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Abstract. Recently, the construction of energy-efficient buildings has gained
increasing importance. The estimation of a building’s energy consumption, which
takes into account envelope parameters such as wall type, glass type, window-
to-wall ratio, orientation, and others, is crucial at the project’s early stage for
managers. Currently, building energy estimation methods rely on mathematical
formulas or simulations using specialized energy BIM software. However, these
initial estimates are often inaccurate due to the lack of detailed BIM models,
resulting in an inefficient and challenging process of energy analysis during the
early design stage of the project. This research employs various machine learn-
ing techniques, including Support_Vector Machine, Artificial_Neural_Network,
Generalized Linear Regression, Deep_Learning Neural Network (DLNN), Ran-
dom_Forest, and Gradient_Boosting to predict a building’s preliminary energy
consumption. These machine-learning models were trained and tested on data
gathered from simulations using the BIM-Design Builder software. Comparative
results show that Gradient Boosting, an ensemble learning technique, outperforms
all othermachine learning algorithms in terms of accuracy and performance. Based
on these findings, energy estimation experts can more efficiently select the best
model for predicting a building’s preliminary energy consumption during the early
design stage of the project.

Keywords: Energy consumption estimation · Building envelope ·Machine
Learning (ML) · Support vector machine · ANN · Generalized linear regression ·
Deep learning neural network · Random forest · Gradient boosting

1 Introduction

In recent times, energy-efficient building construction has gained importance, with a
crucial part of the process being early-stage energy consumption estimation. Traditional
methods, utilizing mathematical formulas or BIM software simulations, often fall short
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due to the lack of detailed BIM models. This study explores alternative approaches,
focusing on machine learning techniques, which offer potential advantages in accuracy
and efficiency.

Machine learning, with its data analysis and pattern recognition capabilities, has
shown promise in predicting building energy consumption. Building on previous work
utilizingmachine learningmodels such as SVM,ANN,GB,RF, andDLNN, this research
aims to compare these techniques’ performance for preliminary energy consumption
prediction.

The models will be trained and tested using data from BIM-Design Builder soft-
ware simulations. The objective is to identify the most accurate and efficient model for
energy consumption prediction, potentially aiding experts in developing more reliable
estimation methods and optimizing energy efficiency in building projects.

The key contribution of this research is the development of an optimal energy predic-
tion model, utilizing a superior machine learning algorithm (compared to various other
machine learning models). This facilitates predicting the energy consumption of build-
ings when diverse changes are made to the building envelope, thereby eliminating the
need for multiple detailed Building Energy Modelling (BEM) analyses when consider-
ing different design changes (as required by previous studies). As a result, this empowers
project managers to experiment with and evaluate multiple envelope options during the
early design stages of a project, aiding in the identification of superior solutions.

2 Research Overview

Energy consumption prediction is critical in building energy-efficient structures. Ajayi
et al. [1] and Shao et al. [2] successfully applied machine learning techniques such as
SVM, ANN, GB, RF, and DLNN, demonstrating their potential for improved energy
efficiency. Wang et al. [3] highlighted the benefits of integrating BIM software with
machine learning for better predictions.

Deep learning techniques, like specifically a long short-term memory (LSTM) net-
work, as examined by Yan et al. [4], showed promise in enhancing prediction accuracy
by capturing temporal dependencies. Feature selection, as proposed by Zhao et al. [5],
can significantly improve machine learning model accuracy, while time-series analysis,
as demonstrated by Kim et al. [6], effectively predicted electricity consumption.

Corrales et al. [7] underscored the importance of data quality and availability, empha-
sizing preprocessing and cleaning for reliable estimates. The integration of EnergyPlus
simulation results with machine learning algorithms, as proposed by Chen et al. [8],
resulted inmore accurate estimations.Gaoet al. [9] showedmachine learning’s feasibility
in estimating energy consumption in office buildings.

Balaji et al. [10] demonstrated how combining IoT sensor datawithmachine learning
improved real-time energy consumption prediction. In summary, machine learning tech-
niques, alongwithBIMsoftware integration, data qualitymanagement, feature selection,
time-series analysis, and real-time IoT sensor data, can enhance energy consumption pre-
diction, contributing to energy efficiency and sustainability in the construction industry.
Additionally,many studies have successfully used SVM,ANN,GB, andDNN for energy
forecasting, such as [11–16].
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In summary, most previous methods used to estimate energy consumption during
the initial design phase for selecting building envelope characteristics and structures
often yield ineffective results. This is primarily attributed to the absence of detailed BIM
models during this early stage. Consequently, this research has developed a predictive
energy model utilizing machine learning algorithms to address this challenge.

3 Research Methodology

The researchmethodology includes data collection, implementation ofmachine learning
techniques, model training and testing, evaluation metrics, comparative analysis, and
result interpretation. This approach aids in identifying the most accurate and efficient
model for predicting preliminary energy consumption in buildings (see Fig. 1).

Step 1 - Data Collection 
(Design Builder)       

Step 2 - Machine 
Learning Techniques Step 4 - Evaluation 

Metrics

Step 3 - Model 
Training and Testing

Step 6 - Result 
Interpretation

Step 5 - 
Comparative Analysis

Fig. 1. Research methodology workflow for energy consumption prediction in buildings

3.1 Data Collection

The employed research methodology in this study includes collecting data from simu-
lations conducted on the energy simulation software, Design Builder. Within the soft-
ware, building models were created and various envelope parameters such as wall type,
glass type, window-to-wall ratio, and orientation were incorporated. These parame-
ters were systematically varied to generate a diverse dataset for training and testing
the machine learning models. The simulated data encompasses information about the
building’s geometry, materials, and weather conditions.

3.2 Machine Learning Techniques

In this research, to predict the preliminary energy consumption of a building, several
machine learning techniques were employed. The selected algorithms included Sup-
port Vector Machine (SVM), Artificial Neural Network (ANN), Generalized Linear
Regression (GENLIN), Deep Learning Neural Network (DLNN), Random Forest (RF),
and Gradient Boosting (GB). Each technique was implemented using the appropriate
libraries and frameworks within the Python programming environment.
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3.3 Model Training and Testing

The collected data from Design Builder simulations were divided into training and
testing sets. By utilizing the training set, the machine learning models underwent train-
ing, with input features (envelope parameters) and the corresponding target variable
(energy consumption) provided to them. The models learned the underlying patterns
and relationships in the data during the training process.

Once trained, the models were evaluated using the testing set. The performance of
each model was assessed based on various evaluation metrics, including the mean abso-
lute error (MAE), the root mean square error (RMSE), the coefficient of determination
(R2), and the mean absolute percentage error (MAPE).

MAE quantifies the average discrepancy between predicted and actual energy con-
sumption values. RMSE provides an overall measure of the model’s prediction accuracy
by considering the squared differences between the predicted and actual values. R2

indicates the proportion of the variance in the target variable explained by the model.
Additionally,MAPE measures the average percentage difference between the predicted
and actual values, allowing for a better understanding of the relative error.

These metrics provided comprehensive insights into the accuracy and predic-
tive capability of the machine learning models in estimating energy consumption for
buildings, accounting for both absolute and relative performance measures.

3.4 Comparative Analysis

After evaluating the individual machine learning models, a comparative analysis was
conducted to determine the best-performing model. The evaluation metrics are MAPE,
MAE, RMSE, and R2.

3.5 Result Interpretation

The findings obtained from the comparative analysis were interpreted to provide insights
into the effectiveness of the different machine learning techniques for energy consump-
tion prediction. Each model’s performance underwent assessment, and an exploration
into the factors contributing to the superior performance of the chosen model was under-
taken. The interpretation of the results aimed to facilitate informed decision-making for
energy estimation experts in selecting the most suitable model for their specific building
projects.

In summary, the research methodology involved data collection from BIM-Design
Builder simulations, implementation of various machine learning techniques, model
training, and testing, comparative analysis of performance metrics, and interpretation
of the results. This approach allowed for the identification of the most accurate and
efficient model for predicting the preliminary energy consumption of a building, provid-
ing valuable insights for energy estimation experts in selecting appropriate estimation
methods.
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4 Results and Discussion

Our research is centered around an edifice that occupies a significant footprint of 121
square meters. This structure also features a striking vertical expanse with a ceiling
height of 5.0 m, adding to its overall grandeur. Given these attributes, this building
becomes an intriguing object of study in our research. The meteorological data utilized
in this study is obtained from the Tan Son Hoa station in HCM City, Vietnam (refer to
Figs. 2 and 3). This research building is modeled using Design Builder and simulations
are conducted with eight variable parameters: COP, BO (Degree), LPD (W/m2), WWR
(%), UvW (W/m2 K), SHGC, UvR (W/m2 K), and CST (°C). The purpose of these
simulations is to compute the energy consumption per square meter (E (kWh/m2/Year)).
The results of these simulations culminate in a dataset comprising 1951 samples (as
shown in Table 1). These samples will subsequently be utilized for training, with 70% of
the dataset, and validation of machine learning forecasting models, with the remaining
30% of the dataset.

BIM (Building 
Information Model) 
for the case study (a 

company office)

BIM (Building 
Information Model) 
with DesignBuilder 

for Energy 
Simulation

Building envelope 
parameters and 
their variations

Fig. 2. Simulation model of energy consumption for the sample building

The predictivemodels are constructed using Python software, encompassing Support
Vector Machine (SVM), Random Forest (RF), Generalized Linear Regression (GEN-
LIN), Deep Learning Neural Network (DLNN), Artificial Neural Network (ANN), and
Gradient Boosting (GB). The parameters of these models are optimized through the
implementation of the Genetic Algorithm (GA) using the Python package deap.py.
Figure 3 shows A computer program written in Python for (GB) forecasting model
with the parameter optimization algorithm GA.
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Fig. 3. A computer program written in Python for GB algorithm

In order to facilitatemodel comparison, the results have been consolidated in Table 2.
Figures 4, 5, 6, 7, and 8 offer a visual comparison between forecasted and test values
of 50 random samples, carried out using various machine learning models. Several key
insights can be drawn from these outcomes (Figs. 9 and 10).

• Accuracy: GB outperforms the other models in terms of accuracy, as shown by its
highest R-squared score and lowest MAPE, RMSE, and MAE values. This makes it
an excellent choice for applications where precision is of utmost importance.

• Computational Efficiency: GENLIN stands out for its low computational time,mak-
ing it suitable for projects that require a quick turnaround, provided the acceptable
level of accuracy it offers.

• Robustness: While the DNN model has reasonable accuracy, it’s important to note
its high MAPE, which indicates a higher percentage of errors. For a model with a
more balanced performance between accuracy and error rate, the RF model is the
robust alternative.

Tables 3, 4, 5, and 6 present the predicted values and the actual values using the GB,
RF, GENLIN, ANN models for 50 samples. In which:

• “Sample”: This column represents the index of each data instance (or “sample”) that
the model made predictions on.

• “Actual Value”: This column should contain the true (or actual) target values from
your dataset, which are the values your model is trying to predict.

• “Predicted Value”: This column should contain the predictions made by the model
on each sample.

• “Error”: This column captures the disparities between the actual and predicted values
of 50 samples, calculated as (actual value—predicted value).

• “%Error”: This column likely represents the relative error, expressed as a percentage.
It’s often computed as (Error/actual value) * 100%.

In conclusion, the selection of the model should depend on the specific requirements
of the project. If accuracy is the priority, Gradient Boosting seems to be the optimal
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Table 1. The results of the energy simulations conducted by BIM-DesignBuilder software for the
case study building project

No
(Sample)

Var1
(SHGC)

Var2
(COP)

Var3
(LPD)

Var4
(WWR)

Var5
(UvW)

Var6
(CST)

Var7
(UvR)

Var8
(BR)

E
(Energy)

1 0.74 6 10.5 34 2.222 28 1.149 160 34.5

2 0.86 6.1 10 62 1.414 27.5 1.751 320 44.1

3 0.49 6 7 54 1.683 25 0.978 40 45.4

4 0.78 6 8.5 54 1.683 28 1.064 45 32.7

5 0.62 7 9.5 30 2.222 28 0.978 75 28.5

6 0.41 6.2 10 38 2.222 24 0.892 5 50.8

7 0.58 4.7 12.5 74 2.626 28 1.149 0 42.1

8 0.41 6.2 11.5 36 2.626 28 0.29 325 32.2

9 0.78 5.9 9.5 22 2.357 24 0.29 185 54

10 0.49 2.6 10 30 1.683 28 0.29 355 73.5

11 0.54 5.8 7.5 38 1.279 24 0.376 205 47.9

12 0.78 6 7.5 62 1.683 27.5 0.634 0 34.4

13 0.41 6 11.5 34 0.145 28 1.493 325 32.9

14 0.66 6.5 10.5 62 1.683 24 0.634 20 46.7

15 0.78 6 8.5 54 1.683 28 0.634 45 32.3

16 0.49 6 9.5 26 2.357 28 0.978 175 33.2

17 0.74 6 10 58 2.222 24.5 1.493 270 51.7

18 0.74 6 10.5 58 2.222 27.5 1.149 160 37

19 0.33 3.5 13 32 0.875 28 0.376 335 54.6

20 0.45 5.9 10 32 0.875 28 1.493 285 33.3

21 0.74 5.2 10.5 64 1.953 26 1.751 160 62.3

22 0.7 6.5 10.5 62 2.222 24 0.978 20 49.4

23 0.82 3.9 8 38 1.683 24 0.806 315 76.6

24 0.41 6.2 11.5 36 2.626 28 0.29 325 32.2

25 0.78 6 7.5 62 2.222 27.5 0.978 0 35.6

26 0.41 6.2 11.5 36 2.626 28 0.29 325 32.2

27 0.58 4.4 9 54 2.626 27 0.978 85 51.6

28 0.41 6.2 11.5 36 2.626 28 0.29 325 32.2

29 0.17 6.3 11.5 36 0.606 24 0.892 200 45

30 0.54 5.9 10.5 32 1.279 28 0.376 205 31.2

31 0.54 6 7.5 54 1.279 25 0.376 205 42.6

(continued)
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Table 1. (continued)

No
(Sample)

Var1
(SHGC)

Var2
(COP)

Var3
(LPD)

Var4
(WWR)

Var5
(UvW)

Var6
(CST)

Var7
(UvR)

Var8
(BR)

E
(Energy)

32 0.58 5.9 9.5 34 1.683 27 0.634 155 37.2

33 0.62 5.9 8.5 20 2.491 27.5 0.29 160 35.5

34 0.54 7 9.5 30 1.683 28 0.634 75 27.5

35 0.74 7 8.5 58 1.279 25.5 0.634 0 36.3

36 0.41 6 11.5 34 0.145 28 1.923 325 56.3

37 0.7 6 8.5 58 0.741 27.5 0.806 40 35.3

38 0.41 6.5 10.5 62 0.145 24 1.493 30 44.9

39 0.66 4 8.5 34 1.279 27 0.634 60 54.8

40 0.45 5.8 8 38 0.875 24 1.493 285 50

41 0.78 4.7 12.5 74 1.683 28 0.634 45 41.2

42 0.7 6.5 10.5 30 2.222 28 0.978 20 32.1

43 0.78 6 7.5 60 2.222 27.5 0.978 0 35.6

44 0.41 6 8.5 28 2.626 26.5 1.923 320 63.7

45 0.58 5.9 9.5 34 1.683 27 0.548 155 37.1

46 0.41 6.2 11.5 36 2.626 28 0.29 325 32.2

47 0.54 6 9 60 0.101 26 0.978 5 39.2

48 0.41 5.7 11.5 32 2.626 28 0.29 325 35

49 0.37 6.5 10 62 3.03 24.5 0.978 245 49.8

50 0.58 6.2 10.5 80 1.279 28 0.29 180 29.8

51 0.41 6.2 11.5 36 2.626 28 0.29 325 32.2

52 0.78 6 7.5 62 2.222 27.5 1.064 0 35.7

53 0.7 4.8 8.5 56 0.145 27.5 0.29 150 43.5

54 0.62 5.9 8.5 20 2.357 27.5 0.634 160 36.4

55 0.74 7 8.5 62 1.279 27.5 0.634 0 29.5

56 0.58 5.9 9.5 36 1.683 27 0.634 155 37.2

57 0.86 7 8.5 26 1.279 28 0.376 40 26.6

58 0.41 6.5 10.5 36 0.145 24 1.493 30 44.9

59 0.54 7 9.5 30 0.875 28 0.29 75 26.4

60 0.54 7 9.5 62 1.683 24 0.634 75 42.2

… … … … … … … … … …

1950 0.7 6 7.5 62 2.222 27.5 0.978 15 37.2

1951 0.41 3.6 9.5 22 2.626 25 1.665 305 91.4
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Table 2. The comparison of the models

Model MAPE (%) RMSE and
MAE

R2 Processing time
(mins)

Support_Vector
Machine

7.181 6.50 (3.259) 0.835 2.35

GENLIN 9.166 6.090 (3.758) 0.856 0.21

Gradient_Boosting 0.976 1.141 (0.482) 0.992 1.63

Random_Forest 1.651 2.471 (0.891) 0.978 0.08

Deep Learning
Neural_Network

2.672 1.972 (1.122) 0.982 93.94

Artificial
Neural_Network

2.781 2.532 (1.191) 0.973 9.68

def evalGBM(individual): 
    model.n_esƟmators = int(individual[0])  # convert to int 
    model.learning_rate = max(individual[1], 0.01)  # ensure 
learning_rate > 0 
    model.max_depth = int(individual[2])  # convert to int 
    model.fit(X_train, y_train) 
    predicƟons = model.predict(X_test) 
    return mean_squared_error(y_test, predicƟons), 

toolbox.register("evaluate", evalGBM) 
toolbox.register("mate", tools.cxTwoPoint) 
toolbox.register("mutate", tools.mutGaussian, mu=0, 
sigma=1, indpb=0.1) 
toolbox.register("select", tools.selTournament, tournsize=3) 

# GeneƟc algorithm parameters 
populaƟon_size = 50 
generaƟons = 20 
pop = toolbox.populaƟon(n=populaƟon_size) 
hof = tools.HallOfFame(1) 
stats = tools.StaƟsƟcs(lambda ind: ind.fitness.values) 
stats.register("avg", np.mean) 
stats.register("min", np.min) 
stats.register("max", np.max) 

pop, logbook = algorithms.eaSimple(pop, toolbox, cxpb=0.5, 
mutpb=0.2, ngen=generaƟons, stats=stats, halloffame=hof, 
verbose=True) 

# Print the best parameters 
print("Best parameters found by GeneƟc Algorithm:") 
print("n_esƟmators: ", hof[0][0]) 
print("learning_rate: ", hof[0][1]) 
print("max_depth: ", hof[0][2]) 

Fig. 4. Weather data at Tan Son Hoa Station, HCMC
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Fig. 5. Comparison of 50 samples using SVM

Fig. 6. Comparison of 50 samples using GB

Fig. 7. Comparison of 50 samples using GENLIN

choice. However, if computational efficiency or a balance between accuracy and error
rate is more important, GENLIN, RF, might be more appropriate. It is also essential to
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Fig. 8. Comparison of 50 samples using DNN

Fig. 9. Comparison of 50 samples using ANN with GA

Fig. 10. Comparison of 50 samples using RF
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Table 3. Predicted and actual values using the GB model for 50 samples

Sample Actual value Predicted value Error % Error

1 45.4 45.84643192 −0.44643 −0.98%

2 28.6 28.66843404 −0.06843 −0.24%

3 28.5 28.38739139 0.112609 0.40%

4 34.1 34.19434901 −0.09435 −0.28%

5 29.1 28.84013057 0.259869 0.89%

6 61.3 59.04152062 2.258479 3.68%

7 27.6 27.16251159 0.437488 1.59%

8 40.7 40.40239595 0.297604 0.73%

9 49.9 49.69494992 0.20505 0.41%

10 29.6 29.61637089 −0.01637 −0.06%

11 26.6 26.8398508 −0.23985 −0.90%

12 36.9 35.73811777 1.161882 3.15%

13 39.6 40.39266719 −0.79267 −2.00%

14 26.5 26.61467688 −0.11468 −0.43%

15 38.7 39.08926379 −0.38926 −1.01%

16 31 31.24077667 −0.24078 −0.78%

17 26.3 26.52866922 −0.22867 −0.87%

18 27.9 27.79205154 0.107948 0.39%

19 26.8 26.81194675 −0.01195 −0.04%

20 48.1 47.63089699 0.469103 0.98%

21 34.7 35.05959906 −0.3596 −1.04%

22 38.7 38.44738185 0.252618 0.65%

23 28.2 28.29404738 −0.09405 −0.33%

24 52.6 51.73504018 0.86496 1.64%

25 35 34.50289323 0.497107 1.42%

26 30.3 30.22635677 0.073643 0.24%

27 96.1 91.7369903 4.36301 4.54%

28 28.7 28.5830555 0.116944 0.41%

29 117.4 122.1911222 −4.79112 −4.08%

30 30.4 30.50052967 −0.10053 −0.33%

31 37.2 36.87417799 0.325822 0.88%

32 27.4 27.17343172 0.226568 0.83%

(continued)
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Table 3. (continued)

Sample Actual value Predicted value Error % Error

33 36.5 37.37372368 −0.87372 −2.39%

34 28.2 28.28002459 −0.08002 −0.28%

35 60.7 60.62585527 0.074145 0.12%

36 29.2 29.74615134 −0.54615 −1.87%

37 28.2 27.94776173 0.252238 0.89%

38 54.6 57.97191056 −3.37191 −6.18%

39 29.3 29.33204882 −0.03205 −0.11%

40 29.3 29.57321495 −0.27321 −0.93%

41 29.9 29.82218679 0.077813 0.26%

42 33.7 33.27221779 0.427782 1.27%

43 27.7 27.74705681 −0.04706 −0.17%

44 29.6 29.69889524 −0.0989 −0.33%

45 46 45.65128926 0.348711 0.76%

46 32 31.72663276 0.273367 0.85%

47 30.4 30.50539774 −0.1054 −0.35%

48 35.8 35.69572378 0.104276 0.29%

49 66.8 66.37328375 0.426716 0.64%

50 42 42.82222087 −0.82222 −1.96%

consider the computational resources available and the complexity of the project when
making a decision.

5 Conclusion

In recent times, the importance of constructing energy-efficient buildings has signifi-
cantly increased. An essential aspect of this process is the ability to accurately estimate a
building’s energy consumption in its early stages, considering different envelope param-
eters. Previous methods of estimating energy in the initial design phase for selecting
characteristics and structures of building envelopes are often not highly effective, pri-
marily due to the lack of detailed BIMmodels in this early design stage. This study aimed
to address this issue by employing various machine learning techniques such as Support
Vector Machine (SVM), Artificial Neural Network (ANN), Generalized Linear Regres-
sion (GENLIN), Random Forest (RF), Deep Learning Neural Network (DLNN), and
Gradient Boosting (GB) to predict preliminary energy consumption for a typical build-
ing. The models were trained and tested on data collected from simulations conducted
using BIM-Design Builder software.

The comparative analysis revealed that the Gradient Boosting algorithm outperforms
all other models regarding accuracy and performance. This model achieved the highest
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Table 4. Predicted and actual values using the RF model for 50 samples

Sample Actual value Predicted value Error % Error

1 40.7 40.724 −0.024 −0.06%

2 36.3 37.317 −1.017 −2.80%

3 28.6 28.526 0.074 0.26%

4 32.8 33.066 −0.266 −0.81%

5 26.6 26.591 0.009 0.03%

6 47.3 41.192 6.108 12.91%

7 44.2 45.039 −0.839 −1.90%

8 66.5 71.518 −5.018 −7.55%

9 36.6 36.305 0.295 0.81%

10 26.5 26.524 −0.024 −0.09%

11 26.8 26.8 0 0.00%

12 44.9 45.509 −0.609 −1.36%

13 35.2 34.23 0.97 2.76%

14 34.3 34.318 −0.018 −0.05%

15 32.5 32.524 −0.024 −0.07%

16 27.1 27.017 0.083 0.31%

17 28.3 28.478 −0.178 −0.63%

18 68.6 65.312 3.288 4.79%

19 29.6 29.506 0.094 0.32%

20 36.1 36.01 0.09 0.25%

21 28.1 28.121 −0.021 −0.07%

22 46.5 45.937 0.563 1.21%

23 46.5 45.448 1.052 2.26%

24 49.9 50.981 −1.081 −2.17%

25 46.4 45.956 0.444 0.96%

26 26.8 26.8 0 0.00%

27 33.7 33.593 0.107 0.32%

28 39.7 39.959 −0.259 −0.65%

29 26.8 26.8 0 0.00%

30 27.5 27.55 −0.05 −0.18%

31 32.1 32.155 −0.055 −0.17%

32 38.7 39.242 −0.542 −1.40%

(continued)
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Table 4. (continued)

Sample Actual value Predicted value Error % Error

33 30.6 30.76 −0.16 −0.52%

34 30.6 29.769 0.831 2.72%

35 28.3 28.407 −0.107 −0.38%

36 34.8 34.868 −0.068 −0.20%

37 29.2 29.856 −0.656 −2.25%

38 29.6 28.793 0.807 2.73%

39 27.7 27.716 −0.016 −0.06%

40 33.3 33.517 −0.217 −0.65%

41 27.1 27.115 −0.015 −0.06%

42 59.9 55.526 4.374 7.30%

43 47.3 46.005 1.295 2.74%

44 50.8 49.823 0.977 1.92%

45 28.2 28.408 −0.208 −0.74%

46 36.6 36.305 0.295 0.81%

47 26.6 26.569 0.031 0.12%

48 53.9 52.99 0.91 1.69%

49 27.8 27.832 −0.032 −0.12%

50 27 26.998 0.002 0.01%

R-squared score coupledwith the lowestMAPE,RMSE, andMAEvalues, demonstrating
its superior precision and thus its suitability for applications demanding high accuracy.
However, the GENLIN model demonstrated impressive computational efficiency, mak-
ing it an attractive option for projects requiring fast results while still maintaining an
acceptable accuracy level. Furthermore, while the DNN model showed good accuracy,
its high MAPE highlights a higher percentage of errors, making the RF model a more
reliable choice for balanced performance between accuracy and error rate.

In conclusion, the selection of the appropriate model should be based on the specific
requirements of the project. If the priority lies in achieving high accuracy, the Gradient
Boosting model appears to be the optimal choice. However, if computational efficiency
or a balance between accuracy and error rate is more important, then GENLIN, RF, or
ANN models might be more suitable. By considering these findings, professionals in
the field of energy estimation can make informed decisions, selecting the best model for
predicting the preliminary energy consumption and thus facilitating the construction of
more energy-efficient buildings.

Future research will aim to construct an optimization model where the evaluation of
energy consumptionwill be conducted using amachine-learning forecastingmodel. This
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Table 5. Predicted and actual values using the GENLIN model for 50 samples

Sample Actual value Predicted value Error % Error

1 27.1 26.58226944 0.518 1.91%

2 33 36.39603854 −3.396 −10.29%

3 52.4 52.34806087 0.052 0.10%

4 32.1 32.22772457 −0.128 −0.40%

5 27.9 26.61855093 1.281 4.59%

6 44.5 52.72585254 −8.226 −18.49%

7 26.6 23.67848529 2.922 10.98%

8 29.2 27.47184509 1.728 5.92%

9 64.2 63.36707702 0.833 1.30%

10 32.1 32.22772457 −0.128 −0.40%

11 28.3 27.0859343 1.214 4.29%

12 32 33.20000572 −1.200 −3.75%

13 26.8 25.25201639 1.548 5.78%

14 26.4 23.7185974 2.681 10.16%

15 29.3 29.17896412 0.121 0.41%

16 34.7 36.02627744 −1.326 −3.82%

17 28.5 24.74651116 3.753 13.17%

18 43.2 52.43952091 −9.240 −21.39%

19 32.4 35.6255538 −3.226 −9.96%

20 27.3 28.35426827 −1.054 −3.86%

21 31 32.58086537 −1.581 −5.10%

22 37.2 41.00031035 −3.800 −10.22%

23 29.4 30.52695106 −1.127 −3.83%

24 29.4 26.47595303 2.924 9.95%

25 76 67.94864366 8.051 10.59%

26 28.2 29.2635981 −1.064 −3.77%

27 28.2 27.25238784 0.948 3.36%

28 69.8 65.37814716 4.422 6.34%

29 33.3 36.89117688 −3.591 −10.78%

30 26.8 24.72133606 2.079 7.76%

31 28.7 27.37769969 1.322 4.61%

32 53.7 63.5074532 −9.807 −18.26%

(continued)
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Table 5. (continued)

Sample Actual value Predicted value Error % Error

33 52.1 54.55528186 −2.455 −4.71%

34 27.5 27.61061399 −0.111 −0.40%

35 28 22.31749501 5.683 20.29%

36 65 69.71370342 −4.714 −7.25%

37 29.1 30.58055519 −1.481 −5.09%

38 28.4 29.6121197 −1.212 −4.27%

39 41 48.54003781 −7.540 −18.39%

40 26.3 20.60531698 5.695 21.65%

41 26.6 24.55446905 2.046 7.69%

42 26.7 25.12671975 1.573 5.89%

43 41.2 44.73313081 −3.533 −8.58%

44 37.4 45.72865881 −8.329 −22.27%

45 27.5 27.39569465 0.104 0.38%

46 29.3 26.4352764 2.865 9.78%

47 27.4 27.76913989 −0.369 −1.35%

48 36.3 43.16116999 −6.861 −18.90%

49 66.8 52.05608763 14.744 22.07%

50 61.3 45.80447138 15.496 25.28%

will facilitate a rapid search within the solution space, accounting for the complexity of
the building envelope.
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Table 6. Predicted and actual values using the ANN model for 50 samples

Sample Actual value Predicted value Error % Error

1 33.7 37.26752 −3.568 −10.59%

2 29.3 27.41971 1.880 6.42%

3 30.4 30.15141 0.249 0.82%

4 37.7 37.97626 −0.276 −0.73%

5 36.5 37.13589 −0.636 −1.74%

6 27.8 27.54763 0.252 0.91%

7 33.7 31.43625 2.264 6.72%

8 29.4 28.55967 0.840 2.86%

9 27.3 28.71441 −1.414 −5.18%

10 36.6 38.91901 −2.319 −6.34%

11 30.6 29.20914 1.391 4.55%

12 26.5 26.83518 −0.335 −1.26%

13 26.7 26.299 0.401 1.50%

14 29.9 31.67227 −1.772 −5.93%

15 26.7 27.02279 −0.323 −1.21%

16 26.6 27.87022 −1.270 −4.78%

17 27.9 28.03875 −0.139 −0.50%

18 42 40.32649 1.674 3.98%

19 29.8 28.59832 1.202 4.03%

20 28.3 28.14356 0.156 0.55%

21 26.5 26.37464 0.125 0.47%

22 28.7 28.45401 0.246 0.86%

23 29.2 28.47074 0.729 2.50%

24 44.1 46.07691 −1.977 −4.48%

25 27.7 27.24225 0.458 1.65%

26 35.5 36.12678 −0.627 −1.77%

27 27.4 27.59288 −0.193 −0.70%

28 28.5 28.94405 −0.444 −1.56%

29 34.9 34.18726 0.713 2.04%

30 104.7 101.4111 3.289 3.14%

31 32.1 32.30056 −0.201 −0.62%

32 26.5 28.13613 −1.636 −6.17%

(continued)
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Table 6. (continued)

Sample Actual value Predicted value Error % Error

33 30.7 31.03463 −0.335 −1.09%

34 34.6 33.26633 1.334 3.85%

35 33 33.81751 −0.818 −2.48%

36 28.6 28.16224 0.438 1.53%

37 32.2 32.93856 −0.739 −2.29%

38 49.9 49.50867 0.391 0.78%

39 34.4 34.26132 0.139 0.40%

40 72.5 72.66464 −0.165 −0.23%

41 31.2 32.91796 −1.718 −5.51%

42 40.4 40.80597 −0.406 −1.00%

43 27.9 28.03875 −0.139 −0.50%

44 27.9 28.03875 −0.139 −0.50%

45 28.2 30.11131 −1.911 −6.78%

46 38 41.88261 −3.883 −10.22%

47 46 47.75949 −1.759 −3.82%

48 42 42.48434 −0.484 −1.15%

49 32 31.63595 0.364 1.14%

50 27.2 27.39272 −0.193 −0.71%
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