q

Check for
updates

Analysis of One-Dimensional Hexagonal
Quasicrystal Elastic Layer Under Surface Loads

Anh Khac Le Vo! , Hoang-Tien Phaml, Jaroon Rungamornratl(g),

and Thai-Binh Nguyen®3®9

1 Department of Civil Engineering, Faculty of Engineering, Center of Excellence in Applied
Mechanics and Structures, Chulalongkorn University, Bangkok 10330, Thailand
jaroon.r@chula.ac.th
2 Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly
Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
tbnguyen@hcmut .edu.vn
3 Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City, Vietnam

Abstract. This study aims to develop an elastic solution for a two-dimensional,
surface-loaded layer made of a one-dimensional (1D) hexagonal quasicrystal (QC)
resting on either a rigid or an elastic substrate. The governing equations, in terms of
phonon and phason displacements, for both the layer and the substrate are derived
from the linear elasticity theory for a 1D-hexagonal QC material and then solved
by the method of Fourier transform and the direct stiffness technique. An efficient
and accurate numerical quadrature is then implemented to evaluate all involved
integrals resulting from Fourier transform inversion. After being verified with
benchmark cases, the derived solutions are utilized to investigate the influence
of the coating thickness and type of substrate on the mechanical behavior of the
medium, including the coated object and the 1D-hexagonal QC coating layer.
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1 Introduction

Quasicrystals (QCs), which possess a structure between crystalline and amorphous, were
first discovered by Shechtman et al. [1] in 1984. It represents an important accomplish-
ment in materials science and condensed matter physics [2]. Due to the unique atomic
arrangement structure, QCs possess outstanding properties such as high hardness, high
thermal stability, high wear resistance, low surface energy, low friction coefficient, and
low heat conductivity [3]. As a result, the vast majority of practical applications of QCs
have been applied in the coating industry, including the coating of cookware utensils
and effective thermal insulation coatings [4]. QCs can be classified via the number of
quasiperiodic directions, such as one-, two-, and three-dimensional QCs, which have
one, two, and three quasiperiodic directions, respectively [2]. Most studies related to

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. N. Reddy et al. (Eds.): ICSCEA 2023, LNCE 442, pp. 1260-1267, 2024.
https://doi.org/10.1007/978-981-99-7434-4_134


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7434-4_134&domain=pdf
https://doi.org/10.1007/978-981-99-7434-4_134

Analysis of One-Dimensional Hexagonal Quasicrystal Elastic Layer 1261

QC:s focus on the one- and two-dimensional form, because of the simplicity of modeling
and solution procedures. 1D-QCs with only one direction are quasiperiodic, and two
other directions are periodic as conventional crystal materials. Wang et al. [5] derived
all possible point groups of 1D-QCs. The general solution in the framework of linear
elasticity of 1D-QCs was proposed by Wang [6] through the introduction of two dis-
placement functions following the theory of transversely isotropic materials. The general
solutions for other specific systems of 1D-QCs, such as hexagonal and orthorhombic,
were also established. For instance, Chen et al. [7] developed the general theory of three-
dimensional (3D) elastic problems for 1D-hexagonal QCs and obtained the fundamental
solution for the concentrated phonon and phason forces. Liu et al. [8] applied a tech-
nique based on the potential theory to derive the general solution for plane problems of
1D-QCs.

In recent years, in-depth research in the coating-substrate area has been a popular
issue. In particular, Hou et al. [9, 10] proposed 3D fundamental solutions for the 1D-
hexagonal QC layer coating. Huang and his research group [11-13] have conducted a
series of studies on the coating of 1D-hexagonal piezoelectric QCs with various sub-
strates by using the Fourier transform method. With a similar procedure, Ma et al. [14]
studied the problem for the 1D-hexagonal QC coating substrate, considering the thermal
effect.

The present study aims to propose a mathematical formulation based on the linear
elastic theory of 1D-hexagonal QCs to model the response of a single-layer coating
under surface loads. In a layer-substrate system with perfect interface conditions, the
substrate is treated mathematically as either a rigid substrate or an elastic half-plane.
The governing equations, in terms of the phonon and phason displacements, for both
layer and substrate are derived from the linear elasticity theory for 1D-hexagonal QC
materials and then solved by the Fourier transform and direct stiffness technique. An
efficient and accurate numerical quadrature is then implemented to evaluate all involved
integrals resulting from the Fourier transform inversion. The model results are presented
for some benchmark cases to verify both the implemented scheme and the obtained
solutions.

2 Problem Formulation

2.1 Problem Description

Consider a two-dimensional elastic medium consisting of a single layer resting on the
infinite elastic substrate or the rigid substrate, as illustrated in Fig. 1a, b. The interaction
between the single layer and the infinite elastic substrate (half-plane) is assumed to
be perfectly bonded along their interfaces. The reference Cartesian coordinate system
{x, y, z, O} are taken such that the origin O is located at the top of the surface; the x- and z-
axes direct in the rightward and downward directions, respectively; and the y-axis follows
the right handed rule. Referring to the chosen coordinate systems, the elastic coasting
layer is made of a 1D-hexagonal QC with a constant thickness 4. In the present study,
the medium is assumed to be free of body forces and subjected only to the arbitrarily
distributed loads within the finite range x € [—a, a] on the top surface of the medium.
Specifically, these surface loads include the distributed phonon normal traction p, (x),
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the distributed phonon shear traction g, (x), and the distributed phason normal traction
Pw(x). Note that the boundary value problems with the considered settings should serve
as a mathematical model suitable for simulating the near-surface mechanical behavior
of an object coated by a 1D-Hexagonal QC layer.
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Fig. 1. Schematic of single-layered elastic medium resting on: a elastic substrate; b rigid substrate
under arbitrary distributed surface loadings

2.2 Basic Field Equations

Basic field equations for 1D-hexagonal QCs are taken from the work of Wang et al.
[5]. For a body undergoing the plane strain deformation in the x-z plane, there are only
three non-zero components including the horizontal phonon displacement u,, the vertical
phonon displacement u,, and the vertical phason displacement w,. The corresponding
phonon and phason strain fields for the 1D-hexagonal QCs are given by

ity u, 1 (814Z Bux)
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where {&xy, €77, €xz, £z} are non-zero components of the phonon strain and {W_, W}
are non-zero components of the phason strain. The generalized Hooke’s law for 1D-QCs
is expressed as [5]

Oxx = Cr1&xx + C136z + RiWy; 07 = Cizéxy + C338; + RoWyg;
Ox; = 0z = 2Cua48x; + R3Wx (2)

Hy; = Ri6xy + Rogyp + KiWy; Hye = 2R385; + Ko Wiy 3)



Analysis of One-Dimensional Hexagonal Quasicrystal Elastic Layer 1263

where {0y, 0, Oxz, 0z} are non-zero components of the phonon stress; {H,,, H,.} are

non-zero components of the phason stress; {C11, C13, C33, C44} are phonon elastic con-

stants; {Kj, K>} are phason elastic constants; and {R;, R2, R3} are coupling phonon-

phason elastic constants. In the absence of body forces, equilibrium equations governing

the phonon and phason stress field are given as

00y 00y 00, 00 0H,, 0H;
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By combining Egs. (1)-(4), it leads to the generalized Navier-Cauchy equations

governing the phonon and phason displacement fields:
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Note that by setting the coupling constants Ry, R>, R3 = 0, Egs. (5)—(6) reduce to
those for the case of periodic or crystal materials with transverse isotropy.

2.3 Solution Procedure

The Fourier integral transform method [15] is utilized to establish a pair of linear ordi-
nary differential equations (ODEs) governing the phonon and phason displacements of
the generic layer in the transform space. A standard technique in the theory of differential
equations is adopted to obtain a general solution of the ODEs in the transform space.
Subsequently, the general solution for other elastic fields, such as phonon and phason
stress in the transform space, is obtained via direct substitution in the involved field equa-
tions. A stiffness equation for the generic layer in the transform space is also established
in explicit form from the established general solution for the displacements and stresses.
The direct stiffness method is employed together with the stiffness equation of the coat-
ing layer and elastic substrate, the boundary conditions, and the continuity conditions
along the material interfaces to form a set of linear algebraic equations governing the
displacement unknowns on the boundary and interfaces of the coated-substrate system.
Finally, an efficient and accurate numerical quadrature is implemented to evaluate all
involved integrals resulting from Fourier transform inversion in the expressions of the
phonon and phason displacement and stress fields.

3 Numerical Results

3.1 Material Constants Used in Numerical Study

In the numerical study, a 1D-hexagonal QC with the material constants shown in Table 1
[16] is chosen as a representative material for the coating layer, whereas the elastic
substrate (representing the coated component) is made of steel with its properties shown
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in Table 2. To simulate an elastic substrate made of a periodic or crystal material, the

phonon-phason coupling constants are taken as zero, whereas the phason field is fully
ignored.

Table 1. Material constants of the coating layer

Material Phonon constants Phason Phonon-phason
constants (GPa) constants coupling constants
Cii [Ci2 [C13 |C33 [Caa (K1 |Ky [Ry Ry R3

1D-hexagonal 150 | 100 |90 130 |50 0.18 {030 |—-15 |12 1.2
QC

Table 2. Material constants of the elastic substrate. The phonon constants are obtained directly
from Young’s modulus and Poisson’s ratio.

Material constants | Young’s modulus | Poisson’s ratio | Phonon constants (GPa)

(GPa)

E v Cit |Cr2 [Ci3 |C33 |[Cyg
Steel 200 0.3 269.2 [ 1154 | 1154 |269.2 | 76.9

3.2 Verification

To verify the solution procedure and obtained results, a problem of an isotropic half
plane subjected to a uniformly distributed normal phonon traction p,o over the interval
[—a, a] (G.e., pu(x) = puo, gu(x) = 0, py,(x) = 0 for x € [—a, a]) is considered. The
exact solution for this particular case can be readily obtained from the results of classical
elastic half plane made of isotropic material. To convert from 1D-hexagonal QCs layer
to isotropic layer, the phonon-phason coupling constants of 1D-hexagonal QCs are set
equal to zero. Additionally, the transition between elastic constant of isotropic materials
to the phonon elastic constants following relationship as

E(1—v) Ev E

—  Cpp=C ;Cu=—— (8
T—29d ) 12 13 44 (8)

Cn=0Cs= T =201+ 2(1+v)

where E and v are known as Young’s modulus and Poisson ratio, respectively.

To simulate the half plane within the current setting, the thickness of the layer is
taken to be sufficiently large. Results for the normalized phonon vertical stress o /pyo
and the normalized phonon shear stress o,,/p,0 for three normalized depths z/a =
0.1, 0.5, 1.0 with a denoting a range of loading applied, are reported in Fig. 2 along
with the benchmark solutions of classical elaticity. It is seen that the two solutions are in
excellent agreement and this therefore confirms the correctness of the proposed scheme.
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Fig. 2. Results for a normalized phonon vertical stress o;;/p,0 and b normalized phonon shear
stress oy /py0 at three different normalized depths z// = 0.1, 0.5, 1.0

3.3 Effect of Coating Thickness and Type of Substrate

To investigate the effect of the 1D-hexagonal QC coating layer thickness & and the
type of substrate (either rigid or elastic) used in the modeling on the stress trans-
ferring to the surface of the substrate, let us consider the coated substrate subjected
to a uniformly distributed, phonon normal traction p,o over the interval [—a, a] (i.e.,
Pu(X) = puo, qu(x) = 0, py(x) = 0 forx € [—a, a]).
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Fig. 3. Results for a normalized phonon vertical stress o /p,,0 at the bottom of the coating layer
and b normalized maximum phonon vertical stress o,;(max)/p,o at the bottom of the coating
layer versus the normalized coating thickness i/a

The distribution of normalized phonon vertical stress o,;/p,0 at the bottom of the
coating layer is reported in Fig. 3a for three values of the normalized thickness h/a =
0.5, 1, 2. Results obtained from both rigid and elastic substrates are compared. It is seen
that as the normalized coating thickness increases, the maximum phonon vertical stress
(attained at x = 0,z = h) significantly decreases with the transferring stress tending
to spread in a wider region over the surface of the substrate. In addition, there is no
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significant difference of the transferring vertical stress to the substrate predicted by both
models (i.e., rigid and elastic substrates). This observation suggests that the simulation
of the surface coating by modeling the coated object as a rigid substrate is sufficient for
this particular case and can yield comparable results to those with an elastic substrate.

The maximum normalized phonon vertical stress at the bottom of the coating layer
versus the normalized coating thickness is also illustrated in Fig. 3b. It is seen that the
reduction of the maximum transferring stress is quite rapid for 2/a < 3 and starts to decay
in rate as the normalized coating thickness becomes larger than 3. Again, both rigid and
elastic substrate models predict almost identical results for the entire range of coating
thickness considered. Note also that results reported in Fig. 3b can be potentially useful
in the selection of the coating thickness to meet the target of reducing the transfering
stress at the surface of coated objects.

4 Conclusion

The elastic response of a plane-strain, surface loaded layer of 1D-hexagonal QCs rest-
ing on either a rigid or elastic substrate was investigated. A set of governing differential
equations was formulated in terms of phonon and phason displacements from a linear
elasticity theory for QCs and then solved analytically by the method of Fourier trans-
form and the stiffness approach. An efficient quadrature was implemented to evaluate
all involved integrals in the final expression of all field quantities. The correctness of
established results was confirmed by benchmarking with available reference solutions.
Verified results and schemes can be further utilized not only in the investigation of the
near-surface response of surface coated objects but also to generate essential fundamental
solutions sufficient for handling contact problems.
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