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Abstract A strip steel surface defect detection method called YOLOv5-ABS is 
developed in order to address the issues of low detection accuracy, insufficient feature 
extraction ability, and insufficient feature fusion of YOLOv5. Firstly, in order to 
enhance the backbone network’s capacity for feature extraction, the C3 module is 
swapped out for the SeC3 module with an attention mechanism. Secondly, in order 
to improve the network feature fusion capability, the bidirectional weighted feature 
pyramid network BiFPN is added in the Neck section. Finally, by introducing the 
SPPFCSPC spatial pyramid pooling structure, speed and accuracy are improved 
while keeping the receptive field unchanged. According to the experimental findings, 
the revised YOLOv5-ABS algorithm’s mAP on the NEU-DET dataset is 78.6%, 3.8% 
larger compared to the initial YOLOv5s algorithm, and the detection speed is 142.8 
FPS, enabling the quick and precise identification of strip steel surface defects. 
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1 Introduction 

Strip steel is an important industrial raw material in the field of mechanical manufac-
turing. Due to the influence of external factors such as the production process, raw 
material quality, and processing equipment, the surface of the product may produce 
various types of defects, such as rolled-in scale, scratches, and patches, during the 
strip steel production process. These flaws will not only degrade the product’s look 
but will also reduce its steel strength, corrosion resistance, and wear resistance, and
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may even result in a safety mishap. As a result, one of the hottest topics in the 
world of mechanical manufacturing is how to quickly and precisely accomplish the 
identification of strip surface flaws. 

Surface defect detection methods based on machine vision have received a lot 
of attention as machine vision technology has advanced. A typical machine vision 
defect detection system is made up of two parts: hardware and software. The hard-
ware system mainly refers to the image acquisition device composed of an indus-
trial camera, an industrial lens, a light source, and other equipment, which mainly 
completes the image acquisition work; the software system first performs noise reduc-
tion, segmentation, and morphological processing on the collected images, and then 
completes recognition and classification according to the extracted image feature 
information. Based on the shape template matching algorithm, some researchers have 
proposed an automatic detection method for shape defects of stamped parts, but this 
method is greatly affected by the light environment and is sensitive to noise [1]. Liu 
uses bilateral filtering and the Hilditch algorithm to improve the traditional Sobel 
operator and proposes a new edge detection algorithm for strip steel surface defect 
images. However, this method is not accurate for edge positioning, and the extracted 
edge lines are thicker [2]. A defect identification approach for solar cells based on 
SVM has been presented by some academics to address a number of common solar 
cell flaws, but it is challenging to train this system on huge amounts of data [3]. 

In the area of machine vision, deep learning has advanced quickly in recent years. 
Deep learning-based surface defect detection techniques have recently attracted a 
lot of attention in the target detection field. The deep learning-based approach may 
effectively address the complexity and unpredictability of manual feature extrac-
tion in conventional machine vision by automatically learning and extracting the 
input data’s features [4]. To increase the effectiveness and accuracy of defect iden-
tification, academics domestically and internationally have applied deep learning 
to the detection of surface defects in a variety of products. A surface defect detec-
tion algorithm for a metal workpiece based on improved Faster RCNN is proposed 
by introducing multi-level ROI pooling layer structure and a bilinear interpolation 
method. This algorithm aims to address the issues of low accuracy and low speed 
of surface defect detection of metal materials [5].  Based on YOLOv3,  Kou uses  
Anchor-Free to improve the speed of the model and designs dense blocks to extract 
richer feature information. The accuracy and robustness of the model have been 
improved [6]. Aiming at the problem of low accuracy of metal surface scratch detec-
tion, a method of metal surface scratch detection based on YOLOv4 is designed by 
introducing the small target detection idea, data enhancement, and adjusting anchor 
frame size [7]. Aiming at the problem of low detection efficiency of different scale 
defects on metal surfaces, an improved YOLOv5 detection network is designed. 
An adaptive anchor frame method is proposed, and a feature layer is added to the 
main components to enhance the useful feature information. In the prediction part, 
an effective loss function is used to solve the problem of data imbalance caused by 
small targets [8]. At present, there are many methods applied to the detection of 
strip steel surface defects, but these methods have problems such as low detection 
accuracy, low detection speed, and large model calculations.
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In order to further improve the accuracy of strip steel surface defect detection, 
this study improves the YOLOv5s model and proposes the YOLOv5-ABS, which 
integrates an attention mechanism and a bidirectionally weighted feature pyramid 
structure. Firstly, a channel attention mechanism called SENet (squeeze and exci-
tation network) is introduced into the backbone network to improve the network’s 
feature extraction ability. Secondly, the BiFPN network is introduced to replace the 
feature fusion network PANET to enhance the fusion of shallow feature informa-
tion and deep feature information. Finally, the spatial pyramid pooling structure 
SPPFCSPC is introduced to reduce the amount of calculation and improve the detec-
tion speed. Our experiments demonstrate that the updated YOLOv5-ABS network 
structure can achieve a maximum mAP of 78.6% on the NEU-DET dataset, which 
is 3.8% higher than the mAP of the previous YOLOv5s network. A better balance 
between detection speed and accuracy is achieved with a detection speed of 122 FPS. 

2 Related Works 

The YOLO series algorithm [9] is a one-stage target detection model based on deep 
learning and convolutional neural networks. Compared with previous versions, the 
YOLOv5 model has higher detection accuracy, faster detection speed, and a smaller 
model volume. According to the difference between network width and depth, the 
YOLOv5 model has five versions: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, 
and YOLOv5x. The detection accuracy of the five versions continues to increase, 
but as the model size and model parameters continue to increase, the detection speed 
decreases significantly. Considering the requirements of strip steel surface defect 
detection in terms of detection accuracy, detection speed, and real-time performance, 
YOLOv5s is selected for improved design in this study. 

3 Methodology 

In this section, we provide an improved model. Figure 1 represents the structure of 
the upgraded YOLOv5-ABS model, which is primarily made up of the Backbone, 
Neck, and Head.

Backbone: This component’s primary job is to extract information about image 
features. It consists of the Conv module, the SeC3 module with channel attention 
mechanisms, and SPPFCSPC (Cross-Stage Partial Fast Spatial Pyramid Pooling). 
Conv performs convolution on the input features, BN prevents overfitting and facili-
tates model training, and the SiLU activation function is used to improve the expres-
sion ability of the model. The SeC3 module first uses the channel attention mechanism 
to enhance the feature extraction ability of the model, and then uses the C3 module to 
reduce the amount of calculation and memory. SPPFCSPC is used to fuse the feature
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Fig. 1 YOLOv5-ABS model structure

maps of different receptive fields, enrich the feature expression ability, and improve 
the running speed. 

Neck: Using BiFPN structure, the image feature information processed by the 
channel attention mechanism is integrated into the BiFPN network, which enhances 
the network’s feature fusion ability and solves the problem of multi-scale feature 
fusion. 

Head: the output of the model, which is mainly used to generate bounding boxes 
and predict defect categories. The loss function of the Bounding box is GIOU Loss, 
and the target box is filtered by NMS (Non-Maximum Suppression) to eliminate 
redundant boxes. 

3.1 SeC3 Module Integrated with SENet 

SENet (Squeeze-and-excitation networks) [10] is a channel attention mechanism 
network. The network mainly enhances the important features and suppresses the
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general features by obtaining the importance of each feature channel. Consequently, 
the model’s capacity to extract target features and detection precision are enhanced. 

The workflow of SE mainly includes three steps: Sequeeze, Excitation and Scale, 
as shown in Fig. 2. First, Sequeeze average pooling or maximum pooling the feature 
maps obtained by convolution to obtain a feature map of 1 × 1 × C. The Sequeeze 
formula is: 

Z = Fsq(Xc) = 1 

H × W 

H∑

i=1 

W∑

j=1 

Xc(i, j ) (1) 

In the formula (1), H × W is the size of channel space, Xc is the input feature 
map; (i, j) is the point with abscissa i and ordinate j on the feature map; Fsq(Xc) 
represents the compression operation of the feature map; Z is the weight obtained 
by the compression channel. 

Then, the relationship between the feature channels is grasped by the Excitation 
operation to generate weights for each feature channel. The Excitation formula is: 

Sc = Fex(Z , W ) = Sigmoid[W 2 × ReLU (W 1, Z )] (2) 

In the formula (2), W is the dimension, Sc is the attention weight generated after 
Fex operation. 

Finally, the weight of the Excitation output is multiplied by the input feature to 
complete the recalibration of the original feature, so that the model can distinguish 
the features of each channel. The Scale formula is:

X̃=Fscale(Xc, Sc) ⊗ Sc (3) 

In the formula (3), ⊗ is the multiplication of elements, Fscale is a weight resetting 
operation, X̃ is the result of SE channel attention. 

The SeC3 module in this study was created by combining SE with the C3 unit. 
The SeC3 module is frequently utilized in the YOLOv5-ABS backbone, making it 
easier for the model to extract image features and increase detection accuracy.

Fig. 2 SENet network structure 
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Fig. 3 BiFPN structure 

3.2 Multi-scale Features Fusion Network BiFPN 

Multi-scale feature fusion is frequently employed in target detection networks to 
enhance the model’s detection performance. At present, the commonly used features 
of fusion networks are FPN [11], PANet [12], and BiFPN [13]. FPN establishes a 
top-down feature pyramid structure to achieve effective fusion of image semantic 
level and feature level, but it is limited by one-way feature information transmission. 
In order to make it simpler for the underlying information to be transferred to the 
top of the high-level, PANet integrates a bottom-up channel on top of FPN; however, 
this also makes the model more complex and decreases the efficiency of information 
transmission. BiFPN is a Bidirectional Feature Pyramid Network proposed by the 
Google team, as shown in Fig. 3. The network first deletes nodes with just one input 
edge; then, a new channel is established between the previous input point and the 
output point, allowing additional feature information to be fused without incurring 
excessive costs. In this study, BiFPN is added to the neck network to improve the 
network’s capacity for feature fusion. 

3.3 SPPFCSPC Module 

According to the design scheme of SPPCSPC, this study combines the SPPF pyramid 
pooling structure and CSPNet to obtain the SPPFCSPC structure [14], which achieves 
speed improvement while keeping the receptive field unchanged. SPPF obtains 
different receptive fields through maximum pooling, which makes the model adapt to 
different resolution images. SPPF effectively solves the problem of repeated feature 
extraction, improves the generation speed of candidate boxes, and saves computing
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costs. CSPNet divides the features into two parts, only one of which is processed 
routinely. Finally, the two parts are combined, the calculation amount is reduced by 
half, and the speed and accuracy are improved. 

4 Experimental Results and Analysis 

4.1 Experimental Dataset 

In this research, the strip steel surface defect dataset NEU-DET produced by North-
eastern University was used, which contains six common types of surface defects: 
Rolled-in Scale (RS), Crazing (Cr), Inclusion (In), Patches (Pa), Scratches (Sc), Pitted 
Surface (PS). The dataset has a total of 1800 images, and each type of defect has 300 
images. The grayscale image is 200 × 200 pixels in size in its original form. A total 
of 1440 images were chosen at random to make up the training-set; 72 images served 
as the validation-set; and 288 images served as the test-set. In order to increase the 
amount of training data and enrich the training scene, this study uses mosaic data 
enhancement technology to randomly crop four images and splice them into one 
image as training data. Considering the characteristics of the model and the original 
resolution, the input image’s measurement is set to 256 × 256. 

4.2 Experimental Environment and Evaluation Metrics 

The Windows 11 operating system serves as the foundation for the study’s experi-
mental environment. The CPU is an Intel Core i7-12700H, the memory is 32 GB, and 
the GPU is a NVIDIA GeForce RTX 3070 Ti Laptop 8 GB. Using PyTorch 1.12.1 
as the deep learning framework, the Python version is 3.8 and the CUDA version is 
11.3. During the experiment, the epoch is set to 100 and the Batchsize is set to 128. 
The momentum is set to 0.937, the initial learning rate lr0 is set to 0.01, the cosine 
annealing algorithm is used to dynamically adjust the learning rate, and the weight 
_ decay is set to 0.0005. 

This study uses Average Precision (AP) and Mean Average Precision (mAP) to  
evaluate the improved model. AP (formula 6) represents the mean value of Precision 
(P, formula  4) under different Recall (R, formula  5), that is, the PR curve obtained 
with P as the ordinate and R as the abscissa. 

P = T P  

T P  + FP  
× 100% (4) 

R = T P  

T P  + FN  
× 100% (5)
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AP  = 
1∫

0 

p(r )dr (6) 

where TP means True Positives, FP means False Positives, and FN means False 
Negative. 

The mean mAP (formula 7) represents the average accuracy of all target detection 
categories. 

mAP  =
∑n 

i=0 AP(i ) 

n 
(7) 

where n represents the number of defect categories. 

4.3 Ablation Experiment 

The performance of the proposed method in strip surface defect detection is verified 
by ablation experiments. Based on the YOLOv5s network, the SeC3 module is used 
to replace the C3 module in the backbone named YOLOv5s-A; the introduction of 
the BiFPN module based on YOLOv5s-A is named YOLOv5s-AB; and based on 
YOLOv5s-AB, the SPPFCSPC module is used to replace the SPPF module named 
YOLOv5s-ABS. Table 1 displays the experimental outcomes. 

According to the experimental results, after introducing the SE channel attention 
mechanism into the C3 module, the mAP of YOLOv5s-A is 75.8%, which is 1% 
higher than the original algorithm. This demonstrates that the SE attention mecha-
nism effectively increases the model’s ability to extract the image’s global feature 
information and boosts detection accuracy. After introducing the BiFPN structure, 
the parameters and GFLOPs of YOLOv5s-AB are slightly improved compared with 
the original algorithm, but its mAP is further increased to 77.9%, which indicates 
that the use of BiFPN can effectively improve the detection accuracy of the network 
model. On this basis, the SPPFCSPC module is introduced. It can be found that the 
parameters and GFLOPs of YOLOv5s-ABS increase greatly, but the mAP is further 
improved to 78.6% and the detection speed is basically the same as the original 
algorithm, so it can still meet the real-time detection requirements.

Table 1 Results of ablation test 

Model Parameters GFLOPs FPS mAP 

YOLOv5s 6.29 × 106 15.0 147.4 74.8 

YOLOv5s-A 6.06 × 106 13.8 145.1 75.8 

YOLOv5s-AB 7.12 × 106 15.1 144.7 77.9 

YOLOv5s-ABS 13.55 × 106 20.3 142.8 78.6 
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Figure 4 depicts the AP of each type of defect in YOLOv5s-ABS and YOLOv5s. 
The figure shows that the AP of YOLOv5s-ABS is enhanced as compared to the 
initial algorithm; the AP of RS, Cr, Pa, Sc, and Ps is increased by 1.6%, 19%, 1.4%, 
0.7%, and 1.1%, respectively, except that the AP of In is reduced by 1.1%. The 
detection accuracy is substantially better than the previous algorithm, especially for 
Cr. It has been discovered that the application of the BiFPN multi-scale features 
fusion network, the SE channel attention mechanism, and the SPPFCSPC structure 
may significantly increase the detection accuracy of strip steel defects. 

Figure 5 shows the test results for six kinds of defect samples. Different defects 
use different colors of Bounding-Box, and the upper right of each Bounding-Box 
has the defect name and confidence. The illustration demonstrates that for the same 
image, the enhanced algorithm has a better detection effect on all kinds of defects 
and can accurately detect the missing parts of the original algorithm. 

Fig. 4 Comparison of various types of AP between the two algorithms 

Fig. 5 Detection results of six kinds of defect samples
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Table 2 Comparison of 5 different models on NEU-DET 

Model AP% Weight/MB mAP@0.5% 

RS Cr In Pa Sc PS 

YOLOv3 53.1 36.7 62.8 77.4 72.2 68.5 235 61.8 

YOLOv4 45.6 31.7 75.3 81.8 78.2 72.4 244 64.2 

SSD 54 32.1 62.3 82.5 71.9 71.6 93.9 62.4 

Faster-RCNN 57 37.3 83.6 89.7 90.6 90 108 74.7 

YOLOv5s-ABS 58 49.3 88.1 90 91.2 95 26.7 78.6 

4.4 Comparative Experiment 

To further confirm the effectiveness of the improved YOLOv5s-ABS algorithm, 
this study selects four mainstream target detection algorithms YOLOv3, YOLOv4, 
SSD, and Faster-RCNN to compare with the improved YOLOv5s-ABS model on 
the NEU-DET dataset. Table 2 presents the outcomes. 

According to Table 2, the mAP of the improved model YOLOv5s-ABS in this 
study reached 78.6%, which has a higher detection accuracy than the other four 
mainstream target detection models. Among them, the mAP of Faster-RCNN is 
74.7%, which is close to the improved model. However, Faster-RCNN is a two-stage 
detection model with a complex training process, a large amount of calculation, and 
slow speed. The mAP of SSD is low, and it performs poorly in Cr defects but better 
in Pa defects. This is because Pa defects are mostly large targets, and Cr defects 
are mostly small targets, which reflects the shortcomings of SSD in small target 
defect detection. The detection accuracy of YOLOv3 and YOLOv4 models is low, 
the model volume is large, and the industrial deployment cost is high. In general, 
YOLOv5s-ABS has higher accuracy on the NEU-DET dataset, which can maintain 
a good balance between accuracy and speed, and a smaller model volume can be 
more convenient for industrial deployment. 

5 Conclusions 

This paper offers an improved YOLOv5s-ABS algorithm to solve the problem of 
strip steel surface defect detection and increase the accuracy and speed of strip 
steel surface defect detection. The algorithm first inserts the SENet channel atten-
tion mechanism into Backbone, which improves the feature extraction ability of 
the network. Secondly, the bidirectional weighted feature pyramid network BiFPN 
is introduced into Neck to strengthen the network features fusion ability. Finally, 
the SPPFCSPC structure is introduced to further improve speed and accuracy while 
keeping the receptive field unchanged. The algorithm’s usefulness is demonstrated 
by experimental findings. Since the improved model has a low recognition rate for
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the two types of defects of Crazing and Rolled-in Scale, the next step will be to 
study the detection of these two types of defects and further optimize the detection 
accuracy of the model. 
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