of attributes for a given user, we create X as the set of hash values (using
H) of all non-empty subsets of Υ 2. During the key generation process, the authority
hence creates the accumulator accX using Eval.

Encryption and Decryption. For a given user, if her set of attributes Υ satisfies the
policy Π , it means that there exists a non-empty subset of Υ that corresponds to a
clause πi in Π . As H is deterministic, it follows that one element, called ξ in the sequel,
is present in both accumulators: accX (the one corresponding to the non-empty subsets
of Υ) and accpY (the one that corresponds to Π). Based on that, we propose that during
the encryption process, the mask H is computed using the public verification equation
PublicVerify, as e(gd1

1 , accpY)α, where α is some randomness.
During decryption, a user having a valid set of attributes precisely knows both the

clause πi and the element in Υ that match together. The next step is then for the user to
generate a witness for such element, and thanks to the verification algorithms, retrieve
H and then the message. But as both accumulators are not related to the same sets, we
cannot directly use the properties of a dually computable accumulator. The user hence
needs to compute two witnesses (one for each accumulator), and we need to find a way
to combine them appropriately for the decryption to work.

Managing the Randomness α and a Constant-Size Ciphertext. The first problem
we need to solve is that the element for which the witnesses need to be computed is
only known during decryption time, and that we should manage the randomness α. A

trivial solution could consist in given as many g
αd∗

2sk

2 as necessary to permit the user
computing all the possible witnesses. But this option obviously results in (at least) a
linear ciphertext. To reach a constant-size ciphertext, we need a way to “anticipate” wit-
nesses during encryption. Here, our trick is to use a specificity of accumulators based on
Nguyen’s construction, that is the fact that accumulators and witnesses are constructed
with the coefficients of polynomials of the form Ch[Z] =

∏q
i=1(xi +Z). Yet, we know

that elementary symmetric polynomials for q variables appear in Ch[Z] (see Defini-
tion 8 and Note 4) and that the coefficient of lowest degree is equal to σq =

∏q
i=1 xi.

We decide to accumulate in the secret key accumulator a public value, denoted x0,
which is not related to any user attribute, hence having no impact on the decryption
capability. From the above observation, we know that x0 will always be a factor of
Ch[Z]’s lowest degree coefficient, no matter the element for which the witness is gener-
ated and the user attributes. We proceed similarly for the access policy, introducing the
public value y0 that will be attached to the witness corresponding to the public accumu-
lator. To give the user the possibility to introduce α in the decryption process we then
give in the ciphertext the value α(x0 + y0).

But this trick necessitates us to modify the way we have computed the witness in
our construction in Sect. 4 so that we can manage the values x0 and y0 independently
of the other. For that, for a subset I in X , the witness is now divided into two parts:

witI = (W1,W2) where W1 = gd1b0
1 and W2 = g

d∗
2

∑q
i=1 bis

i

2 . Again, we proceed
similarly for the publicly computable accumulator with witness witpI = (W ′

1,W
′
2).

2 It follows that if |Υ | = k, then |X | = 2k − 1.

554 A. Barthoulot et al.

Auxiliary Information in the Ciphertext. From the previous issue, we now know that
the ciphertext should include a first auxiliary information to permit decryption: aux1 =
g
d1α(x0+y0)
1 . At this step, we also need to give aux2 = g

−αd∗
1

2 with the ciphertext, so
that the Verify algorithm, on input such value and the secretly computed accumulator
now includes the randomness α.

But from aux1 and
{

g
d∗
1si

2

}Q

i=0
, anyone can compute e(gd1(x0+y0)

1 , accpY) = Hx0+y0 .

As x0, y0 are publicly known, this permits to recover H and hence the message. To
avoid that, our idea is to split α into two randoms α1, α2, and modify the auxiliary
information accordingly, as aux1 = g

d1α2(x0+y0)
1 and aux2 = g

−α1α2d
∗
1

2 . For the same
reason as above, we cannot directly include α1 and need to find another trick.

We use the same “anticipation” trick that we used for the witnesses. More precisely,
we add an additional public value z0 in both accumulators. The consequence is that, at
the time of decryption, the users obtains that the element ξ and the value z0 are both in
the two accumulators. Hence, in the verification process, we necessarily have the term
s2 + s(z0 + ξ) + z0ξ which can be divided in two parts: s2 + sz0 and s+ z0. It follows
that during encryption, we additionally give the terms ele1 = g

α1d1(z0+s)
2 and ele2 =

g
α1d1(z0s+s2)
2 that are associated to aux1 using a pairing during the decryption process.

This indirectly brings α1 to aux1 without revealing it. We now have fully treated the case
of W1 and W ′

1 but we also need to add the randomness (α1, α2) to W2 and W ′
2. To solve

that we simply need to add two new auxiliary information: ele3 = g
α1α2d2(z0s+s2)
1 and

ele4 = g
α1α2d2(z0+s)
1 .

Managing the Dual System Encryption Framework. To prove the security of our
ABE, we need to use the dual system encryption framework [39]. In a nutshell, during
the security proof, such technique introduces the notion of semi-functional (SF) keys
and ciphertexts, which should be indistinguishable from normal keys and ciphertexts.
Such new elements behave exactly the same as their normal counterparts, except that no
semi-functional key can decrypt an SF ciphertext. During the security proof, the simu-
lator changes all the keys issued to the adversary into SF ones, and make the challenge
answer to the adversary an SF ciphertext. This way, the adversary cannot extract any
information from the challenge ciphertext: it has no advantage.

To manage semi-functional ciphertexts and secret keys in our own proof, we need to
increase by one the dimension of the DPVS. More precisely, we rely on the decisional
subspace assumptions in G1 (DS1) and in G2 (DS2) [13], which necessitate to guess

between gτ1di
1 (resp. g

τ1d
∗
i

2) and g
τ1di+τ2di+k

1 (resp. g
τ1d

∗
i +τ2d

∗
i+k

2) for i = 1, · · · , k,
where k ∈ N is one parameter of the assumption, and τ1, τ2 ∈ Zp are random elements
chosen by the challenger. To avoid disturbance with the base used in the accumula-
tor, we will not use d1 to bring SF space. Instead we consider d2 in the secret key
and d∗

2 in aux2. More precisely, we generate two randoms r, z ∈ Zp and generate
r · d2 and z · d∗

2 to have the same semi-functional part in the ciphertext than the one
we have in the secret key. The randoms r and z are used to match the assumptions
in which d2 (resp. d∗

2) are randomized (by τ1). But this results in an additional term
e(g1, g2)ψrzα1α2 during decryption. To avoid this, we need to introduce a new dimen-

Dually Computable Cryptographic Accumulators and Their Application 555

sion in the DPVS, and then (d3,d3
∗). It follows that the secret accumulator becomes

accX = g
d1

∑Q
i=0 ais

i+r(d2−γd3)
1 and aux2 = g

−d1
∗α+z(γd∗

2+d∗
3)

2 .

Managing the Third Bases. There is one last change we need to do in our accumulator.
Indeed, in the last part of the CP-ABE security proof, we need to randomize the dual
orthonormal bases (D, D∗) to new bases (F, F∗), so that with the latter, the adversary
has no more possibility to win the game. This modification implies that we need to
express d1 as f1 + ηf5, which means that any element having d1 in the exponent will
have a SF part when expressed in bases (F, F∗). It results that the elements aux1 and
gd1
1 used in H have now a SF part, while we defined a SF ciphertext such that only aux2

contains the SF components. Our idea here is then to replace d1 by d3 in the witness
creation: hence, the witness element W1 goes from gd1b0

1 to gd3b0
1 . To keep the orthonor-

mality of the DPVS, we also replace d∗
1 by d∗

3 in the public evaluation of the accumu-

lator and the publicly computed accumulator goes from g
d∗
1

∑Q
i=0 mis

i

2 to g
d∗
3

∑Q
i=0 mis

i

2 .

We then change aux1 to g
d3(x0+y0)
1 , ele1 = g

α1d
∗
3(z0s+s2)

2 , and ele2 = g
α1d

∗
3(z0+s)

2 .
This gives us the final dually computable accumulator that we use to design our CP-
ABE, fully given in our extended work [6]. Thus we will use DS1 and DS2 with param-
eter k = 2 and n = 2k = 6, and so DPVS of dimension 6.

5.3 Our CP-ABE Scheme

The resulting CP-ABE is fully given in Fig. 5. As said above, it permits to manage
access policies expressed as disjunctions of conjunctions without “NO” gates. For sake
of clarity, we highlight the underlying dually computable accumulator scheme with col-
ors as follows: the privately computed accumulator is in green, the publicly computed
accumulator is in blue, the anticipation of the first element of the witnesses is in orange,
the second parts of the witnesses are in purple and the anticipation of the intersection
of both sets is in red.

Theorem 4. Our CP-ABE scheme is correct.

Proof.

e(auxδδ
′

1 , ele1 · eleξ
2)

= e((gα2d3(x0+y0)
1)δδ

′
, g

α1d
∗
3(z0s+s2)

2 · (gα1d
∗
3(z0+s)

2)ξ)

= e(gα2d3δδ
′
(x0+y0)

1 , g
αd∗

3(s
2+s(z0+ξ)+z0ξ)

2)

= e(g1, g2)ψα1α2(s
2+s(z0+ξ)+z0ξ)c0δ

′ · e(g1, g2)ψα1α2(s
2+s(z0+ξ)+z0ξ)t0δ

e(ele3 · eleξ
4,W

δ
′

2 · W
′δ
2)

= e(gα1α2d2(z0s+s2)
1 · (gα1α2d2(z0+s)

1)ξ, (gd
∗
2

∑Q
i=1 cis

i

2)δ
′ · (gd

∗
2

∑Q
i=1 tis

i

2)δ)

= e(gα1α2d2(s
2+s(z0+ξ)+z0ξ)

1 , g
d∗
2δ

′ ∑Q
i=1 cis

i+d∗
2δ

∑Q
i=1 tis

i

2)

= e(g1, g2)ψα1α2(s
2+s(z0+ξ)+z0ξ)δ

′ ∑Q
i=1 cis

i

·e(g1, g2)ψα1α2(s
2+s(z0+ξ)+z0ξ)δ

∑Q
i=1 tis

i

556 A. Barthoulot et al.

Fig. 5. Our CP-ABE scheme.

Dually Computable Cryptographic Accumulators and Their Application 557

Therefore

e(auxδδ
′

1 , ele1 · eleξ
2) · e(ele3 · eleξ

4,W
δ

′

2 · W
′δ
2)

= e(g1, g2)ψα1α2(s
2+s(z0+ξ)+z0ξ)δ

′ ∑Q
i=0 cis

i

·e(g1, g2)ψα1α2(s
2+s(z0+ξ)+z0ξ)δ

∑Q
i=0 tis

i

If ξ belongs to X and ξ belongs to Y , then

e(auxδδ
′

1 , ele1 · eleξ
2) · e(ele3 · eleξ

4,W
δ

′

2 · W
′δ
2)

= e(g1, g2)ψα1α2δ
′ ∑Q

i=0 ais
i · e(g1, g2)ψα1α2δ

∑Q
i=0 mis

i

The last pairing is equal to

e(accX , aux2)δ
′

= e(gd1
∑Q

i=0 ais
i+r(d2−γd3)

1 , g
−d∗

1α1α2+z(γd∗
2+d∗

3)
2)δ

′

= e(g1, g2)−α1α2ψ
∑Q

i=0 ais
iδ

′ · e(g1, g2)rzγψ · e(g1, g2)−rzγψ

= e(g1, g2)−α1α2ψ
∑Q

i=0 ais
iδ

′

so multiplying it with e(auxδδ
′

1 , ele1 · eleξ
2) · e(ele3 · eleξ

4,W
δ

′

2 · W
′δ
2) gives e(g1,

g2)ψα1α2δ
∑Q

i=0 mis
i

. As we know δ we can recover the mask of the message and then
the message. Therefore, the scheme is correct.

Theorem 5. Our ABE satisfies adaptive indistinguishability under SXDH assumption.

To prove the security of our scheme, we prove that the encryption of challenge
message is indistinguishable from the encryption of a random message. To do so, we
use a sequence of games (our proof is inspired of Chen et al. [13]’s IBE security proof)
and Water’s dual system encryption framework [39]. Let Nq ∈ N be the number of
secret keys that the adversary is allowed to query.3

– GameReal is the original security game, as presented in Fig. 4.
– Game0 is the same as GameReal except that the challenge ciphertext is a semi-

functional ciphertext.
– Gamei for i = 1, · · · , Nq is the same as Game0 except that the first i keys are

semi-functional.
– GameFinal is the same as GameNq

except that the challenge ciphertext is an encryp-
tion of a random message.

Now we define semi-functional (SF) keys and ciphertexts. Let t5, t6, z5, z6 ← Zp.

– a semi-functional key for Υ , sk(SF)
Υ , is computed from normal key skΥ as sk(SF)

Υ =

skΥ · g
t5d

+
5 t6d6

1 = g
d1

∑Q
i=0 ais

i+r(d2−γd3)+t5d5+t6d6
1

3 As the number of attributes in the scheme is bounded, so is the number of keys that an adver-
sary can query.

558 A. Barthoulot et al.

– a semi-functional ciphertext for Π , ct(SF)
Π , is computed as a normal ciphertext ctΠ

except that aux(SF)
2 = aux2 · g

z5d
∗
5+z6d

∗
6

2 .

Notice that normal keys can decrypt SF ciphertexts, and normal ciphertexts can be
decrypted by SF keys. However, decryption of a SF ciphertext by a SF key leads to an
additional term: 1/e(g1, g2)(t5z5ψ+t6z6ψ)δ−1

. Due to lack of place, we only present the
intuition of our proof here. Refer to our full paper [6] for more details. Briefly, the proof
is done as follows.

First we prove that if there exists an adversary that can distinguish GameReal from
Game0 we can build an adversary that breaks the DS2 assumption with parameters
k = 3 and n = 6. To do so the main idea is to use the assumption’s challenge to build
the challenge ciphertext. Depending on the value of the challenge we will either obtain
a normal form ciphertext or a semi-functional form one.

Then we prove that if there exists an adversary that can distinguish Gamej−1 from
Gamej for j = 1, · · · , Nq we can build an adversary that breaks the DS1 assumption
with k = 3 and n = 6. The idea is to use the assumption’s challenge to build the j-
th key. Thus, depending on the value of the challenge we will either obtain a normal
form key or a semi-functional form one. To build the challenge ciphertext, we use the
assumption’s parameters to obtain a semi-functional ciphertext.

Finally, we prove that GameNq
is computationally indistinguishable from

GameFinal, with a change of dual orthonormal bases. Doing so, we randomized the
coefficient of d1 in the aux2 term of the ciphertext, thereby severing its link with the
blinding factor. That gives us the encryption of a random message.

5.4 Comparison

It is known that monotone boolean formulas can be put under DNF form, where the
latter represents the minterm of the formula, i.e. a minimal set of variables which,
if assigned the value 1, forces the formula to take the value 1 regardless of the val-
ues assigned to the remaining variables [16]. For more details on the transformation
of monotone boolean formulas into DNF and its probable efficiency loss we refer the
interested reader to [8,37]. It is also known that the circuit complexity class mono-
tone NC1 is captured by monotone boolean formulas of log-depth and fan-in two [24].
Therefore, our CP-ABE can directly deal with monotone NC1 circuits. We present in
Table 3 a comparison of (bounded) CP-ABE scheme for monotone NC1 circuits, based
on pairings4. All schemes in this table overpass the one-use restriction on attributes,
which imposes that each attribute is only present once in the access policy. All schemes
are single authority, and secure in the standard model.

As we can see our scheme is the first one to obtain constant size for both ciphertexts
and secret keys. However, this is done at the cost of the public key size, which become
exponential. This drawback comes from the fact that for accumulating user’s attributes
set we are running the hash function H on each non-empty subset of this set. Doing so
we obtain an easy way to check if an attributes set verifies an access policy: if it does,

4 Some works are expressing their monotone boolean formula through Linear Secret Sharing
Scheme (LSSS) matrix, see [27] for more details on this transformation.

Dually Computable Cryptographic Accumulators and Their Application 559

Table 3. Comparison of CP-ABE schemes for monotone NC1 circuits, based on pairings. Here q
is the bound on the number of attributes in the scheme, and l is the number of rows in the access
matrix when the policy is expressed with LSSS matrix.

Schemes |pk| |ct| |sk| Adaptive Security Assumption Group Order Pairing

[40] O(q) O(l) O(q) × Non Static Prime Symmetric

[25] O(q) O(l) O(q)
√

Static Composite Symmetric

[28] O(q) O(l) O(q)
√

Non Static Prime Symmetric

[24] O(q) O(q) O(l)
√

Static Prime Asymmetric

Our O(2q) O(1) O(1)
√

Static Prime Asymmetric

one of non-empty subsets of the set is equal to one clause of the access policy. We argue
that the size of the public key is less important than the size of the other parameters,
as it can easily be stored on-line. Additionally, while the sets (and access policies) rep-
resentation might be scary at first glance, this is not an issue in practice as (i) it is not
necessary to keep all elements in memory and (ii) for each decryption, only the use-
ful part will have to be computed again. Finding another way to accumulate attributes
sets and access policies in order to have efficient membership verification may lead to
a more efficient CP-ABE, with shorter public key size. Also notice that our scheme
is dealing with DNF access policies which have small expressiveness. We leave as an
open problem to reduce the size of the public key in our scheme and also to modify it
so that it can deal with fine-grained access policies. We also leave as an open problem
the case of unbounded ABE schemes [3,12], and the case of non-monotonic access for-
mulas [32,33]. In our extended work [6], we also show how the above construction can
be transformed into a Key Policy ABE (KP-ABE), in which the secret key is attached
to the access policy and the ciphertext is given by a set of attributes.

6 Conclusion

In this work, we improved the state of the art of cryptographic accumulator schemes
by proposing a new scheme that has private evaluation while having public generation.
This scheme is the first (as far as we know) accumulator that uses dual pairing vector
spaces. We also introduced the new notion of dually computable cryptographic accumu-
lators, allowing two ways to evaluate an accumulator: either privately or publicly. We
instantiate a dually computable accumulator for our first scheme. Furthermore, we built
a new CP-ABE scheme, that deals with monotone NC1 circuits. This is the first scheme
in the literature that has both constant size ciphertexts and users secret keys. We achieve
such compactness by using cryptographic accumulators for both key management and
encryption. Unfortunately, as our construction strongly relies on the fact that Nguyen’s
accumulator uses polynomial representation of sets, we cannot generalized our idea.
Hence, we leave as an open problem the way to generically transform a cryptographic
accumulator into an (attribute-based) encryption scheme.

560 A. Barthoulot et al.

Acknowledgments. We would like to thank anonymous reviewers for their helpful discus-
sions and valuable comments. Part of this work has received funding from the French National
Research Agency (ANR), PRESTO project number ANR-19-CE39-0011-01.

References

1. Acar, T., Chow, S.S.M., Nguyen, L.: Accumulators and U-prove revocation. In: Sadeghi, A.-
R. (ed.) FC 2013. LNCS, vol. 7859, pp. 189–196. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39884-1_15

2. Asano, T.: A revocation scheme with minimal storage at receivers. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 433–450. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-36178-2_27

3. Attrapadung, N.: Dual system encryption framework in prime-order groups via computa-
tional pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016 Part II. LNCS,
vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53890-6_20

4. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryp-
tion with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A.
(eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19379-8_6

5. Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact E-cash from bounded accumulator. In: Abe,
M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 178–195. Springer, Heidelberg (2006). https://
doi.org/10.1007/11967668_12

6. Barthoulot, A., Blazy, O., Canard, S.: Dually computable cryptographic accumulators and
their application to attribute based encryption. Cryptology ePrint Archive, Paper 2023/1277
(2023). https://eprint.iacr.org/2023/1277

7. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital sig-
natures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24

8. Blais, E., Håstad, J., Servedio, R.A., Tan, L.-Y.: On DNF approximators for monotone
Boolean functions. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8572, pp. 235–246. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-43948-7_20

9. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption
in bilinear groups. J. Cryptol. 21(2), 149–177 (2008). https://doi.org/10.1007/s00145-007-
9005-7

10. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact
garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30

11. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1_27

12. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion,
revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
503–534. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_19

13. Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures via asymmetric
pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 122–140.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4_8

https://doi.org/10.1007/978-3-642-39884-1_15
https://doi.org/10.1007/978-3-642-39884-1_15
https://doi.org/10.1007/3-540-36178-2_27
https://doi.org/10.1007/3-540-36178-2_27
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/11967668_12
https://doi.org/10.1007/11967668_12
https://eprint.iacr.org/2023/1277
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-662-43948-7_20
https://doi.org/10.1007/978-3-662-43948-7_20
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-642-36334-4_8

Dually Computable Cryptographic Accumulators and Their Application 561

14. Damgard, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-map accu-
mulators. Cryptology ePrint Archive, Report 2008/538 (2008). https://eprint.iacr.org/2008/
538

15. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional prop-
erties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048,
pp. 127–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_7

16. Elbassioni, K., Makino, K., Rauf, I.: On the readability of monotone Boolean formulae. J.
Comb. Optim. 22, 293–304 (2011)

17. Fazio, N., Nicolosi, A.: Cryptographic accumulators: definitions, constructions and applica-
tions (2002)

18. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1

19. Gentry, C., Ramzan, Z.: RSA accumulator based broadcast encryption. In: Zhang, K., Zheng,
Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 73–86. Springer, Heidelberg (Sep (2004). https://
doi.org/10.1007/978-3-540-30144-8_7

20. Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos, N.: Zero-
knowledge accumulators and set algebra. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 67–100. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53890-6_3

21. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute based encryp-
tion. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70583-3_47

22. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati,
S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press (2006). https://doi.org/10.1145/1180405.
1180418. available as Cryptology ePrint Archive Report 2006/309

23. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5_11

24. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k-Lin. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 3–33. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2_1

25. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional
encryption: attribute-based encryption and (hierarchical) inner product encryption. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5_4

26. Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private keys. In:
2010 IEEE Symposium on Security and Privacy, pp. 273–285. IEEE Computer Society Press
(2010). https://doi.org/10.1109/SP.2010.23

27. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20465-4_31

28. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full
security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5_12

29. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from polynomial
commitments to pairing-based accumulators from simple assumptions. In: Chatzigiannakis,

https://eprint.iacr.org/2008/538
https://eprint.iacr.org/2008/538
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-30144-8_7
https://doi.org/10.1007/978-3-540-30144-8_7
https://doi.org/10.1007/978-3-662-53890-6_3
https://doi.org/10.1007/978-3-662-53890-6_3
https://doi.org/10.1007/978-3-540-70583-3_47
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1109/SP.2010.23
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-32009-5_12

562 A. Barthoulot et al.

I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP 2016. LIPIcs, vol. 55, pp.
30:1–30:14. Schloss Dagstuhl (Jul 2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.30

30. Mahabir, J., Reihaneh, S.N.: Compact accumulator using lattices. In: International Confer-
ence on Security, Privacy, and Applied Cryptography Engineering (2015)

31. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.) CT-
RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-30574-3_19

32. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from
the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
191–208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11

33. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based
encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–
366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_22

34. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on
dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_6

35. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639_27

36. Tanaka, N., Saito, T.: On the q-Strong Diffie-Hellman problem. IACR Cryptol. ePrint Arch.
2010, 215 (2010)

37. Venema, M., Alpár, G., Hoepman, J.H.: Systematizing core properties of pairing-based
attribute-based encryption to uncover remaining challenges in enforcing access control in
practice. Des. Codes Crypt. 91(1), 165–220 (2023). https://doi.org/10.1007/s10623-022-
01093-5

38. Wang, X., Chow, S.S.M.: Cross-domain access control encryption: arbitrary-policy, constant-
size, efficient. In: 2021 IEEE Symposium on Security and Privacy, pp. 748–761. IEEE Com-
puter Society Press (2021). https://doi.org/10.1109/SP40001.2021.00023

39. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple
assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

40. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and prov-
ably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19379-8_4

41. Zhang, Y., Katz, J., Papamanthou, C.: An expressive (zero-knowledge) set accumulator, pp.
158–173 (2017). https://doi.org/10.1109/EuroSP.2017.35

https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-22792-9_6
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/s10623-022-01093-5
https://doi.org/10.1007/s10623-022-01093-5
https://doi.org/10.1109/SP40001.2021.00023
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1109/EuroSP.2017.35

A Minor Note on Obtaining Simpler iO
Constructions via Depleted Obfuscators

Răzvan Roşie(B)

Lombard International, Luxembourg, Luxembourg

razvan.rosie@lombardinternational.com

Abstract. This paper puts forth a simple construction for indistin-
guishability obfuscation (iO) for general circuits. The scheme is obtained
from four main ingredients: (1) selectively indistinguishably-secure func-
tional encryption for general circuits having its encryption procedure in
the complexity class NC1; (2) universal circuits; (3) puncturable pseudo-
random functions having evaluation in NC1; (4) indistinguishably-secure
affine-determinant programs, a notion that particularizes iO for specific
circuit classes and acts as “depleted” obfuscators. The scheme can be
used to build iO for all polynomial-sized circuits in a simplified way.

Keywords: affine determinant programs · branching programs · FE ·
iO

1 Introduction

Indistinguishability obfuscation (iO) [3] is a central goal in the cryptographic
community. Its prime purpose is to make functionally equivalent circuits indis-
tinguishable. Its plethora of applications includes functional encryption, search-
able encryption or non-interactive key-exchange protocols [10]. iO can be realized
from multilinear maps [13], multi-input functional encryption [16] or compact
functional encryption [25]. Nowadays schemes achieving security under well-
established assumptions exist [22].

Functional Encryption and iO. Functional encryption (FE) provides targeted
access over encrypted data. Using the public parameters (abbreviated mpk), any
input inp taken from a specified domain can be encrypted as ciphertext CT.
Using FE’s secret key (abbreviated msk), a functional key – skf – can be issued
for any function f represented as a polynomial-sized circuit C . One recovers
C (inp) whenever CT is decrypted under skf . The major security notion to be
accomplished is indistinguishability: as long as C (m0) = C (m1) for two different
messages m0 and m1, it is hard for any computationally bounded adversary to
distinguish if CT encrypts m0 or m1, given access to skf and mpk (and CT).

Indistinguishability obfuscation appears, at first sight, unrelated to functional
encryption. Its interface has the following specification: consider two functionally
equivalent circuits – C0 and C1 – both implementing the same function f . An
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 563–587, 2023.
https://doi.org/10.1007/978-981-99-7563-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_25&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_25

564 R. Roşie

indistinguishability obfuscator iO takes as input one of them – say Cb – for a
bit b sampled uniformly at random. It releases C , such that it is hard for any
computationally bounded adversary to distinguish if C was obtained from C0 or
C1 (the indistinguishability property). We will use the term depleted obfuscator
to refer to an iO obfuscator for very restricted subclasses of P.

1.1 Our Result

Placing Our Work in the Context of iO Schemes. This work follows, from
a high level, the recipe put forth in [25]: an obfuscator is used to compute a func-
tional ciphertext, and a functional key is issued to decrypt iO’s outputs. There
are, though, major differences: [25] builds a compact functional encryption (cFE)
scheme using generically an exponentially-efficient obfuscator (XiO); the cFE is
then used through a sequence of convoluted transforms to build iO. XiO is an
obfuscator that is slightly smaller than a lookup table (the trivial obfuscator).
Perhaps, at the time, the line of thought therein was focused on provably obtain-
ing iO through means involving the realization of a less demanding XiO.

Herein, the energy is put on building an indistinguishable obfuscator for a
very restricted (depleted) class of circuits. We depart from the usage of an XiO
and go for a direct construction assuming the existence of (1) FE with encryp-
tion in NC1 [17], universal circuits (Uc)1, puncturable pseudorandom functions
(pPRF) with evaluation in NC1 and affine determinant programs (ADP).

The main idea is to generate a functional key for the Uc. Then, using a
different type of obfuscator2 – the ADP – we can produce functional ciphertexts
for messages having their form: “C ||inp” for some binary representation of circuit
C and input inp. By the correctness of FE we get that:

FE.Dec(FE.KGen(msk,Uc),FE.Enc(mpk,C ||inp)) = C (inp) . (1)

The ADP (our depleted obfuscator) is used having the master public key of an
FE scheme and a (puncturable) PRF key hardcoded. It will produce functional
ciphertexts, to be decrypted under the functional key evaluating Uc. A preview
of the inner working of our obfuscator is in Eq. (2).

iO.Setup(C) :=
(
ADP.Setup(mpk,C , k), FE.KGen(msk,Uc)

)

iO.Eval(inp) := FE.Dec(skUc,ADP.Eval(FE.Enc(mpk,C ||inp; pPRF(k, inp))))
(2)

Before exploring the main question – how to build such an ADP able to
provide “fresh” FE ciphertexts while hiding C – we provide the intuition behind
the indistinguishability proof for our iO obfuscator.

The proof for the obfuscator described in Eq. (2) goes by hybridizing over all
inputs (similar to [25]): considering two functionally equivalent C0 and C1, we
1 To recap, a universal circuit Uc is itself a circuit that takes as input a description of

another circuit C computing some (abstract) function f as well as the input inp to
C and returns the value of C (inp); Thus Uc(C , inp) = C (inp).

2 We show how to build and prove its indistinguishability herein.

A Minor Note on Obtaining Simpler iO Constructions 565

will use the indistinguishability of ADP to switch to a setting where pPRF’s key
is replaced by one punctured in the hybrid game’s input. Then, we use pPRF’s
security to replace the randomness used to produce the FE ciphertext in the
current challenge point by true random coins. Next, we use the indistinguisha-
bility of the functional encryption for the current input, to replace the ciphertext
encoding C0||inp∗ with C1||inp∗. Finally we switch back. Clearly, the number of
hybrids is exponential in input length.

1.2 How to Use ADPs to Obfuscate Specific Classes of Circuits

Affine determinant programs [6] were defined to target more efficient and direct
obfuscators. The original construction was heuristic and is already broken for
the general case using simple, specially-crafted counterexamples [30]. Our work
describes how to instantiate a different flavour of ADPs using augmented branch-
ing programs, thus incurring topological transforms on the underlying graph
structure. More importantly, Sect. 5 discusses constraints needed to prove secu-
rity for peculiar classes of circuits.

Consider a binary input of length n. An ADP is a set of n + 1 square matri-
ces having entries in F2. The first one T0 is referred to as the “base” matrix.
Altogether they allow to encode and evaluate one function f representable as an
NC1 circuit. The evaluation procedure computes the determinant obtained by
summing up the base matrix to subsets of matrices that are input dependent:

f(m) = det

(
T0 +

n∑
i=1

inpi · Ti

)
, (3)

where inpi is the ith bit of inp. The operation is done over F2.

A High-Level View on ADPs. To build the matrices that form an ADP,
one should consider a function in NC1, as its branching program [7,28] will have
polynomial size [4]. The branching program consists of a start node, two terminal
nodes denoted 0 and 1 and a set – variable in size – of regular nodes. The start
node has two potential outgoing edges and no incoming edge. The terminal
nodes have no or multiple incoming edges and no outgoing edges. The regular
nodes receive at least an incoming edge and have two outgoing edges (potentially
pointing to the same node). The crux point is that each node (except terminals)
is associated (or labelled) to some input bit value inpi. If inpi = 0 one of the two
outgoing edges is selected, when inpi = 1 the other one gets used. The selection
(or settling) of one of the two possible arcs corresponding to each input bit
induces an adjacency matrix where on each line, only one out of two possible
entries are set to one. If we fix an input – say �0 – we get the core of the base
matrix of the ADP from the adjacency matrix of the branching program. Let
this core matrix be denoted G0.
Next, we can obtain “difference” matrices: to evaluate input 1||0 . . . ||0, we sub-
tract from the adjacency matrix that we obtained for 1||0 . . . ||0 the “base” matrix
G0. Let this “difference” matrix be G1 ← G1||0...||0 − G0||0...||0 (in general Gi,
i is the index of the bit set to 1). This constitutes the core of a simplified ADP.

566 R. Roşie

After an intermediate simple post-processing step, a randomization phase is
applied: left and right invertible matrices sampled over F

m×m
2 – denoted by L

and R – are multiplied to each of the n + 1 matrices.

1.3 The Usage of ADPs in Our Scheme

As mentioned before, the idea is to employ ADPs to generate FE ciphertexts.
To this end, FE’s encryption procedure itself must be in NC1. The random coins
used by FE.Enc are generated through a pPRF – which itself must be in NC1. The
circuit is described in Fig. 2. Note that we use a limiting variable ρ, originally
set to the maximum input (and used in the security proof), while the circuit
returns an FE ciphertext for the inp that will change during the proof.

Given that each ADP outputs a single bit, we employ the usage of � such
circuits, where � is the length of an FE ciphertext. This functional ciphertext,
will, in turn, support decryption for functions of t bits length.

One of the major predicaments we face in our indistinguishability proof for
ADPs is a different structure of circuits evaluating a pPRF under its normal and
punctured keys3. Generally for pPRFs these evaluations circuits differ (see for
instance the case of the GGM-based pPRF [27]). To cope with this issue we use
a trick that artificially expands the pPRF’s input domain with one bit. The key
is punctured in an input starting with 0, while always evaluating in an input
starting with 1. Thus, we are guaranteed to be able to evaluate the pPRF on
the entire original domain. In the proof, we will switch to the usage of a key
puncture in point “1||inp∗” for some challenge inp∗, while preserving the same
topology of branching program, a crux point in the indistinguishability proof for
the ADP acting as “depleted obfuscator”.

By reusing the previous argument, the strategy we put forth is to retain the
same topology for the underlying BP. The only change occurs for a designated
set of “sensitive” variables – the nimv – which can be regarded as hardcoded
inputs. To this end our security proof will switch values for k, the limit ρ and
C ’s representation, while preserving the branching program’s structure.

Security Considerations for ADPs: Topology, Behaviour and “nimvs”.
In order to prove the security of our iO-obfuscator, we use a nested level of
hybrids. We iterate over the entire input space, and for each challenge input
we switch from the encoding of the first circuit C0 to the representation of C1.
For each challenge inp∗, we first rely on the indistinguishability of the ADP
obfuscator to switch the key to one punctured in the current input. Then, we
rely on pPRF’s security to switch the randomness terms used to compute the
challenge ciphertext c corresponding to inp∗. Once we are in a setting where
fresh random coins are used, we rely on FE’s security to switch to a setting

3 A puncturable PRF is a pseudorandom function with a normal evaluation mode using
a key k and an input m, producing (pseudo-) random values y; a special evaluation
mode uses a punctured key k∗, punctured in some point m∗ and can compute all
PRF values except for PRF(k,m∗).

A Minor Note on Obtaining Simpler iO Constructions 567

where C1 is encoded. Finally, we have reverse hybrids that will undo the changes
related to pPRF keys and decrease limit ρ.

It should be noted that values such as k,C0,C1 or ρ are highly sensitive.
Revealing them incurs a trivial distinguisher. One of the goals of IND-ADP indis-
tinguishability is, indirectly, to protect such variables, denoted here as non-input
mutable variables, or nimv. More detailed, one can think at the circuit in Fig. 2
as taking 2-inputs: i and nimvs. We will denote by |nimv| the cumulative length
of the binary description of all nimvs.

This work offers a view on ADP as being built from a “proto”-ADP having
|nimv|+n+1 matrices. In the setup phase, the nimv values are settled, and the
actual base matrix is obtained by summing up the “proto”-ADP base matrix
with the |nimv|-matrices obtained by assigning values to nimv variables. In this
way, we are guaranteed that the topology of the “proto”-branching program will
remain the same even if the nimv variables are going to change (which is the case
during the security proof). We sometimes write that ADPs have “embedded”
nimv values.

Theorem 1 (Informal). Assume the existence of an IND-ADP-secure ADP
for the class Cd,|nimv|+(n+1). Moreover, assuming the existence of universal cir-
cuits, puncturable pseudorandom functions with evaluation in NC1 and FE with
encryption in NC1 there is an indistinguishably-secure iO scheme for functions
in class Cd′,|nimv|+(n+1). The advantage of any adversary A := (A1,A2,A3) run-
ning in polynomial time against the security of the scheme is bounded as fol-
lows: AdvIND

A,iO(λ) ≤ 2n ·
(
(2� + 1) · AdvIND-ADP

A1,ADP (λ) + Advs-IND-FE-CPA
A2,FE (λ) + 2 ·

Advpuncture
A3,pPRF(λ)

)
where � represents the output length of the FE ciphertext, λ is

the security parameter and pPRF stands for a puncturable PRF.

How to Read this Paper. Section 2 introduces the standard notations and
definitions. Section 2.2 reviews the construction of randomized encodings from
branching programs. In Sect. 3 we introduce our scheme and prove the iO based
on ADPs’ indistinguishability, while in Sect. 4 we provide the security proof. In
Appendices A and B we analyse the efficiency of a puncturable PRF’s punctured
evaluation procedure, as well as of an FE encryption procedure and conclude
their punctured evaluation procedure are in NC1.

2 Background

Notation. An algorithm is equivalent to a Turing machine and receives the
security parameter denoted by λ ∈ N

∗ in unary representation (denoted by
1λ). Unless mentioned, an algorithm herein is randomized, and in many cases
we use ppt algorithms: their runtime is “probabilistic polynomial-time” in the
security parameter. Given an algorithm A running A on input(s) (1λ, x1, . . .)
with uniform random coins r and assigning the output(s) to (y1, . . .) is defined as
(y1, . . .)←$ A(1λ, x1, . . . ; r). If A has access to an oracle O, we write AO. For k ∈

568 R. Roşie

N
∗, we define [k] := {1, . . . , k}; |S| is the cardinality of a finite set S; the action of

sampling an uniformly at random element x from X by x←$ X. Bold lowercase
variables – w – represent column vectors and bold upercase matrices – A. A
subscript Ai,j indicates an entry in the matrix. A real-valued function Negl(λ)
is negligible if Negl(λ) ∈ O(λ−ω(1)). || stands for concatenation. Circuits are
used to represent (abstract) functions. Unless mentioned, n stands for the input
length of the circuit, s for its size and d for its depth.

2.1 Basic Definitions

Definition 1 (Learning with Errors [26]). Given q = q(λ) ≥ 2 in N
∗ and

an error distribution χ = χ(λ) defined on Zq, the learning-with-errors problem
asks to distinguish the following distributions: {(A,A� ·s+e)} and {(A,u)} ,
where A←$Z

n×m
q , s←$Z

n
q , e←χ Z

m
q ,u←$Z

m
q .

Definition 2 (Puncturable PRFs [27]). A puncturable pseudorandom func-
tion pPRF is a set of ppt procedures (pPRF.Setup, pPRF.Eval, pPRF.Puncture):

KpPRF←$ pPRF.Setup(1λ): samples KpPRF uniformly at random over keyspace.
K ∗

pPRF ← pPRF.Puncture(KpPRF,m
∗) : given a point m∗ from the input space,

and KpPRF, returns the punctured key K ∗
pPRF.

Y ← pPRF.Eval(KpPRF,m): returns the output of the pseudorandom function.

Correctness: given any m∗ ∈ M, any KpPRF ∈ K and any m �= m∗ ∈ M:
pPRF.Eval(KpPRF,m) = pPRF.Eval(K ∗

pPRF,m), where K ∗
pPRF ← pPRF.Puncture(

KpPRF, m∗). Moreover, pPRF’s output distribution is indistinguishable (compu-
tationally) from the uniform one. Even when punctured key K ∗

pPRF is revealed,
no ppt adversary can distinguish between pPRF.Eval(KpPRF,m

∗) and R←$ R.

Definition 3 (Functional Encryption - Public Key Setting [9]). A
public-key functional encryption scheme FE defined for a set of functions
{Fλ}λ∈N = {f : Mλ → Yλ} is a tuple of ppt algorithms (Setup, KGen, Enc,
Dec):

– (msk,mpk)←$FE.Setup(1λ) : for the unary representation of the security
parameter λ, a pair of master secret/public keys is released.

– skf←$FE.KGen(msk, f): for the master secret key and a function f taken as
input, the key-derivation method releases a corresponding skf .

– CT←$FE.Enc(mpk,m): the encryption method releases a plaintext m corre-
sponding to mpk.

– FE.Dec(CT, skf): for a ciphertext CT and a functional key skf , either a valid
message f(m) is released or a an error symbol ⊥, if decryption fails.

We say that FE satisfies correctness if for all f : Mλ → Yλ:

Pr

[
y = f(M)

∣∣∣∣ (msk,mpk)←$FE.Setup(1λ) ∧ skf ←$FE.KGen(msk, f)∧
CT←$FE.Enc(mpk,m) ∧ y ← FE.Dec(CT, skf)

]
= 1 − Negl(λ) .

A Minor Note on Obtaining Simpler iO Constructions 569

We call a scheme selectively indistinguishably secure if for any ppt adversary
A, Advs-IND-FE-CPA

A,FE (λ) := |Pr[s-IND-FE-CPAA
FE(λ) = 1] − 1

2 | is negligible; the
game s-IND-FE-CPA is presented in Fig. 1 (left).

Definition 4 (Indistinguishability Obfuscation [25]). A ppt algorithm iO
is an indistinguishability obfuscator for a class

{
Cλ

}
λ∈N∗ if the followings hold:

– Correctness: Pr
[∀x ∈ D,C (x) = C(x)|C←$ iO(C)

]
= 1 .

– Indistinguishability: for D the input domain of the circuits C, the following
quantity is negligible:∣∣∣∣Pr

[
b = b′

∣∣∣∣∀C1, C2 ∈ {C}λ ∧ ∀x ∈ D : C1(x) = C2(x)∧
b←$ {0, 1} ∧ C←$ iO(Cb) ∧ b′←$ A(1λ,C,C0,C1)

]
− 1

2

∣∣∣∣

Fig. 1. Security for pseudorandom functions (right), as well as FE security (left).

2.2 Direct ADPs from Randomized Encodings

Definition 5 (Affine Determinant Programs [6]). Given the input length
n and dimension m, an affine determinant program over Fp has two algorithms:

Prog←$ADP.Setup(1λ,C): the Setup is a randomized algorithm s.t. given a
circuit description C of a function f with C : {0, 1}n → {0, 1}, outputs a set
of n+1 matrices as the ADP program: Prog := (T0, T1, . . . , Tn) ∈ F

m×m
p .

b ← ADP.Eval(Prog, inp): is a deterministic procedure, that given the program
Prog and some input m, returns a binary value b, defined as:

b := det

(
T0 +

n∑
i=1

inpi · Ti

)
.

570 R. Roşie

Correctness: ∀m ∈ {0, 1}n, Pr [C (m) = Prog(m)|Prog←$ADP.Setup(λ,C)] = 1

Security: We say that an ADP is IND-ADP secure with respect to a class of
circuits Cλ, if ∀(C1,C2) ∈ Cλ × Cλ such that ∀m ∈ {0, 1}λC1(m) = C2(m), the
following quantity is negligible:∣∣∣∣Pr

[
b←$ A(1λ,Prog)

∣∣ b←$ {0, 1} ∧ Prog←$ADP.Setup(1λ,Cb)
] − 1

2

∣∣∣∣
Randomized Encodings through Branching Programs. This part covers
the implementation of randomized encodings [21] from branching programs, and
recaps the description from [5].

A BP puts forth a method to (sequentially) compute an abstract func-
tion (represented as a circuit). Constructing branching programs for circuits
is straightforward and largely described in literature [24]. In this work we use
only single-bit output functions, but we can view non-boolean functions as con-
catenations of boolean ones. The branching program itself is (close to) a digraph
such that each node has two potential outgoing arcs (except for terminal nodes).
Each bit within input is linked to a corresponding node and based on input’s
value, one out of two corresponding arcs is followed until a terminal node – 0
or 1 – is visited. The value of the terminal node is the function’s output for the
provided input (that determined a path in digraph). Barrington provides a proof
in [4] that the depth of the circuit representation of f is linked to the size of the
corresponding branching program.

Set Gm to be the adjacency matrix for the branching program corresponding
to some f : {0, 1}|m| → {0, 1}. Set the entries in the main diagonal to 1. Note
that every row has at most one extra 1 apart from the 1 occurring on the main
diagonal. Let Gm stand for the matrix post-processed by eliminating the first
column and the last row within Gm. In [20] it is shown that f(m) = det(Gm).
Furthermore, matrices Rl and Rr having a special form exist, and the following
relation holds:

Rl · Gm · Rr =
(

�0 f(m)
−I �0

)
=

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 f(m)
−1 0 . . . 0 0
0 −1 . . . 0 0
...

...
...

...
0 0 . . . −1 0

⎞
⎟⎟⎟⎟⎟⎠ = Gf(m) ∈ F

m×m
p

This representation of f(m), as a product of two matrices Rl and Rr,
is advantageous when considering randomized encodings’ simulation security.
Notable, the value f(m) is given to the simulator while it can simulate a product
of (1) either full-ranked matrices or (2) of rank m−1 matrices. Thus, such a rep-
resentation is a direct, natural randomized encoding. During the decoding phase
of the randomized encoding, the determinant of Rl ·Gm ·Rr is obtained, allowing
to get f(m). Correctness follows given that both Rl,Rr are non-singular.

A Minor Note on Obtaining Simpler iO Constructions 571

We consider Rr,Rl ∈ F
m×m
p having the subsequent pattern:

Rl =

⎛
⎜⎜⎜⎜⎜⎝

1 $ $. . . $ $
0 1 $. . . $ $
...

...
...

...
...

0 0 0 . . . 1 $
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠ , Rr =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 $
0 1 0 . . . 0 $
...

...
...

...
...

0 0 0 . . . 1 $
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

To generalize the previous observation, one can use different distributions
for Rl,Rr. Put differently, consider L ∈ F

m×m
p and R ∈ F

m×m
p being sampled

uniformly at random over the space of non-singular matrices. We can write them
as: R ← Rr · R′ and L ← L′ · Rl . Note that:

L · Gm · R = (L′ · Rl) · Gm · (Rr · R) = L′ · (Rl · Gm · Rr) · R = L′ · Gf(m) · R′

Since the matrices L′ and R′ have full-rank, det
(
L · Gm · R)

= det
(
Gm

)
=

f(m). Also, observe that all entries in the resulting m × m matrix Tm ← L ·
Gm · R, can be written as a sum of degree-three monomials. [20] shows that
when decomposing every entry within Ti,j in monomials, no monomial depends
on more than one input bit of m. Moreover, each monomial has one component
stemming from L and R.

Augmenting NC1 BPs for Keyed Functions. The next part (Sect. 3)
describes how ADPs can be used to instantiate iO. We will not use ADPs directly
as described before. We will first apply transformations at the branching pro-
gram level resulting in an “augmented” branching program, taken from [5] and
described herein. The nuts and bolts of “augmented ADP” may be used only in
the indistinguishability proof for ADPs, while Sect. 3 needs only the interface of
ADPs – so they can regarded as black-box objects enjoying indistinguishability
(Definition 5).

Nimvs and Augmenting BPs. [5] puts forth a method to augment a branching
program with a set of intermediate nodes. This step is done without changing
the underlying function’s behaviour. The reason for doing so is to isolate the
“sensitive” variables – called non-input mutable variables or nimv. For the prob-
lem of building iO, nimv should be imagined as pPRFs keys, m, ρ or c, or any
other variables on which ADPs may differ while preserving their functionality.
Hiding such variables is instrumental in constructing iO.

Consider the branching program BP that implements a bivariate function
f(nimv, inp) that is represented as a circuit by C (nimv||inp); BP’s directed acyclic
graph representation has two complementary sets of nodes: the first contains
the vertices depending on nimv, the second contains vertices linked to input (the
message inp). Any other non-terminal vertex – if any – that is not linked to input
is added to the first set. Moreover, the nimvs are hardcoded (i.e. fixed) to some
values. This hardcoding step implies that all nodes depending on nimv in BP are
assigned a binary value.

572 R. Roşie

The augmented branching program is simply a BP that has an additional
ensemble of nodes injected into its original graph.
Auxiliary Nodes. The transform proposed in [5] concerns auxiliary nodes.
Given v a vertex settled by bit in some nimv variable’s binary representation,
and let u stand for another vertex s.t. an arc v → u exists in the graph represen-
tation of the BP. The digraph’s structure is changed (augmented) by injecting
an auxiliary node α between v and u, such that v is no longer directly connected
to u. The path between the two variables becomes v → α → u.

Definition 6 (Augmented branching programs for circuits in NC1 with
auxiliary nodes [5]), Let BP be the branching program corresponding to some
circuit Cnimv ∈ NC1 that embeds nimv. Let V denote the set of vertices settled by
nimv. For each vertex v ∈ V let u be a vertex such that there exists an arc from
v to u. A branching program augmented with auxiliary nodes ABP is defined by
extending the BP graph and introducing an intermediate vertex α on the path
between any node v depending on nimv and any child vertex u.

It can be noted that using auxiliary nodes to augment a branching program
upholds its correctness. Over F2 computing the determinant (in order to evaluate
the ADP) is in fact a sum of m! permutations. Given that a path originating in
the start vertex and ending in the terminal node 1 exists, it must be the case
that this path as well as the 1s placed on the second diagonal will force one of
the m! sums appearing in the explicit determinant formulation to be 1.

Related to the size of the augmented branching program, [5] notes an upper
bound of 3 · |BP|. This happens because every nimv-dependent node injects two
other nodes, the number of nodes being at most triple.

The primary advantage offered by auxiliary nodes is a way to decouple the
nimv dependent rows (or columns) appearing within the randomizing matrices
R (or L), from the other nodes. To see this, when the post-processed augmented
matrix G (obtained from ABP) gets multiplied with R, the rows of R triggered
by nimv-depending variables are isolated from the rows within R that depend
on input inp. Somehow similarly, the columns of L can be partitioned in three
disjoint sets: columns that are triggered by nimv, the inp or the auxiliary variables
(there is an asymmetry to the splitting of rows in the randomizing matrix R –
we only split its lines in two disjoint sets).

3 Our Indistinguishability Obfuscator

Definition 7. Let Cd,g : {0, 1}n → {0, 1}t stand for a class of circuits having
depth d, size g, input length n and output length t. Let Ucd,g

d′,g′ stand for a uni-
versal circuit supporting the evaluation of circuits of depth ≤ d and gates ≤ g
and itself having depth d′ and g′ gates. Let FE denote a functional encryption
scheme for a class of circuits Cd′,g′ : {0, 1}n+poly(d′,g′) → {0, 1}t having depth d′

and gates g′. Let � stand for the size of a ciphertext of FE. Assume the encryption
procedure of FE can be described by an NC1 circuit. Let pPRF stand for a punc-
turable pseudorandom function keyed by k and having its length of output match-
ing the length of FE’s encryption randomness term. Let ADP denote an affine

A Minor Note on Obtaining Simpler iO Constructions 573

determinant program supporting circuits matching the depth and width of FE’s
encryption procedure. The following construction represents an iO-obfuscator for
circuits in class Cd,g.

iO.Setup(1λ,C): Let m stand for the representation of C as a binary string.
Consider the decomposition of an FE ciphertext into � components. For every
j ∈ [�], consider the circuit described in Fig. 2.
1. Sample (msk,mpk)←$FE.Setup(1g′

, 1d′
). Set ρ ← 2n − 1.

2. Compute c←$FE.Enc(mpk,m||2n − 1).
3. Sample a pPRF key kpPRF and puncture it in a random point 0||$.
4. For each j in [�], run ADP.Setup

(
1λ,C j

mpk,kpPRF,m,⊥,ρ,c

)
and obtain ADPj.

5. Run FE.KGen(msk,Uc) and obtain skUc.
6. Return

(
skUc,

{
ADPj

}
j∈[�]

)
.

iO.Eval(inp):

1. For each j in [�], evaluate ADPj .Eval(inp) and obtain CTj.
2. Run FE.Dec(skUc,CT1|| . . . ||CT�).

Proposition 1 (Correctness). The obfuscator in Definition 7 is correct.

Proof (Proposition 1).

iO.Eval(inp) = FE.Dec
(
skUc,ADP1

.Eval(inp)|| . . . ||ADP�
.Eval(inp) = ||�i=1ADPi

.Eval(inp)
)

= FE.Dec
(
skUc, ||�i=1ADPi

.Eval(FE.Enc(mpk,C ||inp; pPRF(k, inp))))

= FE.Dec
(
skUc, FE.Enc(mpk,C ||inp; pPRF(k, inp))) = Uc(C ||inp) = C (inp) = f(inp) .

Fig. 2. The circuit outputs (bits of) a functional encryption (FE) ciphertext. ρ is a
limit set to 2n − 1. The main input range is {0, 1}n, artificially extended by 1.

4 Security of Our iO Scheme

The proof is akin to the one published in [25]. Its structure can be summarized
as follows: we hybridize over every single input inp taken over {0, 1}n (which
incurs an exponential security loss in n). For each input, we will: i) use the
indistinguishability of ADP to switch the pPRF key to one4 punctured in 1||inp;
4 This happens once for all of the [�] circuits.

574 R. Roşie

ii) then, based on pPRF indistinguishability, we switch the pPRF’s value in the
punctured point to true randomness5; iii) then based on FE’s indistinguishability
we switch to an FE ciphertext corresponding to m1||inp, where m1 is the binary
representation of C1; iv) we then revert the changes, and switch the random
coins back to the ones generated by the pPRF under a key punctured in inp; v)
finally, we use the ADP’s indistinguishability to switch back the punctured key
and also decrease the limit ρ.

Theorem 2 (iO-Security). The obfuscator presented in Definition 7 reaches
indistinguishability, as per Definition 4.

Proof (Theorem 2). The proof follows through a standard hybrid argument.
We present the hybrid games and then provide the reductions that justify the
transitions between these distributions.

Game0: the real game corresponding to C0 encoded as m0. Identical to Game1,0.
Game0i,0: identical to Gamei,0. In forthcoming games, i indexes elements of set

[2n − 1].
Gamej

i,0: for all j ∈ [�] using ADP’s indistingishability, replace the pPRF key k

(punctured in 0||$) with a key punctured in 1||(2n − i).
Gamei,1: based on pPRF’s security in the punctured point, replace the actual

pPRF’s value used to compute FE’s ciphertext c in the challenge point with
an actual truly randomly sampled value r.

5 Note that the output corresponding to the challenge inp is an FE ciphertext encrypt-
ing C0||inp.

A Minor Note on Obtaining Simpler iO Constructions 575

Gamei,2: based on FE’s indistinguishability, replace the FE ciphertext c corre-
sponding to the challenge point with a ciphertext encrypting m1 := C1.

Gamei,3: is the inverse of Gamei,1.
Gamej

i,4: is the inverse of Gamej
i,0 (the punctured key is replaced by k, and the

limit ρ is decreased to 2n − (i + 1).
Game�

2n−1,4: is the last game in the sequence, where the ciphertext corresponds
to m1 := C1 and the limit ρ is 0.

Gamefinal: based on ADP’s indistinguishability, we switch the places between m0

and m1 and replace ρ’s value of 0 with 2n − 1.

We prove the transitions between each pair of consecutive hybrids.

Gamej−1
i,0 → Gamej

i,0: for any j ∈ [�], in Gamej−1
i,0 the circuit will compute the

jth-bit of the FE ciphertexts using k, a punctured key punctured in 0||$; while
in Gamej

i,0, a punctured key punctured in 1||(2n − i) is going to be used. The
two circuits are equivalent due to the functional preservation under punctured
keys of a puncturable PRF as well as due to the fact that in the challenge
point, the ciphertext is computed using the normal key. Formally, the reduction
algorithm B crafts the two functionally-equivalent circuits, sends them to the
ADP challenger, and receives an ADP-obfuscated version of one of them. The
received version stands for the jth ADP that is sent to the adversary A1. The
adversary A1 impersonates an iO distinguisher, and returns its guess b (that
is next returned by B to the security experiment). Clearly, the simulation is
perfect and the winning advantage against the hybrid transition is identical to
the advantage against ADP’s indistinguishability.

Game�
i,0 → Gamei,1: in this setting, the punctured key used by the � circuits is

punctured in the input point 1||(2n−i). The hardcoded ciphertext corresponding
to ρ = 2n − i cannot be computed without the challenge value received from the
pPRF game. Our reduction B takes from the pPRF game: i) a key punctured in
1||(2n−i) and ii) a value corresponding to point 1||(2n−i) which is either sampled
uniformly at random or generated using the normal pPRF key. The reduction B
uses challenge value to build the FE ciphertext in ρ and the punctured key in
1||(2n − i) to further build all ADPs, which is perfectly possible. The set of ADPs
as well as the FE functional key are then sent to the adversary A that outputs
a guess b, which is B’s guess. As for the previous case, the reduction is tight.
Note that in adversary’s view, both iO obfuscators are functionally equivalent,
as decrypting FE ciphertexts generated under different random coins will provide
the same result.

Gamei,1 → Gamei,2: we use the indistinguishability of the functional encryption
to switch the encoded message, which should correspond to C1 for the challenge
input. The reduction B will receive the mpk, skUc, will construct the challenge
ciphertext corresponding to ρ = 2n − i. It will sample on its own the pPRF
keys and build the ADPs. The resulting obfuscator represents the input to the
adversary. Clearly, if the adversary distinguishes with non-negligible probability,
the same will do B.

576 R. Roşie

Game�
i,2 → Gamei,3: is virtually the inverse of the transition between Game�

i,0

and Gamei,1.

Gamei,3 → Game0i,4: these games are identical.

Gamej−1
i,4 → Gamej

i,4: is almost the inverse of the transition between Gamej−1
i,0

and Gamej
i,0, up to the difference that the limit ρ is decreased by 1 and a cipher-

text corresponding to m0 is computed for this position ρ − 1. Clearly the two
settings are identical, as for inputs (ρ − 1, ρ) the first ADP outputs the cipher-
texts corresponding to (m0,m1), while the ADPs in the other setting outputs
ciphertexts corresponding exactly to the same pair (m0,m1).

In the last but one game, the circuit will have ρ = 0. We do an extra game
hop and will output only ciphertexts corresponding to m1 (and thus C1). We
add the extra hybrid that switches ρ back to 2n − 1 and inverses m0 and m1.
Clearly this follows from ADP indistinguishability.

We apply the union bound and conclude that the advantage of any ppt

adversary A = (A1,A2,A3) is upper bounded by: AdvIND
A,iO(λ) ≤ 2n ·

(
(2� +

1) ·AdvIND-ADP
A1,ADP (λ)+Advs-IND-FE-CPA

A2,FE (λ)+ 2 ·Advpuncture
A3,pPRF(λ)

)
+AdvIND-ADP

A1,ADP (λ).
This completes the proof. ��

Instantiation from Learning With Errors. Somehow expected, the primi-
tives used herein are realizable from the sub-exponentially secure Learning with
Errors assumption. Universal circuits able to evaluate circuits of the same depth
exists unconditionally. Puncturable PRFs can be realized from LWE, by referring
to a work of Brakerski and Vaikuntanathan that builds single-key constrained
PRFs [11,12] (thus puncturable PRFs) where the evaluation is in NC1. Sub-
exponentially secure LWE suffices to instantiate succinct single-key functional
encryption [1,17].

5 ADPs as Depleted Obfuscators

In our view, indistinguishability obfuscation is related to hiding structure for
circuits. The goals are similar for ADPs: preserve the structure/topology while
“shielding” the nimvs. Given the lack of average-case assumptions related to
ADPs, our work considers a different approach – perfect security6:

ADP.Setup
(
1λ,Cnimv0 ;R0

)
= ADP.Setup

(
1λ,Cnimv1 ;R1

)
(4)

The equation above states that for any random coins R0 used during the
ADP.Setup w.r.t. circuit C0, there is a term R1 that can be used by ADP.Setup
to produce the same program output, but with respect to C1. [5] puts forth a

6 Note that this approach will not provide a perfectly secure obfuscator (which is
impossible), the scheme relying on the security of FE and puncturable PRFs.

A Minor Note on Obtaining Simpler iO Constructions 577

series of requirements on the function considered7 which, if fulfilled, would have
been sufficient to prove the security of IND-ADP. These conditions are to be
introduced below, all but the 6th being unchanged. Formally, we have to assume
the existence of IND-ADP-secure programs for circuit classes fulfilling the con-
ditions below8. Caveat: the circuit description has input length incremented by
1.

Assumption 1 (Informal). Let f : {0, 1}|nimv|+n → {0, 1} denote a binary
function and let Cd,|nimv|+(n+1) stand for a class of circuits of depth d with input
length |nimv| + (n + 1), satisfying conditions (1) → (6) below:

Condition 1. Every C ∈ Cd,|nimv|+(n+1) implements the two-input function
f : {0, 1}|nimv|+n → {0, 1} .
Condition 2. A condition for Cd,|nimv|+(n+1) to admit a IND-ADP-secure
implementation is d ∈ O(log2(|nimv| + (n + 1))) .
Condition 3. For every C ∈ Cd,|nimv|+(n+1) implementing some f :
{0, 1}|nimv|+n → {0, 1}, there exists a ppt algorithm R such that:

Pr
[
C (|nimv|, inp) = 1

∣∣∣(|nimv|, inp) ← R(1λ,C)
]

>
1

poly(|nimv| + (n + 1))
.

Condition 4. For every C ∈ Cd,|nimv|+(n+1) modelling some f , there exists
a ppt algorithm R such that ∀ inp ∈ {0, 1}(n+1), Pr[nimv �= nimv′ ∧
C (nimv, inp) = C (nimv′, inp)|(nimv, nimv′) ← R(1λ, f)] > 1

poly(|nimv|+(n+1)) .

Condition 5. For every C ∈ Cd,|nimv|+(n+1) modelling some f :
{0, 1}|nimv|+n → {0, 1}, there exists and is “easy to find” nimv such that:

C (nimv, b||inp′) :=

{
1 , if b = 0.

f(nimv, inp′) , if b = 1 and ∀inp′ ∈ {0, 1}n
.

Condition 6. Considering the underlying branching program representation
of some C ∈ Cd,|nimv|+(n+1)), on any local path, any index of a vertex depend-
ing on input is greater than any index of a vertex depending on nimv.

We assume there is an IND-ADP-secure ADP for the class Cd,|nimv|+(n+1).

We note that the first four requirements above are fulfilled by any circuit
representation that: (1) represents a bivariate function, (2) is in NC1, (3) rep-
resents a non-constant function and (4) is functionally equivalent to a circuit
built under different nimvs. The fifth condition is needed in order to ensure the
existence of well-defined inverse matrices for ADPs, while the most challenging
part is achieving (6). In the forthcoming part we put forward a new transform
that produces augmented BPs respecting constraints (5) and (6) having its pur-
pose to allow an indistinguishability proof to go through. We present below a
transformation that allows to tackle condition (6) above.
7 E.g., it should be non-zero, a finding independently meeting an earlier result of [18].
8 This part is included from a different work and has not yet been peer reviewed.

578 R. Roşie

Flare Vertices. A second transform, similar to auxiliary nodes, introduced
herein is to inject flare vertices. The purpose is to handle node ordering con-
straints on each of BP’s paths. We consider the following problem: (1) take BP’s
structure augmented with auxiliary vertices; (2) choose any vertex that depends
on nimvs; (3) choose any path that visits the nimv-dependent vertex from step
(2); (4) enforce that on the path chosen in (3), no vertices that depend on inp-
dependent vertices appear “before” vertices that depend on nimvs. Equivalently,
on any local path, all low-indexed vertices must be linked to nimvs (similarly
for auxiliary nodes) and all high-indexed nodes must be linked to inp dependent
nodes. This is done by injecting artificial vertices that redirect to the terminal
node 1, whenever the condition stated above fails. To restore the “normal eval-
uation mode”, we add complementary arcs when summing up the matrix G1

(that corresponds to the first input bit) to the base matrix G0. This observation
is made precise in what follows.

Take any path within the BP, and consider 3 non-empty lists of vertices L1,
L2, L3. L1 includes only vertices linked to nimvs or auxiliary vertices, L2 includes
only vertices linked to inputs, and L3 includes only vertices linked to nimvs or
auxiliary vertices like L1. Assume that there is an arc between any two pair of
neighbour vertices occurring in L1 (resp. L2 and L3); furthermore assume that
arc between the last vertex in L1 and the first vertex in L2 exists; assume that
an arc between the last vertex in L2 and the first vertex in L3 (thus a “path”)
exists. We introduce a natural ordering relation of vertices within BP: vi ≺ vj

holds iff i < j. This ordering relationship is extended to paths and such that
L1 ≺ L2 iff max{index(v) : v ∈ L1} < min{index(v) : v ∈ L2}. According to the
ordering defined above, every vertex in L1 has a lower index than any vertex in
L2, and this transitive relation is kept amongst L2 and L3. We decouple vertices
in L2 from the vertices in L3. We introduce flares, after each “ending” vertex
from L2. An “ending” vertex v ∈ L2 is a vertex that has an arc to some node
v′ ∈ L3. Flare nodes fl1,fl0 depending on input bit in position 1 are introduced
s.t. the following arcs exist: v → fl0 → 1 and v → fl1 → v′. In layman terms, fl
acts as an “electrical” switch: whenever the first bit in inp is 1, fl1 enables the
normal BP evaluation flow; whenever the first bit in inp is 0, fl0 redirects the
flow to the terminal node 1 – thus skipping the real function evaluation.

Definition 8 (Augmented branching programs for circuits in NC1 with
flare nodes). Let BP be the branching program corresponding to some circuit
Cnimv ∈ NC1 that embeds nimv. Let ≺ denote a node ordering relation. Let L1, L3
denote lists of increasingly ordered vertices settled by nimv and auxiliary nodes.
Let L2 be an ordered list of nodes that are settled by inputs. Let L1 ≺ L2 ≺ L3 such
that the relation is applied vertex-wise. For any node v in L2 such that v → v′

and v′ �∈ L2 introduce a node fl0 such that v → fl0 → 1. Introduce fl1 → v′. Let
the node flb be triggered by the value b of the first input bit.

Finally, the first input bit will be linked to a dummy node. Therefore, the
arity of ADP is artificially increased by 1. When the ADP is evaluated such that
the first, artificial, input bit is 0 the output is 1; when changing the first input
bit to 1 we use the normal evaluation mode.

A Minor Note on Obtaining Simpler iO Constructions 579

Related to the size, similarly to auxiliary nodes, it can be noted that adding
flares preserves the polynomial size of the BP, the increase can be loosely upper
bounded by twice the size of the ABP already augmented with auxiliary nodes.

A Puncturable PRFs with Evaluations in NC1

In this part, we provide evidence that a particular version of the constrained PRF
from [11] – namely the “toy” puncturable PRF informally introduced by Boneh,
Kim and Montgomery in [8, Section 1] – admits an NC1 circuit representation of
the evaluation function. This informal scheme is chosen for space reasons, and
also for simplicity (avoiding the usage of universal circuits in its description).
The notations that are used in this part are as follows: |inp| stands for the length
of the input string, λ stands for the security parameter, n and m stand for the
dimensions of the matrix used in the construction, q stand for the LWE modulus.

pPRF.Setup(1λ, 1|inp|): given the unary description of the security parameter λ:
1. Sample acolumn vector: s←$Z

n
q .

2. Sample |inp| matrices Bi of dimensions n × m uniformly at random over
Z

n×m
q , for all i ∈ [|inp|]. That is: Bi←$Z

n×m
q .

3. Sample 2 matrices A0,A1 as before: (A0,A1) ←$

(
Z

n×m
q ,Zn×m

q

)
.

4. Set as secret key: k ← (
s, B1, . . . , B|inp|, A0, A1

)
.

pPRF.Eval(k, inp): To evaluate input inp under pPRF key k, proceed as follows
1. Use the PKEval evaluation algorithm from [11] (detailed below) in order to
publicly compute a matrix Aeq.
2. Compute: Y ← s� · Aeq .
3. Return �Y � , where �·� is a rounding function: �·� : Zq → Zp that maps
x → �x · (p/q)�, i.e. the argument x is multiplied with p/q and the result is
rounded (over reals).

pPRF.Puncture(1λ, k, inp∗):
1. Return the punctured key for inp∗ = (inp∗

1, . . . , inp
∗
|inp|) ∈ {0, 1}|inp| as

k∗ ←
(
inp∗,

{
s� · (Ak + k · G) + ek

}
k∈{0,1}

,
{
s� · (Bk + inp∗

k · G) + e∗
k

}|inp∗|
k=1

)
.

pPRF.PuncEval(1λ, dk∗, inp): To evaluate in the punctured point:
1. Compute the encoding evaluation (detailed below) over the punctured key
and obtain Y : Y ← s� · (Aeq + eq(inp∗, inp) · G) + e′ .
2. Return �Y � where �·� is the same rounding function used by the normal
evaluation.

Observe that when eq(inp∗, inp) = 0, the value Y computed in punctured
evaluation is in fact s� · Aeq + e′. The correctness and security are based on
the constrained PRF scheme from [11], hence we ignore them herein. We focus
on the runtime analysis of the punctured evaluation algorithm. In doing so, we
need the public and the encoding evaluation algorithm.

580 R. Roşie

A.1 The Encoding Evaluation Algorithm for the pPRF in [11]

Consider a circuit composed from the universal set of gates: AND and NOT.

AND Gates: let gu,v,w be and AND gate, where u and v denote the input
wires while w denotes the output. Let yu = s� · (A + xu · G) + u and yv = s� ·
(A + xv · G)+v where xu and xv denote the value of wires u and v corresponding
to same input. The evaluation over encodings computes:

yw ← xu · yv − yu · G−1(Av) . (5)

which will be a valid encoding corresponding to the value of w.

NOT Gates: we reuse similar notations for gates as per the previous case, with
gu,w being a not gate and input wire is u, and y0 is an encoding corresponding
to the value 0:

yw ← y0 − yu . (6)

A.2 Punctured Evaluation’s Parallel Complexity

Here we scrutinize the parallel efficiency of the gate evaluation corresponding to
the equality function:

eq(inp∗, inp) :=

{
1, if inp = inp∗

0, otherwise
(7)

An unoptimized circuit that implements the eq function is built as follows:

1. use a gadget matrix that returns the boolean value of inp∗
i

?= inpi for some
input position i ∈ [|inp|]. This gadget matrix can be implemented as

NOT ((NOT (inp∗
i ANDinpi)) AND (NOT ((NOT inp∗

i)AND(NOT inpi))))
(8)

Thus the depth of this gadget is 5, and on each of the 5 levels further LWE-
related operations are to be performed.

2. use a full-binary tree style of circuit consisting of AND gates that outputs∧|inp|
i=1 (inp∗

i
?= inpi). Clearly, this circuit has �log2(|inp|)� levels.

Henceforth, the circuit that computes the evaluation (obtained by applying the
construction in step 2 on top of the “gadget” circuit) has depth ≤ c · log2(|inp|)
for some constant c. The matrix multiplication involved in the computation
of an AND gate, the values of G−1(A0) and G−1(A1) can be pre-stored, the
costly part being a vector × matrix multiplication. The inner, LWE-related com-
putations within the punctured evaluation algorithm are in NC1, as for other
constructions using LWE tuples, (see for instance [2]). Further details on the
complexity of circuits implementing addition/multiplication for elements in Fq

are given in [23, Section 8]). Thus, we can assume that the there exists punc-
turable PRFs having their punctured evaluation circuit in NC1 (as expected, also,
by [25]).

A Minor Note on Obtaining Simpler iO Constructions 581

B GKPVZ13’s Encryption Procedure is in NC1

In this section, we provide an informal argument for the existence of FE schemes
having their encryption procedure in NC1 (an assumption used in [25]). The
notation used herein are independent from the ones used in other sections.

The FE Scheme from [17]. Goldwasser et al.’s proposal is to regard FE for cir-
cuits with a single-bit of output from the perspective of homomorphic operations.
Their scheme’s encryption procedure proceeds as follows: (1) Samples on the fly
keys for an FHE scheme – namely (hpk, hsk) – and encrypts the input m bitwise;
let Ψ stand for the FHE ciphertext. (2) Then, the scheme makes use of Yao’s
garbling protocol GS; this is employed to garble the circuit “FHE.Dec(hsk, ·)”
and obtain two labels L0

i , L
1
i for each bit in the decomposition of Ψ ; (3) Finally,

the scheme encrypts Ψ , as well as hpk under a set of ABE public keys (in fact
two-outcome ABEs are used). In some sense, Ψ corresponds to an attribute: if
Cfi

(Ψ) = 0 a label L0
i is revealed. Else, the label L1

i is returned.
For [17], a functional key for a circuit is nothing more than an ABE key issued

for the “FHE.Eval” circuit. The trick is that one decrypts an ABE ciphertext with
an ABE key; this translates to applying FHE.Eval over an FHE ciphertext. Given
the ABE ciphertext encrypts L0

i , L
1
i , depending on the output value (a bit b), the

label Lb
i is returned. After the labels are recovered, they can be used to feed the

garbled circuit (included in the ciphertext); the decryptor evaluates and obtains
(informally) FHE.Dec(f(Ψ)), thus yielding the expected output in a functional
manner. Therefore, it is natural to set the master keys of the FE scheme as
only the ABEs’ msk and mpk. The total number of ABE keys to be sampled is
determined by the length of the FHE ciphertext.

B.1 Attribute-Based Encryption

When we consider a key-policy setting, a decryption key of an ABE must be
generated for one Boolean predicate P : {0, 1}λ → {0, 1}. A ciphertext of an
ABE in this setting is the encryption of a set of attributes α over {0, 1}λ and of
some plaintext m ∈ {0, 1}γ . ABE’s correctness specifies that having a decryption
key enables to recover the plaintext as long as P (α) = 1.

Instantiation of ABE. The seminal work of Gorbunov et al. [19] puts forward
attribute-based encryption schemes for comprehensive classes of circuits. We
review their construction, as it will serve in the circuit complexity analysis for
this work. Our description is top-down: we describe the ABE scheme, and then
review the TOR framework (their Two-to-One Recoding scheme).

Attribute-Based Encryption from General Circuits. A key-policy ABE is
presented in [19]. The main idea consists in evaluating on the fly a given circuit.
The bitstring representing the attributes – say α – is known a priori, as well as
the topology of the circuit – say φ – to be evaluated.

For each bit αi in α, there are two public keys associated – say (mpk0i ,mpk1i) –
corresponding to 0 and 1. A vector s ∈ F

m
q is sampled uniformly at random, and

582 R. Roşie

Fig. 3. In this section, � stands for the FHE’s ciphertext’s length, while FHE.Evalif :

K × {0, 1}n·� → {0, 1} stands for a function that applies Cf on the encrypted input.

encoded under the mpkαi
i as mpkαi

i ·s+noise. Then, the circuit φ is evaluated on
these encodings. The crux point consists of a recoding procedure, which ensures
that at the next level, s is “recoded” under the next public key corresponding to
the current gate. By keeping evaluating in such a way, the final output will be
an encoding of s under a circuit-dependent key pkout. The encoding of the form
pkout · s + noise is then used to recover the (symmetrically-)encrypted input X.
We detail these procedures in what follows:

– Setup(1λ): consists of � pairs of public keys, where � is the length of the

supported attributes α:
(
mpk01 mpk02 . . . mpk0�
mpk11 mpk12 . . . mpk1�

)
An additional key mpkout is sampled. Concretely, each mpkb

i corresponds to
Ab

i ∈ Z
n×m
q . The master secret key consists of 2 · n trapdoor matrices, which

are described in the TOR subsection (see below).
– KeyGen(msk, φ): considering the circuit representation of φ : {0, 1}n → {0, 1}.

Each wire in the circuit is associated with two public keys, corresponding to
a 0 and a 1. For each gate gu,v,w, a table consisting of 4 recoding keys are
generated: rkw

g(α,β) for gw
α,β the value of the gate under inputs α, β ∈ {0, 1}.

Based on the value of the gate applied on the inputs received from the
attribute (which is known in plain) a recoding key is chosen. This recoding
key is then used to recode the value of s under the new public key.

– Enc(mpk,X, α): encrypting X means sampling a random vector s←$F
m
q and

based on the decomposition of α, obtaining the encodings of s under mpkαi
i .

Finally, the input X itself is encrypted – via a semantic secure symmetric
scheme – under Encode(mpkout, s), which acts as a key. Thus, the ciphertext
consists of

(
α, {Encode(mpkαi

i · s + ei)}n
i=1 ,SE.Enc(Encode(mpkout, s),X)

)
.

A Minor Note on Obtaining Simpler iO Constructions 583

– Dec(CT, skφ): the decryption procedure evaluates the circuit given the encod-
ings and according to the attributes, and recovers Encode(pkout, s). This is
then used to recover X.

Two-to-One Recodings. The beautiful idea in [19] stems in the Two-To-One
Recoding mechanism. The crux point is to start with two LWE tuples of the form
A1 ·s+e1 and A2 ·s+e2 and “recode” them under a new “target” matrix Atgt.
The outcome is indeed a recoding of s: Atgt · s + etgt . In doing so, the recoding
mechanism uses two matrices, R1,R2, such that A1 · R1 + A2 · R2 = Atgt .

Sampling R1 is done uniformly at random. R2 is sampled from an appropriate
distribution, depending on a trapdoor matrix T. We do not discuss the details
of this scheme’s correctness/security, as our interest is related to the efficiency
of its encryption procedure.

Yao’s Garbling Scheme [29]. Garbling schemes have been introduced by
Yao [29]. A much appreciated way of garbling circuits is in fact the original
proposal by Yao. He considers a family of circuits having k input wires and
producing one bit. In this setting, circuit’s secret key is regarded as two labels
(L0

i , L
1
i) for each input wire, where i ∈ [k]. The evaluation of the circuit at point

x corresponds to an evaluation of Eval(Γ, (Lx1
1 , . . . , Lxk

k)), where xi stands for
the ith bit of x—thus the encoding c = (Lx1

1 , . . . , Lxk

k). The garbled circuit Γ can
be produced gate by gate, and the labels can be in fact symmetric keys.

B.2 Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) has been described within the work of
Rivest, Adleman and Dertouzos; it was an open problem until the breakthrough
work of Gentry [14].

Instantiation of FHE using the GSW levelled FHE. For the sake of clarity
we instantiate the FHE component used in [17] (see Fig. 3) using the GSW [15]
fully homomorphic encryption scheme.

– GSW.Setup(1λ, 1d): Given the LWE parameters (q, n, χ), set m := n log(q). Let
N := (n+1)·(�log(q)�+1). Sample t ← Z

n
q . Set hsk := s ← (1,−t1, . . . ,−tn) ∈

Z
n+1
q .

Generate B←$Z
m×n
q and eB←χ χm. Set b ← B · t + eB. Let A be defined as

the m × (n + 1) matrix having B in its last n columns, preceded by b as the
first one. Set hpk ← A. Return (hpk, hsk).

– GSW.Enc(hpk, μ): to encrypt a bit μ, first sample R←$ {0, 1}N×m. Return as
ciphertext: CT ← Flatten (μ · IN + BitDecomp(A · R)) ∈ Z

N×N
q .

– GSW.Dec(CT, hsk):
Let v ← PowersOfTwo(s). Find the index i such that vi = 2i ∈ (q

4 ; q
2].

Compute xi ← CTi · v, with CTi the ith row of CT. Return μ′ ← �xi

vi
�.

We do not discuss the circuit evaluation procedure, because it plays no role in
FE’s encryption procedure.

584 R. Roşie

B.3 Parallel Complexity of [17]’s Encryption Procedure when
Instantiated with GSW13 and GVW13

In this part, we provide an analysis of the parallel complexity of [17]’s encryption
procedure when instantiated with GSW13 and GVW13. First, we look at the
ciphertext structure in Fig. 3. It consists of two main types of elements: i) ABE
ciphertexts and ii) a garbled circuit.

The ABE Ciphertext. We do not describe the two outcome ABE, but note it
can be obtained generically from an ABE in the key-policy setting. The ciphertext
structure is described above, and it consists itself of two parts:

1. Index-Encodings: According to our notations, α is an index. Based on the
index’s position αi, one of the public key (matrices) is selected. Logically, this
ciphertext component translates to:(

A0
i · s + ei

)
+ αi · (

A1
i − A0

i

) · s (9)

Here αi is an index, but for [17], such indexes are generated through the
hpk and the homomorphic ciphertext. Thus we complement Eq. (9) with two
further subcases.

– part of indexes will be the homomorphic public key, which consists of
either i) the elements of B or ii) of a vector

αi ← (B · t + eB)θ (10)

where θ denotes a bit in the binary representation of the above quantity.
When plugged in with Eq. (10), Eq. 9 becomes:(

A0
i · s + e0

)
+ (B · t + eB)θ · (

A1
i − A0

i

) · s (11)

The circuit to compute that quantity can be realized by several NC1

circuits, the inner one outputting a bit in position θ, the outer one out-
putting one bit of ciphertext. As a consequence of [2], we assume that
LWE-like tuples can be computed in NC1. When plugged in with elements
of B from case i), the equation is simpler, and we simply assume the
circuit computing it has its depth lower than or equal to the previously
mentioned circuit.

– The second subcase is related to the usage of homomorphic ciphertexts as
indexes for GVW13. The ciphertext of GSW13 has the following format:

Flatten
(
inpξ · IN + BitDecomp(A · R)

)
(12)

where inpξ is a real input for the FE schema and R is a random matrix.
As for the previous case, a boolean circuit can compute Eq. (12) in loga-
rithmic depth. The BitDecomp has essentially constant-depth, as it does
rewiring. The matrix multiplication can be computed, element-wise in
logarithmic depth (addition can be done in a tournament style, while ele-
ment multiplication over Fq can also be performed in logarithmic time).
The flattening part can be performed in log log(q + 1) + 1 [23].

A Minor Note on Obtaining Simpler iO Constructions 585

Once Eq. (9) is fed with Eq. (12), the size of the circuit will still be
logarithmic, as the outer circuit, computing the matrix sum can be highly
parallelized.

2. Label-Encodings:
The second part of the GVW13 ciphertext is the encoding of the message
itself. We analyse the format of these encodings, and also the message to be
encoded (a label of a garbled circuit).
The encoding is done in two layers: first, a classical LWE tuple is obtained:

Aout · s + e (13)

is obtained, which is then used to key a symmetric encryption scheme that
will encode the input. We do not analyse the circuit depth of the SE, but we
will assume it is in NC1, and the Eq. (13) can be performed in NC1, as we
assume the existence of one-way functions in NC1. Their composition is:

SE.Enc((Aout · s + e),X) (14)

Thus, the composition of these two families of circuits will be in NC1, as long
as obtaining X is in NC1.
We turn to the problem of populating X. As we use Yao’s garbling scheme,
X will simply be itself a secret key of a symmetric scheme, used by a garbling
table. Thus, generating X can be done by a low depth PRG in NC1.

The Garbled Circuit. The final part of FE’s ciphertext in [17] is the garbled
circuit, which uses Yao’s garbling. The garbled circuit can be obtained gate by
gate. The circuit to be garbled is GSW13’s decryption. This decryption proce-
dure consists of an inner product, followed by a division with a predefined value
(in fact a power of two), and by a rounding. The total circuit complexity is
logarithmic (thus NC1).

We now inspect the complexity of the circuit producing the garbling of the
gates of FHE.Dec. It is clear that every gate garbling process can be parallelized:
the structure of FHE’s decryption circuit is fixed, enough labels must be sampled
(by NC1 circuits). For each wire in a gate, there must be one SE key generated.
After that, producing one garbling table has the same depth as the encryp-
tion circuit together with the SE’s key generation procedure. Given that these
components are in NC1, the complexity of the combined circuit is in NC1.

References

1. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 173–205.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 7

2. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

https://doi.org/10.1007/978-3-319-70500-2_7
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42

586 R. Roşie

3. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

4. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

5. Barthel, J., Roşie, R.: NIKE from affine determinant programs. In: Huang, Q., Yu,
Yu. (eds.) ProvSec 2021. LNCS, vol. 13059, pp. 98–115. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90402-9 6

6. Bartusek, J., Ishai, Y., Jain, A., Ma, F., Sahai, A., Zhandry, M.: Affine determinant
programs: a framework for obfuscation and witness encryption. In: Vidick, T. (eds.)
ITCS 2020, vol. 151, pp. 82:1–82:39. LIPIcs (2020)

7. Bollig, B.: Restricted nondeterministic read-once branching programs and an expo-
nential lower bound for integer multiplication. RAIRO-Theor. Inf. Appl. 35(2),
149–162 (2001)

8. Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard
lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
I. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 15

9. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

10. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 27

11. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 1

12. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp.
446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 16

13. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (eds.) 41st ACM STOC, pp. 169–178. ACM Press (2009)

15. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

16. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

17. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Boneh, D., Roughgarden,
T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press (2013)

18. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-70936-7 11

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-030-90402-9_6
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-540-70936-7_11

A Minor Note on Obtaining Simpler iO Constructions 587

19. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press (2013)

20. Ishai, Y.: Secure computation and its diverse applications. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 90–90. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-11799-2 6

21. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

22. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: Khuller, S., Williams, V.V. (eds.) STOC 2021: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, 21–25 June
2021, pp. 60–73. ACM (2021)

23. Jaques, S., Montgomery, H., Roy, A.: Time-release cryptography from minimal
circuit assumptions. Cryptology ePrint Archive, Paper 2020/755 (2020). https://
eprint.iacr.org/2020/755

24. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise
Tricks and Techniques; Binary Decision Diagrams (2009)

25. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-
trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016, Part II. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49387-8 17

26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press
(2005)

27. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press
(2014)

28. Wegener, I.: Branching programs and binary decision diagrams: theory and appli-
cations. SIAM (2000)

29. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press (1986)

30. Yao, L., Chen, Y., Yu, Y.: Cryptanalysis of candidate obfuscators for affine deter-
minant programs. Cryptology ePrint Archive, Report 2021/1684 (2021). https://
ia.cr/2021/1684

https://doi.org/10.1007/978-3-642-11799-2_6
https://doi.org/10.1007/978-3-642-11799-2_6
https://doi.org/10.1007/3-540-45465-9_22
https://eprint.iacr.org/2020/755
https://eprint.iacr.org/2020/755
https://doi.org/10.1007/978-3-662-49387-8_17
https://ia.cr/2021/1684
https://ia.cr/2021/1684

Correction to: Upper Bounds on the Number
of Shuffles for Two-Helping-Card Multi-Input

AND Protocols

Takuto Yoshida , Kodai Tanaka , Keisuke Nakabayashi ,
Eikoh Chida , and Takaaki Mizuki

Correction to:
Chapter 10 in: J. Deng et al. (Eds.): Cryptology and Network
Security, LNCS 14342,
https://doi.org/10.1007/978-981-99-7563-1_10

In the original version there is a correction in the chapter title. “Multi-Input and
Protocols” should be changed to “Multi-Input AND Protocols”. This has been
corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-981-99-7563-1_10

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, p. C1, 2023.
https://doi.org/10.1007/978-981-99-7563-1_26

http://orcid.org/0009-0004-3766-9303
http://orcid.org/0009-0006-3524-4453
http://orcid.org/0009-0009-5701-5311
http://orcid.org/0000-0002-8698-1043
https://doi.org/10.1007/978-981-99-7563-1_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7563-1_26&domain=pdf
https://doi.org/10.1007/978-981-99-7563-1_10
https://doi.org/10.1007/978-981-99-7563-1_26

Author Index

A
Afia, Ismail 51
Alimanov, Kanat 126
AlTawy, Riham 51
Aono, Yoshinori 28
Assylbekov, Zhenisbek 126

B
Badrinarayanan, Saikrishna 443
Barthoulot, Anaïs 538
Bellini, Emanuele 268
Blazy, Olivier 538

C
Canard, Sébastien 538
Chakraborty, Suvradip 3
Chandratreya, Vishal Pankaj 318
Chida, Eikoh 211
Chowdhury, Dipanwita Roy 318
Christodorescu, Mihai 443

D
De Piccoli, Alessandro 268
Duong, Thai 137
Dutta, Ratna 392
Dutta, Sabyasachi 468

F
Fan, Hao 293
Formenti, Mattia 268

G
Gaddam, Sivanarayana 343
Gao, Jiahui 137
Gerault, David 268
Glaser, Timo 75
Gong, Xinxin 293
Guo, Chun 101

H
Hao, Yonglin 293
Huynh, Paul 268

J
Jiang, Shaoquan 468
Jiao, Lin 293

K
Kar, Animesh 162
Karthikeyan, Harish 3
Kumaresan, Ranjit 343, 443

L
Li, Nan 516
Li, Yingjiu 516
Lin, Xiuhan 414
Liu, Li 414

M
Manabe, Yoshifumi 232
May, Alexander 75
Mazumdar, Torsha 186
Miyaji, Atsuko 497, 516
Miyaji, Hideaki 497
Mizuki, Takaaki 211

N
Nagaraja, Vinjith 443
Nakabayashi, Keisuke 211

O
O’Neill, Adam 3

P
Pal, Debranjan 318
Patel, Karan 443
Pelizzola, Simone 268
Phan, Duong Hieu 137

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2023
J. Deng et al. (Eds.): CANS 2023, LNCS 14342, pp. 589–590, 2023.
https://doi.org/10.1007/978-981-99-7563-1

https://doi.org/10.1007/978-981-99-7563-1

590 Author Index

Polese, Sergio 268
Preuß Mattsson, John 251

R
Raghuraman, Srinivasan 343, 443
Rahman, Muhammad Lutfor 186
Rangan, C. Pandu 3
Rindal, Peter 443
Roşie, Răzvan 563

S
Safavi-Naini, Reihaneh 468
Shaw, Surbhi 392
Shikata, Junji 28
Shinagawa, Kazumasa 232
Si, Shumin 414
Sinha, Rohit 343
Song, Zhiying 368
Stakhanova, Natalia 162
Sun, Wei 443

T
Tanaka, Kodai 211
Tang, Peng 368

Tian, Yangguang 516
Timko, Daniel 186
Trieu, Ni 137

V
Visconti, Andrea 268

W
Wang, Qingju 293
Wang, Weijia 101
Wei, Puwen 368, 414
Wu, Shichen 368

X
Xu, Minghua 443

Y
Yoshida, Takuto 211
Yuan, Quan 368
Yuen, Tsz Hon 516

Z
Zhao, Yuqing 101

	 Preface
	 Organization
	Keynote Abstracts
	 Building Covert Communication Systems That Resist Traffic Analysis
	 Cultivating a National Culture of Cybersecurity
	 Contents

	Schemes I
	Forward Security Under Leakage Resilience, Revisited
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contributions in Brief

	2 Technical Overview
	3 Preliminaries
	3.1 Notations
	3.2 Different Notions of Entropy
	3.3 Primitives Required for Our Constructions.

	4 Our Results in the FS+CL Model
	4.1 Encryption in the FS+CL Model
	4.2 Our Construction

	5 Our Results in the FS+(C)EBL Model
	5.1 The FS+EBL Model
	5.2 NIKE in FS+EBL Model
	5.3 Syntax of FS-EBLR NIKE
	5.4 Security Model for FS-EBLR NIKE
	5.5 Construction of NIKE Scheme in the FS+EBL Model
	5.6 Security Proof

	References

	Anonymous Broadcast Authentication with Logarithmic-Order Ciphertexts from LWE
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions and Paper Organization

	2 Preliminaries
	2.1 Anonymous Broadcast Authentication (ABA)

	3 Vernam-Styled Multirecipient Encryption with Information-Theoretic Security
	4 Template Construction of Base ABA
	4.1 A Template
	4.2 Anonymity
	4.3 Unforgeability

	5 Concatenation of ABAs
	5.1 Anonymity in the Restricted Device Selection
	5.2 Modification Against Recombination Attack
	5.3 Anonymity from the Dependency of Algebraic Systems

	6 Concrete Scheme and Security Parameters
	7 Concluding Remarks
	References

	Traceable Policy-Based Signatures with Delegation
	1 Introduction
	2 Preliminaries and Building Blocks
	2.1 Rerandomizable Digital Signature Scheme (RDS)
	2.2 Simulation-Sound Extractable NIZK (SE-NIZK)
	2.3 Digital Signature Schemes

	3 Traceable Policy-Based Signatures (TPBS)
	3.1 TPBS Security Definitions
	3.2 Privacy
	3.3 Unforgeability
	3.4 Non-frameability
	3.5 Traceability

	4 TPBS Generic Construction
	5 TPBS Security
	6 TPBS Instantiation and Performance
	7 Comparisson with PBS and Xu et al.'s Schemes
	8 Conclusion
	References

	Basic Primitives
	How to Enumerate LWE Keys as Narrow as in Kyber/Dilithium
	1 Introduction
	2 Preliminaries
	3 How to Enumerate LWE Keys with May's Algorithm
	3.1 Brute-Force and Meet-in-the-Middle LWE Key Enumeration
	3.2 High-Level Idea of the Algorithm

	4 Enumerating Keys from a Probabilistic Distribution
	4.1 A Polynomial Fraction of All Keys Achieves Expectations
	4.2 Attacking Almost All Keys via Permutations

	5 Instantiating LWE-Search with Simple (Rep-0) Representations
	5.1 Rep-0 Instantiation of LWE-Search

	6 More Representations
	6.1 Rep-1 Representations
	6.2 Rep-2, Rep-3 Representations

	7 Other Distributions – Ternary, B(2), and Uniform
	7.1 Ternary Keys—Featuring NTRU, BLISS and GLP
	7.2 B(2) and B(3)—Featuring Kyber-512 and Kyber-768,1024
	7.3 Uniform Distribution—Featuring Dilithium-1024,2048

	8 Parameter Optimization and Implementation
	8.1 Parameter Search
	8.2 Implementation

	A Full Parameter Sets: Ternary, Binomial, and Uniform
	References

	Towards Minimizing Non-linearity in Type-II Generalized Feistel Networks
	1 Introduction
	2 Preliminaries
	3 A Chosen-Plaintext Attack on 3 Rounds
	4 SPRP Security at 5 Rounds with Public Permutations
	4.1 Proof Setup
	4.2 Bad Transcripts
	4.3 Bounding the Ratio ()/()

	5 SPRP Security at 5 Rounds with Public Functions
	6 Conclusion
	A The H-Coefficient Technique
	B Deferred Proofs
	B.1 Proof of Lemma 2
	B.2 Proof of Lemma 3

	C MDS Candidates in F N
	C.1 MDS in Binary Field
	C.2 MDS in Prime Field

	References

	Hardness of Learning AES with Gradient-Based Methods
	1 Introduction
	2 Preliminaries
	2.1 Advanced Encryption Standard
	2.2 Statistical Properties of AES

	3 Main Result
	4 Experiments
	5 Conclusion
	References

	Security
	Privacy-Preserving Digital Vaccine Passport
	1 Introduction
	1.1 Our Contribution

	2 Problem Statement and Desirable Properties
	2.1 Security Definition
	2.2 Desirable Security
	2.3 Desirable Performance

	3 Cryptographic Preliminaries
	3.1 Randomizable Signature Scheme
	3.2 Private Information Retrieval
	3.3 Private Matching

	4 Digital Vaccine Passport Constructions
	4.1 System Overview
	4.2 PIR-Based Construction (Online Verification)
	4.3 Digital Signature-Based Construction (Offline Verification)

	5 Performance
	A Performance
	B Related Work
	C Security of Our Digital Signature-Based Construction
	D Formal Security Definition
	E Diffie–Hellman-Based Private Matching
	References

	Exploiting Android Browser
	1 Introduction
	2 Background
	3 The Proxy Attack
	3.1 Threat Model Overview
	3.2 Attack Overview
	3.3 Attack Heuristics
	3.4 Collection of Information
	3.5 Launch
	3.6 Retrieving Data

	4 Evaluation Study
	4.1 Settings
	4.2 Accessible Information
	4.3 Evaluation Results

	5 Discussion and Lessons
	6 Related Work
	7 Conclusion
	References

	Are Current CCPA Compliant Banners Conveying User's Desired Opt-Out Decisions? An Empirical Study of Cookie Consent Banners
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Participant Recruitment
	3.2 Presurvey Questionnaire
	3.3 Online Experiment
	3.4 Exit Survey

	4 Data Analysis and Results
	4.1 Participant Demographics
	4.2 Experiment Results
	4.3 Exit Survey Result

	5 Discussion
	5.1 Understanding User Consent Choices and Privacy Actions
	5.2 Exploring User Interaction with Consent Banners
	5.3 Limitations and Future Work
	5.4 Recommendations to Policy Makers

	6 Conclusion
	References

	MPC with Cards
	Upper Bounds on the Number of Shuffles for Two-Helping-Card Multi-Input AND Protocols
	1 Introduction
	1.1 The Mizuki–Sone and Protocol
	1.2 Committed-Format Multi-input and Protocol
	1.3 Contribution of This Paper
	1.4 Related Works
	1.5 Organization of This Paper

	2 Preliminaries
	2.1 Pile-Scramble Shuffle
	2.2 Batching Technique

	3 Application of Batching to MS-AND Protocol
	3.1 Idea
	3.2 MSbatching: How to Batch MS-AND Protocols
	3.3 Example of Two-Helping-Card and Protocol by MSbatching

	4 Class of MSbatching Protocols and Corresponding Problem
	4.1 MSbatching Protocols
	4.2 MSbatching Move-Sequence Problem

	5 Proposed Protocol
	5.1 Description of Proposed Protocol
	5.2 Proposed Protocol for n=48

	6 Search for Optimal Protocols
	6.1 Lemmas to Narrow Search Space
	6.2 Shortest Move-Sequence Search
	6.3 Comparison

	7 Conclusion
	References

	Free-XOR in Card-Based Garbled Circuits
	1 Introduction
	2 Preliminaries
	3 Card-Based Garbled Circuits
	4 Free-XOR in Card-Based Garbled Circuits
	5 Eliminating Restriction for Outputs
	6 Conclusion
	References

	Cryptanalysis
	Hidden Stream Ciphers and TMTO Attacks on TLS 1.3, DTLS 1.3, QUIC, and Signal
	1 Introduction
	2 Preliminaries
	2.1 Signal Protocol and the Symmetric-Key Ratchet
	2.2 TLS 1.3 and the Key Update Mechanism

	3 Hidden Stream Ciphers and TMTO Attacks
	3.1 Synchronous Stream Ciphers
	3.2 Time Memory Trade-Off Attacks
	3.3 TMTO Attacks on Signal and TLS 1.3
	3.4 Equal Plaintext Prefix

	4 Signal Protocol - Analysis and Recommendations
	5 TLS 1.3 Family - Analysis and Recommendations
	5.1 Time Memory Trade-Off Attacks
	5.2 Key Exfiltration Attacks and Frequent Ephemeral Diffie-Hellman
	5.3 Analysis of the Procedure Used to Calculate AEAD Limits

	6 Conclusions, Recommendations, and Future Work
	References

	Differential Cryptanalysis with SAT, SMT, MILP, and CP: A Detailed Comparison for Bit-Oriented Primitives
	1 Introduction
	2 Preliminaries
	3 Cipher Components Models
	3.1 XOR Component
	3.2 Rotation and Shift Components
	3.3 Linear Layer Component
	3.4 S-Box Component
	3.5 AND/OR Component
	3.6 Modular Addition Component

	4 Experimental Results
	4.1 Choice of Solvers
	4.2 Comparison for Task 1
	4.3 Comparison for Task 2
	4.4 Comparison for Task 3
	4.5 Speeding up CryptoMiniSat

	5 Conclusion
	A Differential Cryptanalysis
	B Formalisms
	B.1 Satisfiability (SAT)
	B.2 Satisfiability Modulo Theories (SMT)
	B.3 Mixed-Integer Linear Programming (MILP)
	B.4 Constraint Programming (CP)

	C Experimental Results Tables
	References

	Key Filtering in Cube Attacks from the Implementation Aspect
	1 Introduction
	2 Preliminary
	2.1 The Main Procedures of Cube Attacks
	2.2 Division Property Based Superpoly Recoveries
	2.3 Table Lookup Based Key Filtering Techniques

	3 New Attacks on Kreyvium
	3.1 New Results for 898-Round Kreyvium
	3.2 New Results for 899-Round Kreyvium
	3.3 New Results for 900-Round Kreyvium

	4 Implementation Dependency
	4.1 An Implementation Dependency Analysis Example

	5 Further Analysis for Cube Attacks
	5.1 Analysis for More Cases of Cube Attacks
	5.2 Multiple Cubes Vs Single Cube

	6 Conclusions
	A Details of Our Attacks on Kreyvium
	A.1 Degree Evaluations of 899-Round Kreyvium
	A.2 The ANFs of Superpolies Corresponding to Attacks on 898- And 900-Round Kreyvium

	References

	New Techniques for Modeling SBoxes: An MILP Approach
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Organization of the Paper

	2 Background
	2.1 Representation of SBoxes Using Inequalities

	3 Filtering Inequalities by Greedy Random-Tiebreaker
	3.1 Why Random Tiebreaking Improves the Performance of the Greedy Algorithm?
	3.2 Implementations and Results

	4 Filtering Inequalities by Subset Addition
	4.1 Comparison with Boura and Coggia's ch15BouraC Approach
	4.2 Multithreading and Filtration
	4.3 Implementation and Results

	5 Conclusion
	A Existing Algorithm for Choosing Best Inequalities
	B Sample Reduced Inequalities
	References

	Blockchain
	LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness
	1 Introduction
	2 Overview of LucidiTEE
	2.1 Running Example: Personal Finance App
	2.2 Requirements of Acme
	2.3 Acme on LucidiTEE

	3 Building Blocks
	3.1 Trusted Execution Environment (TEE)
	3.2 Shared, Append-Only Ledger
	3.3 Cryptographic Primitives and Assumptions

	4 Adversary Model
	5 Policy-Compliant Computation
	5.1 Specifying and Creating a Computation
	5.2 Binding Inputs to Computations
	5.3 Enforcing Policy-Compliance
	5.4 Producing Encrypted Output
	5.5 Recording Computation on Ledger
	5.6 Fair Output Delivery

	6 Implementation
	7 Evaluation
	7.1 Case Studies
	7.2 Performance Measurement

	8 Related Work
	9 Conclusion
	References

	Improving Privacy of Anonymous Proof-of-Stake Protocols
	1 Introduction
	2 Preliminaries
	3 Attack on Anonymous PoS and Its Limitations
	3.1 Frequency Attacks Against Stake Privacy
	3.2 Interval Estimation for Stakes in Practice

	4 Privacy of PoS Against Frequency Attack
	4.1 (T,,)-Privacy
	4.2 (T,,)-Privacy in Practice

	5 Anonymous Proof-of-Stake with Noise
	5.1 Adding Noise to Anonymous PoS
	5.2 (T,,)-Privacy of APoS-N
	5.3 Security Properties of Underlying PoS

	A Hoeffding Bound
	B AVRF
	C Frequency Attack over 12 Epochs
	D Functionalities
	References

	Compact Stateful Deterministic Wallet from Isogeny-Based Signature Featuring Uniquely Rerandomizable Public Keys
	1 Introduction
	2 Preliminaries
	2.1 Isogeny-Based Cryptography
	2.2 Class Group Action

	3 Signature Schemes
	3.1 CSI-FiSh
	3.2 CSI-SharK

	4 Signature Scheme with Perfectly Rerandomizable Keys
	4.1 Signature Scheme with Perfectly Rerandomizable Keys from CSI-FiSh
	4.2 Signature Scheme with Perfectly Rerandomizable Keys from CSI-SharK

	5 Stateful Deterministic Wallet
	6 Stateful Deterministic Wallet from Isogenies
	References

	CTA: Confidential Transactions Protocol with State Accumulator
	1 Introduction
	1.1 Our Contributions
	1.2 Technique Overview of ZK for Lattice-Based Accumulator

	2 Preliminaries
	3 Lattice-Based ZK Proofs for Accumulators
	3.1 Construction of Lattice-Based Accumulator
	3.2 Zero-Knowledge Proofs of Our Accumulator

	4 Confidential Transactions with State Accumulator
	4.1 Syntax
	4.2 Security Model
	4.3 Construction of CTA

	5 Conclusions
	A More on Preliminaries
	A.1 Challenge Space
	A.2 Rejection Sampling

	B Proof for Theorem 2
	C Proof of Theorem 3
	D Proof for Lemma 2
	E Proof of Theorem 4
	References

	MPC and Secret Sharing
	A Plug-n-Play Framework for Scaling Private Set Intersection to Billion-Sized Sets
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Private Set Intersection
	2.2 Apache Spark
	2.3 Threat Model

	3 Parallelizing PSI via Binning
	3.1 Analysis
	3.2 Applying Our Binning Technique

	4 Scalable Private Database Joins
	4.1 Database Joins Across Data Domains
	4.2 System Architecture
	4.3 Spark-PSI Implementation

	5 Experimental Evaluation
	5.1 System Setup
	5.2 Microbenchmarking
	5.3 End-to-End Performance

	References

	Lower Bounds on the Share Size of Leakage Resilient Cheating Detectable Secret Sharing
	1 Introduction
	1.1 Contributions
	1.2 Related Works

	2 Model and Definitions
	2.1 Secret Sharing
	2.2 Cheater Detection
	2.3 Leakage Resilient Secret Sharing
	2.4 Leakage Resilient Cheating Detectable Secret Sharing

	3 Preliminaries
	4 A Lower Bound Using Leakage and Tampering of a Single Share
	5 A Lower Bound Using Shares of an Unauthorized Set and Leakage of a Single Share
	6 Cheater Detectability and Non-Malleability in Secret Sharing
	7 Conclusion
	A Non-malleable Codes
	B Proofs
	References

	Schemes II
	Lattice-Based Key-Value Commitment Scheme with Key-Binding and Key-Hiding Properties
	1 Introduction
	1.1 Commitment Scheme and Key-Value Commitment Scheme
	1.2 Construction Without a Trusted Setup Based on Lattice Assumption with Key-Binding and Key-Hiding Properties
	1.3 Contribution
	1.4 Paper Organization

	2 Preliminary
	3 New Security Assumption and Its Difficulty Proof
	3.1 New Definitions as Defined in This Paper

	4 Proposed Insert-KVC Based on SIS
	4.1 Concrete Explanation of Proposed Insert-KVCm/2,n,q,
	4.2 Key-Binding of Proposed Insert-KVCm/2,n,q,
	4.3 Key-Hiding of Insert-KVCm/2,n,q,

	5 Proposed Key-Value Commitment Based on SIS
	5.1 Concrete Explanation of Proposed KVCm,n,q,
	5.2 Key-Binding of Proposed KVCm,n,q,
	5.3 Key-Hiding of KVCm,n,q,

	6 Comparison
	7 Conclusion
	References

	A Practical Forward-Secure DualRing
	1 Introduction
	1.1 Motivations
	1.2 Overview of Our Construction
	1.3 Related Work

	2 Preliminaries
	2.1 Complexity Assumptions
	2.2 DualRing
	2.3 Forward Security

	3 Definition and Models
	3.1 Definition
	3.2 Security Models

	4 Our Construction
	4.1 Security Analysis

	5 Extension
	6 Implementation and Evaluation
	7 Conclusion
	A Proof of Theorem 1
	B Proof of Theorem 2
	References

	Dually Computable Cryptographic Accumulators and Their Application to Attribute Based Encryption
	1 Introduction
	2 Preliminaries
	2.1 Cryptographic Accumulators
	2.2 Other Preliminaries

	3 A New Accumulator Scheme
	4 Dually Computable Cryptographic Accumulators
	4.1 Definitions
	4.2 Our First Dually Computable Cryptographic Accumulator

	5 Application of Dually Computable Accumulator: Attribute Based Encryption
	5.1 Security Definitions for ABE
	5.2 ABE from Dualy Computable Accumulator: Intuition
	5.3 Our CP-ABE Scheme
	5.4 Comparison

	6 Conclusion
	References

	A Minor Note on Obtaining Simpler iO Constructions via Depleted Obfuscators
	1 Introduction
	1.1 Our Result
	1.2 How to Use ADPs to Obfuscate Specific Classes of Circuits
	1.3 The Usage of ADPs in Our Scheme

	2 Background
	2.1 Basic Definitions
	2.2 Direct ADPs from Randomized Encodings

	3 Our Indistinguishability Obfuscator
	4 Security of Our iO Scheme
	5 ADPs as Depleted Obfuscators
	A Puncturable PRFs with Evaluations in NC1
	A.1 The Encoding Evaluation Algorithm for the pPRF in ch25TCC:BraVai15
	A.2 Punctured Evaluation's Parallel Complexity

	B GKPVZ13's Encryption Procedure is in NC1
	B.1 Attribute-Based Encryption
	B.2 Fully Homomorphic Encryption
	B.3 Parallel Complexity of ch25STOC:GKPVZ13's Encryption Procedure when Instantiated with GSW13 and GVW13

	References

	Correction to: Upper Bounds on the Number of Shuffles for Two-Helping-Card Multi-Input AND Protocols
	Correction to: Chapter 10 in: J. Deng et al. (Eds.): Cryptology and Network Security, LNCS 14342, https://doi.org/10.1007/978-981-99-7563-1_10

	Author Index

