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Abstract. Convolutional neural networks (CNN) are widely used for
diabetic retinopathy (DR) aided diagnosis, but the CNN approach suf-
fers from insufficient global feature extraction capability. In this paper,
a DR grading method based on the fusion of CNN and Transformer
network is proposed to assist doctors in implementing DR image diagno-
sis. The proposed uses a dual-branch network architecture, utilizing the
lightweight EfficientNet model in CNN to better extract local features
from retinal images by balancing network depth, width and resolution.
Meanwhile, in another branch, the Swin Transformer with good trans-
lation invariance and hierarchy is introduced, thus capturing global fea-
tures of DR images with the powerful global modeling ability. Then, the
local and global features of the dual-branch are fused at the end of the
network to achieve a more robust DR image representation. The method
achieves 86.14% DR grading accuracy on the Aptos sigmaX10 dataset,
an improvement of 2.99% and 1.09% compared to using only CNN or
Transformer, respectively.

Keywords: Network fusion · EfficientNet · Swin Transformer ·
Diabetic retinopathy

1 Introduction

As an incurable chronic disease, diabetes will not only cause blood glucose
metabolism problems, but also cause chronic damage to eyes, kidneys, heart
and other organs. Diabetic Retinopathy (DR) is a typical set of lesions caused
by damage to the microvasculature of the retina as a result of diabetes [1]. The
DR proportion of adult diabetes patients accounts for more than 40% of the
total number of diabetes patients, which is one of the most common causes of
adult blindness [2]. DR is not clinically evident in the early stages of the disease,
and by the time it is detected it has already produced severe retinal disease.
As there are still no good clinical treatment options for patients with advanced
DR, early prevention of retinopathy has become very important [3]. At present,
the diagnosis of DR relies mainly on the recognition of professional ophthalmol-
ogists, but as the diagnosis of retinal images is a difficult and time-consuming
task, there is an urgent need for computer-aided retinal image diagnosis [4].
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With the development of deep learning technology and its outstanding per-
formance in various fields, researchers have attempted to introduce deep learning
methods represented by CNN into DR image assisted diagnosis. Among them,
Pratt et al. [5] proposed the use of multilayer convolutional neural network
(CNN) for five classification prediction of DR images, which greatly improved
the accuracy of computer processing of DR image classification task and demon-
strated the effectiveness of using deep learning for DR classification. On this
basis, Dekhil et al. [6] proposed a network model with five convolutional layers
to further improve DR image grading accuracy through image preprocessing and
network lightweighting. To enhance the network’s ability to extract features from
retinal images, Torre et al. [7] propose an interpretable classifier. The method
uses convolution to adapt the network architecture so that the receptive field is
as close as possible to the original image size, and the classification results are
interpreted by assigning a score to each point in the hidden and input spaces.
The method also incorporates information from binocular retinal images. With
the wide application of attention mechanism on deep learning, Zhou et al. [8]
proposed a DR image grading network based on the attention mechanism to
enable more attention to be paid to the information of lesions in the retina
during grading, To detect small lesions in retinal images, Gu et al. [9] instead
proposed a network based on a multi-channel attentional selection mechanism.
The method introduces sorting losses to optimise the amount of information in
each layer of the channel, and improves the accuracy of classification by combin-
ing fine-grained classification methods with multi-channel attentional acquisition
of local features. In addition, to overcome the problem that the cross-entropy
loss function is sensitive to noisy data and hyperparameter changes, Islam et al.
[10] proposed a two-stage comparison method having a supervised comparison
loss function, which also achieved better performance in DR grading.

Although CNNs have shown good results in DR image grading tasks, CNN
methods also suffer from a lack of ability to capture global features [11]. With
the rapid development of the Transformer model based on the self-attention [12]
mechanism, researchers have also attempted to introduce the Transformer into
DR image analysis, taking advantage of its strengths in global feature modeling
to complete DR image classification prediction [13]. Based on the above content,
this article aims to consider a scheme that can balance global and local modeling
for DR image classification. More specifically, we propose a dual branch DR
image classification method that combines CNN and Transformer, as shown
in Fig. 1, to improve task performance by combining the advantages of CNN
and Transformer. The method takes the form of a typical dual-branch network
architecture, with a lightweight EfficientNet [14] model architecture as the CNN
branch, which has a good balance of network depth, width and image resolution,
allowing it to effectively extract local features from retinal images. In the other
branch, the Swin Transformer [15] model is used, which uses a sliding window
mechanism in the local window to process the image, giving the network excellent
translation invariance and multi-level feature representation, able to consider
global features of the DR image while taking into account local features. Finally,
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at the end of the two-branch network, local and global features are fused to
obtain a more robust representation of the DR image. The method achieved
an accuracy of 86.14% on the DR dataset Aptos-sigmaX10, achieving better
performance compared to the CNN and Transformer methods.

Fig. 1. CNN-Swin Transformer Network Structure.

2 Method

First, the principles of the EfficientNet and Swin Transformer models associated
with this paper are presented in Sec. 2.1 and Sec. 2.2, then, a description of
the specific model structure of this paper is given in Sec. 2.3, and the data
pre-processing method is described in Sec. 2.4

2.1 EfficientNet

In CNNs, performance was usually optimised by adjusting the width and depth of
the network model as well as the resolution of the images. Although this approach
is simple and effective, it undoubtedly incurs further computational overhead.
In order to achieve performance improvement while ensuring the portability of
the model, EfficientNet [14] has brought a new approach that achieves a good
balance between velocity and accuracy. EfficienctNet uses a composite scaling
approach, where the network width w, network depth d, and image resolution
r are scaled uniformly by defining the parameter ϕ, achieving a high-precision
and efficient balance through optimization of w, d, and r. With this in mind,
EfficientNet is based on a baseline network structure, which can be scaled to
generate a series of networks of different sizes by adjusting w, d and r. Reducing
the number of parameters and computation while maintaining the performance
benefits of the network.
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Fig. 2. MBConv structure diagram.

EfficientNet is mainly composed of a series of inverted bottleneck MBConv.
The MBConv structure is shown in Fig. 2. The MBConv block, an EfficientNet-
specific feature extraction structure, consists mainly of a 1 × 1 convolution ker-
nel acting as an elevated tensor dimension and a k×k Depthwise Convolution
for feature extraction. In addition, an channel attention module Squeeze-and-
Excitation(SE) [16], a 1×1 convolution operation that acts to reduce the tensor
dimension and a Dropout layer are included. Due to the use of the attention
mechanism, EfficientNet also focuses more on relevant regions with more object
detail than other models.

2.2 Swin Transformer

Transformer is a model based on a self-attentive mechanism that was origi-
nally applied to the field of natural language processing with advanced results.
Subsequently, Dosovitskiy [17] et al. introduced the Transformer to the field of
computer vision, proposing the Vision Transformer (ViT). ViT extracts image
features by stacking Transformer blocks, which do not require convolution opera-
tions, and also performs well on computer vision tasks. ViT’s high computational
volume is not suitable for the application. Swin Transformer [15] proposes a fea-
ture pyramid network architecture based on multi-scale hierarchical design, and
designs a shift window to construct a multi-headed attention module, as shown
in Fig. 3. This operation of paying attention in the local window enhances the
Transformer’s ability to focus on finer local information. Also, this approach has
enabled Swin Transformer to achieve higher accuracy and faster computational
efficiency, achieving advanced results in multiple vision tasks.

Fig. 3. Shifted Window.

Swin Transformer blocks are the most important component of the Swin
Transformer. Swin blocks differ from ViT blocks in that they change the standard



Fusing CNN and Transformer for Diabetic Retinopathy Image Grading 403

Multi-Head Self-Attention (MSA) in ViT to Shifted Windows Multi-Head Self-
Attention (W-MSA/SW-MSA), and by iteratively stacking Swin Transformer
blocks, they not only improve the feature extraction of image blocks, but also
establish dependencies between features of adjacent image blocks [18].

2.3 Overall Architecture

To more accurately detect DR patients, this paper proposes a deep learning dual-
branch network model based on CNN and Transformer fusion from a model
fusion perspective, enabling the network to make full use of both global and
local features to achieve higher image classification results than both, providing
ophthalmologists with better medical aid diagnostic references. The structure
of the proposed fusion network model is shown in Fig. 1 and consists mainly of
two branches, the CNN branch (a) and the Transformer branch (b), as well as a
feature fusion module (c) for tensor adjustment.

In Fig. 1(a), the CNN model is chosen as EfficientNet-B4. The EfficientNet
network is more effective in feature extraction by using a self-attentive module
to focus on relevant regions with more informative features. EfficientNetB0-B7
is implemented by scaling adjustments on top of EfficientNet-B0. The network
structure and parameters of the EfficienctNet-B4 model, which was mainly used
for the experiments, are shown in Table 1 for an input image resolution of 224×
224 RGB images.

Table 1. The structure of EfficientNet-B4.

Stage Operator Resolution Channels Layers

1 Conv3× 3 224× 224 48 1

2 MBConv1, k3× 3 112× 112 24 2

3 MBConv6, k3× 3 112× 112 32 4

4 MBConv6, k5× 5 56× 56 56 4

5 MBConv6, k3× 3 28× 28 112 6

6 MBConv6, k5× 5 14× 14 160 6

7 MBConv6, k5× 5 14× 14 272 8

8 MBConv6, k3× 3 7× 7 448 2

9 Conv1× 1 & Pooling & FC 7× 7 1792 1

In Fig. 1(b), the Transformer model is chosen as swin-T. The Swin Trans-
former architecture is used, where the input RGB image (size 4 × 4 × 3) is first
processed into non-overlapping image blocks by Patch Partition, and then the
image blocks are processed into feature dimension 48 (4×4×3). After processing,
each image block has a dimension of H

4 × W
4 × 48. After linear transformation

by Linear Embedding to expand the tensor dimension to an arbitrary size, the
tensor is fed into the Swin blocks of the hierarchy to learn the image features
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to obtain the complete image information. The tensor is first passed through
a Linear Embedding layer, except for Stage 1, where a Patch Merging layer is
applied to the feature map. The Patch Merging layer takes the small patches
and combines them into one large patch to increase the field of perception and
obtain more feature information from the image.

The feature fusion module corresponding to Fig. 1(c) contains mainly a 1×1
convolution of size, a BatchNorm layer and a GELU activation function, which
serves to adapt the features to be fused. The CNN branch outputs a feature
image with dimension 7 × 7 × 1792 for an RGB image with input 224 × 224
and 7 × 7 × 768 for the Transformer branch. The fusion method was chosen by
adjusting the tensor to the same 7 × 7 × 768 and then performing the fusion
operation to obtain information with both local and global features of the image
for DR grading.

In addition, the adopted classifier consists of a global average pooling layer
and a fully connected layer, and is converted to classification probabilities using
the Softmax function.

2.4 Data Preprocessing

Due to the different contrast of retinal images in the dataset, as well as the
presence of black areas in most of the images, in addition to the problem of
image blurring caused by differences in shooting height and angle, etc., which
can affect the grading accuracy to a certain extent, data pre-processing of the
DR images in the data is necessary for this reason.

Firstly, considering the large amount of black area noise present in the orig-
inal DR image, the image was cropped to the maximum rectangle to obtain
the effective image area. As the size specification of the cropped image is not
uniform, the image is processed to a uniform size (pixels) after rounding the
effective area of the retina using the binary method of circular cropping.

As in Eq. (1), based on the height and width of the image, the value of
the binary method of locating the coordinates of the image centroid can be
calculated. {

x = width
2

y = height
2

(1)

Based on the centre coordinates of the circle, the circle is drawn with the min-
imum height and width as the radius, as in Eq. (2), then a blank image of the
same size as the original image is drawn, and the pixel values of the circular part
of the original image are overlaid with this area in the blank image, resulting in
a binary method circular cropped image.

radius =
min (width, height)

2
(2)

Thereafter, a Gaussian filter smoothing function is used to suppress other
noise in the retinal image. Specifically, a Gaussian function is used as a template
to do a convolution operation with the input image and a weighted average of the
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image pixel values. The expression for the two-dimensional Gaussian function is
given in Eq. (3):

G(x, y) =
1√

2Πσ2
e− x2+y2

2σ (3)

where x2, y2 represent the distance between the central pixel and the other
pixel points in the field.σ represents the standard deviation. G(x, y) indicates
the weight of the calculated pixel point. When the size of the window template
is (2k + 1) × (2k + 1) its value per pixel is calculated by Eq. (4)

Hi,j =
1√

2Πσ2
e− (i−k−1)2+(j−k−1)2

2σ2 (4)

where i, j denote the coordinates of the ranks in the convolution kernel and k
denotes the size of the convolution kernel.

Fig. 4. Comparison chart before and after image pre-processing.

The resulting image in Fig. 4 shows the image in the dataset after image
pre-processing. As can be seen from the figure, the retinal image features are
enhanced to some extent after processing the cropped image by the Gaussian
filter function. In addition, image enhancement strategies such as random level
flipping and image rotation are used simultaneously to increase the generalis-
ability of the network and to improve the training efficiency of the network.

3 Experiment Preparation

In Sect. 3.1 the dataset used in this experiment is first introduced, followed by
Sect. 3.2 which describes the setup used in this experiment, and in Sect. 3.3
which describes the evaluation metrics used in this paper.
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3.1 Dataset

The DR dataset Aptos sigmaX10, publicly available on the Kaggle website1 was
used, which was filmed and provided by technicians at the Aravind Eye Hospital
and examined and classified by specialist clinicians according to the actual degree
of lesion.

Table 2. Distribution of the number of images in the Aptos dataset

Degree of lesion Category labels Number Percentage

Non-Proliferative DR 0 1805 49.30%

Mild non-proliferative DR 1 370 10.10%

Moderate non-proliferative DR 2 999 27.30%

Severe non-proliferative DR 3 193 5.30%

Proliferative DR 4 295 8.10%

The dataset contains 3662 high-resolution colour retinal images, classified
into five classes: Non-Proliferative DR, Mild non-proliferative DR, Moderate
non-proliferative DR, Severe non-proliferative DR and Proliferative DR. We
train in five classifications according to this scale. For the training data set
the data distribution is shown in Table 2, with 1805 retinal images for Non-
Proliferative DR (labeled 0), 370 retinal images for Mild non-proliferative DR
(labeled 1), 999 retinal images for Moderate non-proliferative DR (labeled 2),
193 retinal images for Severe non-proliferative DR (labeled 3) and 295 retinal
images for proliferative DR (labeled 4) 295 images. In this paper, the dataset
was divided into a training set, a validation set and a test set in the ratio of
8:1:1 for model evaluation.

3.2 Implementation Details

The experiments were conducted in Ubuntu 20.04.2 on an Intel(R) Core(TM) i7-
9700 CPU, RTX 2080 Ti GPU with 12 GB of video memory, and CUDA version
is 11.4. The Transformer branch uses the officially published pre-trained weights
for network initialization, and the CNN branch does not use migration learning
for initialization. The model was trained using the AdamW [19] optimizer with
a base learning rate set to 1e − 4. The batch size was set to 16 and the number
of training epochs to 100.

3.3 Evaluation Metrics

The DR image grading evaluation criteria used in the experiments were Confu-
sion matrix. The confusion matrix can be used to reflect the relationship between
1 Dataset courtesy of http://www.kaggle.com.

http://www.kaggle.com
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the predicted and true values, it mainly includes: TP (True Positive), FN (False
Negative), FP (False Positive), TN (True Negative). Besides, precision, accuracy,
and recall coefficient are also used to evaluate the fusion model.

Precision =
TP

TP + FP
(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Recall =
TP

TP + FN
(7)

4 Experiment

To validate the effectiveness of the proposed method of grading diabetic retinopa-
thy fusing CNN and Transformer, multiple sets of experimental tests were used
on the dataset Aptos sigmaX10.

4.1 Comparison of Different EfficientNet Models

The first set of experiments were selection experiments for different EfficientNet
models. According to the results in Fig. 5, the EfficientNet-B4 model showed
the best results with better feature extraction in the same DR dataset, chieving
a grading accuracy of 83.15%, so in the subsequent use of EfficientNet-B4 for
network fusion.

Fig. 5. Comparison of the grading effects of the EfficientNet series models.
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4.2 Comparison of Different Swin Transformer Models

In addition to the ablation experiments carried out on EfficientNet, the
same experiments was carried out using Swin Transformer for the dataset
Aptos sigmaX10, the results of which are shown in Fig. 6. The experimental
results show that among the three Swin Transformer models, Swin-tiny can
achieve the best accuracy results with a grading prediction accuracy of 85.06%.
Therefore, we subsequently chose Swin-tiny as a complementary model to the
global features of EfficientNet-B4.

Fig. 6. Comparison of the grading effects of the Swin series models.

4.3 Fusion Model Precision Results

The third set of experiments aims to test the effectiveness of model fusion by
comparing the fused model with a typical single network model in an experiment.
The networks used for the tests mainly included ResNet, Vit, EfficientNet-B4
and Swin-tiny and the results of the comparison experiments obtained are shown
in Table 3.

After an experimental comparison, the results showed that the best results
were obtained with the model fusing CNN and Swin Transformer. The accuracy
of the fusion model was improved by 1.74% compared to the ResNet network,
and even more by 3.53% relative to the ViT network, and by 2.99% over the
EfficientNet-B4 model, the best classification model in the EfficientNet family.
In addition, the fusion model can be improved by 1.07% compared to the best
performing Swin-tiny model in the Swin Transformer range. The results of the
fusion model are not only higher than the accuracy of the EfficientNet model,
but also higher than the accuracy of the Swin Transformer model, which proves
the effectiveness of the fusion model of EfficientNet and Swin Transformer. it
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Table 3. Comparative analysis table of the validity of the fusion model.

Models Accuracy (%)

ResNet50 [20] 84.40%

ViT 82.61%

EfficientNet-B4 83.15%

Swin-tiny 85.06%

Ours 86.14%

can complement the global feature extraction ability of EfficientNet to a cer-
tain extent, and further improve the local feature extraction ability of the Swin
Transformer model.

In addition, the confusion matrix results for the fusion model test results
are given in Fig. 7. The figure shows that the fusion model correctly classi-
fied 179 of the 181 images non-Proliferative DR in the test set, 26 of the 37
images with mild non-proliferative DR, 88 of the 100 images with moderate
non-proliferative DR, 7 of the 20 images with severe non-proliferative DR and
17 of the 30 images with proliferative DR. The best prediction results for non-
Proliferative DR and the worst prediction results for severe non-proliferative DR
may be due to the relatively large proportion of non-Proliferative DR images in
the dataset, resulting in the model learning more information about that cat-
egory during training; Additionally 50% of the severe non-proliferative lesions
were misclassified as moderate non-proliferative lesions, mainly due to the small
number of severe non-proliferative lesions in the dataset and the similarity of
lesion information between moderate and severe non-proliferative lesions, such
that a large number of images of severe non-proliferative lesions were judged as
moderate non-proliferative lesions.

Fig. 7. Confusion Matrix for fusion model test results.
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4.4 Comparison Results with Other Models

To further validate the validity of the model, the fusion model was compared
with models proposed by other researchers on the dataset Aptos sigmaX10 and
the experimental results are shown in Table 4.

Table 4. Compared experimental results with other models model.

Reference Year Method Accuracy (%)

Dekhil O et al. [6] 2019 Five-layer CNN 77%

Li et al. [21] 2019 CANet 83.20%

Yu et al. [22] 2021 Vision Transformer 85.50%

Islam M R et al. [10] 2022 Xception+CLAHE+t-SNE 84.36%

Ours 2023 EfFicientNet+Swin Transformer 86.14%

As shown in Table 4, the proposed fusion model achieved 86.14% graded
accuracy on this dataset, outperforming better than the results of the other
four models. A 9.14% improvement in grading accuracy compared to the five-
layer convolutional network model proposed by Dekhil et al. [6], Relative to the
cross-disease attention network CANet proposed by Li et al. [21], this method
uses the disease-specific attention module and the disease-dependent attention
module to selectively learn useful features of the disease, achieving an accuracy
of 83.20%, but still 2.94% lower than the proposed method, Comparing the two-
stage comparison method with a supervised comparison loss function proposed
by Islam et al. [10] also yields an accuracy gain of 1.78%. Furthermore, Yu et
al. [22] attempted to use Vit for retinal disease classification tasks and achieve
85.50% accuracy performance by pre-training the Transformer model in a large
fundus image database and then fine-tuning it in a downstream retinal disease
classification task, but the results of this paper’s method still outperformed
it by 0.64%. Taken together, the above comparative experimental results can
effectively demonstrate the good competitive performance of the proposed fusion
model.

5 Conclusion

Diabetic retinopathy is a common complication in diabetic patients. To address
the shortcomings of convolutional neural networks for DR image grading, a DR
grading method that fuses lightweight EfficientNet and Swin Transformer models
is proposed to assist physicians in performing diagnosis, so as to better capture
global and local features of DR images to improve the discriminative proper-
ties of the overall features. In future work, we will explore convolutional neural
networks and Transformer architectures that are more suitable for this medical
task and explore more effective fusion methods, such as feature interaction and
combination in the middle of a dual-branch structure.
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