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Abstract 

Crops are exposed to a variety of insect pests throughout their lifetime. Insect 
pests cause significant damage to crop plants by feeding on their tissues or sap. 
Besides the conventional methods which are based on using chemicals, the 
genetic transformation of plants with insecticidal toxin genes such as Bt has 
been widely applied to control insect pests. In addition to Bt genes, other toxin 
genes from different sources were also transferred to plants. Transgenic plants 
have been on the market for over two decades and have had remarkable 
achievements so far. However, current restrictions on these products, as well as 
public concern make scientists explore new approaches. The advent of RNA 
interference technology and later the CRISPR/Cas genome editing tool has 
opened up a promising new avenue in the development of next-generation 
biotech crops. These new approaches allow scientists to introduce new plant 
genotypes resistant to pests and diseases without transferring toxin genes, and all 
it takes is to edit target regions in the genome or apply modifications to the host 
transcriptome content. In this chapter, we will review different generations of 
biotech crops developed for insect resistance. 
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11.1 Introduction 

Sustainable crop production is one of the biggest challenges we face to ensure the 
availability of adequate nutrition for the world’s growing population. According to 
the United Nations report, the world population which is currently around 8 billion in 
2023, will reach 9.7 billion in 2050. The increase in food demand by 59–98% during 
this time renders traditional agricultural practices insufficient to secure the food 
supply (Valin et al. 2014). In addition, unfortunately, global climate change, biotic 
and abiotic stress factors cause serious problems in agricultural production. 
According to a research report, global crop losses caused by pests and diseases 
have been calculated as up to 37%, with 13% of losses due to insects (Gatehouse 
et al. 1992). Insect pests damage different parts of plants including roots, stems, 
leaves, and fruits either by chewing these parts or sucking the plant sap. Moreover, 
these pests may cause indirect damage to the host plant as a vector for viral, bacterial, 
and fungal pathogens (Mahmood-ur-Rahman et al. 2021). In order to protect the 
crops against biotic factors, farmers traditionally adopt a variety of synthetic 
insecticides, however, the increasing use of chemicals has been proven to be harmful 
to the environment and public health (Curry et al. 2002). The advent of recombinant 
DNA technology has opened up a horizon of promise to reduce chemical use 
concerns. The successful transformation of tobacco plants with Cry gene from 
Bacillus thuringiensis (Vaeck et al. 1987) made the genetic modification of crops 
a novel approach to reducing insecticide use. Together with tobacco, transgenic 
cotton plant was also produced in 1987 (Umbeck et al. 1987). Since the introduction 
of the first biotech crop to the market in 1996, the production ratio of these crops has 
increased more than 100-fold, with 190.4 million hectares grown in 29 countries in 
2019 (ISAAA 2019). 

So far, numerous plant transformation studies with Bt genes have taken important 
steps forward. However, based on laboratory selection and data collected from the 
field, the resistance conferred by Bt genes proved fragile as some species developed 
resistance to Cry toxins (Tabashnik 1994; Ferré et al. 1995). Moreover, the genetic 
modification of crops has been questioned and criticized by the public and scientists 
(Godfrey 2000). Thus, despite the successes achieved by Bt crops, they turned out to 
be insufficient on their own to be considered as a guaranteed long-term alternative 
approach to agricultural production. Using resistance genes isolated from plants such 
as agglutinin lectin genes (GNA, ASAL, ACA, WGA), Potato inhibitor II genes, and 
the gene stacking strategy was then carried out to improve the utility of these crops 
(Bakhsh et al. 2015). Besides, the employment of genetic modification technologies 
such as RNAi and CRISPR/Cas system pave the way to novel insect pest manage-
ment studies. This chapter reviewsdifferent generations of genetically modified
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crops including Bt-, RNAi- and CRISPR/Cas-based developed crops resistant to 
insect pests. 
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11.2 Transformation of Crop Plants with Resistance Genes 

11.2.1 Bt Crops 

The genetic transformation of plants with insecticidal toxin genes such as Cry toxins 
has been widely used to control insect pests. Bacillus thuringiensis is the source of 
different insecticidal agents, including Cry toxins, and has been deployed in pest 
management strategies. B.thuringiensis is a gram-positive soil-dwelling spore-
producing bacterium that has been used as a biological control agent for nearly a 
century. B. thuringiensis is safe for humans and is the most environmentally 
compatible microbial insecticide worldwide (Ibrahim et al. 2010). This unique 
bacterium is the source of insecticidal toxin genes, mainly Vip, Sip, Cry (Crystal), 
and Cyt (Cytolytic) genes, which are produced throughout the bacterium’s life cycle 
(Santos et al. 2022). B. thuringiensis can colonize inside the insect gut, therefore, it is 
an appropriate insecticidal agent for pest management strategies (Deist et al. 2014). 

According to the classification by Crickmore et al. (1998), Cry genes are divided 
into 51 groups and subgroups, and Cry toxins based on the insect host specifications 
are classified into six main groups including group 1 lepidoptera (Cry1, Cry9 and 
Cry15); group 2 lepidoptera and diptera (Cry2); group 3coleoptera (Cry3, Cry7 and 
Cry8); group 4 diptera (Cry4, Cry10, Cry11, Cry16, Cry17, Cry19 and Cry20); 
group 5 lepidoptera and coleoptera (Cry1I); and group 6 nematodes (Cry6) 
(reviewed in Ibrahim et al. 2010). 

Using the advantage of recombinant DNA technology in the late 1980s, the first 
Bt gene was transferred to tobacco and cotton plants (Vaeck et al. 1987; Umbeck 
et al. 1987) and commercialization of transgenic crops expressing the Bt gene started 
in the mid-1990s and by 1999 different transgenic Bt crops such as potato, cotton, 
and corn were also introduced (Tabashnik et al. 2013). To date, different Cry genes 
have been transferred to agricultural crops to confer resistance to different pest 
species of lepidoptera, coleoptera, diptera (reviewed in Bakhsh et al. 2015). The 
introduction of Bt crops has reduced the use of chemical pesticides in the fields and 
their subsequent harmful side effects. Most Bt strains are harmful to lepidopterans; 
however, some are also lethal to coleopterans (McPherson et al. 1988) or dipterans 
(Yamamoto and McLaughlin 1981). It has been determined that Bt proteins do not 
show any toxicity to beneficial insects, other animals, or humans (Klausner 1984). 
Modification of Bt genes for improved expression in plants was a critical step toward 
achieving insect resistance in plants (Perlak et al. 1991). Codon-optimized genes 
conferring protection against insects of coleoptera and lepidoptera were respectively 
transferred to potato and cotton at first (Perlak et al. 1991). After the first reports of 
insect resistance, many successful studies were carried out to confer resistance 
against insect pests (Table 11.1).



Crop Toxin genes Reference 

282 S. D. Khabbazi et al.

Table 11.1 List of the toxin genes transferred to some of the crop plants 

Targeted insect 
order

Alfalfa Cry3a Coleoptera Tohidfar et al. (2013) 

Canola Cry1Ac Lepidoptera Tabashnik et al. (1993) 
Stewart Jr et al. (1996) 
Ramachandran et al. (1998) 
Halfhill et al. (2001) 
Wang et al. (2014a, b) 
Rahnama and Sheykhhasan 
(2016) 

Chickpea Cry1A (c) 
Cry2Aa 
Cry1Ac + Cry1Ab 
ASAL 
Vip3Aa 

Lepidoptera 
Hemiptera 

Sanyal et al. (2005) 
Indurker et al. 2010 
Chakraborti et al. (2009) 
Acharjee et al. (2010) 
Mehrotra et al. (2011) 
Singh et al. (2022) 

Cotton Cry1Aa 
Cry1Ab 
Cry1Ac 
Cry2A 
Cry1EC 
Cry2Ab 
Cry3Bb1 
Cry3 
Cry11 
Cry1h 
Cry1Ia12 
potato proteinase 
inhibitor 
GNA 
ACA 
ASAL 

Lepidoptera 
Hemiptera 

Perlak et al. (1990) 
Majeed (2005) 
Wu et al. (2006) 
Tohidfar et al. (2008) 
Khan et al. (2011) 
Pushpa et al. (2013) 
Vajhala et al. (2013) 
Anayol et al. (2016) 
Bakhsh et al. (2016) 
Khabbazi et al. (2018) 
Siddiqui et al. (2019) 
Zafar et al. (2022) 
Razzaq et al. (2023) 
Tariq et al. (2022) 

Maize Cry3Bb1 
Cry1Ab 
Cry1Ab (MON810) 
Cry19c 
GNA 

Lepidoptera 
Hemiptera 

Koziel et al. (1993) 
Vaughn et al. (2005) 
Wang et al. (2005) 
Gassmann et al. (2011) 

Potato/sweet 
potato 

Cry3A 
Cry3Aa 
Cry1Ac 
Cry1Ab 
Cowpea trypsin 
inhibitor 
Cry1Ba1 
Cry1Ca5 
Cry9Aa2 
GNA 
ConA 

Coleoptera 
Lepidoptera 
Hemiptera 

Peferoen et al. (1990) 
Cheng et al. (1992) 
Adang et al. (1993) 
Perlak et al. (1993) 
Newell et al. (1995) 
Morán et al. (1998) 
Gatehouse et al. (1999) 
Meiyalaghan et al. (2006) 
Jacobs et al. (2009) 
Mi et al. (2015) 
Salehian et al. (2021) 

Rice Cry1A(b) 
Cry1A(c) 

Lepidoptera 
Hemiptera 

Fujimoto et al. (1993) 
Wünn et al. (1996) 

(continued)



Crop Toxin genes

PinII 
Cry1C 
Cry2AX1 
SBK + SCK 
GNA 
ASAL 
DB1/ G95A-mALS 
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Table 11.1 (continued)

Targeted insect
order Reference

Cheng et al. (1998) 
Bashir et al. (2005) 
Tang et al. (2006) 
Zhang et al. (2013) 
Ramesh et al. (2004) 
Yoshimura et al. (2012) 
Chandrasekhar et al. (2014) 
Chakraborty et al. (2016) 
Boddupally et al. (2018) 
Liu et al. (2022) 

Soybean Cry1Ab 
Cry1Ac 
Cry8-like 
eCry1Gb.1Ig 

Lepidoptera Parrott et al. (1994) 
Dufourmantel et al. (2005) 
Dang and Wei (2007) 
Qin et al. (2019) 
Je et al. (2022) 
Chae et al. (2022) 

Tomato Cry1Ac 
Cry1Ab 

Lepidoptera Mandaokar et al. (2000) 
Kumar and Kumar (2004) 
Koul et al. (2014) 

Most of the transgenic crops are harboring constitutive promoters in particular the 
35S CaMV promoter driving the foreign genes which providethe strong production 
of toxin protein in whole plant tissues and organs including root, stem, flowers, 
pollens, etc. Hence to restrict the unnecessary production of toxins in plants, foreign 
genes can be expressed by inducible promoters. For instance, to restrict the produc-
tion of Crytoxin to insect-biting sites in plants toxin genes were expressed under the 
control of the wound-inducible promoter (AoPR1) isolated from Asparagus 
officinalis (Özcan et al. 1993; Bakhsh et al. 2016; Anayol et al. 2016; Khabbazi 
et al. 2018). The use of AoPR1 promoter confines the accumulation of Bt toxin to the 
wounding part of the plant, therefore, it is a valuable approach in insect pest 
management considering the public concerns regarding transgenic Bt crops. 

11.2.2 Transgenics Harboring Plant-Derived Insect Resistance Genes 

Cultivation of Bt crops increased crop production and reduced the use of chemical 
insecticides in the field (Toenniessen et al. 2003). Therefore, it has had an important 
contribution to global food security and poverty reduction. Reports indicate that this 
technology is beneficial for farming communities and consumers (Qaim 2009). To 
date, many Cry resistance genes have been transferred to crops to cope with 
damaging insects. While most of these have had a satisfactory outcome at first, the 
efficacy of resistance genes has been compromised by the widespread cultivation of 
transgenic crops. Based on reports some of the pest species have evolved resistance



against Cry proteins which indicates that the toxic effect of these genes has dimin-
ished (Calles-Torrez et al. 2019; Smith et al. 2019; Tabashnik and Carrière 2019). 
For example, the excessive use of Cry1Ac has led to the development of resistance in 
insect pests. This resistance is due to mutations occurring in the midgut receptors like 
cadherin. Development of crops harboring the codon-optimized Bt genes is an 
efficient method to combat the field-evolved resistance to Bt toxins (Tabashnik 
and Carrière 2017; Benowitz et al. 2022; Siddiqui et al. 2023). In addition, the 
investigation of new insecticidal genes and approaches is a necessity for sustainable 
pest management strategies. Using plant-derived toxin genes alone or in combina-
tion with Cry genes could be another approach to this goal (Khabbazi et al. 2018; 
Boddupally et al. 2018). Different lectin genes are toxic to members of coleoptera, 
lepidoptera (Czapla and Lang 1990), and diptera (Eisemann et al. 1994). Lectins 
stimulate endocytosis and possibly other toxic metabolites in the midgut, resulting in 
the inhibition of nutrient absorption or disruption of midgut cells (Czapla and Lang 
1990). Plant lectin genes are toxic to sap-sucking insects of hemiptera and have an 
inhibitory effect on their growth and fecundity (Wang et al. 2005; Chakraborti et al. 
2009; Khabbazi et al. 2018). 
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Transformation of crops with Galanthus nivalis agglutinin lectin gene (GNA) 
isolated from the snowdrop plant confers resistance to Aphis gossypii, 
Rhopalosiphum maidis, Sitobion avenae and other sap-sucking members of 
hemiptera (Khabbazi et al. 2018; Wang et al. 2005; Stoger et al. 1999). This gene 
as well as other agglutinin lectin genes derived from garlic (ASAL), onion (ACA), 
wheat (WGA) etc. has no harmful effect on the mammalian oral system (Peumans 
and van Damme 1996; Khabbazi et al. 2016) and have been transferred to some of 
the important crops such as cotton, maize, chickpea and rice (Table 11.1) and 
resulted in increased resistance to different sap-sucking insects including aphids, 
jassids, planthoppers and whiteflies (Bakhsh et al. 2015). Along with the transfor-
mation of plants with resistance genes, RNAi and CRISPR/Cas-based methods are 
other relatively new approaches contributing to sustainable pest management 
strategies in agriculture. 

11.3 RNA Interference-Mediated Modifications in Plants 

11.3.1 What Is RNAi and How Does It Work? 

RNA silencing is a process that causes the downregulation of a target gene expres-
sion.This technology is a worthy reverse genetics tool to study gene function 
(Harmon et al. 2000). It is divided into transcriptional gene silencing (TGS) and 
post-transcriptional gene silencing (PTGS). PTGS also known as RNA interference 
(RNAi) is a highly specific homology-based gene silencing tool that is frequently 
used to downregulate the expression of target genes via mRNA degradation and 
hence is also called a knockdown process (Small 2007; Tang and Galili 2004). RNAi 
is triggered by the introduction of double-stranded RNA (dsRNA) molecules 
microRNAs (miRNAs) and small interfering RNAs (siRNAs) are the two main



classes of small non-coding RNAs that initiate gene silencing in plants (Axtell 
2013). Small interfering RNA constructs are short duplexes of 21 to 25 nucleotides 
produced after long dsRNA precursors are cleaved by the ribonuclease III Dicer-like 
(DCL) enzyme (Zamore et al. 2000; Bernstein et al. 2001). Afterward, miRNAs or 
siRNAs incorporated into RNA-induced silencing complex (RISC), argonaute, and 
other effector proteins bind to complementary mRNA molecules and subsequently 
degrade the mRNA and causing downregulation of the target gene (Fig. 11.1) 
(Bosher and Labouesse 2000; Kim and Rossi 2007; Mittal et al. 2011). 

11 Different Generations of Genetically Modified Crops for Insect Resistance 285

Fig. 11.1 Mechanism of the RNAi pathway. Long dsRNA or miRNA molecules are cleaved by 
the Dicer enzyme into short duplexes of 21–25 nucleotide RNAs. Small RNAs bind to the RISC 
complex and single-stranded short RNAs are produced and directed to the target mRNA, causing 
degradation of the mRNA
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11.3.2 RNAi-Based Gene Regulation for Insect Resistance in Plants 

The RNAi process is conserved in higher eukaryotes and naturally protects the host 
from viruses in plants, but is currently used in a variety of ways for different 
purposes, including insect-plant interaction studies (Khabbazi et al. 2020). RNAi 
has opened a new avenue in insect pest management strategies. This technology is 
particularly effective in controlling insects of the order coleoptera, whereas insects of 
lepidoptera and hemiptera are recalcitrant in response to RNAi which may be due to 
the biological barriers limiting the use of RNAi in these species (Terenius et al. 2011; 
Baum and Roberts 2014). 

dsRNAs are either expressed by host plants or applied by methods like microin-
jection, feeding and spraying to control the insect pest damage on plants. Host-
induced gene silencing (HIGS)-mediated RNAi has been successfully used in a 
variety of crop species to manage different agricultural insect pests including 
sap-sucking and chewing species (Table 11.1). In this approach, plant genetic 
background is engineered to produce dsRNAs targeting the essential genes in insect 
pests. After insects are fed with transgenic plants, dsRNAs are transported to the 
insect salivary glands or gut, and adsorbing cells subsequently activate the insect 
RNAi machinery and silence the targeted genes that interfere with insect vital 
metabolism. The utilization of plant-mediated RNAi provides a promising tool in 
crop protection without the use of chemicals and has the potential to target an 
unlimited number of genes in insects (Zhang et al. 2017). 

Aphids are the members of the order hemiptera that damage crop plants by 
phloem-feeding and transmitting viral diseases. In HIGS-mediated RNAi studies 
in aphids, the focus has been on studying the management of Myzus persicae and 
Sitobion avenae aphid species in transgenic host plants including Arabidopsis 
thaliana, Nicotiana tabacum, N. benthamiana, and Solanum lycopersicum and 
Triticum aestivum (reviewed in Zhang et al. 2022). RNAi-mediated knocking 
down of the salivary effectors (MpC002, MpPIntO1, MpPIntO2, Mp55), Receptor 
of Activated Kinase C (Rack1), CuticularproteinMyCP, Acetylcholinesterase 
1 (Ace1), Dynein heavy chain 64C (MpDhc64C), Chitin synthase 1(CHS1), Zinc 
finger protein (SaZFP), Carboxylesterase(CbE E4) and Lipase maturation factor 
2-like gene adversely affected aphid fecundity and survival. 

dsRNA-mediated downregulation of the Sucrose non-fermenting 7 (DvSnf7) gene 
coding for an essential protein in vacuolar sorting in transgenic maize plant (Zea 
mays) conferred resistance to the western corn rootworm, Diabrotica virgifera 
(Coleoptera: Chrysomelidae) (Baum et al. 2007). Snf7 dsRNA alone takes a long 
time to kill WCR larvae, so the RNAi pathway is accompanied by Cry genes from 
B. thuringiensis to accelerate the killing action. Further, combining the Bt and RNAi 
mechanisms reduces the occurrence of insect resistance to Bt crops. Maize plant 
expressing three different Cry genes plus dsRNA constructs for the DvSnf7 gene, 
event MON87411, was approved for commercialization and release by The Cana-
dian Food Inspection Agency (CFIA) in 2016 (Head et al. 2017). Later, in 2017, The 
United States Environmental Protection Agency (US-EPA) also granted permission 
for the commercial planting of MON87411 (Zotti et al. 2018).
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Cotton bollworm, Helicoverpa armigera, is another devastating agricultural 
insect pest belonging to the order Lepidoptera. This pest has a wide host range and 
causes millions of dollars in losses each year (Sharma 2001). Cotton contains a 
polyphenolic compound called gossypol to protect itself from herbivorous insects, 
however, H. armigera can tolerate its moderate concentrations owing to the P450 
monooxygenase gene, CYP6AE14, as this enzyme detoxifies the gossypol content. 
Feeding H. armigera larvae on leaves of transgenic Arabidopsis, tobacco, and cotton 
plants expressing dsRNA for CYP6AE14, resulted in suppression of the P450 
monooxygenase gene in H. armigera and retarded larvae growth and enhanced 
host resistance to cotton bollworms (Mao et al. 2007, 2011). 

Later Kumar et al. (2014) described how Manduca sexta larvae feeding on native 
Nicotiana attenuata can tolerate high concentrations of nicotine, a neurotoxin 
produced by tobacco species. Wolf spiders (Camptocosa parallela) avoid nicotine-
fed larvae, therefore, M. sexta larvae deter its predator by exhaling nicotine through 
the spiracles as an anti-spider signal. Transformation of N. attenuata with constructs 
producing dsRNA to target the M. sexta CYP6B46 gene and feeding the larvae with 
transgenic plants silenced the CYP6B46 gene. Subsequently, insect vulnerability to 
spider predation was increased because of the less nicotine exhaled. 

Another approach to managing insect pest damage is to interfere with chitin 
metabolism. Chitinase hydrolyzes chitin and, therefore, its function is vital for insect 
molting andmetamorphosis (Agrawal et al. 2013). Transgenic tobacco and tomato 
plants expressing RNAi constructs for the chitinase (HaCHI) gene significantly 
reduced chitinase production and adversely affected the overall growth and survival 
of H. armigera after continuous feeding with leaves of transgenic HaCHI-RNAi 
lines (Mamta and Rajam 2016). 

In another study, tobacco plants were transformed to produce dsRNA targeting 
the Sl102 gene in Spodoptera littoralis. Sl102 is a gene involved in the immune 
cellular responses of S.littoralis, which was knocked down to increase the suscepti-
bility of the insect pest against the pathogenicity of B. thuringiensis-based 
insecticides. Experimental larvae reared on transgenic leaves showed low transcript 
levels for the Sl102 genewhich was positively associated with food consumption in 
the larvae (Di Lelio et al. 2022). 

11.4 CRISPR/Cas System 

11.4.1 Origin, Classification, and Efficiency 

Genome editing of plants has achieved remarkable success since the advent of 
sequence-specific nucleases (Shelake et al. 2019). Zinc finger nucleases (ZNFs) 
and transcription activator-like effector nucleases (TALENs) were the pioneer 
editing tools. However, these tools are technically complex and cumbersome, with 
low efficiency, and therefore are not used any further (Kumar et al. 2018). In 
contrast, the discovery of the Clustered Regularly Interspaced Short Palindromic 
Repeats (CRISPR)/Cas system paved the way for a simple and precise method to



modify several targets in the genome at the same time. CRISPR/Cas system was first 
discovered in the sequences of DNA from Escherichia coli (Ishino et al. 1987). 
Archaea and bacteria naturally use this system to protect themselves against viral 
invasions (Bhaya et al. 2011). After genetic elements such as phages invade the host 
cell, small nucleic acid fragments of invading pathogens are inserted into the host’s 
CRISPR loci (spacers) and stored there for later encounters (Amitai and Sorek 
2016). When the host cell faces a new invasion, spacer sequences are transcribed, 
and individual CRISPR RNAs (crRNAs) lead the Cas nuclease to the cognate 
nucleic acid sequences of the pathogen and cleave them (Barrangou et al. 2007). 
Depending on the nature of the interfering molecules, CRISPR/Cas system is 
divided into two classes (Fig. 11.2). Class 1 includes types I, III, and IV multiprotein 
effector modules that target DNA, DNA/RNA, and DNA molecules, respectively. 
Class 2 includes types II, V, and VI effector modules that associate with DNA, 
DNA/RNA, and RNA molecules, respectively. Unlike class 1, members of class 
2 are single protein effector modules and the most notable examples of this class are 
Cas9, Cas12, and Cas13 (reviewed in Gostimskaya 2022). Type II CRISPR/Cas9 
has been isolated from Streptococcus pyogenes and is based on RNA-guided 
interference with DNA and has the most contribution to genome editing studies in 
plants (Khabbazi et al. 2021). This system consists of a Cas9 nuclease and a single 
guide RNA (sgRNA) molecule. A twenty-nucleotide at the 5’end of the sgRNA
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Fig. 11.2 The conventional classification of CRISPR/Cas system



directs the CRISPR/Cas9 complex to the complementary sequence in the genome. 
The presence of conserved protospacer-adjacent motifs (PAM) near target sites in 
the genome plays a critical role in the in-target function of this complex. Following 
double-stranded DNA breaks by the Cas9 enzyme, it is subjected to cell repair 
machinery, which can be error-prone non-homologous end joining (NHEJ) repair 
or precise homology-directed repair (HDR) (Fig. 11.3). The targeted insertion or 
modification of desired sequences into the genome makes the HDR approach an 
outstanding tool for the genetic engineering of plants (Voytas and Gao 2014).
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Fig. 11.3 The mechanism of CRISPR/Cas9 genome editing. Guide RNA molecule directs the 
Cas9 nuclease to the target site in the genome. The presence of PAM near the matching sequence in 
the genome is critical in finding the target site.After double-strand breaks are made, the broken ends 
are repaired via the NHEJ or HR processes 

The importance of the breakthrough CRISPR/Cas technology is particularly 
emphasized as it causes heritable targeted modifications and also contributes to the 
development of transgene-free plants (Wang et al. 2014a, b; Pan et al. 2016). The 
first genome editing study in plants was reported by Feng et al. (2013), however, the 
same year there were other works that reported the successful use of the CRISPR 
system in genome modification of plants such as Arabidopsis, tobacco, wheat, and 
rice (Upadhyay et al. 2013; Jiang et al. 2013; Feng et al. 2013). Afterward, numerous 
studies have been conducted to apply desired modifications to a variety of plants



including maize, soybean, potato, cotton, grapes, tomato, cucumber, Cacao tree, 
sweet orange, Grapefruit, apple, etc. (Khabbazi et al. 2021). 
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11.4.2 CRISPR/Cas-Based Genome Editing of Plants for Insect 
Resistance 

Insects can damage crops by directly feeding on plant tissues or indirectly transmit-
ting various diseases, thereby significantly reducing crop production and yield. The 
application of extensive chemicals has caused serious harm to human and animal 
health as well as the environment. After the successful contribution of transgenic 
crops for example Bt crops in reducing the usage of chemicals yet the existence of 
political, ethical, and societal resistance to these crops is a serious issue in many 
countries. The possibility of employing CRISPR/Cas technology in genome editing 
of plants towards insect resistance has already been discussed (Douglas 2018). 
Employing the CRISPR tool provides the opportunity to tackle the concerns in 
two ways; creating de novo resistance in case there is no convenient R-gene 
available, and controlling the insect pest population dynamics by breaking insecti-
cide resistance, killing or causing sterility in insects. In such situations, CRISPR 
technology has the potential to develop designer plants for generating superior traits 
or to initiate a gene drive to selectively propagate mutations that lead to reduced 
fecundity or female death in the target insect population (Bisht et al. 2019). 

Elucidation of molecular mechanisms of plant defense systems is a prerequisite 
for developing a new strategy to generate insect-resistant crops. Plants have devel-
oped a complex defense mechanism under millions of years of selection pressure 
from insects (Erb and Reymond 2019). Species of different orders show a strong 
spatio temporal variation in the expression of metabolites involved in defense 
against insects (Barton and Boege 2017). The expression level of immunity-
associated genes in Arabidopsis plants is correlated with the duration of the vegeta-
tive stage (Davila Olivas et al. 2017; Glander et al. 2018), illustrating the relationship 
between flowering and resistance to insects. 

Plant Calcium ion (Ca2+ ) signals are involved in a wide variety of signaling 
pathways in the cell. Ca2+ enacts an important role in the circadian regulation of 
photoperiod-controlled flowering in the common morning glory (Ipomoea 
purpurea) (Dodd et al. 2010). Calcium-dependent protein kinase (CDPK) is one of 
the main receptors in the calcium signaling pathway and transduces the signal by 
phosphorylation (Harmon et al. 2000). In Arabidopsis, the loss of function of the 
CPK33 causes late flowering (Kawamoto et al. 2015). Ca2+ is also involved in early 
defense signaling in plants (Yan et al. 2018), after insect feeding, there is a striking 
Ca2+ influx limited to a few cell layers lining the injured site (Maffei et al. 2007). In 
Arabidopsis plants, CPK3 and CPK13 activate the herbivore-induced network by 
increasing the transcription levels of plant defensin gene PDF1.2 (Kanchiswamy 
et al. 2010). In another study, the knockdown of NaCDPK4 and NaCDPK5 genes in 
Coyote Tobacco (Nicotiana attenuata) up-regulated jasmonic acid accumulation and 
increased resistance to Manduca sexta (Yang et al. 2012).
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CRISPR/Cas9 mediated knockout of CPK gene (GmCDPK38) in soybean 
resulted in late flowering time in gmcdpk38 mutants regardless of the photoperiodic 
conditions. In addition to delayed flowering time, gmcdpk38 mutants also exhibited 
enhanced resistance to Spodoptera litura (Li et al. 2022). This revealed the dual role 
of GmCDPK38 in regulating photoperiod-induced flowering in soybean and resis-
tance to Spodoptera litura, suggesting a possible link between flowering and insect 
resistance. 

Resistance to insects is multifaceted with highly complex regulation in both 
insects and the host plant itself. Phytohormones such as jasmonic acid (JA), salicylic 
acid (SA), abscisic acid (ABA) and ethylene can affect plant response to insect pests. 
Deficiency of ABA in plants increases their susceptibility to insect pests (Thaler and 
Bostock 2004; Dinh et al. 2013) whereas exogenous application of ABA can 
increase plant resistance to brown planthopper (BPH) by promoting callose forma-
tion (Liu et al. 2017). In a recent study, overexpression of the 9-cis-epoxycarotenoid 
dioxygenase-3 (NCED3) enzyme in rice plants increased ABA biosynthesis and 
subsequent resistance to BPH (Sun et al. 2022). 

Responses of plants to insect pests are also correlated with the feeding manner 
and the degree of damage at the feeding site. Therefore, the molecular response of 
plants induced by sap-sucking insects is different from chewing pests. One study 
demonstrated the role of serotonin regulation as part of the defense mechanism 
against insect pests in plants (Lu et al. 2018). In rice plants, the cytochrome P450 
gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyzes the conversion 
of tryptamine to serotonin (Fujiwara et al. 2010). Sap-sucking insects cause only a 
little damage to plant tissue therefore salicylic acid (SA) signaling pathway has the 
main role in insect infestation (Li et al. 2017). Serotonin biosynthesis is induced by 
insect infestation in rice, and its suppression confers resistance to BPH and striped 
stem borers (SSB). CRISPR-mediated CYP71A1 gene knockout inhibits serotonin 
production resulting in higher salicylic acid levels and thus resistance to BPH and 
SSB in rice (Lu et al. 2018). However, cyp71a1 mutant individuals showed 
increased resistance to rice blast, Magnaporthe grisea (Ueno et al. 2008) and 
susceptibility to rice brown spot disease Bipolaris oryzae (Ishihara et al. 2008). 

11.5 Conclusion 

Until the beginning of the current century, different approaches such as classical 
plant breeding methods and the application of chemicals in the field contributed to 
enhancing crop yield and production. The requirement of sufficient agricultural 
production for the increasing world population and ensuring global food security 
have led plant scientists to explore more efficient strategies, especially in terms of 
pest management. Existing criticism of traditional pest control approaches, such as 
environmental and health concerns and the development of resistance to insecticides, 
has rendered these methods inadequate on their own. The advent of recombinant 
DNA technology and the introduction of genetically modified crops expressing the 
Bt toxin gene was a new era in agriculture. Later advances in molecular biology



discoveries such as RNAi and CRISPR/Cas technologies soon opened up a new 
avenue in the production of biotech crops. The next generation of GM crops has the 
potential to address concerns about transgenic crops and is of great importance for 
developing sustainable and environmentally friendly methods for crop 
improvements. 
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