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Abstract Percutaneous coronary intervention (PCI) is a vital treatment method for 
coronary artery disease, but the unstructured nature of its clinical data makes it 
challenging to utilize directly. The data for this study was obtained from the Car-
diovascular Treatment Center of the People’s Hospital of Liaoning Province, China. 
A representative dataset of 5.8% of PCI patients’ surgical records was selected for 
labeling, and a language model-based PCI surgical information entity recognition 
model was developed. First, Encoder Representations from Transformers (BERT) 
was employed to express the semantic relationship between characters accurately. 
Then, BiLSTM was used as a feature extractor to extract contextual relations, and 
finally, conditional random field (CRF) was applied to optimize the prediction results. 
Experimental results demonstrated that the F1 score in the PCI surgical information 
entity recognition model reached 85.49%, which is 25.66% higher than the traditional 
HMM and 0.94% higher than BiLSTM in deep learning. 
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1 Introduction 

Percutaneous Coronary Intervention (PCI) is a cardiology procedure that involves 
balloon dilation or stent implantation to alleviate symptoms of coronary artery steno-
sis or occlusion. Although PCI operation information records the complete PCI 
process, clinical texts related to PCI are unstructured, which makes it difficult for 
clinicians to effectively utilize the information. Therefore, the use of artificial intel-
ligence to process PCI information in a structured manner is necessary to uncover 
the full potential value of PCI operation information. 

In 1996, the term Named Entity Recognition (NER) was introduced as a funda-
mental task of Natural Language Processing (NLP) at MUC-6 [ 1]. NER has demon-
strated excellent performance in medical data mining. Early approaches relied on 
rule-based and dictionary-based methods [ 2] that used templates based on contex-
tual semantic structures. However, these methods could not effectively summarize 
difficult-to-extract information, and were relatively expensive. To address these lim-
itations, scholars have applied machine learning methods [ 3– 5] such as Hidden 
Markov Models (HMM), which outperformed traditional methods but could not 
effectively use contextual semantics for named entity recognition. Currently, deep 
learning-based NER methods [ 6, 7] have become more prevalent than the previ-
ous two methods. The most popular method is the Bidirectional Long Short-Term 
Memory (BiLSTM) method. However, BiLSTM cannot constrain the relationship 
between predicted labels. The Conditional Random Field (CRF) can better constrain 
the relationship between labels through the emission probability matrix and transi-
tion probability matrix. For example, Li et al. [ 8] proposed an LSTM-CRF-based 
named entity recognition method. 

The intersection of computer science and medicine has led to the emergence of 
Clinical Named Entity Recognition (CNER) as an important research field. CNER has 
been successfully utilized to identify body parts, diseases, drugs, and more in various 
medical fields [ 9]. However, its specific application in PCI clinical texts remains 
largely unexplored. The structure of PCI clinical information is complex, involving 
a combination of Chinese, English, and symbols. Clinical records in this field are 
relatively incomplete and disorganized, with a high degree of grammatical errors and 
context ambiguity. These factors pose significant challenges for the identification 
of named entities related to PCI clinical and surgical information within China’s 
electronic medical records. 

2 Methods 

The BERT-BiLSTM-CRF model’s structure diagram is presented in Fig. 1. This  
model consists of an input layer, an LSTM layer, a Linear layer, and a CRF layer. The 
input layer is responsible for converting the input corpus into character vector embed-
ding matrices to facilitate subsequent global feature extraction using Bi-LSTM. The
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Fig. 1 BERT-BiLSTM-CRF model structure diagram 

LSTM layer is tasked with extracting the global features and contextual semantic 
relationships of the time series. The Linear layer functions as a classifier to assign 
each entity a probability matrix based on the number of entities. The CRF layer then 
employs the probability matrix to constrain the relationship between the labels and 
determine the most probable label sequence. 

2.1 BERT 

In 2018, Devlin et al. [ 10] introduced BERT, a pre-trained language model based on 
the Transformer architecture. Unlike traditional language models, BERT employs 
a 12-layer Transformer Encoder for learning, with each Encoder consisting of a 
multi-head attention mechanism and a feedforward network. The multi-head atten-
tion mechanism calculates the relationship between words using Query, Key, and 
Value, and adjusts the weight to extract essential features from the text. Compared 
to previous pre-training models, BERT captures contextual information more accu-
rately and learns the relationship between consecutive text fragments. 

Traditional embedding methods, such as Word2vec [ 11], Glove [ 12], and FastText 
[ 13], represent all possible word-level meanings in vector form. However, the result-
ing embeddings are often limited in their ability to express the semantic and distance 
relationships between words. Additionally, in PCI operation information, there is
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no clear boundary between Chinese, English, and symbols, which can lead to poor 
recognition performance. To address these issues, this paper proposes a model that 
utilizes BERT as an embedding method through transfer learning. Unlike traditional 
methods, BERT is capable of capturing contextual information and understanding 
relationships between consecutive text fragments, which can improve performance 
in recognizing PCI operation information. 

2.2 LSTM 

The LSTM layer’s individual unit receives the output from the Input layer and extracts 
the sequence information of the text to learn the contextual features of the corpus. 
It can consider the semantic relationship between each character before and after 
the sentence simultaneously and combine them to create a more comprehensive 
representation. The LSTM layer takes the WordEmbedding of the corpus as an input 
sequence and produces another output sequence vector .h = (h1, h2, . . . , hn) that 
represents the sequence at each time step in the input sequence. LSTM addresses 
the challenges of long sentence dependencies and gradient explosion in RNNs by 
incorporating three gate control units that regulate the retention and forgetfulness of 
specific information. The computation formula for the LSTM hidden layer output 
representation at a given input time .Xt is expressed as Formula (1)–(5). 

.it = σ (Wxi xt + Whiht−1 + WciCt−1 + bi ) (1) 

. ft = σ
(
Wx f xt + Whf ht−1 + Wcf Ct−1 + b f

)
(2) 

.Ct = ftCt−1 + it tanh (WxCxt + WhCht−1 + bC) (3) 

.ot = σ (Wxoxt + Whoht−1 + WcoCt−1 + bo) (4) 

.ht = ot tanh (Ct ) (5) 

In the equation, W represents the weight matrix and b is the offset vector. 
C represents the state of the memory unit, . σ is the sigmoid activation function, and 
tanh is another activation function. The input gate, forget gate, and output gate are 
represented by. it,. ft, and. ot, respectively. The hidden state output,. Ht, includes the text 
information in the clinical information. The gate’s frequency threshold mechanism 
is capable of effectively filtering out irrelevant information and retaining important 
information that needs to be preserved. 

However, unidirectional LSTM can only capture information in a forward direc-
tion. As sentences become longer, local features at the beginning of the sentence make 
up a smaller proportion. Therefore, it is necessary to use a Bidirectional LSTM to 
capture information both forward and backward, and concatenate the outputs. This 
enhances the information captured from both the beginning and end of the sentence 
and improves the ability to capture semantic dependencies within the context.
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2.3 CRF 

While BiLSTM is effective at extracting semantic features from the entire text, it 
does not impose constraints on the label relationships. During the entity output 
prediction stage, the softmax function is typically used as a classifier to address 
multi-classification problems, resulting in incorrect outcomes and affecting model 
performance. To address this issue, this paper employs the CRF model in decoding. 

The Conditional Random Field (CRF) is a type of undirected probabilistic graph-
ical model that can constrain the relationship between labels and improve the accu-
racy of entity predictions. By defining a starting probability matrix and a transition 
probability matrix, the constraints between tags and the prediction of entities can 
be enforced. Specifically, because the entity labels starting with “B” must be fol-
lowed by labels of the same type starting with “I”, the launch probability matrix and 
transition probability matrix effectively model these constraints and reduce errors. 
Given an input sequence .H = h1, h2, h3, . . . , hn and the corresponding output from 
the LSTM layer, the CRF model calculates the conditional probability distribution 
of the output sequence.Y = y1, y2, y3, . . . , yn and assigns a score to each label. The 
label with the highest score is then selected as the final prediction label using the 
calculation formula (6): 

.s (h, y) =
N∑

i=1

Pi,yi +
N∑

i=1

Tyi−1,yi (6) 

When decoding, the Viterbi algorithm [ 14] is used to obtain the optimal output 
sequence.yR. This algorithm computes the score of each label in the sequence based 
on the transition matrix T and the score vector P. The optimal path is determined by 
selecting the label with the highest score for each position in the sequence, taking 
into account the constraints between labels. The calculation formula for the Viterbi 
algorithm is given by Eq. (7): 

.yR = argmax
y∈Y s(h, y) (7) 

3 Experiments and Results 

3.1 Dataset 

The clinical data utilized in this research was sourced from the People’s Hospital of 
Liaoning Province (Shenyang, China), a prominent and comprehensive third-class 
hospital in China. The clinical data relates to PCI (percutaneous coronary inter-
vention) procedures involving coronary angiography, balloon dilatation, and stent 
implantation. Specifically, the clinical texts pertaining to three distinct categories of
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Table 1 Distribution of eight entities in the dataset 

Entity Training set Validating set Testing set 

Guding 1030 194 264 

GuideBrand 1501 307 396 

BalloonModel 2136 524 628 

SupportModel 1558 273 398 

SupportBrand 1578 273 389 

Anticoagulants 1012 166 223 

ContrastMedium 936 163 225 

CAGResult 2900 476 635 

All 12,651 2376 3158 

fine-grained PCI surgical information were extracted. By conducting a comprehen-
sive analysis of various clinical and surgical records, this study chose to use data from 
1340 inpatients who were admitted to the Cardiology Department as the corpus for 
analysis. This study was finally approved by the Ethics Committee of the People’s 
Hospital of Liaoning Province (Ethics number: (2023)K021). 

For the experimental study, a corpus of 1340 cases of PCI surgery information 
was utilized. From this, 930 cases were selected as the training set, while 180 cases 
were assigned as the validation set. Following model training, the remaining 230 
cases were utilized as the test set. Table 1 displays the distribution of the eight types 
of entities in the training, validation, and test sets. 

3.2 Result Analysis 

Table 2 shows that traditional HMM achieved excellent results due to the simpler 
format of anticoagulants than the normative structure, but it performed poorly in 
identifying entities that require contextual semantics. Bi-LSTM showed the best 
performance in Chinese and English entity recognition, but it did not perform well 
in identifying complex entities such as contrast results. However, after adding CRF, 
the relationship between labels was effectively constrained, resulting in significant 
improvements in angiography results and entities with complex stent signal struc-
tures. This greatly reduced false recognition. Additionally, with the addition of BERT, 
sensitivity to entities such as the combination of numbers and symbols, such as the 
bracket model, was increased, and the accuracy of other entities was improved. 

The overall performance of a model can be evaluated by its ability to recognize 
all types of entities correctly. The F1 score for each model is calculated based on the 
proportion of each entity in the PCI operation information. The results are presented 
in Table 3.
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Table 2 F1 values of eight entities in each model 

Entity HMM BiLSTM BiLSTM-CRF BERT-BiLSTM-
CRF 

Guding 25.7 89.2 85.9 86.8 

GuideBrand 52.0 89.2 89.9 91.2 

BalloonModel 73.9 91.2 91.6 93.1 

SupportModel 50.6 75.9 76.7 77.2 

SupportBrand 56.7 90.9 93.1 93.2 

Anticoagulants 91.9 86.4 90.1 90.5 

ContrastMedium 79.5 94.2 94.2 89.7 

CAGResult 15.5 68.5 70.5 71.6 

Bold indicates the best performing of all models 

Table 3 Performance between models 

Model Strict Relaxed 

Precision Recall F1 Precision Recall F1 

HMM 52.08 72.89 59.83 88.98 81.48 82.79 

BiLSTM 84.25 84.91 84.55 97.43 97.36 97.35 

BiLSTM-CRF 84.71 85.1 84.9 97.43 97.36 97.35 

BERT-BiLSTM-CRF 85.27 85.49 85.49 97.43 97.37 97.37 

Bold indicates the best performing of all models 

To ensure the rigor of the experiment, the overall performance of each model is 
evaluated under both strict and loose standards. As shown in the table, the traditional 
HMM performed poorly, with an F1 score of only 59.83 under the strict standard, 
due to its limited ability to extract features and combine contextual semantics, result-
ing in a large number of recognition errors and limitations in identifying entities. 
Although BiLSTM achieved higher performance than HMM, its performance on 
complex imaging entities was not satisfactory, with incorrect label order leading to 
a reduced F1 score. The addition of CRF effectively constrained label relationships 
and improved accuracy for some complex entities, such as those with mixed numbers 
and symbols, resulting in an overall F1 score improvement of 0.35. In comparison, 
BERT-BiLSTM-CRF performed better, as the WordEmbedding of the former two 
was randomly initialized and could not accurately reflect the relative distance of the 
word vector space in character information representation. This improved accuracy 
in the recognition of most entities. 

4 Discussion and Conclusion 

This study focuses on the extraction of clinical information from PCI surgery infor-
mation based on Chinese EMRs. Determine and identify eight entities including 
angiography result, catheter type, guidewire brand, stent model, stent brand, balloon
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model, contrast agent, and anticoagulant from three clinical surgical records. The 
performance of the BERT-BiLSTM-CRF model for extracting clinical PCI opera-
tion information has been further improved, and the accuracy rate basically meets the 
needs of clinical applications. The results demonstrate that deep learning methods 
can be used to automatically extract PCI surgical information from EMRs for clinical 
named entity recognition. 
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