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Abstract. A ring signature scheme allows a group member to generate a
signature on behalf of the whole group, while the verifier can not tell who
computed this signature. However, most predecessors do not guarantee
security from the secret key leakage of signers. In 2002, Anderson pro-
posed forward security mechanism to reduce the effect of such leakage. In
this paper, we construct the first lattice-based ring signature scheme with
forward security. Our scheme combines the binary tree and lattice basis
delegation technique to realize a key evolution mechanism, where secret
keys are ephemeral and updated with generating nodes in the binary
tree. Thus, adversaries cannot forge the past signature even if the users’
present secret keys are revealed. Moreover, our scheme can offer unforge-
ability under the standard model. Furthermore, our proposed scheme is
expected to realize post-quantum security due to the underlying Short
Integer Solution (SIS) problem in lattice-based cryptography.

Keywords: Ring signature · Lattice · Forward security · Key
exposure · Post-quantum secure

1 Introduction

Ring signatures [28] allow one group member to generate signatures on behalf of
this group, where the verifier can confirm that the signer belongs to this group
but can not identify the signer. Thus, ring signatures can provide anonymity
on the signer’s identity and have broad applications, such as Blockchain, ad-hoc
networks, anonymous transactions, anonymous whistle-blowing, and so on.

In practical applications, secret keys of signers are revealed easily because
of the careless store or internet attacks, etc. Moreover, once a secret key of a
member of the group is exposed, an adversary can forge a valid signature on
behalf of this group. Thus, the damage from the key exposure is particularly
critical in ring signatures. In 2002, Anderson [4] introduced the forward secu-
rity mechanism for signature schemes to reduce the impact caused by secret key
exposure. Specifically, forward security of signatures guarantees that the expo-
sure of a present secret key cannot affect the preceding generated signatures. Its
core idea is a key evolution mechanism, where the lifetime of signature schemes
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is divided into τ discrete time periods. When a time period is updated to the
next one, a new secret key is also computed from the current one by this one-way
key evolution, while the current secret key is deleted. Since the key evolution is
one-way, the previously generated signature is still secure even if an adversary
obtains a current secret key. Therefore, how to design a proper key evolution
mechanism is the point of a forward secure ring signature.

On the other hand, current ring signatures are constructed based on the hard-
ness of some number-theoretical problems, such as prime factorization problems,
discrete logarithm problems, bilinear maps problems, etc. However, Shor’s quan-
tum algorithm [30] shows that all these classical problems can be solved in poly-
nomial time in a practical quantum computer. So Post-Quantum Cryptography
(PQC) is widely studied to withstand the attack from quantum computers. In
fact, some international standards organizations such as NIST, ISO, and IETF
have been conducting PQC standardization projects for a long time. Gener-
ally, three primitives are focused on: Public-Key Encryption algorithms (PKE),
Key Encapsulation Mechanisms (KEM), and digital signature (DS) schemes.
Among the several categories, lattice-based cryptography is considered the most
promising candidate for its robust security strength, comparative light commu-
nication cost, desirable efficiency, and excellent adaptation capabilities. Indeed,
NIST announced three lattice-based PKE/KEM/signature algorithms over four
candidate finalists in 2022.

1.1 Contributions and Approaches

In this paper, we proposed the first lattice-based ring signature scheme with
forward security, which is expected to resist the attack from quantum computers.
Under the inspiration of [24,32], the proposed scheme is proved secure under the
standard model. In this scheme, we combine the binary tree structure and lattice
basis delegation technique to realize a key evolution mechanism. Based on this
mechanism, secret keys are updated as the change of time periods, which is able
to satisfy forward security.

In our work, we use leaf nodes in a binary tree structure of the depth l to
discretize the lifetime into 2l intervals. The lattice trapdoor generation algorithm
is used to obtain a matrix Ak along with a basis TAk

of lattice Λ⊥
q (Ak) as the

public key and the initial secret key of group member k, respectively. Without
loss of generality, assume that the user with index i is the real signer, then Ai

is the corresponding matrix of root node in the binary tree. Then we choose
2l randomly uniform matrices A

(bj)
j of the size as Ai for j ∈ {1, 2, . . . , l} and

bj ∈ {0, 1}. For each node Θ(j) = (θ1, . . . , θk, . . . , θj) with θk ∈ {0, 1} and
k ∈ {1, 2, . . . , j}, we set the corresponding matrix FΘ(j) = [Ai||A(θ1)

1 || . . . ||A(θj)
j ].

We employ lattice basis extension algorithm to compute trapdoors of any nodes,
inputting the corresponding matrix and the trapdoor of the root node (or the
trapdoor of its ancestor node). According to the property of the basis extension
algorithm, the computation of lattice trapdoors can not be operated inversely,
which realizes the one-way key evolution. After arranging the trapdoor of each
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node, we apply the minimal cover set to guarantee the signer’s secret key ski,t

in time period t includes the ancestor trapdoor for time periods t′ (t′ ≥ t) and
does not include any trapdoor for time periods t′′ (t′′ < t).

1.2 Related Works

Forward Security: Anderson [4] first introduced forward security in signa-
tures, which protects the use of past secret keys even if the current key is
revealed. Bellare et al. [5] further formalized the definition of forward secure
signatures and provided a construction based on the hardness assumption of the
integer factorization problem. Then, Abdalla et al. [1] and Itkis et al. [18] did
respectively some work to improve the efficiency of [5]. Besides, many forward
secure cryptosystems were given, such as forward secure public key encryption
systems [7,10,12], forward secure group signatures [9,21,22,27], forward secure
blind signatures [13,19,20], forward secure ring signatures [23,24], forward secure
linkable ring signature [8], etc.

Lattice-Based Signatures: In 2008, Gentry et al. [15] proposed a lattice-based
signature scheme using a preimage sampling algorithm. On the one hand, this
work showed a “hash-and-sign” paradigm that can achieve high computing speed
with a compact design and owns a shorter output size. On the other hand, this
paradigm has some shortcomings, i.e., limitations to parameter sets, difficulty in
conducting high-speed implementation, and inability to withstand side-channel
attacks [25]. In 2010, Cash et al. [11] designed a lattice basis delegation technique
that allows obtaining a short basis of a designated lattice from a short basis of
a related lattice. They also showed a lattice-based signature scheme with this
technique. Many current lattice-based signature schemes adopt this delegation
technique to expand the lattice bases. In 2011, Wang et al. [32] constructed
a lattice-based ring signature using the delegation algorithm. In 2011, Yu et
al. [33] constructed an identity-based signature scheme with forward security.
Further, Ling et al. [22] proposed the first forward secure group signature from
lattices in 2019. Then, Le et al. [20] gave the first forward secure blind signature
from lattices. Simultaneously, Feng et al. [14] gave a traceable ring signature
from lattices. In 2022, Hu et al. [17] gave a lattice-based linkable ring signature
scheme with the standard model.

Ring Signatures: Rivest et al. [28] first proposed a ring signature in 2001.
Then many ring signature schemes [6,16,29,31] were constructed, whose secu-
rity models do not rely on random oracles. However, the above schemes do not
consider forward security and post-quantum security either. In 2008, Liu et al.
[23] first proposed a forward secure ring signature to reduce the damage from
the key exposure, and they also gave a construction under the random oracle
model. Further, Liu et al. [24] showed a forward secure ring signature based on
the bilinear maps without random oracles.

To sum up, due to the apparent resistance to quantum computing attacks,
lattice-based cryptography has attracted more and more attention. In particular,
the forward security of signatures is considered one of the most promising ways



Forward Secure Lattice-Based Ring Signature Scheme in the Standard Model 149

to minimize the damage caused by secret key exposure. However, to the authors’
knowledge, there is no lattice-based ring signature scheme with forward security.
The work in this paper aims to fill this gap.

1.3 Organization

The rest of the paper is organized as follows. Section 2 shows preliminaries on
lattice, hardness assumptions, and related algorithms. We introduce the syntax
of ring signature with forward security in Sect. 3. In Sect. 4, the specific con-
struction in lattices is given. Finally, we conclude our work in Sect. 5.

2 Preliminaries

2.1 Lattices

Given positive integers n,m and some linearly independent vectors bi ∈ R
m

for i ∈ {1, 2, . . . , n}, the set generated by the above vectors Λ(b1, . . . ,bn) =
{Σn

i=1xibi|xi ∈ Z} is a lattice. The set {b1, . . . ,bn} is a lattice basis. m is the
dimension and n is the rank. One lattice is full-rank if its dimension equals to
the rank, namely, m = n.

Definition 1. For positive integers n,m and a prime q, a matrix A ∈ Z
n×m
q

and a vector u ∈ Z
n
q , define two sets:

Λ⊥
q (A) := {e ∈ Z

m|Ae = 0 mod q}
Λu

q (A) := {e ∈ Z
m|Ae = u mod q}.

Assuming that T ∈ Z
m×m is a basis of Λ⊥

q (A), T is a basis of Λ⊥
q (BA) for a

full-rank B ∈ Z
n×n
q .

2.2 Hardness Assumption

Definition 2 (Small integer solution, SIS problem). Given an integer q,
a matrix A ∈ Z

n×m
q and a real β > 0, find a nonzero integer vector e ∈ Z

m such
that Ae = 0 mod q and ‖e‖ ≤ β.

The SIS problem [15,26] has been proved as hard as approximating the worst-
case Gap-SVP (smallest vector problem) and SIVP with certain factors.

2.3 Lattice Algorithms

Definition 3 (Gaussian distribution). Given parameter σ ∈ R
+, a vector

c ∈ R
m and a lattice Λ, DΛ,σ,c is a discrete gaussian distribution over Λ with

a center c and a parameter σ, denoted by DΛ,σ,c =
ρσ,c(x)

ρσ,c(Λ)
for ∀x ∈ Λ, where

ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x) and ρσ,c(x) = exp(−π
‖x − c‖2

σ2
). When c = 0, DΛ,σ,0 can

be abbreviated as DΛ,σ.
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Lemma 1 (TrapGen algorithm) [2,3,15]. Given integers n,m, q with q > 2
and m � 6n log q as the input, there is a probabilistic polynomial-time (PPT)
algorithm TrapGen, outputs a matrix A ∈ Z

n×m
q along with a basis TA of the lat-

tice Λ⊥
q (A), namely, A·TA = 0 mod q, where the distribution of A is statistically

close to uniform on Z
n×m
q , and the Gram-Schmidt norm ‖T̃A‖ � O(

√
n log q).

Lemma 2 (ExtBasis algorithm) [11]. Given an arbitrary matrix A ∈ Z
n×m
q

whose columns generate the group Z
n
q , an arbitrary basis S ∈ Z

m×m of Λ⊥
q (A)

and an arbitrary matrix A′ ∈ Z
n×m′
q , there is a deterministic polynomial-time

algorithm ExtBasis which can output a basis S′′ of Λ⊥
q (A′′) ⊆ Z

m′′×m′′
q such that

‖S̃‖ = ‖S̃′′‖, where A′′ = A||A′, m′′ = m+m′. Moreover, the above results apply
to the situation that the columns of A′ are prepended to A. This algorithm can
be denoted by S′′ ← ExtBasis(A′′, S).

Lemma 3 (GenSamplePre algorithm) [11,32]. Given a matrix AR = [A1|
|A3] and a short basis BR of the lattice Λ⊥

q (AR), a parameter δ ≥ ‖B̃R‖ ·
ω(

√
log n), a vector y ∈ Z

n
q , there is an algorithm GenSamplePre(AS , AR, BR,

y, δ) to sample a preimage e which is within negligible statistical distance of
DΛy

q(AS),δ, namely, ASe = y mod q, where A1 ∈ Z
n×k1m
q , A2 ∈ Z

n×k2m
q , A3 ∈

Z
n×k3m
q , A4 ∈ Z

n×k4m
q , AS = [A1||A2||A3||A4], and k1, k2, k3, k4 are positive

integers.

The TrapGen algorithm will be used to generate the public-secret key
pairs in the following scheme. And the GenSamplePre algorithm can be
achieved by invoking preimage sample algorithm which was introduced in [15].
The ExtBasis algorithm will be used to update keys as the change of time
periods.

3 Syntax of Forward Secure Ring Signature

This section shows the model of forward secure ring signature and its security
model which was first proposed in [24]. The security of ring signatures is required
with two points, anonymity and unforgeability.

3.1 System Model

One forward secure ring signature scheme consists of five algorithms, Π =
(Setup, KeyGen, KeyUpdate, Sign, Verify), which was first introduced
by Liu et al. [24].

– pp ← Setup(λ): Given the security parameter λ as the input, the setup
algorithm outputs the system public parameter pp.

– (pki, ski,0) ← KeyGen(pp): Given the public parameter pp, the key genera-
tion algorithm outputs the public-secret key pair (pki, ski,0) of user i at the
original time, namely, the time period t = 0.
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– ski,t+1 ← KeyUpdate(ski,t, t): Given the secret key ski,t of user i with the
time period t as the input, this key update algorithm generates a new secret
key ski,t+1 at the time period t + 1, and deletes the previous secret key skt.

– σt ← Sign(ski,t,m, R, t): Given a time period t, the secret key ski,t, a set R
of public keys (represents the ring of users) and the message m as the input,
this algorithm returns a signature σt.

– Verify(R,m, σt, t): Given public keys set R, signature σt, message m, and
the time period t as the input, the algorithm outputs 1 for accept, namely,
the signature is valid for this message. Otherwise returns 0 for reject.

3.2 Anonymity

The anonymity implies an adversary cannot tell which member of a ring gener-
ates signatures. Here we show a game between a challenge C and an adversary
A to describe the anonymity against full key exposure [6] on forward secure
ring signature. Compared with the definition of anonymity in the standard ring
signature, the adversary in this model is given secret keys with the original time
period instead of having the right to access a corruption oracle, which means
the adversary can obtain the secret keys of all users for any time period.

– Setup: The challenger C runs KeyGen algorithm for n′ times to get public-
secret key pairs (pk1, sk1,0), . . . , (pkn′ , skn′,0), then C sends the public key
set R = {pk1, . . . , pkn′} and the secret key set {sk1,0, . . . , skn′,0} at original
time period to the adversary A .

– Query 1: A queries adaptively signing oracle and submits a message m, a
time period t, a ring set R with group members’ public keys, a public key
pki ∈ R, challenger C runs Sign algorithm to respond signing oracle queries.

– Challenge: A chooses a time t∗, a group size n∗, a message m∗, a set R∗

of n∗ public keys which satisfies two public keys pki0 , pki1 ∈ R are included
in R∗, and sends them to C . C selects randomly a bit b ∈ {0, 1} and runs
σ∗

t∗ ← Sign(t∗, n∗, R∗, skib,t∗ ,m∗). The challenger sends signature σ∗
t∗ to A .

– Query 2: A is allowed to query the signing oracle adaptively.
– Guess: A returns a guess b′.

A wins this game if b′ = b holds. The advantage that A wins this game for
the security parameter λ is

AdvAnon
A (λ) = |Pr[b = b′] − 1

2
|.

Definition 4. A forward secure ring signature scheme is anonymous, if for any
PPT adversary A , the defined advantage AdvAnon

A (λ) is negligible.

3.3 Forward Security

The forward security of ring signature schemes is described by the following
game which was first introduced in [24]. Here an adversary cannot output a
valid signature σ∗

t∗ for a message m∗, a ring R∗, and a time period t∗, such that
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V erify(m∗, σ∗
t∗ , t∗) = 1 unless either one of public keys in R∗ is generated by

the adversary or a user whose public key is contained in R∗ signs m∗. The details
of this game are as follows:

– Setup: The challenger runs KeyGen algorithm for n′ times and obtains
some public key and original secret key pairs (pk1, sk1,0), . . . , (pkn′ , skn′,0),
then he sends the set of public keys S = (pk1, . . . , pkn′) to the adversary.

– Query phase: A queries the following oracles adaptively.
• Corruption oracle query (ski,t ← CO(pki, t)): Inputting a public key

pki ∈ S and a time t, the oracle outputs secret key ski,t.
• Signing oracle query SO(t, n,R, pki,m): Inputting a time t, a group size

n, a set of n public keys R, a public key pki ∈ R and a message m, this
oracle outputs a signature σt with the time t.

– Output: A outputs a signature σ∗
t∗ , a ring R∗ with the number n∗ of users,

a time t∗ and a message m∗.

A wins the game if the following conditions holds:

1. V erify(m∗, σ∗
t∗ , t∗) = 1,

2. R∗ ⊆ S,
3. for all pk∗

i ∈ R∗, there is no CO(pk∗
i , t′) query with time t′ � t∗,

4. there is no SO(t∗, n∗, R∗,m∗) query.

Definition 5. A ring signature scheme is unforgeable with forward security, if
for all PPT adversary A , the advantage Advfs

A (λ) that A wins the above game
is negligible on the security parameter λ.

4 Lattice-Based Construction

In this section, we first show a framework how to generally assign time periods,
and generate the corresponding lattice trapdoor for each node in a binary tree.
Then, we propose a lattice-based forward secure ring signature scheme.

4.1 Description of Key Update with Time Periods

Our construction employs binary tree structure and lattice basis delegation tech-
nique, ExtBasis algorithm, to realize the update of secret keys with the change
of time periods. The details are described as follows.

– Time arrangement in Binary Tree:
• We assign the time periods t ∈ {0, 1, . . . , 2l − 1} to leaf nodes of a binary

tree with depth l from left to right. Assume that l = 3, then the number
of time intervals is 8.

• On each time period t, there is an unique path t = (t1, . . . , tl) from the
root node to leaf node. And for the ith level, ti = 0 if the node in
this path is left node, otherwise ti = 1. Similarly, for the ith level node
(i 
= l), its path from the root node to this node is denoted uniquely by
Θ(i) = (θ1, . . . , θi), where θi ∈ {0, 1} is defined as same as ti.
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– Update of lattice trapdoor of nodes:
• TrapGen algorithm is run to obtain a random matrix A0 ∈ Z

n×m
q

and a lattice basis TA0 of lattice Λ⊥(A0). We define the correspond-
ing matrix FΘ(i) = [A0||A(θ1)

1 || . . . ||A(θi)
i ] for Θ(i), and the matrix Ft =

[A0||A(t1)
1 || . . . ||A(tl)

l ] for a time period t, where A
(b)
i are random matrices

for i ∈ {1, 2, . . . , l} and b ∈ {0, 1}. A0 is regarded as the corresponding
matrix of root node and TA0 is a lattice trapdoor for root node.

• Considering the computation of a corresponding lattice trapdoor TΘ(i)

for the node Θ(i) of the binary tree, we employ lattice basis extension
algorithm ExtBasis. There are two following situations.

* Given the original lattice trapdoor TA0 , the trapdoor TΘ(i) can be
computed as follows:

TΘ(i) ← ExtBasis(FΘ(i) , TA0),

where FΘ(i) = [A0||A(θ1)
1 || . . . ||A(θi)

i ].
* The trapdoor TΘ(i) can also be computed from its any ancestor’s

trapdoor. For example, given TΘ(k) ,

TΘ(i) ← ExtBasis(FΘ(i) , TΘ(k)),

where FΘ(i) = [A0||A(θ1)
1 || . . . ||A(θi)

i ] and Θ(i) = (θ1, . . . , θk, θk+1, . . . ,
θi) for k < i.
That is to say, the trapdoor TΘ(i) is a basis of the lattice Λ⊥(FΘ(i)).

• The above methods are also suitable for computing lattice trapdoors for
time periods (i.e., leaf nodes), if its ancestor’s lattice trapdoor is known.

4.2 Our Lattice-Based Proposal

Here, we show the lattice-based construction which uses the key evolution (KV)
mechanism on the binary tree to achieve the key update and forward security.

– Setup(λ): Given security parameter λ as input, set the number of time
period τ = 2l where l is the depth of the binary tree, set system parame-
ters n,m, q, d, δ, where n,m are integer, q is prime, d represents the length of
the signed messages, δ is the parameter of sampling algorithm, the maximum
number of users max, the setup algorithm performs as follows:

• Choose 2l random matrices A
(0)
1 , A

(1)
1 , . . . , A

(0)
l , A

(1)
l ∈ Z

n×m
q ,

• Choose random and independent matrices C0, C1, . . . , Cd ∈ Z
n×m
q ,

• Outputs the public parameter pp = (q, n,m, d, δ, τ,max,A
(0)
1 , A

(1)
1 , . . . ,

A
(0)
l , A

(1)
l , C0, C1, . . . , Cd).

– KeyGen(pp): Given the public parameter pp, the key generation algorithm
performs as follows.

• For the user with index i (1 ≤ i ≤ max), run TrapGen(n,m, q) algorithm
to obtain a random matrix Ai and a basis TAi

of lattice Λ⊥(Ai),
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Fig. 1. Binary tree of depth l = 3: without losing generality, assume that the signer is
a user with the index i in the group, then the corresponding matrix for root node is Ai

and its trapdoor is TAi . Assume that t = 1, its path contains nodes marked with “red”

background and there are the corresponding matrix Fi,001 = [Ai||A(0)
1 ||A(0)

2 ||A(1)
3 ] and

its trapdoor T001 in node “001”. When the time period is changed from t = 2 to t = 3,
the minimal cover is updated from Node(2) = {01, 1} to Node(3) = {011, 1} and the
secret key is also updated from ski,2 = {T01, T1} to ski,3 = {T011, T1}. (Color figure
online)

• Returns the public-secret key (pki, ski,0) = (Ai, TAi
) for user i.

– KeyUpdate(pp, ski,t, pki): Given the public parameter pp, a secret key ski,t

with the time period t and public key pki = Ai of a user with the index i
as input, the key update algorithm invokes ExtBasis algorithm combining
with the binary tree, and returns the updated secret key ski,t+1 in the time
period t+1. The details of key evolution mechanism to achieve the secret key
update are as follows:

• For any leaf node t in the binary tree, a minimal cover Node(t) represents
the smallest set that contains an ancestor of all leaves in {t, t+1, . . . , τ−1}
but does not contains any ancestors of any leaf in {0, 1, . . . , t − 1}. For
example, as shown in Fig. 1, Node(0) = {root}, Node(1) = {001, 01, 1},
Node(2) = {01, 1}, Node(3) = {011, 1}, Node(4) = {1}, Node(5) =
{101, 11}, Node(6) = {11}, Node(7) = {111}.

• Based on the rules in the Sect. 4.1, each node in the binary tree owns
the corresponding trapdoor, for example, for the node “01” in Level 2,
its lattice trapdoor is denoted by T01 which is a basis of lattice Λ⊥

q (Fi,01)

and Fi,01 = [Ai||A(0)
1 ||A(1)

2 ]. Then the secret key skt at the time period
t consists of trapdoors of all nodes in the set Node(t). In Fig. 1, we
have ski,0 = {TAi

}, ski,1 = {T001, T01, T1}, where T001, T01, T1 are the
corresponding trapdoor (basis) for Fi,001 = [Ai||A(0)

1 ||A(0)
2 ||A(1)

3 ], Fi,01 =
[Ai||A(0)

1 ||A(1)
2 ], Fi,1 = [Ai||A(1)

1 ], respectively.
• To realize the update from ski,t to ski,t+1, the signer i determines firstly

the minimal cover Node(t+1), then grabs all trapdoors of nodes which are
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in Node(t + 1) by using the methods introduced in Sect. 4.1, and deletes
the trapdoors of nodes in Node(t)\Node(t+1) to realize the one-way key
evolution mechanism. Finally, the signer can obtain the secret key ski,t+1.
For example, given ski,1 = {T001, T01, T1}, then ski,2 = {T01, T1}, where
Node(1)\Node(2) = {001} and T001 will be deleted.

• This algorithm outputs the secret key ski,t+1 of the signer with index i
in the time period t + 1, and deletes the secret key ski,t.

– Sign(m, ski,t, R, t): Given a ring of N users with public keys R =
{A1, A2, . . . , AN}, the message m ∈ {0}×{0, 1}d with the length of d+1, the
signer i with the secret key ski,t at the time period t generates a signature as
follows:

• The signer i checks firstly if ski,t contains the trapdoor TΘ(t) . Other-
wise, he runs ExtBasis(FΘ(t) , TΘ(k)) to compute TΘ(t) , where TΘ(k) is an
ancestor basis of TΘ(t) in the secret key ski,t,

• Set Cm =
∑d

j=0(−1)m[j]Cj ∈ Z
n×m
q , where m[j] is the jth bit of the

message m,
• Runs GenSamplePre(AR,t, Fi,t, TΘ(t) ,0, δ) to obtain e ∈ Z

[N(l+1)+1]m
q

which satisfies AR,t · e = 0 mod q, where Fi,t = [Ai||A(t1)
1 || . . . ||A(tl)

l ],
AR,t = [F1,t||F2,t|| . . . ||FN,t||Cm],

• Returns σt = e as the ring signature of m during the time period t.
– Verify(R,m, σt, t): The verify algorithm performs as follows:

• Compute Cm =
∑d

j=0(−1)m[j]Cj ,
• Accept if AR,t ·e = 0 mod q holds and ‖e‖ � δ

√
[N(l + 1) + 1]m, receive

this signature. Otherwise, reject it.

Correctness: According to the GenSamplePre algorithm, the vector e satisfies
AR,t · e = 0 mod q and ‖e‖ � δ

√
[N(l + 1) + 1]m with overwhelming probabil-

ity. e is within negligible statical distance of DΛ⊥
q (AR,t),δ.

4.3 Security Analysis

Theorem 1. The proposed ring signature scheme is fully-anonymous, if
SISq,N(l+1)m,δ problem is intractable, where N is the size of ring.

Theorem 2. The proposed ring signature is unforgeable with forward security,
if SISq,N(1+2l)m,δ problem is hard, where N is the size of the challenge ring.

The proof of Theorem 1 and Theorem 2 can be found in the full version [34].

5 Conclusion

This paper shows the first lattice-based ring signature scheme with forward secu-
rity under the standard model. Our proposal combines lattice delegation tech-
niques with a binary tree structure to realize a key evolution mechanism. Based



156 X. Yu and Y. Wang

on this one-way evolution mechanism, secret keys can be updated timely with
generating nodes in the binary tree, which guarantees that the exposure of a
current secret key can not threaten the past signatures. Moreover, our scheme is
expected to be post-quantum secure due to its underlying security assumption
on the hardness of the SIS problem in lattice theory. The meaningful future work
is to optimize the size of public parameters and signature.
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