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Abstract This paper presents a decision fusion model based on two-channel convo-
lutional neural network (DF-TCNN) as a way to solve the problems of insufficient 
feature representation, low performance detection, and poor fault tolerance in radar 
target detection based on deep learning. In the pro-posed model, a mean strategy is 
incorporated on each branch’s predictions, and a decision fusion algorithm is applied 
to refine the classification results. Moreover, a dual-channel network structure with 
an attention mechanism is embedded for feature enhancement and learning adapta-
tion. Verification of the radar data shows that the method offers a high fault tolerance 
rate and strong anti-interference ability, which can significantly improve radar target 
detection in the background of complex sea clutter. 

Keywords Radar target detection · Decision fusion · Attention mechanisms ·
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1 Introduction 

Target detection technology under the background of sea clutter is widely used 
in military and civilian settings, and it is a radar research hotspot [1]. Sea clutter 
has non-Gaussian, nonlinear, and non-stationary characteristics [2–4], which lead to 
mismatches of the statistical model which reduce the target detection performance 
of the constant false alarm rate (CFAR) method [5]. Contrary to CFAR detections, 
convolutional neural networks (CNN) [6–9] are data-driven and construct models 
using deep perceptual networks, which overcom1es the limitation of relying solely 
on statistical characteristics to simulate clutter distributions [10]. 

In Ref. [11], radar target detection is defined as a binary classification problem 
between targets and clutter, which is realized by using the Doppler domain infor-
mation of the echo signal. To classify maritime targets, clutter, and coastline, CNN 
is used to classify the segmented maritime radar image samples in [12]. Since the
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target has a variety of motion characteristics, the Doppler velocity of the clutter unit 
tends to be large in low sea conditions, and the Doppler spectrum of the target and 
the clutter overlaps partially, detecting it with only a single feature is unreliable. 

In this paper time frequency and amplitude characteristics of sea clutter were 
extracted using two-channel convolutional neural networks. Based on the viewpoints 
of feature fusion and feature extraction, the feature vector layer fusion model and the 
decision layer fusion model are then developed. Similarly, an attention mechanism 
is simultaneously implemented in the detection of sea clutter objects to improve 
the model’s ability to extract features. For the proposed strategy, simulation anal-
ysis is used to determine the most suitable model, taking into account detection 
performance, parameter amounts, calculation complexity, and detection time. 

2 Proposed Method Descriptions 

In this section, a two-channel feature extraction network structure was developed, 
along with a convolutional attention module. The predicted results from each branch 
were fused at the decision layer, and the target detection problem was transformed into 
a binary classification problem using the Softmax classifier. The decision threshold 
was adjusted to effectively control the system’s false alarm rate. 

2.1 Fusion Attention Mechanism for Feature Extraction 
Networks 

Convolutional attention module (CBAM) [13, 14] is integrated into the feature extrac-
tion network VGG16, and end-to-end training is performed together with VGG16 to 
form an improved feature extraction network. Figure 1 illustrates the network struc-
ture. There are two types of CBAM: Channel Attention Modules (CAM) and Spatial 
Attention Modules (SAM). In order to adapt the features, the two modules infer the 
attention weights in turn along the channel and space dimensions.

As shown in Fig. 2, an input feature map F is compressed to reduce its spatial 
dimension, and information about its spatial location is consolidated using average 
pooling and maximum pooling to create a 1× 1× C feature map: Fc 

max and F
c 
avg . As  

a result, the multilayer perceptron (MLP) of the hidden layer is applied to the two 
feature maps, and the output feature vectors are combined element-by-element. As 
a final step, the Sigmoid activation operation is used to produce a detailed feature 
map of channel attention Ac.

Formulas (1)–(3) show the calculation process: 

Ac(F) = σ (ML  P(AvgPool(F)) + ML  P(Max  Pool(F))) (1)
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Fig. 1 Network of VGG16 feature extraction with CBAM

Fig. 2 Process of CAM operation

Ac(F) = σ
(
W1

(
W0

(
Fc 
max

)) + W1
(
W0

(
Fc 
avg

)))
(2) 

Fc = Ac(F) ⊗ F (3) 

where Maxpool  and Avgpool  represent average pooling and maximum pooling, 
W0 and W1 represent the two weights of MLP, σ represents sigmoid function, and 
⊗ represents element-wise multiplication. 

Figure 3 shows the operation process, which is the most informative part of the 
SAM. As a first step, the average pooling and maximum pooling operations will be 
performed in the channel dimension to obtain two feature maps of H × W × 1. As  
a result, two features are spliced together into a feature map of H × W × 2, and a 
7 × 7 convolution kernel is used to reduce the dimension again into a feature map 
of H × W × 1. As a final step, the spatial attention map As is generated via the 
Sigmoid activation method and the final salient feature map Fs is obtained through 
element-wise multiplication.

Formulas (4)–(6) show the calculation process:
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Fig. 3 Process of SAM operation

As(Fc) = σ (Conv7×7([Max  Pool(Fc); AvgPool(Ac)])) (4) 

As(Fc) = σ
(
Conv7×7

([
Fs 
max; Fs 

avg

]))
(5) 

FR = As(Ac) ⊗ Fc (6) 

2.2 Algorithm for Decision Fusion 

In this framework, decision-level feature fusion is implemented through two modules: 
classification and decision fusion. LeNet-5 and VGG16 are used as feature extrac-
tion channels in the classification module; the mean fusion algorithm is used in the 
decision fusion module (Fig. 4). 

A VGG16 channel contains two fully connected layers with an output vector size 
of 4096×1, while a LeNet-5 channel has an output vector size of 120×1. In the  last  
fully connected layer of each network branch, vector probability is calculated using

Fig. 4 Model based on fusion of decision layers 
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the Softmax function. During feature extraction, the weights and parameters of each 
layer of the trained network are loaded using the transfer learning method. 

Each branch of the classification module’s prediction results is fused at the deci-
sion level in the fusion module, denotes the prediction result of the i-th branch, then 
there are two branches, so i ∈ {1, 2} is obtained. By using different fusion rules, 
Pf = (

p f,1, p f,2
)
can be predicted for the final fusion module. In this paper, the 

inter-element mean strategy is used for fusion. The calculation rules for the fusion 
of the j-th element Pf, j through the element mean strategy are as follows: 

Pf, j = 
1 

2 

2∑

i=1 

pi, j (7) 

3 Experimentals and Analysis 

The proposed method is comprised of three parts: data preprocessing, dataset 
construction, and model training. During the forward propagation of the dataset 
in the network model, preliminary prediction results are obtained. Subsequently, in 
the backpropagation process, the model weights are adjusted by computing the error 
between the predicted and expected values. This adjustment enables obtaining the 
optimal network parameter model, facilitating binary classification of targets and 
clutter. 

3.1 Data Set Description and Settings 

In this paper, a dual-feature dataset that combines sea clutter amplitude and Doppler 
velocity is produced for the parallel dual-channel feature network structure described 
in Sect. 2. IPIX sea clutter data is used for training and testing. 

A sea clutter dual-feature image sample is made by splicing and packaging the 
data obtained from the same signal sequence after different preprocessing methods 
to ensure that the time–frequency map and amplitude map are identical. Figure 5 
displays a double-featured image of sea clutter. The time–frequency features are 
represented by lines 1–224, while the compressed amplitude features are represented 
by lines 225–229.
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Fig. 5 Sea clutter dual feature dataset 

3.2 Evaluations of the Proposed Method 

As  shown inTable  1, compared with models 1–4, VGG16 achieves higher clutter clas-
sification accuracy, while LeNet shows higher target classification accuracy. More-
over, compared with single-channel models 5–7, dual-channel models significantly 
improve target sample classification accuracy. 

In order to verify the detection performance of Model 6 based on the decision 
fusion algorithm, we designed Model 5, which uses different feature fusion strategies 
but the same feature extraction channel model. The experimental results show that 
Model 6 has a target accuracy of 91.27% and a clutter accuracy of 98.33%. Target 
classification performance improved by 4.45%. Afterwards, the detection probability 
increased by 1.54% and 0.86% after the CBAM module was introduced in VGG16. 

As shown in Fig. 6, Model 7 outperforms Models 5 and 6 if a variable threshold 
Softmax classifier is used. With false alarm probabilities greater than 10−2, models 5

Table 1 Extraction model performance 

Model Preprocessing Feature extraction 
channel 

Fusion method Accuracy 
(Target)/% 

Accuracy 
(Clutter)/% 

1 AMP LeNet-5 / 78.89 91.12 

2 STFT LeNet-5 / 85.12 94.34 

3 AMP VGG / 76.52 92.86 

4 STFT VGG / 84.23 97.67 

5 Ch1:AMP 
Ch2:STFT 

LeNet-5 
VGG 

Feature vector 86.82 98.69 

6 Ch1:AMP 
Ch2:STFT 

LeNet-5 
VGG 

Decision-making 
layer 

91.27 98.33 

7 Ch1:AMP 
Ch2:STFT 

LeNet 
VGG (CABM) 

Decision-making 
layer 

92.81 99.19 
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Fig. 6 ROC curves for 
model 5–7 

and 6 display similar detection performance, but both perform worse than model 7. 
When the false alarm rate is less than 10−3, model 7 can achieve a higher detection 
probability, and when the false alarm rate is 10−4, model 7 can still achieve a detection 
accuracy of 84.16%. 

3.3 Analysis of Influencing Factors 

In practical detection tasks, environmental factors such as wind speed, temperature, 
and weather can contribute to a complex and variable radar operating environment. 
Moreover, high-speed acquisition of sea surface information is necessary during 
detection, requiring control of radar dwell time. The shorter the dwell time, the 
shorter the observation time. Therefore, this section conducts experimental tests to 
verify the detection performance of the proposed detector under different observation 
durations and sea conditions. 

Figure 7a presents a comparison of the detector’s performance for different obser-
vation periods under the HH polarization. The results indicate that an increase in 
observation time significantly improves the detection probability. Notably, under 
high false alarm rates, increasing the observation time from 2048 to 4096 ms slightly 
improves the detector’s detection performance. Moreover, when the observation time 
is only 256 ms and the false alarm probability is 10−3, the detector’s detection accu-
racy can exceed 80%, which can meet the requirements of low observation time, low 
false alarm probability, and high detection accuracy in practical applications.

Figure 7b shows detection of Class 2, Class 3 and Class 4 sea states with 1024 ms 
observation time and a false alarm probability of 10−3. Due to the difference between 
the sea clutter and the Doppler spectrum of the target unit in the third sea state, the 
network is better able to extract and learn image features based on the differences 
between those two factors; Nevertheless, in level 2 sea states, the target Doppler 
spectrum overlaps with the clutter Doppler spectrum, which limits the performance 
of target detection; Similarly, when the sea state is level 4, backward electromagnetic
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Fig. 7 Model detection figures under different observation durations and sea states

scattering characteristics of sea clutter are strong, and sea peaks due to waves and 
swells on the sea surface are similar to the target echo and have a high amplitude, 
making it easier to cover up the target. At this time, the detection probability decreases 
slightly. 

4 Conclusion 

As a part of this paper, radar signal target detection is converted into a binary classi-
fication problem, and the measured sea clutter and target radar signal data are used 
to test the performance of different feature extraction models, as well as an attention 
mechanism-based method. 

We process radar signals by short-time Fourier transform and modulo method, 
VGG16 and LeNet networks are used for feature extraction, and CBAM is fused 
into the VGG16 network in the decision layer. The detection probability is 87.88% 
under the conditions of 10−3 false alarm rate, and 84.16% under the conditions of 
10−4 false alarm rate. 
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