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Abstract Dynamic Spectrum Access (DSA) is a critical technology for Cognitive 
Wireless Sensor Network (CWSN). The main challenge of DSA is how Secondary 
Users (SUs) can quickly and accurately identify vacant spectrum, while ensuring that 
the service of the Primary User (PU) is not interrupted. The current DSA solutions 
do not satisfy the requirements of high throughput, low interference and fast conver-
gence simultaneously for large scale multiple users and multiple channels access 
scenarios. In this paper, we propose a distributed DSA algorithm based on Deep 
Reinforcement Learning (DRL). First, we construct a Cognitive Wireless Sensor 
Network (CWSN) environment with multiple users and multiple channels. Next, 
based on the spectrum sensing results, each SU provides channel observations to our 
proposed Deep Q-Network (DQN) model for training in order to learn the optimal 
spectrum access policy. Finally, using the output of the DQN model, each SU intelli-
gently accesses the appropriate channel. In order to improve the training accuracy and 
address the performance degradation problem caused by the network depth in deep 
neural networks, we added the Residual Network (ResNet) structure to the DQN. 
Simulation results show that the proposed algorithm achieves faster convergence 
speed, completely avoids collisions between SUs, greatly reduces the interference 
of SUs to PU, and significantly improves the success rate of channel access. 
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1 Introduction 

CWSN combines cognitive radio technology with Wireless Sensor Network (WSN) 
to address the problem of scarce spectrum resources by allowing a large number 
of sensor nodes as SUs to access the authorized spectrum. DSA is one of the key 
technologies in CWSN, and its task is to make a decision based on spectrum sensing 
data from cognitive sensor nodes to access a vacant spectrum licensed to a PU. 
However, when using this technique, the issues that need to be addressed are: how 
to minimise the interference to the PU while accessing and using the authorised 
spectrum, and how to avoid conflicts between SUs when multiple SUs try to access 
the same spectrum [1, 2]. 

Traditional optimization algorithms such as Game Theory, Particle Swarm Opti-
mization and Genetic Algorithm have been used to address the DSA problem [3, 
4]. Although these methods achieve spectrum reuse, their model design is complex, 
easily get trapped in local optima and less flexible and adaptive. In contrast, Rein-
forcement Learning (RL) can adaptively learn optimal strategies without a priori 
information in uncertain and dynamic complex environments. Therefore, in recent 
years, RL has been applied to DSA. In literature [5], a Q-learning based spectrum 
access algorithm is proposed to improve the transmission performance through intel-
ligent utilisation of spectrum resources. Document [6] proposes a decentralised multi-
intelligence reinforcement learning-based resource allocation scheme to address 
resource allocation problem without complete channel state information. The Q-
learning used in the literatures [5, 6] performs well on small-scale models. However, 
it shows significant performance degradation when the state or action space is large. 
Deep Neural Network (DNN) is used in DRL to overcome this limitation. In liter-
ature [7], a centralised dynamic multichannel access framework based on DQN is 
proposed to minimise conflicts and optimise multi-user channel allocation through a 
centralised allocation policy. However, the centralised approach to spectrum access 
can lead to high communication overheads and may be difficult to implement in prac-
tice. In addition, the algorithm’s performance may be limited as it doesn’t account 
for imperfect spectrum sense that occur in real-world environments. Literature [8, 
9] proposed using multi-intelligent deep reinforcement learning at medium access 
control layer for channel access. In this approach, users make transmission decisions 
through centralised training and decentralised execution to maximise the long-term 
average rates or to improve the performance of the network in terms of throughput, 
delay and jitter. However, this centralized training approach has single point of failure 
and necessitates high communication and computational resources, and decentral-
ized execution requires transmission and synchronisation of parameters. In literature 
[10], a new DSA method is proposed for multichannel wireless networks that can 
find near-optimal policies in fewer iterations and can be applied to a wide range 
of communication environments. However, this method is limited as it targets at 
only one DSA user and does not consider the collision problem between SUs and 
PUs. The authors of [11, 12] employ reservoir computing or echo state networks, 
a type of Recurrent Neural Network (RNN), in DRL to enable distributed dynamic
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spectrum access for multiple users. They mitigate the effects of spectrum sensing 
errors by taking advantage of the temporal correlation of RNNs, thereby reducing 
conflicts among users. Nonetheless, the Q-networks used are complicated and the 
convergence speed of the algorithm needs to be improved. 

2 System Model and Problem Formulation 

We consider a multi-user, multi-channel CWSN environment with N PUs and M 
SUs. Figure 1 depicts the intricate association of desired links and interfering links 
when PU1, SU1, and SU2 operate on the same channel. We calculate the received 
signal of SUi on channel m: 

ym i = xm i · hm i i  + xm m · hm mi +
∑

j∈ m, j /=i 

xm j · hm j i  + zm i (1) 

where xm i represents the desired signal from SUi on channel m, while xm m and x
m 
j 

represent interfering signals from PUm and SUj, respectively. Similarly, the variables 
hm i i  , h

m 
mi , and h

m 
j i  represent the channel gain from the transmitter to SUi at SUi, PUm, 

and SUj, respectively. Additionally, zm i represents additive white Gaussian noise 
(AWGN). The corresponding signal to interference plus noise ratio (SINR) is: 

SI  N  Rm 
i = pm i · ||hm i i

||2 

pm m ·
||hm mi

||2 + ∑
j∈ m , j /=i p

m 
j ·

|||hm j i
|||
2 + B · N0 

(2)

Fig. 1 System model 
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Fig. 2 Two-state Markov 
chain 

where pm i , p
m 
m and p

m 
j denote the transmit power of users i, m and j on channel m. 

B and N0 are the channel bandwidth and noise spectral density, respectively. The 
transmission rate Ci received by the receiver of SUi is: 

Ci = log2(1 + SI  N  Ri ) (3) 

Equations (2) and (3) show that optimal for only one SU to transmit on an inactive 
channel. 

We divide the spectrum hole of the authorised channel into multiple time slots. 
The channel occupancy as a two-state Markov chain, as shown in Fig. 2, where 0 
represents an occupied channel and 1 represents a vacant channel. The transition 
probability of the two-state Markov chain on the ith channel is: 

pi =
[
pi 00 p

i 
01 

pi 10 p
i 
11

]
(4) 

where pxy  = {the next state is x |the current state is y}, (x, y ∈ {0, 1}). 

2.1 State 

At the beginning of each time slot, SUi conducts spectrum sensing on N channels to 
obtain information about the state of the channel. The state of the channel in the t-th 
time slot is expressed as follows: 

si =
[
s1 i , s

2 
i , · · ·  , sN i

]
(5) 

where sn i = 1 or sn i = 0. Since the spectrum detector is not perfect, the results of 
sensing the channel state may contain errors. We define the probability of sensing 
error for SUi on channel n as Pn 

i . Therefore, the probability of observing the true 
state oi of the channel is given by: 

Pr(oi ) = si ·
(
1 − Pn 

i

) + (1 − si ) · Pn 
i (6)
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The SU does not konw whether a spectrum sensing error will occur. Consequently, 
the observed results are mainly used as historical channel state data in this paper. 
The perception outcomes acquired by the SU in the presence of possible spectrum 
sensing errors are denoted as: 

oi =
[
o1 i , o

2 
i , · · ·  , oN i

]
(7) 

2.2 Action 

After spectrum sensing, the SU determines whether to access a channel based on 
the sensing result. The action of SUi is denoted by ai ∈ {0, 1, · · ·  , N }, where ai = 
n(n > 0) indicates that at time slot t, SUi chooses to transmit on the nth channel, 
while ai = 0 indicates that SUi chooses not to transmit. The action of each SU is 
denoted as: 

A = {a1, a2, · · ·  , aN } (8) 

2.3 Reward 

SUs receive rewards based on the actions they take. Principles for SU access to a 
channel include minimizing collisions with other SUs and avoiding interference with 
the PU to maximize their own transmission rate. The reward function is defined as: 

ri = 

⎧ 
⎨ 

⎩ 

−C 
0 

log2(1 + SI  N  Ri ) 

, collision with PU 
, no channel access 
, successful access 

(9) 

Specifically, the reward is set to − C (C > 0) when the SU collides with the 
PU, and 0 when the SU does not transmit data. Otherwise, the SU’s reward is the 
transmission rate of its receiver. 

2.4 Policy 

SUs don’t konw the probability of the channel state transmission and the sensing 
errors, so they use these rewards to form an access policy that maximizes their 
cumulative discounted returns, which can be expressed as:
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Ri = 
∞∑

t=1 

γt−1ri (t + 1) (10) 

where γ ∈ [0, 1] is a discounted factor. 
In summary, the ultimate goal of DSA is to maximise the reward as given in 

Eq. (10). The optimal Q value is calculated using the following equation to find the 
optimal policy π ∗. 

π ∗ = argmax 
ai∈A 

Qπ ∗ (on, ai ) (11) 

3 Proposed DRL Algorithm 

Since the efficiency of Q-learning deteriorates as the state and action space increases, 
we address the inefficiency of Q-learning by incorporating DNNs. The DQN 
architecture we use is shown in Fig. 3. 

In the training phase of the DQN, as intelligent agent, each SU uses its observations 
at each time slot as input to the DQN evaluation network. The evaluation network 
selects actions using the ε-greedy strategy. After the SU takes action ai , it receives 
a reward  ri from the environment and inputs channel observations oi ' into the target 
network at the next time slot to obtain the next time slot action ai ' and the target Q 
value maxai 'Q

(
oi ', ai '; θ '). (oi , ai , ri , oi ') represents an experience that is collected 

and stored in the experience pool by the ε-greedy strategy before training starts. The 
accumulated experiences in the experience pool are used to calculate the loss value 
during the DQN training:

Fig. 3 The framework of DQN 
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loss  =
[
ri + γ max 

ai 
Qi 

t

(
oi ', ai ; θ ') − Qi 

e(oi , ai ; θ )
]2 

(12) 

The parameters θ of the evaluation network are updated using the calculated loss 
values through back propagation, and the parameters of the evaluation network are 
periodically copied to the target network to update its parameters θ ’. 

4 Simulation Results 

We conducted simulation experiments in an environment where 2 SUs coexist with 
6 PUs, and their positions were randomly set within a 150 m × 150 m area. The 
SUs were placed within range of 20–40 m from each other. We used the WINNER 
II and Rician models to calculate the path loss and channel model, respectively. We 
randomly selected p11 from the uniform distribution [0.7, 1] and p00 from [0, 0.3]. 
We then calculated p10 = 1 − p11 and p01 = 1 − p00. The parameters of the system 
model are shown in Table 1. 

To improve the training accuracy and address the performance degradation of deep 
neural networks due to network depth, we designed the DNN structure in our DQN 
as a ResNet structure with four hidden layers, as shown in Fig. 4. Each hidden layer 
contains 64 neurons with Rectified Linear Unit (ReLU) as the activation function. 
In order to avoid sub-optimal decision strategies before gaining sufficient learning 
experience, we used the decaying ε-greedy algorithm with an initial value of ε set 
to 1. At each time slot, ε was decayed according to ε ← max{0.995*ε, 0.005}. The 
hyperparameters are provided in Table 2.

We conducted simulations using Python and TensorFlow to evaluate the perfor-
mance of our proposed algorithm DQN + MLP4 + ResNet against several other 
algorithms: myopic algorithm [13], DQN + RC [11], Q-learning, and DQN with 
only four fully connected layers (DQN + MLP4). We compared the algorithms 
based on their cumulative rewards, success rate, and conflicts with PUs and other 
SUs. 

Our proposed algorithm has demonstrated superior performance compared to 
other algorithms, as shown in Figs. 5, 6, 7 and 8. Figure 5 shows that our algorithm 
achieved the highest average reward compared to other algorithms, while Fig. 6 shows

Table 1 Parameters of 
system model Parameters Value 

Number of PUs N 6 

Number of SUs M 2 

Noise spectral density N0 − 174 dBm/Hz 

Transmission power of PU 40 mW 

Transmission power of SU 20 mW 
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Fig. 4 The structure of deep neural networks for DQN algorithm 

Table 2 Hyperparameters of 
DQN algorithm Hyperparameters Value 

ε in ε-greedy policy 1.0 → 0.005 
Learning rate α 0.01 

Discount rate γ 0.9 

Activation function ReLu 

Memory size 2000 

Optimzer Adam 

Target network update frequency 300

that our algorithm achieved a much higher access channel success rate, reaching 
approximately 95%. Figure 7 shows that all learning-based algorithms, except for 
the myopic policy, eventually reach a zero conflict rate with other SUs, indicating 
that they learn the access policies of other SUs by interacting with the environment. 
However, the myopic policy only accesses the channel that brings the maximum 
expected reward based on the known system channel information, and cannot learn 
the access policies of other SUs. To prevent conflicts with PUs, we set the reward to
-2, and as depicted in Fig. 8, our proposed algorithm achieves the lowest collision 
rate with PUs, even lower than the myopic policy.
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Fig. 5 The average reward 

Fig. 6 The average success rate
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Fig. 7 The average collision with SU 

Fig. 8 The average collision with PU 

5 Conclusion 

This study addresses the spectrum access problem in distributed DSA networks 
with spectrum sensing errors, and proposes a DSA algorithm that combines DQN 
with ResNet. Simulation results demonstrate that the proposed DQN + MLP4 +
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ResNet algorithm facilitates SUs to learn the optimal channel access policy more 
efficiently, improves spectrum access opportunities, and effectively reduces inter-
user collisions when SUs have incomplete knowledge of the environment and face 
certain perception errors. In future work, we plan to consider more practical spectrum 
sharing scenarios and further improve the performance of the algorithm. 

Acknowledgements Shubin Wang (wangshubin@imu.edu.cn) is the correspondent author and this 
work was supported by the National Natural Science Foundation of China (61761034). 

References 

1. Carie A, Li M, Marapelli B et al (2019) Cognitive radio assisted WSN with interference aware 
AODV routing protocol. J Ambient Intell Humaniz Comput 10:4033–4042 

2. Song H, Liu L, Ashdown J et al (2021) A deep reinforcement learning framework for spectrum 
management in dynamic spectrum access. IEEE Internet Things J 8(14):11208–11218 

3. Cai P, Zhang Y (2020) Intelligent cognitive spectrum collaboration: Convergence of spectrum 
sensing, spectrum access, and coding technology. Intelligent and Converged Networks 1(1):79– 
98 

4. Qian B, Zhou H, Ma T et al (2020) Leveraging dynamic stackelberg pricing game for multi-
mode spectrum sharing in 5G-VANET. IEEE Trans Veh Technol 69(6):6374–6387 

5. Liu X, Sun C, Yu W et al (2021) Reinforcement-Learning-based dynamic spectrum access for 
software-defined cognitive industrial internet of things. IEEE Trans Industr Inf 18(6):4244– 
4253 

6. Kaur A, Kumar K (2020) Imperfect CSI based intelligent dynamic spectrum management using 
cooperative reinforcement learning framework in cognitive radio networks. IEEE Trans Mob 
Comput 21(5):1672–1683 

7. Cong Q, Lang W (2021) Double deep recurrent reinforcement learning for centralized dynamic 
multichannel access. Wirel Commun Mob Comput 2021:1–10 

8. Doshi A, Yerramalli S, Ferrari L et al (2021) A deep reinforcement learning framework for 
contention-based spectrum sharing. IEEE J Sel Areas Commun 39(8):2526–2540 

9. Guo Z, Chen Z, Liu P et al (2022) Multi-agent reinforcement learning-based distributed channel 
access for next generation wireless networks[J]. IEEE J Sel Areas Commun 40(5):1587–1599 

10. Cong Q, Lang W (2021) Deep multi-user reinforcement learning for centralized dynamic 
multichannel access/2021. In: 6th international conference on intelligent computing and signal 
processing (ICSP). IEEE, pp 824–827 

11. Chang HH, Song H, Yi Y et al (2019) Distributive dynamic spectrum access through 
deep reinforcement learning: A reservoir computing-based approach. IEEE Internet Things 
J 6(2):1938–1948 

12. Chang HH, Liu L, Yi Y (2020) Deep echo state Q-network (DEQN) and its application in 
dynamic spectrum sharing for 5G and beyond. IEEE Trans Neural Netw Learn Syst 33(3):929– 
939 

13. Li Y, Jayaweera SK, Bkassiny M et al (2012) Optimal myopic sensing and dynamic spectrum 
access in cognitive radio networks with low-complexity implementations. IEEE Trans Wireless 
Commun 11(7):2412–2423

mailto:wangshubin@imu.edu.cn

	 Research on Distributed Dynamic Spectrum Access Based on Deep Reinforcement Learning
	1 Introduction
	2 System Model and Problem Formulation
	2.1 State
	2.2 Action
	2.3 Reward
	2.4 Policy

	3 Proposed DRL Algorithm
	4 Simulation Results
	5 Conclusion
	References


