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Abstract Pruning is showing huge potential for compressing and accelerating deep
neural networks by eliminating redundant parameters. Along with more terminal
chips integrated with AI accelerators for Internet of Things (IoT) devices, structured
pruning is gaining popularity with the edge computing research area. Different from
filter pruning and group-wise pruning, stripe-wise pruning (SWP) conducts pruning
at the level of stripes in each filter. By introducing filter skeleton (FS) to each stripe,
the existing SWPmethod sets an absolute threshold for the values in FS and removes
the stripes whose corresponding values in FS could not meet the threshold. Starting
with investigation into the process of stripe wise convolution, we use the statistical
properties of the weights located on each stripe to learn the importance between
those stripes in a filter and remove stripes with low importance. Our pruned VGG-
16 achieves the existing results by a 4-fold reduction in parameter with only 0.4%
decrease of accuracy. Results from comprehensive experiments on IoT devices are
also presented.

Keywords Prune stripe-wise · Edge device · Normal distribution · Internet of
things

1 Introduction

In the internet of Things (IoT) realm, sensors and actuators seamlessly integrate with
the environment [1], enabling cross-platform information flow for environmental
metrics, while numerous connected devices generate massive data, offering conve-
nience but also high latency. However, applications such as vehicle-to-vehicle com-
munication which enhances the traffic safety by automobile collaboration, require
low latency and high security. Edge computing is a promising technology that has
the potential to improve the performance and security of IoT applications [2].
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Even though chip giants are integrating more and more AI accelerators into their
design for the IoT devices, the massive number of parameters and the huge amount
of computation would bring horrible experience to the consumers when Deep Neu-
ral Networks (DNNs) are employed in their devices [3]. To alleviate such kind of
problems, researchers have made efforts in many directions, which could be mainly
categorized into two types: unstructured ones and structured ones.

Unstructured pruning methods prune individual weights based on the importance
of themselves. For example, by using the second-order derivatives of the error func-
tion, Optimal Brain Damage and Optimal Brain Surgery proposed to remove unim-
portance weights from a trained network [4]. Deep Compression compressed neural
networks bypruning the unimportant connections, quantizing the network, and apply-
ing Huffman coding [5]. With Taylor expansion that approximates the change in the
cost function [6], pruned convolutional kernels to enable efficient inference and could
handle the transfer learning tasks effectively. A major downside of the unstructured
methods is the sparse matrix and the relative indices after pruning, which leads to
the complexity and inefficiency on hardware [7].

Structured methods prune weights in a predictable way. Li et al. [8] pruned unim-
portant filterswith.L1 norm.Luoet al. [9] prunedfilters basedon statistics information
computed from its next layer, not the current layer. He et al. [10] pruned channels by
LASSO regression. By using scaling factors from batch normalization layers, [11]
removed unimportant channels. Lebedev and Lempitsky [12] revisited the idea of
brain damage and extended it to group wise, obtaining the sparsities in new neural
network. To the best of our knowledge, one recent study [13] proposed a stripe-wise
pruning based methods by introducing filter skeleton to learn the shape of filters and
then performed pruning on the stripes according to the corresponding values of the
filter skeleton.

However setting an absolute threshold sometimes could not express the relative
importance of each stripe in a filter. To resolve this problem, in this work, we put
forward a new method, using the statistical properties of the weights located on each
stripe, to learn the importance between those stripes in a filter. The intuition of this
method is triggered by the process during stripe wise convolution and the properties
of normal distributions.

Our principal contributions in this paper could be summarized as follows: (1)
The research proposes a new method for determining which weights in a neural
network can be pruned without sacrificing accuracy. Our pruned VGG16 achieves
results comparable to the existing model, with a fourfold reduction in parameters
and only a 0.4% decrease in accuracy. (2) The proposed method is based on sound
theoretical principles, making it more trustworthy and easier to understand and apply.
(3) The effectiveness of the proposed approach is tested on different neural network
architectures (VGG16 and ResNet56) and evaluated on edge devices with limited
computational resources.

The paper is arranged as follows: In Sect. 2, we present our method as well as the
theoretical framework behind it. In Sect. 3, we explain the experimental details and
demonstrate comparisons between ourmethod and the originalmethod.Additionally,
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we showcase the performance of our method deployed on edge devices. Finally,
concluding remarks are provided in Sect. 4.

2 The Proposed Method

2.1 Stripe Wise Convolution

In .l-th convolution layer, suppose the weight 4-D matrix .W is of size .R
N×C×K×K ,

where .N , .C and .K are the numbers of filters, the channel dimension and the kernel
size, respectively.

Let.xlc,h,w be one point of featuremap in the.l-th layer and.xl+1
n,h,w be the convolution

result in the .l + 1-th layer. We modify the calculation order of standard convolution
in the stripe-wise way (1) as illustrating in Fig. 1a.

.xl+1
n,h,w =

K∑

i

K∑

j

(
C∑

c

wl
n,c,i, j × xl

c,h+i− K+1
2 ,w+ j− K+1

2

)
(1)

.xlc,p,q = 0, when .p < 1 or .p > MH or .q < 1 or .q > MW . .MH is the height of the
feature map, while .MW represents the width.

From Fig. 1a, we could find that in stripe wise convolution, the convolution result
of individual filter is the summation of the convolution result of the stripes which
belongs to this filter. One intuition is that if the convolution result of the stripe 1 is
much smaller than the convolution result of the stripe 2, Stripe 1 could be pruned
and Stripe 2 could be kept as shown in Fig. 1b. The following part will prove it in a
theoretical manner.

2.2 Theoretical Analysis

Batch normalization (BN) is widely used in a neural network. This method could
make DNN faster and more stable [14]. In one filter, suppose .B is a mini-batch of
size .m, i.e., .B = {a1, . . . am}. BN layer processes these following transformation
steps: .μB = 1

m

∑m
i=1 ai , .σ 2

B = 1
m

∑m
i=1(ai − μB)2, .âi = ai−μB√

σ 2
B+∈

, .xi = γ âi + β ≡
BNγ,β(ai ), where .μB and .σB are the empirical mean and standard deviation of .B.
To resume the representation ability of the network, scale .γ and shift .β are learned
during the whole process.

After transformation in the BN layer, in.c-th channel of.l-th layer, the input feature
map could be.Xl

c ∼ N (βl
c, (γ

l
c )

2). When.MH is large,.(Xl
c)i, j ∼ N (βl

c, (γ
l
c )

2). From
(1), we could get .Xl+1

n = ∑K
i

∑K
j (

∑C
c wl

n,c,i, j × (Xl
c)i, j ).
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Fig. 1 Stripe wise convolution

Assuming all data is independently identically distribution, with the proper-
ties of normal distribution [15], we have .Xl+1

n ∼ N (μl+1
n , (σ l+1

n )2), where .μl+1
n =∑K

i

∑K
j (

∑C
c wl

n,c,i, jβ
l
c) and .(σ l+1

n )2 = ∑K
i

∑K
j (

∑C
c (wl

n,c,i, j )
2(γ l

c )
2)

To reduce the number of parameters .wl
n,c,i, j and avoid the value of .μl+1

n change,
we introducing an importance indicator .Ql

n,i, j to the output of convolution of each
stripe and have the following loss function.

.Ln = loss

⎛

⎝μl+1
n ,

K∑

i

K∑

j

Ql
n,i,j

(
C∑

c

wl
n,c,i,jβ

l
c

)⎞

⎠ + αgn(Q) (2)

where .gn(Q) = ∑K
i

∑K
j

|||Ql
n,i, j

||| , Ql
n,i, j = 1 or 0.

Let.sln,i, j Δ
∑C

c wl
n,c,i, j . If we assume.βl

1 = βl
2 · · · = βl

c = βl , (2) could bewritten

as.Ln = loss(β l ∑K
a

∑K
b sln,a,b, β

l ∑K
i

∑K
j Ql

n,i,js
l
n,i,j) + αgn(Q) and it can be further

written as

.Ln = loss

⎛

⎝1,
K∑

i

K∑

j

Ql
n,i,jT

l
n,i,j

⎞

⎠ + α'gn(Q) (3)
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where

.T l
n,i, j = sln,i, j∑K

a

∑K
b sln,a,b

(4)

Obviously,.
∑K

i

∑K
j T l

n,i, j = 1, 0 ≤ T l
n,i, j < 1Tominimize (3),we could set.Ql

n,i, j =
0 to those .T l

n,i, j close to .0, which means the corresponding stripes will be pruned.
.T l
n,i, j could be used to describe the relative importance of .stripei, j in .filtern . When

.T l
n,i, j → 1, .stripei, j contributes more than other stripes. When .T l

n,i, j → 0, .stripei, j
contributes less than other stripes and could be pruned.

Before setting a threshold for .T l
n,i, j to prune stripes, we need to impose regular-

ization on the whole neural network to achieve sparsity. This method could avoid
so-called “Train, Prune, Fine-tune” pipeline. The regularization on the FS will be

.L =
∑

(x,y)

loss(f(x,W), y) + αg(W) (5)

where .α adjusts the degree of regularization. .g(W ) is .L1 norm penalty on .W and

could be written as .g(W ) = ∑L
l=1(

∑N
n=1

∑C
c=1

∑K
i=1

∑K
j=1

|||Wl
n,c,i, j

|||).
To avoid using sub-gradient at non-smooth point, instead of the .L1 penalty, we

deploy the smooth-.L1 penalty [16].

3 Experiments

In order to assess the performance of the proposed model and confirm its effective-
ness, we carry out experiments using the CIFAR-10 dataset. Our method is imple-
mented using the publicly available Torch. Dataset and Model: CIFAR-10 [17] is
one of the most popular image collection data sets. This dataset contains 60K color
images from 10 different classes. 50K and 10K images are included in the training
and testing sets respectively. By adopting CIFAR-10, we evaluated the proposed
method mainly on VGG [18] and ResNet56 [19]. The inference time refers to the
total amount of time needed to classify 3270 image patches with a size of.224 × 224.
Baseline Setting: We train the model using mini-batch size of 64 for 100 epochs.
The initial learning rate is set to 0.1, and is divided by 10 at the epoch 50. Random
crop and random horizontal flip are used as data augmentation for training images.
Image is scaled to .256 × 256. Then a .224 × 224 part is randomly cropped from the
scaled image for training. The testing is the center crop with.224 × 224.Experiment
environment:NVidia 1080-TI and Intel Core i5-8500B are selected as two different
computing platforms representatives of the server and the edge device, respectively.
The first is a GPU which has high computation ability, however needs communi-
cation with sensors and actuators. The second is a CPU to represent the restricted
computer power of an edge device.



342 C. Mao et al.

3.1 Comparing with the Original SWP

To compare ourmethodwith the original SWP,we revisit the concept of filter skeleton
(FS) from [13]. Each value in FS corresponds to a stripe in the filter. During training,
the filters’ weights are multiplied with FS. With .I representing the FS, the stripe
wise convolution could be written as

.xl+1
n,h,w =

K∑

i

K∑

j

I ln,i, j

(
C∑

c

wl
n,c,i, j × xl

c,h+i− K+1
2 ,w+ j− K+1

2

)
(6)

where .I ln,i, j is initialized with .1.
The regularization on the FS will be

.L =
∑

(x,y)

loss(f(x,W ʘ I), y) + αg(I) (7)

where .ʘ denotes dot product and .α adjusts the degree of regularization. .g(I ) is

written as: .g(I ) = ∑L
l=1(

∑N
n=1

∑K
i=1

∑K
j=1

|||I ln,i, j

|||).
For convenience, in Table 1 for the comparison on CIFAR-10, both the original

method and our method use FS to train and prune the whole neural network. Both
of them use the coefficient .α of regularization, which is set to .1e − 5 and .5e − 5.
The difference is that for the original method, pruning is based on the value in FS
which corresponds to a stripe and for our method, pruning is based on .T l

n,i, j which
combines the weights located in a stripe. Regarding the choice of .T , we used the
value corresponding to the highest accuracy.

From the table,we could find bothmethods could reduce the number of parameters
and the amount of computation (FLOPs) in a considerable volume without losing
network performance. For the backbone is VGG16 situation, when .α = 1e − 5, the
number of parameters and the amount of computation of our method are larger than
the original approach. This is because our method will keep at least one stripe in a
filter, while the original approach might prune a whole filter. However, when .α =
5e − 5, the original approach could not converge and our method could reach a high
compression rate both in the number of parameters and the amount of computation.
Our pruned VGG16 could achieve 95% reduction in memory demands.

For the backbone is Resnet56 situation, we present our result of .α = 5e − 5. To
compare with the original approach’s result of .α = 1e − 5, our method could see a
large reduction in the number of parameters and the amount of computation while
sacrificing a bit of accuracy. Our pruned Resnet56 could achieve 75% reduction in
memory demands.

In our method, there are two decisive hyper-parameters in the neural network, the
coefficient .α of regularization in (7) and the weight combination threshold .T in (4).
As the outcomes of the experiment demonstrated in Table 2, we display the effects of
the hyper-parameters in pruning consequences. It could be noticed that .α = 5e − 5
and .T = 0.005 holds an acceptable pruning ratio as well as test accuracy.
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Table 1 Comparison with the original SWP on CIFAR-10

Backbone Metrics Params FLOPS Accuracy

VGG16 Baseline 14.76M 627.37M 93.76 %

Original(.α =
1e − 5)

3.62M 350.28M 93.46 %

Original(.α =
5e − 5)

Could not converge

Ours
(.α = 1e − 5,
.T = 0.0001)

4.63M 385.49M 93.43 %

Ours
(.α = 5e − 5,
.T = 0.005)

0.84M 126.03M 93.06 %

ResNet56 Baseline 0.87M 251.50M 93.11 %

Original(.α =
1e − 5)

0.60M 150.63M 93.41 %

Ours
(.α = 5e − 5,
.T = 0.001)

0.23M 60.76M 92.96 %

Table 2 Different coefficient.α and weight combination threshold

.α 1e.−5 5e.−5

.T 0.0001 0.001 0.01 0.0001 0.0005 0.001 0.005

Params
(M)

4.63 4.17 2.89 0.78 0.80 0.79 0.84

FLOPS
(M)

385.49 327.17 200.09 130.96 135.56 134.68 126.03

Accuracy
(%)

93.43 93.28 92.99 92.79 92.86 92.96 93.06

3.2 Edge Device Performance

We further verify our approach in an edge device. Pruning is executed on the server
as training consumes computing resources on learning the importance between the
stripes and serval complete passes of the training dataset through the whole neural
network. The pruned networks are then deployed on these two computing platforms
to test results and get the inference time. The comparison is shown in Fig. 2a, b. It
should be noted that stripe wise convolution is not yet optimized in CUDA. Along
with the increase in percentage of parameters pruned, the decline in inference time
in servers is not quite clear. However, the inference time in edge device drops by half
when 75–95% of parameters are pruned.
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Fig. 2 Required inference time for pruned models

4 Conclusion

In this work, we avoid using an absolute threshold in existing stripe-wise pruning by
combining the weights located on each stripe. This allows us to learn the importance
between stripes in a filter and remove those with low importance. Our prunedmethod
effectively reduces the parameters and inference time of our VGG16 model without
significantly impacting accuracy. In future work, we will explore the introduction
of regularizers to prune filters with single stripes, which may further compress deep
neural networks and improve performance.
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