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Abstract In recent years, wildfires occur frequently as global warming. People set 
a large number of sensors to monitor the wild land. However, the poor network 
in remote area can hardly afford the big data transmission while low delay. In this 
paper, we firstly propose a semantic communication framework, which consists of the 
GAN-based semantic extraction and LDPC code. To make it affordable for Internet 
of Things (IoT) devices, we then compression the pre-trained model by parameters 
pruning and clustering with the acceptable price of inference performance. Based on 
our analysis, the proposed semantic communication system can significantly reduce 
the volume of transmission data by extracting the semantic information of images 
and preform robustness in fading channel. 
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1 Introduction 

As global warming continues, extreme heat and dry weather occurs frequently, and 
the subsequent wildfire damage has got people’s attention. People used to patrol the 
forest as guards, but now, a more common solution is that setting many sensors or 
edge devices to keep monitoring their surrounding in real time. Besides sending the 
warning signal in a faster and cheaper way, they can log more details and send them
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back to the center for further analysis. However, sensors are generally supposed 
to be energy-efficient and performance-limited. A sensor has a restricted service 
area, which means that it may need thousands of sensors to cover a hill. Although 
applying source compression, it is still a great burden for the transmission networks 
if lots of sensors send their data at the same time. Especially in some unusual cases 
like emergency rescue and damage assessment, live pictures or videos of interested 
area are always required. 

To reduce the networks traffic and the probability of message collision, we need 
a more efficient image compression. However, conventional image compress like 
JPEG, BPG are regarded as high-efficiency engineering implementation to approxi-
mate the entropy of the image. Benefitting from the advancements of deep learning 
and end-to-end communication, semantic communication is promising to break the 
compression limit defined by Shannon information theory. Semantic communica-
tion system interprets received information at the semantic level rather than bit level, 
which is what we exactly do in convention communication system [1]. The difference 
between conventional communication and semantic communication application is 
illustrated in Fig. 1. 

With the DL-based source coding and channel coding module, semantic features 
can be extracted and reconstructed quickly in high-performance computing envi-
ronment. However, sensors can hardly afford the semantic interpreting processing 
of large semantic models. In this paper, we will focus on the lightweight semantic 
communication for edge devices. 

There have been some initial works related to semantic communication and lite 
semantic communication for image transmission. [2, 3] proposed efficient joint 
source-channel coding methods for wireless image transmission based on the convo-
lution neural network (CNN), respectively named DeepJSCC and DeepJSCC-f, 
where the latter firstly exploited the channel output feedback in training and surpass

Fig. 1 Conventional communication and semantic communication 
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the traditional structured coding-based designs. However, the compression rate 
seems to be constrained by the bottleneck of CNN, lacking of the comparison with 
advanced image compression code. A lite semantic communication model for limited 
computing capability IoT devices is discussed in [4]. It proposed a low complexity 
text transmission model based on transformer and developed a channel state infor-
mation (CSI) aided training processing to promise IoT devices to get the correct 
data and train the distributed model locally, but it is difficult to design a lite image 
transmission model which prefers convolution layers rather than dense layers. 

2 System Model 

Referencing to the block-based design in conventional communication system, we 
take the semantic communication system apart into two modules. One is for semantic 
feature extraction and the other is for semantic feature transmission. Observed that 
wireless channels in physical world change stochastically, and the random data makes 
the model training difficult to converge. There has a paradox that the data driven 
model usually requires the correct input for a more accurate interpretation which 
means DL-based channel coding module needs a huge number of parameters to learn 
statistical characteristics of channel. It significantly increases the model complexity 
and becomes unaffordable for IoT devices, otherwise model cannot provide helpful 
semantic features for convergence. The structure of semantic transmission system is 
shown in Fig. 2. 

Fig. 2 System structure
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2.1 Transmission Module 

To simplify the semantic communication system, we adapted LDPC coding to keep 
the semantic information high fidelity while transmission. LDPC coding is a mature 
scheme and widely used in 5G. It provides a high efficiency and high reliability 
channel coding within low complexity, which can be implemented at low hardware 
cost. 

2.2 Semantic Extraction Module 

Once we solved the effect of fading channel with low consumption, more computing 
resource of IoT devices can be allocated into running a DL model. The semantic 
extraction module can concentrate on image extreme compression. The target of 
semantic extraction model can be modeled after the semantic rate-perception-
distortion theory [5], which gives the limit of semantic information rate R within 
the conventional average distortion D and semantic perceptual distortion P, i.e., 

R(D, P) = min 
p( ̂s|s) I

(
s, ŝ

)
s.t. E

[
�

(
s, ŝ

)] ≤ D, d[ ps, pŝ] ≤ P (1) 

where I
(
s, ŝ

)
is the mutual semantic information between the transmitter s and 

the receiver ŝ. Since the divergence distance is considered as an effective index 
of semantic perceptual quality, we define the divergence distance between distri-
butions as d[·, ·]. GANs [6], which is firstly proposed by Goodfellow, has been 
demonstrating superior performance than CNNs on image application like gener-
ation, reconstruction and so on. The structure of alternately training the generator 
G(·) and the discriminator D(·) for a saddle point of min–max objective with the loss 
function, which is formulated as 

LGAN(G, D) = max 
D 

E[ f (D(s))] + E[g(D(G(z)))] (2) 

is proven to be equivalent to measure the divergence distance between the probability 
distribution of the origin dataset and the generated dataset. The proposed training 
structure is based on the Least-Squares GAN [7], which corresponds to the Pearson 
χ2 divergence with f (x) = (x − 1)2 and g(x) = x2. 

We adapt a multi-scale discriminator, which consisted of three independent and 
identical PatchGANs [8], to measure the semantic features loss of the origin image 
and its downsampled images. The quantizer q maps the encoder output from float-
point number to integer. Moreover, we adopt VGG loss to navigate the model to 
generate low average distortion images. The optimization objective can be formulated 
as
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min 
E,G 

max 
dk∈D

[
ND∑

k=1 

LLSGAN(G, dk) + λE[VGGLoss(s, G(q(E(s))))]

]

(3) 

where coefficient λ controls the rate of semantic perceptual distortion and conven-
tional average distortion. 

3 Model Compression and Acceleration 

As revealed in the lottery ticket hypothesis [9], it is difficult to train a pruned model 
from start. A better solution is to prune while training. However, it is impracticable 
for performance-limited and power-limited IoT devices to retrain the pruned model 
within locally collected data. We tend to deploy the model one time and maintain 
the IoT devices if and only if necessary in the remote mountainous region with poor 
infrastructure. Although retraining with the backhaul data and redistributing the 
updated model is viable, the low bandwidth and high delay network might exhaust 
itself by such huge data transmission. Hence, a plug and play IoT device with a pre-
compression is better suited for wildfire monitoring scenario. Considering that the 
IoT devices usually work in a preset position even the cameras face toward a fixed 
direction and we can deal with the trade-off between accuracy and convenience in a 
simpler way. In this section, we will give out some general model compression and 
acceleration method. These all operations directly act on a pretraining large model 
without fine-tuning. 

3.1 Parameter Quantification 

The parameters of model are set to floating-point numbers by default, which needs 
32 bits to save a single parameter (FLOAT32). The operation and storage of a large 
number of FLOAT32 are tolerable for compute unified device architecture (CUDA) 
supported computer. However, IoT devices are equipped with limited performance 
CPUs and without GPUs. They are supposed to handle integer data and provide low 
floating-point operations per second (FLOPS). Hence, we can quantize the parameter 
from FLOAT32 to INT8, and a general uniform quantization is as 

Q= 
R 

S 
+Z 

R=(Q−Z) × S 

S= 
Rmax − Rmin 

Qmax − Qmin 

Z = Qmax − 
Rmax 

S 

(4)
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where Q, R represent the quantized value and real value, respectively. S is the scale of 
quantization and Z is the zero point. Z is usually equal to 0 exactly because it plays an 
important role in the whole model, which deserves a special treatment. Furthermore, 
to quantize the whole model, additional operation should be applicated. We firstly 
took several typical valves of dataset to translate the type of the input and output. 
Then we reinterpreted the model with the filtered dataset to help the activation layer 
calibrate. 

3.2 Parameter Pruning and Clustering 

To find the potential winning ticket, the over-parameterization models are widely 
accepted. The redundant parameters can help handle corner cases and improve 
robustness while training, however, they become a burden for inference instead in 
a simple scenarios like wildfire monitoring. A portion of parameters in the over-
parameterization model have minor effect on inference accuracy in fact, which can 
be replaced by their statistical characteristics without a heavy cost. Parameter pruning 
can be controlled by a hyper-parameter named sparsity, which is ranging from 0 to 
1. All the parameters are sorted and the parameters below the threshold are set to 0 
brutally. Parameter clustering is similar but gentler. It build a set of statistical char-
acteristics of parameters and represent the parameters with their index in the set. The 
details are shown in Fig. 3. 

Both pruning and clustering do not modify the network structure directly and they 
just give out the sparse representation of the model for further compression. Because 
the calculation of most DL model is based on the computation graphs, which are 
divided into dynamic graph and static graph. The difference between both is that the 
latter is invariant once the network have initialized. We prefer the dynamic graph for 
clearer debugging procedure while the static graph for higher execution efficiency.

Fig. 3 Pruning and clustering 
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4 Numerical Results 

In this section, we firstly compare the proposed semantic communication system 
with different conventional image compression. Then we compare the performance 
penalty of compressed model. 

As shown in Fig. 4, the proposed semantic extraction module generated clearer 
images within less bit cost. Benefitting from the generator, which interprets and 
reconstructs with the received semantic information, the volume of data reduce 
significantly. Unlike the conventional image compression, they treat the every pixel 
of images equally and reconstruct blur results. The proposed model keeps a good 
visual perception separately in both the subject and the background of images but the 
border, which can be demonstrated from the difference of the flame shape. Figure 5 
shows the compression performance of ours module and conventional compression. 
We can see that. 

Figure 6 shows the transmission performance between the proposed system and 
DeepJSCC over the AWGN channel and Rayleigh channel. DeepJSCC performed 
better in low SNR environment with the additional training against channel fading. 
However, the fading effect is simulated by the complex Gaussion distribution and it 
is difficult to apply the theoretical results into practice. The semantic transmission 
system interpreted negative results from the incorrect semantic information but its

Fig. 4 Example of visual comparison
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Fig. 5 Compression performance comparison

performance increases rapidly with as the SNR increases owing to the robustness of 
LDPC code. 

Table 1 shows the result of the proposed model before and after the compression. 
Noticed that the number of parameters is constant because of the computation graph 
mentioned above. And the loss of the generated results are acceptable, where the

Fig. 6 Transmission comparison, where LDPC denotes (block length, information length) 
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Table 2 Runtime 
comparison Model Encode time/s Decode time/s Compress rate/bpp 

JSCC 0.0235 1.027 8 

Ours 1.2766 4.524 0.094 

JPEG 0.0498 0.0173 1.416 

JPEG2000 0.2717 0.1916 1.036 

BPG 1.9982 0.3122 0.755 

average of PSNR and MS-SSIM are above 25 dB and 0.9, respectively. The result of 
model size may be counterintuitive because the parameters consist of weights and 
bias and we found that the bias make a significant impact while interpreting, which 
can be proofed by the result of all parameters quantization. Thus we only operated 
on the weights of parameters. Table 2 shows the speed of our system and the others, 
where we took PSNR 30 dB as the benchmark with the Raspberry Pi 4B. We see 
that the proposed compressed model spends more time on semantic coding due to 
the limit parallel computing power. However, considering the poor network in the 
wilderness, we should pay more attention to reducing the transmission delay with the 
higher compression rate. In such scenario, a feasible structure is that the IoT devices 
encode and send the semantic information while the center completes the semantic 
reconstruction. Besides, we performed the simulation again in GPU by the computer 
with NVIDIA GeForce RTX 2080 Ti, and it took 0.7 s to complete the semantic 
reconstruction of one frame.

5 Conclusion 

In this paper, we proposed an available semantic communication for IoT devices, 
which can work in a limit computing capabilities environment. Unlike the DeepJSCC, 
we considered the design of source semantic coding and channel coding separately. 
The former, which is based on the LSGAN, helped image extreme compression by 
extracting the semantic information while the latter provided an efficient and inexpen-
sive method to keep the semantic information low distortion over the fading channel. 
To avoid the model retraining and the data backhaul, we compress the parameters 
of the pre-trained model directly by quantization, pruning and clustering. The simu-
lation result demonstrated that the proposed semantic communication provided a 
higher compress rate and better reconstruction than other systems within comparable 
runtime.
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